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Abstract

Deep reinforcement learning (deep RL) has achieved tremendous success on var-
ious domains through a combination of algorithmic design and careful selection
of hyper-parameters. Algorithmic improvements are often the result of iterative
enhancements built upon prior approaches, while hyper-parameter choices are typ-
ically inherited from previous methods or fine-tuned specifically for the proposed
technique. Despite their crucial impact on performance, hyper-parameter choices
are frequently overshadowed by algorithmic advancements. This paper conducts an
extensive empirical study focusing on the reliability of hyper-parameter selection
for value-based deep reinforcement learning agents, including the introduction of a
new score to quantify the consistency and reliability of various hyper-parameters.
Our findings not only help establish which hyper-parameters are most critical to
tune, but also help clarify which tunings remain consistent across different training
regimes.

1 Introduction

Sequential decision making is generally considered an essential ingredient for generally capable
agents. The ability to plan ahead and adapt to changing circumstances is synonymous with the
concept of agency. For decades, the field of reinforcement learning (RL) has worked on developing
methods, or agents, for precisely this purpose. This research has borne impressive results, such as
developing agents which can play difficult Atari games (Mnih et al., 2015), control stratospheric
balloons (Bellemare et al., 2020), control a tokamak fusion reactor (Degrave et al., 2022), among
others. These are all examples of deep reinforcement learning (DRL), which combines the theory of
reinforcement learning with the expressiveness and flexibility of deep neural networks.

The success of these methods built on years of academic research, where novel algorithms and
techniques were introduced and showcased on academic benchmarks such as the ALE (Bellemare
et al., 2012), MuJoCo (Todorov et al., 2012), and others. These benchmarks typically consist of
a suite of environments that have varied transition and reward dynamics. Their common usage
provides us with a familiarity which affords us a sense of interpretability, a consistency in evaluation
that grants us a sense of reliability, and their variety yields a sense of generalizability. Unfortunately,
this promise often fails to materialize: their reliability has been brought into question by numerous
works which demonstrate their fickleness (Henderson et al., 2017; Agarwal et al., 2021), while there
is a general sentiment that researchers have “overfit” to these benchmarks, bringing into question
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their generalizability. A critical aspect to these challenges is the difficulty in training neural networks
in an RL setting (Ostrovski et al., 2021; Lyle et al., 2022; Sokar et al., 2023).

Although the successes above built on prior methods, they were not taken “as is”: it took large
teams of researchers many months and lots of compute to adapt prior work to their specific prob-
lem. These adaptations include changes to the network architectures, designing reward functions to
induce the desired behaviours, and careful tuning of the many hyper-parameters. This last point is
indeed essential to the success of any DRL method: improper hyper-parameter choices can cause
a theoretically sound method to drastically underperform, while careful hyper-parameter selection
can dramatically increase the performance of an otherwise sub-optimal method.

As an example of this dichotomy, we examine how DER (van Hasselt et al., 2019), a method that has
become a common baseline for the Atari 100k benchmark (Kaiser et al., 2019), came to be. DQN,
considered to be the start of the field of DRL research, was introduced by showcasing its super-
human performance on the ALE (Bellemare et al., 2012), a suite of 57 Atari 2600 games. This suite
became one of the most popular benchmarks on which to evaluate new methods over 200 million
environment frames1. A few years later, when Kaiser et al. (2019) introduced the SiMPLe algorithm
as a sample-efficient method, they argued for evaluating it only on 100k agent actions2 with a subset
of 26 games, so as to properly test the sample-efficiency of new methods. The authors demonstrated
that their proposed method outperformed Rainbow (Hessel et al., 2018), the state-of-the-art method
of the time. In response, van Hasselt et al. (2019) introduced Data Efficient Rainbow (DER), which
outperformed SiMPLe even though it was the same Rainbow algorithm, but with a careful tuning
of the hyper-parameters for the 100k training regime.

One could argue that the hyper-parameters of Rainbow were overly-tuned to the 200M benchmark,
while the hyper-parameters of DER were overly-tuned to the 100k benchmark. More importantly,
what this story highlights is that, despite careful evaluation it is quite likely that a new method will
not work as intended when deployed on a different environment from which it was trained on, and
that a significant amount of hyper-parameter tuning will be necessary. This flies in the face of the
supposed generalizability of DRL academic research, and makes it difficult for groups without large
computational budgets to successfully apply prior work to applied problems.

It thus behooves the community to develop a better understanding of the transferability and con-
sistency of hyper-parameter selection across different training regimes, and to build a better shared
understanding of the relative importance of the many possible hyper-parameters to tune. In this
work, we take a stride towards this by conducting an exhaustive empirical investigation of the various
hyper-parameters affecting DRL agents. We focus our attention on two value-based agents developed
for the Atari 100k suite: DER mentioned above, and DrQ(ε), a variant of DQN that was optimized
for the 100k suite. Although developed for the 100k suite, we also train these agents for 40M mil-
lion environment frames. Our intent is to examine the transferability of various hyper-parameter
choices across different training regimes. Specifically, we investigate: Across data regimes: Do
hyper-parameters selected in the 100k regime work well in a larger data regime? Across agents:
Do hyper-parameters selected for one agent work well in another? Across environments: Do
hyper-parameters tuned in one set of environments work well in others?

In total, we investigated 12 hyper-parameters with different values for 2 agents over 26 environments,
each for 5 seeds, resulting in a total of 108k independent training runs. This breadth of experimen-
tation results in an overwhelming amount of data which complicates their analyses. We address this
challenge in two ways: (i) We introduce a new score which provides us with an aggregate value for
the considerations mentioned above. (ii) We provide an interactive website where others may easily
navigate the large number of experimental figures we have generated.

1See (Machado et al., 2018) for more details on ALE evaluation standards.
2The standard for ALE agents is to use frame-skipping, where 4 environment frames occur for every agent action.

This results in frustratingly confusing nomenclature, as 200M is specified in environment frames (or 500k agent
actions), while 100k is specified in agent actions (or 400k environment frames).
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The score provides us with a high-level overview of our findings, while the website grants us a fine-
grained mechanism to analyze the results. We hope this effort provides the community with useful
tools so as to develop not just better DRL algorithms, but better methodologies to evaluate their
interpretability, reliability, and generalizability.

2 Background

The field of reinforcement learning studies algorithms for sequential decision-making problems. In
these settings, an algorithm (or agent) interacts with an environment by transitioning between
states and making action choices at discrete timesteps; the environment responds to each action
by (possibly) changing the agent’s state and yielding a numerical reward or cost. The goal of the
agent is to maximize the cumulative rewards (or minimize the cost) throughout its lifetime. This is
typically formalized as a Markov decision process (MDP) (Puterman, 2014) 〈X ,A,P,R, γ〉, where
X is the set of states, A is the set of available actions, P : X × A → ∆(X )3 is the transition
function, R : X × A → R is the reward function, and γ ∈ [0, 1) is a discount factor. An agent’s
behaviour is formalized by a policy π : X → ∆(A), whose value from any state x ∈ X is given
by the Bellman recurrence V π(x) := Ea∼π(x)

[
R(x, a) + γEx′∼P(x,a)V

π(x′)
]
. Q-functions allow us

to measure the value of taking any action a ∈ A from a state x ∈ X and following π afterwards:
Qπ(x, a) := R(x, a) + γEx′∼P(x,a)V

π(x′). A policy π∗ is considered optimal if for any policy π,
V ∗ := V π

∗ ≥ V π.

Solving for the equations discussed above would require access to both R and P, which are usually
unknown. Instead, RL typically assumes the agent has access to transitions τ := (x, a, r, x′) ∈
X ×A×R×X , arising from interactions with the environment. Given such a transition, Q-learning
(Watkins & Dayan, 1992) updates its estimate of Q via: Qt+1(x, a) ← Qt(x, a) + αTD(Q, τ),
where α is a learning rate and TD is the temporal-difference error, given by TD(Qt, τ) := r +
γmaxa′∈AQt(x′, a′) − Qt(x, a). If the state and action spaces are small, one can store all the Q-
values in a table of size |X |×|A|. For most problems of interest, however, state spaces are very large
(and possibly infinite). In these cases, one can use a function approximator, such as a neural network,
parameterized by θ: Qθ ≈ Q. Indeed, in order to achieve super-human performance on the Arcade
Learning Environment (ALE) (Bellemare et al., 2012), Mnih et al. (2015) used a neural network
consisting of three convolutional layers (Conv layers), followed by two multi-layer perceptrons (Dense
layers) with |A| outputs in the final layer (representing the Q-value estimates for each action). With
the exception of the final layer, a ReLU non-linearity follows each layer.

Updating Qθ thus corresponds to updating the parameters θ, which may be done by using optimiza-
tion algorithms such as Adam (Kingma & Ba, 2015) to minimize the temporal-difference error. At
a high-level, this yields an update of the form: θt+1 ← θt +α∇θtEτ∼DTD(Qθt , τ). The expectation
can be approximated using a batch of m transitions drawn from a distribution D, which can be com-
puted efficiently on specialized hardware such as GPUs and TPUs. Additionally, Mnih et al. (2015)
argued that using θ̄, a less-frequently updated copy of the parameters, when computing TD helps
with training stability. A common approach introduced by Mnih et al. (2015) is to clip the rewards at
(−1, 1). The TD term thus becomes: TD(Qθ, τ) := clip(r, (−1, 1))+γmaxa′∈AQθ̄(x′, a′)−Qθ(x, a).

Although DQN benchmarked on the 57 ALE games with the same set of hyper-parameters, Anschel
et al. (2017) demonstrated that in some environments it can result in degraded performance. A
number of papers have proposed improvements to increase stability and performance, which Hessel
et al. (2018) combined into a single agent they called Rainbow. Specifically, they combined DQN
with double Q-learning (van Hasselt et al., 2016), prioritized experience replay (Schaul et al., 2016),
dueling networks (Wang et al., 2016), multi-step learning (Sutton, 1988), noisy nets (Fortunato
et al., 2018), and distributional reinforcement learning (Bellemare et al., 2017).

3∆(X) denotes a distribution over the set X.
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3 THC Score

Statistical metrics play a crucial role in assessing and evaluating the performance of DRL algorithms.
They provide valuable insights into the strengths and weaknesses of different approaches, guiding
researchers and practitioners in the development of more effective reinforcement learning systems.
For example, some the metrics focus on the mean reward obtained by an agent per time step (Average
Reward), the percentage of episodes in which the agent achieves a predefined goal or task (success
rate) among others (Agarwal et al., 2021; Chan et al., 2019; Henderson et al., 2017).

Measuring the transferability/consistency of hyper-parameters in DRL is challenging, as existing
metrics fall short in capturing the nuanced aspects of how well hyper-parameter settings generalize
across different environments or agents. Developing such a metric would enhance the ability to
systematically compare and select hyper-parameter configurations that exhibit robust performance
across a range of application domains.

To understand the consistency of hyper-parameters we focus on their ranking consistency across
experimental settings. Put another way: if a given hyper-parameter value is optimal/pessimal in
a setting, is it still optimal/pessimal in another? And so we analyse, for each hyper-parameter,
whether their values lead to the same ranking order for different experimental settings, where the
ranking is on final performance.

We compute ranking agreement for three setups: 1) Varying algorithms while keeping the envi-
ronment and data regime fixed (e.g. when proposing a new value-based algorithm but not having
enough compute to run a comprehensive hyper-parameter search). 2) Varying environments
while keeping the algorithm and data regime fixed (e.g. when using a state of the art algorithm in a
new domain). 3) Varying data regimes while keeping the environment and algorithm fixed (e.g.
when adapting a new algorithm to a new data regime (van Hasselt et al., 2019)). Concretely, our
desire is to have a metric that yields a high value score would indicate that the hyper-parameter in
question is important, in the sense that it will likely require retuning; conversely, a low score suggests
the hyper-parameter value can likely be kept as is.

Kendall’s Tau (Kendall, 1938) and Kendall’s W (Kendall & Smith, 1939) are natural choices, but
these metrics were developed for situations where the rankings were based on a single score, instead of
a range of possible scores, and they can result in degenerate values when two settings have similar per-
formance or when two settings alternate between optimal and pessimal rankings. For these reasons,
we introduce the Tuning Hyperparameter Consistency (THC) score. Consider a set of n hyper-
parameters {H1, . . . ,Hn}, each with its set of values {{h11, h12, . . . , h1m1}, . . . , {hn1, hn2, . . . , hnmn

}}
(e.g. hyper-parameter Hi has mi values). The THC score involves three computations: (i) rankings
for each hyper-parameter setting (Algorithm 1); (ii) normalized peak-to-peak value for each hyper-
parameter setting (Eqn. 1 below); and (iii) overall THC score for the hyper-parameter (see Eqn. 2
below).

If we run multiple independent runs for each hyper-parameter setting hij , we can compute the
mean µij and standard deviation σij for these runs4. For each hyper-parameter setting hij we then
compute an initial ranking r′ij based on the upper bound (µij+σij), with the lower bound (µij−σij)
used to break ties. We then define a set containing hyper-parameter settings with overlapping values:

Iij := {k|(µij − σij < µik + σik and µij − σij > µik − σik)
or

(µij + σij > µik − σik and µij + σij < µik + σik)}

The final ranking of each hyper-parameter is rij =
∑

k∈Iij
r′ik

|Iij | , as Algorithm 1 details. These
rankings are for one training regime; however, as mentioned in the introduction, we are inter-
ested in quantifying the consistency of a hyper-parameter H across varying training regimes.

4One may also use confidence intervals instead of standard deviations.
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Algorithm 1 Compute rankings
Require: Multiple runs for various settings of hyper-parameter Hi: {hi1, hi2, . . . , himi

}, aggregate
metrics µi: {µi1, µi2, . . . , µimi} and measure of spread σi: {σi1, σi2, . . . , σimi}

1: for i in 1 . . . n do
2: r′i = argsort(µi + σi) . Gets the index of each value as if the array was sorted
3: µ′i, σ

′
i = µi[r′i], σi[r′i] . Sorted versions of aggregate and spread metrics

4: for j in 1 . . .mi do
5: uj = binary_search(µ′i − σ′i, µij + σij) . highest rank whose lower bound overlaps with j
6: lj = binary_search(µ′i + σ′i, µij − σij) . lowest rank whose upper bound overlaps with j
7: end for
8: ri = u+l

2 . The average rank in lj , lj + 1, . . . , uj is the average of lj and uj
9: end for

Consider four training regimes A,B,C,D, and let {RA, . . . ,RD} denote their respective rank-
ings. For each hyper-parameter value hx ∈ H we compute its normalized “peak-to-peak”5 value
ptp, which quantifies its variance in ranking, as follows: First compute the ptp value ptp(hx) =
max

(
{RA(hx), . . . ,RD(hx)}

)
−min

(
{RA(hx), . . . ,RD(hx)}

)
, then normalize:

ptp(hx) = ptp(hx)∑
hy∈H ptp(hy) (1)

Notably, hyper-parameter settings that have consistent rankings across training regimes will have a
normalized ptp value of zero. Finally, the THC score for hyper-parameter H is defined as:

THC(H) =
∑
hx∈H ptp(hx)
|H|

. (2)

This score will result in low values for hyper-parameters whose varying settings have consistent
ranking across various training regimes, and high values when these rankings vary. Intuitively,
hyper-parameters with high values will most likely require re-tuning when switching training regimes.
See Appendix A for more examples of computing the score, as well as the source code provided with
this submission.

4 Hyper-parameters considered

We describe the set of hyper-parameters explored in this work, with the values used for each listed
in Appendix C. Unless otherwise specified, these are examined for both Conv and Dense layers.

Activation functions: Non-linear activation functions are a fundamental part of neural networks,
as their removal effectively turns the network into a linear function approximator. While various
activation functions have been proposed (Devlin et al., 2018; Elfwing et al., 2018; Dauphin et al.,
2017), there have been few works comparing their performance (Shamir et al., 2020); to the best of
our knowledge, there are no previous examples of such a comparison in the RL setting.

Normalization: Normalization plays an important role in supervised learning (Tan & Le, 2019;
Xie et al., 2017) but is relatively rare in deep reinforcement learning, with a few exceptions (Gogianu
et al., 2021; Bhatt et al., 2019; Arpit et al., 2019; Silver et al., 2017). We explore batch normalization
(Ioffe & Szegedy, 2015) and layer normalization (Ba et al., 2016).

Network capacity: “Scaling laws” have been central to the growth of capabilities in large lan-
guage/vision models, but have mostly eluded reinforcement learning agents, with a few exceptions
(Schwarzer et al., 2023; Taiga et al., 2022; Farebrother et al., 2022; Ceron et al., 2024b;a; Farebrother

5Inspired by numpy’s peak-to-peak function numpy.ptp (Harris et al., 2020).
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et al., 2024). To investigate the impact of network size, we vary the depth (e.g. the number of hidden
layers) and the width (e.g. the number of neurons of each hidden layer).

Optimizer hyper-parameters: We explore three hyper-parameters of Adam (Kingma & Ba,
2015), which has become the standard optimizer used by most: learning rate, epsilon and weight
decay. Learning rate determines the step size at which the algorithm adjusts the model’s parameters
during each iteration. ε represents a small constant value that is added to the denominator of the
update rule to avoid numerical instabilities. Weight decay adds a penalty term to the loss function
during training that discourages the model from assigning excessively increasing weight magnitudes.

ε-greedy exploration: ε-greedy exploration is a simple and popular exploration technique which
picks actions greedily with probability 1− ε, and a random action with probability ε. Traditionally,
experiments on the ALE use a linear decay strategy to decay ε from 1.0 to its target value.

Reward clipping: Most ALE experiments clip rewards at (−1, 1) (Mnih et al., 2015).

Discount factor: The multiplicative factor γ discounts future rewards and its importance has been
observed in a number of recent works (Amit et al., 2020; Hessel et al., 2019; Gelada & Bellemare,
2019; Van Seijen et al., 2019; François-Lavet et al., 2015; Schwarzer et al., 2023).

Replay buffer: DRL agents store past experiences in a replay buffer, to sample from during
learning. The replay capacity parameter refers to the amount of data experiences stored in the
buffer. It is common practice to only begin sampling from the replay buffer when a minimum
number of transitions have been stored, referred to as the minimum replay history.

Batch size: The number of stored transitions that are sampled for learning at each training step.

Update horizon: Multi-step learning (Sutton, 1988) computes the temporal difference error using
multi-step transitions, instead of a single step. DQN uses a single-step update by default, whereas
Rainbow chose a 3-step update (Hessel et al., 2018). The update horizon has been argued to trade-off
between the bias and the variance of the return estimate (Kearns & Singh, 2000).

Target Update periods: Value based agents often employ an online and a target Q-network,
the latter which is updated less frequently by directly syncing (or Polyak-averaging) from the online
network; the target updated period determines how frequently this occurs.

Update periods: The online network parameters are updated after every update period environ-
ment steps, with a value of 4 used in standard ALE training.

Number of atoms: In distributional reinforcement learning (Bellemare et al., 2017), the output
layer predicts the distribution of the returns for each action a in a state s, instead of the mean
Qπ(s, a). A popular approach is to model the return as a categorical distribution parameterized by
a certain number of ’atoms’ over a pre-specified support.

5 Experimental results

As mentioned in the introduction, there already exist two data regimes for evaluating agents on
the ALE suite: the (low-data regime) 100k (Kaiser et al., 2019) and the original 200M benchmark
(Mnih et al., 2015). The 100k benchmark includes only 26 games from the original suite, so we
focus on these for our evaluation. For computational considerations, we follow Graesser et al. (2022)
and use 40M million environment frames as our large-data regime. We use the settings of DrQ(ε)
(introduced by Agarwal et al. (2021) as an improvement over the DrQ of Yarats et al. (2021)),
and Data Efficient Rainbow (DER) introduced by van Hasselt et al. (2019). All experiments were
run on a Tesla P100 GPU and took around 2-4 hours (100k) and 1-2 days (40M) per run. Both
algorithms are implemented in the Dopamine library (Castro et al., 2018). Since the 100k setting
is cheaper, we evaluated a larger set of hyper-parameter values there and manually picked the most
informative subset for running in the 40M setting. For all our experiments we ran 5 independent
seeds and followed the guidelines suggested by Agarwal et al. (2021) for more statistically meaningful
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Figure 1: Tuning hyper-parameter Consistency (THC Score, see section 3) evaluated across agents
(left panel), data regimes (center panel), and environments (right panel). Different colors indi-
cate different data regimes (left panel) and different agents (center and right panels); grey bars/titles
indicate hyper-parameters which are not comparable across the considered transfer settings.

comparisons. Specifically, we computed aggregate human-normalized scores and report interquantile
mean (IQM) with 95% stratified bootstrap CIs.

In Figure 1 we present the computed THC score for all the hyper-parameters discussed in section 4,
and we discuss their consistency across agents in Section 5.1, across data regimes in Section 5.2, and
across environments in Section 5.3. More detailed discussions are provided in Appendix B and a
set of interesting findings in Appendix D. It is worth recalling that higher THC scores indicate less
consistency, which suggests a likely need to re-tune the respective hyper-parameters when changing
training configurations.

5.1 Optimal hyper-parameters mostly Transfer Across Agents

We find that optimal hyper-parameters for DrQ(ε) agree quite often with DER, which is somewhat
expected given that they’re based on the same classical RL algorithm of Q-learning, and have the
same number of updates in the same environments. Looking at THC values between the two agents
for different data regimes we see that all values are below 0.5, and in the 100k regime tend to be
even lower. Nevertheless, comparing the results of the two rows in figs. 3 and 4 demonstrate that
there can still be strong differences between the two. In the 40M regime, the hyper-parameters with
the highest THC are batch size and update horizon, consistent with the findings of Obando Ceron
et al. (2023), where these two hyper-parameters proved crucial to boosting agent performance.
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Figure 2: Measured IQM of human-normalized scores on the 26 100k benchmark games,
with varying Adam’s ε for DER. We evaluate performance at 100k agent steps (or 400k environ-
ment frames), and at 40 million environment frames. The ordering of the best hyper-parameters
switches between the two data regimes.

5.2 Optimal hyper-parameters mostly do not Transfer Across Data Regimes

We find that optimal hyper-parameters for Atari 100k mostly do not transfer once you move to 40M
updates, showing that even when keeping algorithms and environment constant one may still need
to tune hyper-parameters should they change the amount of data their agent can train on. Of the
hyper-parameters considered, Adam’s ε and update period seem to be the most critical to re-tune
(see Figure 2 for results on DER for Adam’s ε). The results with Adam’s ε are surprising, as the
purpose of this hyper-parameter is mostly for numerical stability. The update period (as well as the
update horizon) results are consistent with what is done in practice between these two data regimes
(e.g. Rainbow uses an update period of 4 and an update horizon of 3, while DER uses 1 and 10,
respectively).

5.3 Optimal hyper-parameters do not Transfer Across Environments

Our experiments show that hyper-parameters that perform well on some games lead to lackluster
final performance in others. Indeed, in Figure 1 we can see that the THC score is highest when
evaluating across environments. This strongly suggests that, when using an existing agent in a new
environment, most of the hyper-parameters would need extra tuning. Figure 3 displays the results
when varying batch size, where we can see that the rankings can sometimes be complete opposites
across games (compare Kangaroo and Gopher).

6 A web-based appendix

We have run an extensive number of experiments (around 108k) for this work, which would render
a traditional appendix unwieldy. Instead, we provide an interactive website6 which facilitates nav-
igating the full set of results7. Presenting empirical research results in this manner offers a range
of benefits that enhance accessibility, engagement, and comprehension. This dynamic presentation
allows readers to more easily make comparisons over different games, agents, and parameters.

The website’s main page presents aggregate IQM results for all hyper-parameters investigated in
both data regimes (e.g. Figure 2), while sub-pages present detailed performance comparisons when
sliced by game (Figure 3 presents a subset of this) and hyper-parameter (Figure 4 presents a subset

6Website available at https://consistent-hparams.streamlit.app/ .
7Website repository at https://github.com/Consistent-Website.

https://consistent-hparams.streamlit.app/
https://github.com/joaogui1/Consistent-Website?tab=readme-ov-file
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Figure 3: Measured returns with varying batch size for DrQ(ε) (top) and DER (bottom)
at 40M environment frames for four representative games, demonstrating that the ranking of the
hyper-parameter values can drastically change from one game to the next. All results averaged over
5 seeds, shaded areas represent 95% confidence intervals.
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Figure 4: Measured returns with various hyper-parameter variations on Asterix for
DrQ(ε) (top) and DER (bottom) at 40M environment frames. Displaying eight representative hyper-
parameters, enabling per-game analyses for hyper-parameter selection.

of this). The added level of granularity provided by the sub-pages can be crucial for understanding
the specific strengths and weaknesses of an algorithm in various scenarios. All results averaged over
5 seeds, shaded areas represent 95% confidence intervals.

7 Related work

While RL as a field has seen many innovations in the last years, small changes to the algorithm or
its implementation can have a big impact on its results (Engstrom et al., 2020; Araújo et al., 2021).
Deep reinforcement learning approaches are often notoriously sensitive to their hyperparamaters
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and demonstrate brittle convergence properties (Haarnoja et al., 2018). This is particularly true for
off-policy approaches that use a replay buffer to leverage past experiences (Duan et al., 2016).

Henderson et al. (2017) investigate the effects of existing degrees of variability between various RL
setups and their effects on algorithm performance. Although restricted to the domain of existing
environments, Henderson et al. (2017) propose more robust performance estimators for RL learning
algorithms. Islam et al. (2017) and Huang et al. (2022) have shown the difficulty in reproducing
policy gradient algorithms due to the variance. Andrychowicz et al. (2020) did a deep dive in algo-
rithmic choices on policy-based algorithms. Their analyses covered differences in hyper-parameters,
algorithms, and implementation details.

In an effort to consolidate innovations in deep RL, several papers have examined the effect of smaller
design decisions like the loss function or policy regularization for on-policy algorithms Andrychowicz
et al. (2020), DQN agents (Ceron & Castro, 2021), imitation learning (Hussenot et al., 2021) and
offline RL (Paine et al., 2020; Lu et al., 2021). AutoRL methods, on the other hand, have focused on
automating and abstracting some of these decisions (Parker-Holder et al., 2022; Eimer et al., 2023) by
using data-driven approaches to learn various algorithmic components or even entire RL algorithms
(Co-Reyes et al., 2021; Lu et al., 2022). All these works have demonstrated that hyperparameters
in deep reinforcement learning warrant more attention from the research community than they
currently receive. Underreported tuning practices can distort algorithm evaluations, and overlooked
hyperparameters may lead to suboptimal performance.

8 Discussion

One of the central challenges in reinforcement learning research is the non-stationarity during train-
ing in the inputs (due to self-collected data) and targets (due to bootstrapping). This is in direct
contrast with supervised learning settings, where datasets and labels are typically fixed throughout
training. This non-stationarity may be largely to blame for some of the ranking inconsistencies ob-
served under different training regimes (e.g. Figure 2), and why different hyper-parameter tunings
are required for different settings (e.g. DER versus Rainbow).

Hyper-parameters are commonly tuned on a subset of environments (e.g. 3-5 games) and then
evaluated on the full suite. Our findings suggest that this approach may not be the most rigorous,
as hyper-parameter selection can vary dramatically from one game to the next (c.f. figs. 3 and 4).
While aggregate results (e.g. IQM) provide a succinct summary of performance, they unfortunately
gloss over substantial differences in the individual environments. If our hope as researchers is to
be able to use these algorithms beyond academic benchmarks, understanding these differences is
essential, in particular in real-world applications such as healthcare and autonomous driving.

We have conducted a large number of experiments to investigate the impact of various hyper-
parameter choices. While the THC score (Figure 1) provides a high-level view of the transferability
of hyper-parameter choices, our collective results suggest that a single set of hyper-parameter
choices will never suffice to achieve strong performance across all environments. The ability to
dynamically adjust hyper-parameter values during training is one way to address this; to properly
do so would require quantifiable measures of environment characteristics that go beyond coarse
specifications (such as sparse versus dense reward systems). The per-game results we present here
may serve as an initial step in this direction. In Appendix D.3 we provide a fine-grained analysis
of DER on Gopher as an example of the type of analyses enabled by our website. We hope our
analyses, results, and website prove useful to RL researchers in developing robust and transferable
algorithms to handle increasingly complex problems.
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A Computing Tuning Hyperparameter Consistency (THC)

Computing the ranking between hyper-parameter values is non-trivial given the noise involved in
Deep Reinforcement Learning Agents performances. We used 5 seeds to improve the robustness to
noise of our results in this paper, but if we simply used the average performance the effects of noise
would still be significant. As such our ranking is based on the Inter-Quantile Mean (IQM) (Agarwal
et al., 2021) and its 95% confidence interval.

First we sort the performance array in decreasing order based on the upper bound of the confidence
interval for each hyper-parameter. Then we compute the rank of each hyper-parameter as the average
between the lowest position (1-based) whose lower bound is less than or equal to the current hyper-
parameter’s performance upper bound and the highest position whose upper bound is greater than or
equal to the current hyper-parameter’s lower bound. Our choice of treating overlaps in performance
by averaging the rankings comes from what is typically done when dealing with ties when computing
Kendall’s W and Kendall’s τ , which are other commonly used metrics for inter-ranking agreement.

As an example imagine we are analyzing a hyper-parameter with 5 possible values, 1e-2, 1e-1, 1,
1e1, 1e2. We run all the experiments and get the following confidence intervals on their IQM ranges
(200, 300), (250, 350), (400, 600), (110, 220), (30, 70). After sorting them we’re left with:

1. 1: (400, 600)

2. 10−1: (250, 350)

3. 10−2: (200, 300)

4. 101: (110, 220)

5. 102: (30, 70)

Then we can compute the ranks as:

1. 1 : 1+1
2 = 1

2. 10−1 : 2+3
2 = 2.5

3. 10−2 : 2+4
2 = 3

4. 101 : 3+4
2 = 3.5

5. 102 : 5+5
2 = 5

An important feature of this method is that ranks needs not be integers. Now another relevant
example is one where the 3 values, let’s call them A, B, C, have completely overlapping intervals:

1. A: (200, 300)

2. B: (250, 350)

3. C: (180, 260)

In this case all of them will have the ranking 1+3
2 = 2, which shows how given our results we’re

unable to fully determine which one is the best or worst performing value for this hyper-parameter.

Here are two extra examples of computing the THC score.
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1. We analyze a case with 2 hyper-parameters, A1 and B1, both with 3 values, being evaluated
across 5 games (columns are ranks in a game):

rA1 =

1 1 2 1 3
2 3 2 3 2
3 2 2 2 1


rB1 =

1 2 1 2 1
2 1 2 1 2
3 3 3 3 3


peak-to-peak−−−−−−−−→

ptpA1 =

2
1
2


ptpB1 =

1
1
0


Normalize−−−−−−→

ptpA1 =

1.0
0.5
1.0


ptpB1 =

0.5
0.5
0.0


Finally we average the values to get the THC for each hyper-parameter:

THCA1 = 2.5
3 ≈ 0.83333 THCB1 = 1.0

3 ≈ 0.33333 (3)

This example also shows an important property of THC, while a1 seems to be consistently
the best value for A, whereas b1 and b2 vary their position more often, the value of THC
is higher for A then for B, since the largest change in performance for values of A is larger
than the change for values of B. This is because THC considers the worst-case variance
when assigning how important is tuning a given hyper-parameter.

2. Another example, now one hyper-parameter, A2, has 4 possible values and the other, B2,
has 3, and we have 4 games.

rA2 =


1 1 1 3
2 2 2 2
3 3 3 1
4 4 4 4


rB2 =

 1 1 1 1
2.5 2 3 2
2.5 3 2 3


peak-to-peak−−−−−−−−→

ptpA2 =


2
0
2
0


ptpB2 =

0
1
1


Normalize−−−−−−→

ptpA2 =


2
3

0.0
2
3

0.0


ptpB2 =

0.0
0.5
0.5


And then average across the hyper-parameter values:

THCA2 =
4
3
4 = 1

3 THCB2 = 1
3 (4)

In this case we see that while A2 has 2 hyper-parameter values with more variance in ranking
then the 2 values of B2 the fact that A2 has more values overall than B2 leads them to having
the same THC value.

Finally it’s worth pointing out that since the performances in the second case were more stable than
in the first one their THC value was overall lower.

B Finer-grained experimental discussion

B.1 Optimal hyper-parameters do not Transfer Across Environments

1. For batch size in DrQ(ε)@40M we find that 4 is the optimal batch size for Asterix, Breakout,
Gopher, and Seaquest, while being the worst value for effectively all the other games. See
Figure 3

2. Convolutional width for DER@40M, 0.25 is the clear optimum in Assault, CrazyClimber,
Roadrunner, Seaquest, and UpNDown, while leading to the worst performance in Breakout,
Krull, and QBert
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3. Dense layer width for DrQ(ε)@40M we see that 768 neurons per layer lead to best perfor-
mance for Amidar, Assault, Hero, and Qbert, while most other games have 128 neurons as
their optimal layer width. We see a similar mismatch for DER, though the games were 768
is optimal are different.

4. A discount factor of 0.99 is optimal for DER@40M in Alien, Amidar, Asterix, BankHeist,
Breakout, Frostbite, Kangaroo, Kung Fu Master, QBert, RoadRunner, Seaquest, and Up-
NDown, but leads to pessimal performance in PrivateEye and non-optmimum in Assault,
Boxing, ChopperCommand, CrazyClimber and many others.

B.2 Optimal hyper-parameters do not Transfer Across Data Regimes

1. Adam’s ε, an often overlooked hyper-parameter, has optimal values < 1.5 · 10−4 for Atari
100k, while having optimal value of 1.5 · 10−2 in the 40M setting. This result also begs for
further research, as higher values of ε move Adam closer to SGD with momentum behaviour.

2. For Convolutional Width we find that the worst performing value for 100k, 0.25, is the
optimal value when number of updates is 40M. Another important result given that it
means one may want to effectively change the network architecture when the number of
updates changes.

3. For normalization of the dense layers we see that while in the 100k regime Layer Norm leads
to worse performance than no normalization, it is the best performing normalization once
we move to the 40M regime.

4. For update horizon one can see that the best performing values are high, around 10, in the
100k regime, while lower values (as low as 1 for DER) are optimal in the 40M regime.

5. For update period we see that in the 100k regime a value of 6 is low performing and 1 is
optimal, but once we move to the 40M regime we see an inversion, where 6 is substantially
superior to 1.
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C Hyper-parameters list

Default hyper-parameter settings for DER and DrQ(ε) across the environments. Table 1 shows
the default values for each hyper-parameter across all the Atari games. In Table 2 we list all the
possible values we explored for both agents. The values selection is informed by the recommendations
provided by Araújo et al. (2021).

Table 1: Default hyper-parameters setting for DER and DrQ(ε) agents.
Atari

Hyper-parameter DER DrQ(ε)
Adam’s(ε) 0.00015 0.00015
Batch Size 32 32

Conv. Activation Function ReLU ReLU
Convolutional Normalization None None

Convolutional Width 1 1
Dense Activation Function ReLU ReLU

Dense Normalization None None
Dense Width 512 512

Discount Factor 0.99 0.99
Exploration ε
Learning Rate 0.0001 0.0001

Minimum Replay History
Number of Atoms 51 0

Number of Convolutional Layers
Number of Dense Layers 2 2

Replay Capacity 1000000 1000000
Reward Clipping True True
Update Horizon 10 10
Update Period 1 1
Weight Decay 0 0
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Table 2: Hyper-parameters settings for DER and DrQ(ε) agents
Hyper-parameter Values

Adam’s(ε) 1, 0.5, 0.3125, 0.03125, 0.003125, 0.0003125, 3.125e-05,
3.125e-06

Batch Size 4, 8, 16, 32, 64
Conv. Activation Function ReLU, ReLU6, Sigmoid, Softplus, Soft sign, SiLU,

Log Sigmoid, Hard Sigmoid, Hard SiLU, Hard tanh, ELU,
CELU, SELU, GELU, GLU

Convolutional Normalization None, BatchNorm, LayerNorm
Convolutional Width 0.25, 0.5, 1, 2, 4

Dense Activation Function ReLU, ReLU6, Sigmoid, Softplus, Soft sign, SiLU,
Log Sigmoid, Hard Sigmoid, Hard SiLU, Hard tanh, ELU,

CELU, SELU, GELU, GLU
Dense Normalization None, BatchNorm, LayerNorm

Dense Width 32, 64, 128, 256, 512, 1024
Discount Factor 0.1, 0.5, 0.9, 0.99, 0.995, 0.999
Exploration ε 0, 0.001, 0.005, 0.01, 0.1
Learning Rate 10, 5, 2, 1, 0.1, 0.01, 0.001, 0.0001, 1e-05

Minimum Replay History 125, 250, 375, 500, 625, 750, 875, 1000
Number of Atoms 11, 21, 31, 41, 51, 61

Number of Convolutional Layers 1, 2, 3, 4
Number of Dense Layers 1, 2, 3, 4

Replay Capacity
Reward Clipping True, False

Target Update Period 10, 25, 50, 100, 200, 400, 800, 1600
Update Horizon 1, 2, 3, 4, 5, 8, 10
Update Period 1, 2, 3, 4, 8, 10, 12
Weight Decay 0, 0.01, 0.03, 0.1, 0.5, 1
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D Interesting Miscellaneous Findings

There were a couple of interesting findings from our experiments which are out of scope for this
paper, but which may warrant further exploration in the future.

D.1 High Values of Weight Decay Can Be Optimal

We found that for DER at 40 Million environment frames having a weight decay of 0.1 was the
overall best choice, and that for many games like Gopher and Boxing the optimal value was 0.5, an
uncommonly high value for the hyperparameter.
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Figure 5: Measured IQM of human-normalized scores on the 26 100k benchmark games,
with varying Weight Decay for DER. We evaluate performance at 100k agent steps (or 400k
environment frames), and at 40 million environment frames. At 40 million frames 0.1 is on average
optimal, with 0.5 being at second place and the standard value of 0.0 being in fourth.

D.2 Higher Values of Adam’s ε can improve Performance

In our experiments we found that both DrQ(ε) and DER can benefit from a 100 times higher value
of Adam’s ε than what is commonly used. This is somewhat perplexing, as using such a high value
of epsilon leads Adam to behave closer to SGD than to its common behaviour in other settings.
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Figure 6: Measured IQM of human-normalized scores on the 26 100k benchmark games,
with varying Adam’s ε for DER. We evaluate performance at 100k agent steps (or 400k environ-
ment frames), and at 40 million environment frames.
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D.3 Example Analysis: DER on Gopher

Finally we found that in a specific experimental setting, DER with 40 million frames on Gopher,
whose optimal hyperparameters are very different from what is commonly observed in other appli-
cations of Deep Learning, and in some cases quite different even from the optimal values when using
DER with 40 million environment frames in other Atari games. Not only that, but also we observed
that often the difference in performance between the counter-intuitive optimal hyper-parameter and
the standard is significant, leading to multiple-fold improvement in returns. For example in Gopher
specifically we find that:

• For DER the standard value of update horizon is 10, but in the case of Gopher using an
update horizon of 1 leads to roughly a 28 times improvement in performance.

• In Gopher a Weight Decay of 0.5 lead to a 5-fold increase of returns when compared to the
standard value of 0.

• While the standard value of the Discount Factor is 0.99, for Gopher we see a 4.5 times
improvement in performance when using a lower value of 0.9

• The optimal batch size we found was 4, which is relatively small compared to the standard
of 32, and goes against the common Deep Learning practice of increasing batch sizes to
increase performance. Changing batch size to 4 leads to a 4.5-fold increase in returns

• Finally, we recall the previous sub-section on Adam’s ε and see that Gopher also benefits
from an uncommonly high value of the hyperparameter, though here the performance gap
is smaller, being closer to a 2x increase compared to the considerable differences discussed
previously.
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Figure 7: Learning Curves of DER on Gopher at 40M frames as we vary Adam’s ε,
Weight Decay, Discount Factor, Update Horizon, and Batch Size


