
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRACKING ANY POINT IN MULTI-VIEW VIDEOS

Anonymous authors
Paper under double-blind review

MV-TAP

(a) MV-TAP (b) Performance
Multi-view videos

60 64 68 72 76 80

25

50

45

40

35

30

OA

A
J CoTracker3

TAPIR

Cross-view Attention

⋯⋯

⋯⋯ CoTracker2

Ours
(MV-TAP)

LocoTrack

Trajectories

Figure 1: Teaser. We present MV-TAP, the first model for the new task of multi-view point track-
ing. Unlike dominant single-view point tracking methods (Karaev et al., 2024b; Doersch et al.,
2023), which often degrade under high dynamics due to missing geometric cues in monocular video,
our method aggregates complementary information from multi-view inputs, substantially outper-
forming single-view baselines.

ABSTRACT

Accurate point tracking across video frames is a core challenge in computer vi-
sion, but existing single-view approaches often fail in dynamic real-world set-
tings due to the limited geometric information in monocular video. While multi-
view inputs provide complementary geometric cues, most current correspondence
methods assume rigid scenes, calibrated cameras, or other priors that are rarely
available in casual captures. In this work, we introduce the task of multi-view
point tracking, which seeks to robustly track query points across multiple, uncal-
ibrated videos of dynamic scenes. We present MV-TAP, a framework that lever-
ages cross-view attention to aggregate spatio-temporal information across views,
enabling more complete and reliable trajectory estimation. To support this new
task, we construct a large-scale synthetic dataset tailored for multi-view track-
ing. Extensive experiments demonstrate that MV-TAP outperforms single-view
tracking methods on challenging benchmarks, establishing an effective baseline
for advancing multi-view point tracking research.

1 INTRODUCTION

Accurately tracking points across video frames, a task known as point tracking (Harley et al., 2022;
Doersch et al., 2022), is a fundamental task in computer vision. It underpins a vast array of appli-
cations, including embodied AI (Vecerik et al., 2024; Bharadhwaj et al., 2024), autonomous driv-
ing (Balasingam et al., 2024), 4D reconstruction (Wang et al., 2024; Feng et al., 2025), and video
editing (Geng et al., 2025; Jeong et al., 2025). Despite significant progress, the performance of
existing single-view point tracking models often degrades in complex real-world scenarios.

The challenge often stems from the inherent ambiguity of using a single viewpoint. In this monoc-
ular setting, single-view point tracking models struggle with frequent occlusions, erratic motion,
and depth uncertainty, as a single 2D projection point provides insufficient geometric constraints
to resolve these ambiguities. Consequently, for downstream tasks demanding precise geometric
consistency, the trajectories produced by even state-of-the-art trackers can be unreliable.

1
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While multi-view systems offer a promising way to add these geometric constraints, existing multi-
view correspondence methods are often ill-suited for this problem. Many of these techniques are
designed for static scenes (Schonberger & Frahm, 2016), assume rigid geometry, and require known
camera parameters, depth, or other geometric priors (Zhang et al., 2025a) that are unavailable in the
casual, in-the-wild video captures where robust point tracking is most needed. This leaves a critical
gap in methodology: there is no established paradigm for leveraging multiple, uncalibrated videos
to track 2D points through dynamic scenes, even though such a capability would directly benefit
many point tracking applications in scenarios where multi-view data is available.

Our key insight is that jointly processing multiple, uncalibrated video streams of a dynamic scene
provides useful spatio-temporal constraints that can help resolve the ambiguities in single-view
tracking. For instance, a point that is occluded or motion-blurred in one view may be clearly visible
in other views. By reasoning across these views simultaneously, we can enforce spatio-temporal
consistency and recover a more robust and accurate representation of the point’s trajectory.

To this end, we formulate the task of multi-view point tracking, which aims to track a set of query
points throughout multiple, uncalibrated videos of a dynamic scene. We also present MV-TAP
(Tracking Any Point in Multi-view Videos), a framework that uses a cross-view attention mechanism
to effectively aggregate information across all views and timesteps, building a holistic understanding
of the dynamic scene. Furthermore, to facilitate research in this area, we construct a large-scale syn-
thetic dataset specifically designed for training multi-view point tracking models. Our experiments
on multi-view benchmarks show that this approach improves upon current tracking methods, leading
to more complete and accurate predictions. Our code and dataset will be made publicly available.

Our contributions are summarized as follows:

• We define, for the first time, the task of multi-view point tracking for establishing robust
spatio-temporal correspondences in dynamic scenes using multiple, uncalibrated videos.

• We propose MV-TAP, a framework that leverages cross-view information to address inher-
ent limitations of single-view point tracking, such as occlusion and motion ambiguity.

• We demonstrate through extensive experiments that our method achieves competitive per-
formance, providing an effective baseline for this new task.

2 RELATED WORK

Point Tracking. Point tracking aims to predict trajectories and occlusion states of given query
points over time in a monocular video. PIPs (Harley et al., 2022) constructs local correlation vol-
umes for initial point localization and iteratively refines it to obtain trajectory. Building upon this
approach, TAPIR (Doersch et al., 2023) injects the idea of TAP-Net (Doersch et al., 2022) which
construct per-frame global correlation with iterative refiner. CoTracker (Karaev et al., 2024b) intro-
duces transformer-based refinement over 2D correlation features, and LocoTrack (Cho et al., 2024)
further enhances robustness by constructing bidirectional local 4D correlation volumes to establish
more robust tracking. Chrono (Kim et al., 2025a) extends pre-trained DINOv2 backbone with ad-
ditional temporal adapter, yielding robust feature representation that captures long-term temporal
context for accurate point tracking. Recent efforts have focused on addressing the reliance on syn-
thetic data for training. BootsTAP (Doersch et al., 2024), CoTracker3 (Karaev et al., 2024a), and
AnthroTAP (Kim et al., 2025b) aim to reduce the sim-to-real gap by leveraging real videos through
self-supervised or pseudo-labeling strategies. Recently, TAP-Next (Zholus et al., 2025) reformulates
point tracking as a next-token prediction problem, while AllTracker (Harley et al., 2025) leverages
optical flow to incorporate temporal priors and achieve strong performance even at high resolution.

In this work, we introduce a new task of multi-view point tracking that analyzes synchronized videos
from multiple cameras to exploit cross-view information, enabling more accurate trajectory estima-
tion and robust occlusion handling.

Multi-view Matching. Classical multi-view matching predicts correspondences across unordered
images, typically coupling local features with geometric consistency. SIFT (Lowe, 2004) introduced
robust scale and rotation-invariant descriptors for keypoint matching. On this foundation, Agarwal
et al. (2011) scaled SfM via correspondence estimation through pairwise geometric verification and

2
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Figure 2: Overall architecture of MV-TAP. Given synchronized multi-view videos, per-view cor-
relation volumes are extracted from a CNN encoder feature for each query point. These correlations
are then fed into tracking head and iteratively update tracks and occlusion states. Within the tracking
head, the inputs from multiple views are aggregated through cross-view attention module.

view-graph clustering. Sattler et al. (2017) showed that accurate visual localization is possible
without a full 3D map by using retrieval-based matching and 2D–3D consistency across views.
Recent learning-based approaches have improved this task: End2End (Roessle & Nießner, 2023)
jointly predicts correspondences and poses with a differentiable framework. CoMatcher (Zhang
et al., 2025b) leverages cross-view projection constraints and covisibility cues to establish globally
consistent multi-view tracks from noisy pairwise matches. CER-MVS (Ma et al., 2022) demon-
strates how cross-view correspondence can be integrated with cost volume aggregation for accurate
depth estimation. However, these methods optimize for spatial reconstruction or per-frame matching
without maintaining temporal consistency across video sequences.

In this work, we formalize multi-view point tracking in synchronized videos as recovering cross-
view, temporally continuous 2D trajectories and visibilities from sparse query points, without 3D
reconstruction or known camera calibration.

3 TASK DEFINITION

Previous point tracking methods (Harley et al., 2022; Doersch et al., 2022) on monocular videos of-
ten suffer from inherent ambiguity due to their restricted geometric information. Multi-view videos
provide geometric cues which can help to address the ambiguities. Motivated by this, we introduce
multi-view point tracking task as a new problem setting, which aims to construct robust spatio-
temporal correspondences across views.

Formally, we define this task as follows. The inputs are multi-view videos V ∈ RV×T×H×W×3 and
query points Q ∈ RV×N×3, where V denotes the number of multi-view videos, T represents the
number of frames, and each frame has spatial resolution (H,W ) with RGB channels. We assume
the videos across different views are temporally synchronized. A set of N query points is defined by
user, where each query point on view v is represented by a 4-dimensional vector qv = (tq, xq, yq).
Here, tq denotes the frame index, and (xq, yq) the spatial coordinates. The goal of this task is
to predict a set of trajectories T ∈ RV×T×N×2 and occlusion states O ∈ RV×T×N×1 for the
given queries, where T denotes the 2D pixel locations of N points over T time steps and V views,
and O indicates whether each point is visible or occluded across views and time. Notably, unlike
single-view point tracking which often fail to estimate the position of a point during and after oc-
clusion (Harley et al., 2022), the multi-view setting allows referencing complementary information
from other visible views to maintain consistent tracking.

4 METHODOLOGY

In this section, we present our multi-view point tracking model, MV-TAP (Tracking Any Point in
Multi-view Videos), which integrates cross-view and spatio-temporal information to enable robust
point tracking in multi-view videos. The MV-TAP architecture builds upon the single-view 2D point
tracking baseline (Karaev et al., 2024a), inheriting its knowledge of single-view tracking. We first
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Figure 3: Attention variants. Within each view, temporal attention leverages temporal smoothness,
and support attention exploits the co-movement of trajectories, following existing single-view point
tracking methods (Karaev et al., 2024b). To extend this to the multi-view setting, we introduce
two types of attention mechanisms: view-support attention and view attention. The former attends
across all tracks from different views, while the latter aggregates information across views only for
the same timestep and the tracks corresponding to a given query point.

describe the single-view point tracking pipeline, and then introduce the multi-view specific design
that allows the model to effectively leverage the abundant information available in multiple views.

4.1 POINT TRACKING WITHIN A SINGLE-VIEW

Following recent work (Cho et al., 2024; Karaev et al., 2024a) in single-view point tracking, we
refine initial correspondences using a local 4D correlation volume. Given an initial track hypothesis
T 0, which can be initialized either by a constant trajectory (Karaev et al., 2024b) or by feature
matching (Doersch et al., 2023), we define the local correlation around a query coordinate q =
(tq, xq, yq) and its hypothesized match p = (tp, xp, yp).

We first introduce the local neighborhoods around p and q as

N (p, rp) = { p+ δ | δ ∈ Z2, ∥δ∥∞ ≤ rp }, N (q, rq) = { q + δ | δ ∈ Z2, ∥δ∥∞ ≤ rq }, (1)

where rp and rq denote the spatial radii. The local 4D correlation tensor is then defined as

Lt(i, j; p, q) =
Ft(i) · Ftq (j)

∥Ft(i)∥2 ∥Ftq (j)∥2
, i ∈ N (p, rp), j ∈ N (q, rq), (2)

where Ft and Ftq denote the feature maps from frame t and the query frame tq , respectively. The
resulting tensor has dimensions (2rp+1)× (2rp+1)× (2rq+1)× (2rq+1), capturing all pairwise
similarities between the two neighborhoods.

At each timestep, the correlation Lt and the current hypothesis position are encoded into a token.
Stacking tokens across frames and query points forms an input tensor X ∈ RT×N×d, where T is
the number of frames, N the number of query points, and d the feature dimension. This sequence is
processed by a Transformer that interleaves temporal attention and support attention, each applied
along a specific axis while the feature dimension d remains unchanged.

Temporal Attention. Temporal attention aggregates information along the time axis T . Formally,
given query, key, and value projections QT ,KT , VT ∈ RT×d for a fixed point,

Attntemp(X) = softmax

(
QTK

⊤
T√

d

)
VT , (3)

which integrates evidence across the frame sequence, ensuring temporally smooth trajectory up-
dates.

Support Attention. Support attention aggregates information along the point axis N within a
single frame. Formally, given projections QN ,KN , VN ∈ RN×d for a fixed timestep,

Attnsup(X) = softmax

(
QNK⊤

N√
d

)
VN , (4)
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which captures rigidity priors by linking points with consistent motion patterns.

In practice, temporal and support attention are interleaved across Transformer layers, so that tempo-
ral consistency and intra-view point coherence reinforce each other. Through iterative refinement,
the model outputs the final single-view trajectory T and its occlusion status O.

Trajectory and Occlusion Updates. Concretely, at each refinement step, the Transformer predicts
incremental updates to both the track position and occlusion state:

∆T , ∆O = Transformer(X). (5)

These updates are applied to the previous estimates as

T (m) = T (m−1) +∆T , O(m) = O(m−1) +∆O, (6)

so that after M refinement steps, the model produces the final trajectory T and occlusion status O.

4.2 EXTENDING THE TRANSFORMER TO MULTI-VIEW

While single-view trackers perform reliably under smooth motion, they often fail under extreme
transformations such as large rotations or occlusions. Multi-view videos provide complementary
perspectives, allowing consensus across views to resolve such ambiguities. To leverage this, we
extend the single-view Transformer with additional modules that perform attention across views.
We now describe two attention mechanisms that complement each other: view-support attention,
and view attention.

In the multi-view setting, we construct an input token sequence for each view, following the same
procedure as in single-view point tracking. This results in a sequence of shape RV×T×N×d, where
V is the number of views, T the number of frames, N the number of query points, and d the
feature dimension. When applying attention across different axes, the feature dimension d is always
preserved, while the other axes are flattened into the batch dimension to enable attention along the
selected axis, as illustrated in Figure 3.

View-Support Attention. We extend support attention to the multi-view case by applying atten-
tion along the flattened view–point axis (V ·N). Formally, QV ·N ,KV ·N , VV ·N ∈ R(V ·N)×d,

Attnvs(X) = softmax

(
QV ·NK⊤

V ·N√
d

)
VV ·N . (7)

This enables joint reasoning about intra-view and inter-view relations. To reduce computational
cost, we adopt proxy tokens (Karaev et al., 2024a).

View Attention. Finally, to explicitly align representations across different views, we apply atten-
tion along the view axis V . Here, QV ,KV , VV ∈ RV×d,

Attnview(X) = softmax

(
QV K

⊤
V√

d

)
VV . (8)

This ensures cross-view consistency by directly linking tokens from different cameras.

With temporal, support, view-support, and view attention, the Transformer iteratively refines point
trajectories and occlusion probabilities. In each refinement step, we alternate temporal, view, and
view-support attention to jointly model cross-view spatio-temporal relationships. After M refine-
ment iterations, the model outputs the final multi-view trajectories T and occlusion states O, as
defined in our task formulation.

4.3 TRAINING

To train MV-TAP, we optimize both trajectory regression and occlusion prediction. For trajectory
supervision, we use the Huber loss (Huber, 1992), applied to both visible and occluded points with
different weights, following Karaev et al. (2024a):

Ltrack(T, T ∗) =

M∑
m=1

γM−m
(
Iocc
5 + Ivis

)
ℓHuber

(
T (m), T ∗

)
, (9)
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Figure 4: Qualitative comparison. Each example comprises three synchronized views of the
same scene and each column shows one camera view. Compared to single-view baselines, MV-
TAP demonstrates robust point tracking under occlusions and large motions, substantially reducing
missing trajectories and untracked points.

where T (m) is the predicted trajectory at refinement step m, T ∗ is the ground-truth trajectory, and
Ivis, Iocc indicate visibility or occlusion masks.

For occlusion supervision, we use a Binary Cross-Entropy (BCE) loss. We apply a sigmoid activa-
tion to the occlusion logits O(m) before evaluating the loss:

Locc(O,O∗) =

M∑
m=1

γM−m BCE
(
σ
(
O(m)

)
, O∗

)
, (10)

where Ô(m) is the predicted occlusion state at refinement step m and O∗ is the ground truth.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training. Since existing training datasets for point tracking are available for only the single-view
scenarios, we generate a synthetic dataset for the multi-view point tracking task using Kubric en-
gine (Greff et al., 2022). Our dataset, MV-TAP-Kub, consists of synchronized multi-view videos for
5,000 scenes, along with annotations that include point trajectories and their corresponding occlu-
sion states. We provide further details of MV-TAP-Kub in Appendix B.

Our model is trained on the generated multi-view dataset for 50K steps on 8 NVIDIA A6000 GPUs
with a batch size of 1 per GPU. We employ AdamW optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 10−4 and a weight decay of 10−4. We utilize a cosine learning rate scheduler with a
1,000 step warm-up stage and apply gradient clipping with a threshold of 1.0 for stable convergence.

As MV-TAP is based on CoTracker3 (Karaev et al., 2024a), we adopt the pretrained weights to
initialize the feature encoder and transformer layers. During training, we update only the attention
layers, while keeping all other pretrained parameters frozen. The number of input views is randomly
selected between 1 and 4, the input resolution is 256 × 256, number of trajectories is 256. We set
the number of refinement iterations to M = 4, and the spatial radii for local 4D correlation to
rp = rq = 3.
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Table 1: Quantitative Comparison. MV-TAP, trained on our MV-TAP-Kub dataset, achieves sig-
nificant improvements over single-view tracking baselines. Our approach consistently outperforms
DexYCB (Chao et al., 2021) and Panoptic Studio (Joo et al., 2015) with both view sampling modes,
demonstrating the advantages of multi-view based tracking.

Method Training DexYCB Panoptic Studio (nearest) Panoptic Studio (random)
Dataset AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

TAPIR (Doersch et al., 2023) Kub 31.7 49.5 73.1 27.4 42.9 66.2 26.2 41.3 66.0
CoTracker2 (Karaev et al., 2024b) Kub 28.2 52.2 64.0 38.1 59.8 71.8 30.3 51.3 69.3
LocoTrack (Cho et al., 2024) Kub 36.6 57.6 72.0 41.7 60.8 72.3 36.7 56.1 69.1
CoTracker3 (Karaev et al., 2024a) Kub 38.2 58.2 71.9 45.5 64.2 76.2 38.4 58.8 70.0
MV-TAP Kub + MV-TAP-Kub 46.1 59.2 78.6 46.6 66.3 77.3 39.2 60.8 68.6

Table 2: Ablation on different multi-view attention variants. Adding view-support and view-
aware attention improves performance over the baseline (Karaev et al., 2024a). MV-TAP, which
combines both, achieves the best performance across all benchmarks.

Method DexYCB Panoptic Studio(nearest) Panoptic Studio(random)
AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

Baseline 38.2 58.2 71.9 45.5 64.2 76.2 38.4 58.8 70.0
Baseline + view-support attn. 41.0 57.1 74.6 45.4 64.6 76.0 37.4 59.9 67.2
Baseline + view attn. 44.6 59.9 76.8 46.3 66.2 77.5 36.6 57.5 71.0
MV-TAP 46.1 59.2 78.6 46.6 66.3 77.3 39.2 60.8 68.6

Table 3: Impact of the number of views. We compare MV-TAP with the baseline (Karaev et al.,
2024b) using a varying number of input views. Notably, occlusion accuracy improves significantly
as the number of views increases.

Method 2 views 4 views 6 views 8 views
AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

Baseline 48.1 65.1 78.9 48.1 63.8 80.0 36.7 55.2 72.1 38.2 58.2 71.9
MV-TAP 51.8(+3.7) 67.6(+2.5) 81.8(+2.9) 51.9(+3.8) 66.6(+2.8) 82.6(+2.6) 42.7(+6.0) 57.4(+2.2) 77.5(+3.4) 46.1(+7.9) 59.2(+1.0) 78.6(+6.7)

Evaluation Protocol. We evaluate our method and baselines on the DexYCB hand dexterity
dataset (Chao et al., 2021) and the Panoptic Studio dataset (Joo et al., 2015). For these benchmarks,
we utilize the ground-truth point tracking annotations provided by Koppula et al. (2024) and Chao
et al. (2021), respectively. For a consistent evaluation, we sample a fixed number of the available
views from the DexYCB (8 views) and Panoptic Studio (31 views) datasets. We conduct evaluations
in two sampling modes: nearest and random mode. The nearest mode selects geometrically close to
a reference view, while the random mode selects views randomly from the entire available set. We
assume that initial query points corresponding across all sampled views are given.

We use the standard point tracking metrics from TAP-Vid (Doersch et al., 2022), including position
accuracy (< δxavg), occlusion accuracy (OA), and Average Jaccard (AJ). < δxavg represents the aver-
age Percentage of Correct Keypoints (PCK) to evaluate the accuracy of predicted keypoint position.
Concretely, it is computed by averaging PCK over error thresholds of 1, 2, 4, 8, and 16 pixels for
visible points in ground-truth. OA denotes the accuracy of the binary prediction for occlusion. AJ is
a composite score that jointly evaluates position and occlusion prediction of each point.

Baselines. We compare our method against recent state-of-the-art point tracking methods, including
TAPIR (Doersch et al., 2023), CoTracker (Karaev et al., 2024b), LocoTrack (Cho et al., 2024), and
CoTracker3 (Karaev et al., 2024a). For these single-view tracking baselines, which are designed for
a monocular video setting, we perform tracking independently on each view.

5.2 MAIN RESULTS

Quantitative Results. We compare our method with recent state-of-the art single-view point track-
ers (Doersch et al., 2023; Karaev et al., 2024b;a; Cho et al., 2024) on DexYCB (Chao et al., 2021)
and Panoptic Studio (Joo et al., 2015). For this comparison, we use 8 views for each benchmark; all
8 views are used for DexYCB, while for Panoptic Studio, they are sampled in two modes. As shown
in Table 1, MV-TAP outperforms consistently on both benchmarks. In DexYCB, MV-TAP achieved
a +7.9 AJ and +6.7 OA improvements while the hand-object interaction dataset has frequent occlu-
sion state flipping. In Panoptic Studio, MV-TAP also achieves improvements across different view
sampling methods, showing robustness in complex multi-view scenarios.
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Table 4: Comparison of feature-matching based query initialization across different back-
bones. Results are reported with both soft-argmax and hard-argmax localization on Panoptic Studio
and DexYCB. DINOv3 exhibits consistent performance across datasets and localization strategies,
while VGGT achieves the highest accuracy on DexYCB. We select the four nearest views, and
randomly sample a view and frame in which the point is visible for every query. The recovered lo-
cations using Algorithm 1 are subsequently compared against ground-truth annotations to quantify
performance. Note that ResDINO and VGGT-DINO are SD-DINO-like (Zhang et al., 2023) variants
designed to adapt the DINOv3 feature representation to different backbone architectures.

Method DexYCB Panoptic Studio
Soft Argmax(< δxavg) Argmax(< δxavg) Soft Argmax(< δxavg) Argmax(< δxavg)

ResNet (He et al., 2016; Karaev et al., 2024a) 12.0 28.0 29.7 68.1
ResDINO 31.0 35.4 57.7 62.9
VGGT (Wang et al., 2025) 53.9 52.6 36.0 41.0
VGGTDINO 24.5 24.1 22.3 25.7
DINOv3 (Siméoni et al., 2025) 36.9 48.0 54.6 75.7

Table 5: Multi-view tracking with feature-
matching queries. On DexYCB, queries are ini-
tialized by feature matching with DINOv3 and
tracked across views. For the baseline (Karaev
et al., 2024a), the same queries are processed in-
dependently by a single-view model. MV-TAP
shows clear improvements in AJ, δxavg, and OA.

Method DexYCB
AJ < δxavg OA

Baseline + DINOv3 35.1 48.5 80.8
MV-TAP + DINOv3 37.7 (+2.6) 50.4 (+1.9) 84.9 (+4.1)

Table 6: Comparison under Farthest View
Sampling. MV-TAP shows superior perfor-
mance compared to the baseline (Karaev et al.,
2024a) under farthest view sampling, where
views are sampled to maximize the distances be-
tween cameras.

Method DexYCB
AJ < δxavg OA

Baseline 31.6 51.6 69.2
MV-TAP 36.6 (+5.0) 52.2 (+0.6) 72.2 (+3.0)

Table 7: Can multi-view information help point tracking? For queries defined in a specific view,
the baseline (Karaev et al., 2024a) tracks points within that view only, while MV-TAP augments
each query by localizing correspondences across other views and tracks them jointly in a multi-view
setting. We further analyze augmented query quality: using all queries, filtering errors > 16 px,
and 8 px. Results on DexYCB and Panoptic Studio show that multi-view queries generally improve
tracking, with larger gains under stricter filtering.

Method DexYCB Panoptic Studio
AJ < δxavg OA AJ < δxavg OA

Baseline 45.7 63.2 76.7 54.8 73.5 81.7
MV-TAP 47.1 (+1.4) 63.7 (+0.5) 78.1 (+1.4) 54.2 73.4 79.6

Baseline (< δ16) 51.3 66.2 78.0 56.7 75.1 83.0
MV-TAP (< δ16) 56.9 (+5.6) 69.7 (+3.5) 84.7 (+6.7) 56.3 74.8 80.7

Baseline (< δ8) 51.9 66.5 79.8 58.9 76.3 82.8
MV-TAP (< δ8) 55.6 (+3.7) 70.0 (+3.5) 82.8 (+3.0) 58.5 76.0 82.9 (+0.1)

Qualitative Results. We present qualitative comparison in Figure 4. We visualize the results from
the DexYCB and Panoptic Studio. MV-TAP shows the superior robustness to large motions, demon-
strating the effectiveness of multi-view information for point tracking.

5.3 ABLATION AND ANALYSIS

Ablation on Attention Variants. In Table 2, we present an ablation study on the attention ar-
chitecture. We examine the effect of view-support attention, view attention, and ours which both
view-support and view attentions are applied. These results show that both view-support and view
attention individually improve performance over the baseline. Specifically, view-support attention
aggregates all points across views into a shared space, improving robustness to occlusion and view-
point variations. The view attention exchanges information across views for the points at the same
timestep, enhancing multi-view consistency. Notably, the combined version, which view-support
and view attention are applied, achieves the best performance, demonstrating their complementary
benefits.
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Ablation on The Number of Views. Although MV-TAP is trained with 1 to 4 views due to resource
limitations, owing to the attention mechanism, it can handle an arbitrary number of views even larger
than 4. We ablate the effect of number of views on DexYCB dataset with the nearest view sampling
mode. As shown in Table 3, the performance of baseline degrades as the number of views increases,
since more challenging views are introduced. In contrast, MV-TAP shows consistent improvements,
demonstrating the ability to leverage the additional view information.

Tracking with Feature Matching Mode. In this experiment, we assume the query point is provided
only in a single view and investigate the quality of query initialization in other views. To this end, we
perform simple feature matching to localize the query points in additional views using five different
backbones: ResNet (He et al., 2016), DINOv3 (Siméoni et al., 2025), VGGT (Wang et al., 2025), and
two SD-DINO (Zhang et al., 2023)-like variants, ResDINO and VGGTDINO. For each backbone,
we compute the dot-product between the query point feature and corresponding features in other
views, and localize the query point by applying either soft-argmax or hard-argmax operations. As
shown in Table 4, DINOv3 with hard-argmax operation achieves the best performance.

Based on this feature matching initialization, we integrate the matched points into our tracking
pipeline and then evaluate tracking accuracy. Notably, when points are filtered by comparing be-
tween ground-truth position and predicted points by DINOv3 with the hard-argmax operation for
rejecting erroneous tracks. In Table 5, we present a quantitative comparison of our method against
the baseline using a DINOv3-based feature-matching initialization. Our method achieves more ro-
bust performance by refining the noise introduced during feature matching.

Can MV-TAP Enhance Robustness in Complex Setting? We investigate this question by evaluat-
ing on the DexYCB dataset with 4 sampled viewpoints which are sampled by farthest view sampling.
In Table 6, MV-TAP demonstrates robustness under the random viewpoints compared to the base-
line. This improvement is especially evident in AJ (+5.0), represents more reliable predictions
under challenging scenarios.

Can Multi-view Information Help Point Tracking? We examine whether multi-view tracking
benefits from cross-view information. Unlike previous settings where query points from the ground-
truth are provided in all views, we provide a query only in a single view. The corresponding points in
other views are then obtained by feature matching as described in Appendix A. Since such matching
can introduce noises, we compare MV-TAP against the single-view baseline to assess whether lever-
aging multi-view information can mitigate such errors. To further analyze the effect of matched
query quality, we progressively filter out noisy matches by discarding those that deviate from the
ground truth by more than 16 or 8 pixels. We then evaluate tracking under these thresholds. As
summarized in Table 7, MV-TAP improves over the baseline on DexYCB even when queries are
noisy, and achieves larger gains as the quality of the queries increases, while on Panoptic Studio the
performance remains comparable to the baseline.

6 CONCLUSION

This work establishes multi-view 2D point tracking as a new and important task for advancing re-
liable spatio-temporal correspondence in dynamic, real-world scenes. By introducing MV-TAP, a
framework that aggregates cross-view information through attention, we demonstrate how lever-
aging uncalibrated multi-view inputs can overcome key limitations of monocular trackers such as
occlusion and motion ambiguity. Together with a large-scale synthetic dataset specifically designed
for this task, our contributions provide both a principled formulation of the problem and a strong
baseline method, paving the way for future research in robust multi-view point tracking.
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APPENDIX

A FEATURE MATCHING

When the query is given in only a single view, the query location in each other view is determined
through comparing the query feature to feature maps of other views. Given a query point q =
(xq, yq, tq, vq), we extract its feature vector fq from the backbone feature map Φ(Vvq,tq ) at (xq, yq).
For each candidate view v ̸= vq and frame t, we compute a correlation map by dot product as

Cv,t(x, y) = ⟨fq, Fv,t(x, y)⟩, (11)
where Fv,t = Φ(Vv,t). We then select the most relevant frame for each view by

t∗v = argmax
t

max
x,y

Cv,t(x, y), (12)

and localize the 2D correspondence using either hard-argmax
(x∗

v, y
∗
v) = argmax

x,y
Cv,t∗v

(x, y), (13)

or soft-argmax

(x∗
v, y

∗
v) =

∑
x,y

(x, y) ·
exp(Cv,t∗v

(x, y))∑
x′,y′ exp(Cv,t∗v

(x′, y′))
. (14)

The hard-argmax provides discrete localization, while the soft-argmax yields a differentiable ap-
proximation more suitable for training. The resulting set of correspondences {(x∗

v, y
∗
v , t

∗
v, v)}v ̸=vq

is then used as the initialization for cross-view tracking, and the performance of this initialization is
strongly influenced by the choice of backbone and matching strategy.

QUALITATIVE ANALYSIS OF FEATURE MATCHING

We provide qualitative visualizations of the correlation maps obtained by different backbones in
Figure 5. Given a reference frame and a query point (marked by a red dot), we observe that DI-
NOv3 (Siméoni et al., 2025) produces sharper and more localized activation maps compared to other
feature extractors, leading to more reliable correspondences. In contrast, ResNet (He et al., 2016),
whose parameters are taken from CoTracker3 (Karaev et al., 2024a), tends to generate noisy re-
sponses with weak localization, while ResDINO and VGGT (Wang et al., 2025) sometimes highlight
semantically related but spatially inaccurate regions. VGGT-DINO shows intermediate behavior,
capturing broader structures but lacking precise localization. Note that ResDINO and VGGT-DINO
are SD-DINO-like variants (Zhang et al., 2023), adapting DINOv3 features to different backbone
architectures. These comparisons suggest that the choice of backbone significantly impacts query
initialization quality, with DINOv3 offering the most consistent and discriminative correspondences
across diverse scenes.

B TRAINING DATASET DETAILS

To the best of our knowledge, there exists no large-scale dataset for training point tracking in a multi-
view setting. For this reason, we generate a synthetic dataset using the Kubric engine (Greff et al.,
2022). Specifically, we capture video from four views for each scene. To ensure that a sufficient
number of points are visible across all views, we project points from every view to all other views.
To enable the model to capture correlations across the views effectively, we sample the camera
positions in chained manner. Each camera position is sampled within a certain angular range from
a randomly selected previous view, without overlapping any already sampled views. Consequently,
our training dataset comprises 4 synchronized multi-view videos for each of 5,000 dynamic scenes,
with 132,608 annotated point trajectories including occlusion status.

C ADDITIONAL ABLATION AND ANALYSIS

While Table 3 focuses on MV-TAP and the baseline, Table 8 extends the analysis to single-view
trackers and the proposed attention variants. We observe that most of single-view trackers suffer
from significant performance degradation as the number of views increases. In contrast, the attention
variants and MV-TAP show robustness to the increasing number of view
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Algorithm 1 Feature Matching Initialization
Require: Multi-view videos V , query point q = (xq, yq, tq, vq)
Ensure: Cross-view correspondences {(x∗

v, y
∗
v , t

∗
v, v)}v ̸=vq

Extract query feature fq ← Φ(Vvq,tq )(xq, yq)
for each view v ̸= vq do

for each frame t do
Compute correlation map

Cv,t(x, y)← ⟨fq,Fv,t(x, y)⟩

end for
Select relevant frame

t∗v ← argmax
t

max
x,y

Cv,t(x, y)

Localize correspondence by argmax

(x∗
v, y

∗
v)← argmax

x,y
Cv,t∗v (x, y)

end for
return {x∗

v, y
∗
v , t

∗
v}

Table 8: Additional multi-view ablation with various single-view point tracking.

Method 2 views 4 views 6 views 8 views
AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

TAPIR 35.3 55.0 75.3 38.4 55.0 75.6 30.2 48.1 71.3 31.7 49.5 73.1
CoTracker2 39.1 63.2 73.9 38.6 61.8 73.6 27.8 51.2 65.8 28.6 52.2 64.0
LocoTrack 47.0 66.6 79.7 47.6 66.3 80.7 34.9 56.1 71.8 36.6 57.6 72.0
CoTracker3 48.1 65.1 78.9 48.1 63.8 80.0 36.7 55.2 72.1 38.2 58.2 71.9
CoTracker3 + view-support attn. 51.2 66.9 81.7 50.3 65.9 80.5 35.1 52.0 70.8 41.0 57.1 74.6
CoTracker3 + view attn. 52.9 68.2 82.4 52.9 67.6 82.2 40.1 57.1 74.4 44.6 59.9 76.8
MV-TAP 51.8 67.6 81.8 51.9 66.6 82.6 42.7 57.4 77.5 46.1 59.2 78.6

D ADDITIONAL VISUALIZATION

We provide additional qualitative results in Figure 6. These visualizations compare our method with
baseline approaches across multiple views and illustrate the different motion patterns present in the
dataset.

E REPRODUCIBILITY STATEMENT

We confirm that all results reported in this paper are fully reproducible. The experimental settings,
datasets, preprocessing steps, and evaluation metrics are described in detail in the main text and
Appendix. We will release the complete source code and pretrained models upon publication to
facilitate independent verification of our results.

F THE USAGE OF LLM

We acknowledge the use of a large language model to assist with the writing of this paper. The
model was used to help draft and edit portions of the text, including improving clarity, grammar,
and overall readability. All technical content, experimental design, analysis, and conclusions were
created and verified by the authors. The authors take full responsibility for the final contents of this
submission.
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Dexycb 0th p1 v2 t3

Panoptic 0th  p13 v2 t0

Panoptic 5th p8 v1 t6

Dexycb 1st p63 v2 t15

Dexycb 5th p88 v0 t7

Panoptic6view 2nd p1 v2 t14

Panoptic6view 1st p10 v4 t9

Reference Frame DINOv3 ResNet ResDINO VGGT VGGT-DINO

Figure 5: Qualitative comparison of feature matching with different backbones. We visualize
the correlation maps obtained by DINOv3, ResNet, ResDINO, VGGT, and VGGT-DINO given a
reference frame (left) and query point (red dot). The correlation maps are computed on images from
a different target view, illustrating how each backbone localizes the query across views.
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Figure 6: Additional visualization of tracks from our pipeline and baselines. In these examples,
our method produces more accurate and temporally consistent multi-view tracks compared to prior
approaches.
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