
EHRAgent: Code Empowers Large Language Models for Few-shot
Complex Tabular Reasoning on Electronic Health Records

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-001
strated exceptional capabilities in planning and002
tool utilization as autonomous agents, but few003
have been developed for medical problem-004
solving. We propose EHRAgent, an LLM005
agent empowered with a code interface, to006
autonomously generate and execute code for007
multi-tabular reasoning within electronic health008
records (EHRs). First, we formulate an EHR009
question-answering task into a tool-use plan-010
ning process, efficiently decomposing a com-011
plicated task into a sequence of manageable012
actions. By integrating interactive coding and013
execution feedback, EHRAgent learns from er-014
ror messages and improves the originally gen-015
erated code through iterations. Furthermore,016
we enhance the LLM agent by incorporating017
long-term memory, which allows EHRAgent to018
effectively select and build upon the most rel-019
evant successful cases from past experiences.020
Experiments on three real-world multi-tabular021
EHR datasets show that EHRAgent outperforms022
the strongest baseline by up to 29.6% in suc-023
cess rate. EHRAgent leverages the emerging024
few-shot learning capabilities of LLMs, en-025
abling autonomous code generation and exe-026
cution to tackle complex clinical tasks with027
minimal demonstrations.028

1 Introduction029

An electronic health record (EHR) is a digital ver-030

sion of a patient’s medical history maintained by031

healthcare providers over time (Gunter and Terry,032

2005). In clinical research and practice, clinicians033

actively interact with EHR systems to access and re-034

trieve patient data, ranging from detailed individual-035

level records to comprehensive population-level036

insights (Cowie et al., 2017). Since most EHRs037

use pre-defined rule-based conversation systems038

(e.g., Epic), clinicians may take additional training039

or seek help from data engineers to obtain infor-040

mation beyond rules (Mandel et al., 2016; Bender041

Clinician

Database Engineer

LLM Agent

Database
Operations

Code
Interface

General
Tools

Long-Term
Memory

Figure 1: Simple and efficient interactions between clin-
icians and EHR systems with the assistance of LLM
agents. Clinicians specify tasks in natural language, and
the LLM agent autonomously generates and executes
code to interact with EHRs (right) for answers. It elimi-
nates the need for specialized expertise or extra effort
from data engineers, which is typically required when
dealing with EHRs in clinical settings (left).

and Sartipi, 2013). Alternatively, an autonomous 042

agent could facilitate clinicians to communicate 043

with EHRs in natural languages, translating clinical 044

questions into machine-interpretable queries (Lee 045

et al., 2022), planning a sequence of actions, and ul- 046

timately delivering the final responses, which holds 047

great potential to simplify workflows and reduce 048

workloads for clinicians (Figure 1). 049

Large language models (LLMs) (OpenAI, 2023; 050

Anil et al., 2023) bring us one step closer to au- 051

tonomous agents, with extensive knowledge and 052

substantial instruction-following abilities from di- 053

verse corpora during pretraining. LLM-based au- 054

tonomous agents have demonstrated remarkable 055

capabilities in problem-solving, such as reason- 056

ing (Wei et al., 2022), planning (Yao et al., 2023b), 057

and memorizing (Wang et al., 2023b). One par- 058

ticularly notable capability of LLM agents is tool- 059

usage (Schick et al., 2023; Qin et al., 2023a), where 060

they can utilize external tools (e.g., calculators, 061

APIs, etc.), interact with environments, and gener- 062

ate action plans with intermediate reasoning steps 063

that can be executed sequentially towards a valid 064

solution (Wu et al., 2023; Zhang et al., 2023). 065

1

Despite their success in general-domain tasks,066

LLMs have encountered unique but significant chal-067

lenges when it comes to real-world clinical research068

and practice (Jiang et al., 2023; Yang et al., 2022;069

Moor et al., 2023), especially for EHRs that have070

complex structures and require additional informa-071

tion and expertise beyond their pre-trained data.072

First, given the constraints in both the volume073

and specificity of training data within the medi-074

cal field, LLMs still struggle with medical reason-075

ing due to insufficient knowledge and understand-076

ing of EHRs (Thapa and Adhikari, 2023). Sec-077

ond, EHRs are typically relational databases con-078

taining vast amounts of tables (e.g., 26 tables in079

MIMIC-III (Johnson et al., 2016)) with heteroge-080

neous patient data, including both administrative081

and clinical information. Moreover, unlike stan-082

dardized questions (e.g., multi-choice) found in083

medical licensing exams (Jin et al., 2021), real-084

world clinical tasks are highly diverse and com-085

plex (Lee et al., 2022). These questions often arise086

from the unique circumstances of individual pa-087

tients or specific groups, necessitating multi-step088

or complicated operations.089

To address these limitations, we propose090

EHRAgent, an autonomous LLM agent with exter-091

nal tools and code interface for improved multi-092

tabular reasoning across EHRs. We transform the093

EHR question-answering problem into a tool-use094

planning process - generating, executing, debug-095

ging, and optimizing a sequence of code-based ac-096

tions. To overcome the lack of domain knowledge,097

we integrate additional information (e.g., detailed098

descriptions of each table in EHRs) and clinical099

knowledge by instructing the LLM agent to retrieve100

the most relevant knowledge. We then establish an101

interactive coding mechanism, which involves a102

multi-turn dialogue between the code planner and103

executor, iteratively refining the generated code-104

based plan. Specifically, EHRAgent optimizes the105

execution plan by incorporating environment feed-106

back and delving into error information to enhance107

debugging proficiency. Moreover, we incorporate108

long-term memory to continuously maintain a set109

of successful cases and dynamically select the most110

relevant few-shot examples, in order to effectively111

learn from and improve upon past experiences.112

We conducted extensive experiments on three113

widely used real-world EHR datasets, MIMIC-114

III (Johnson et al., 2016), eICU (Pollard et al.,115

2018), and TREQS (Wang et al., 2020), to vali-116

date the empirical effectiveness of EHRAgent, with117

a particular focus on challenging tasks that align 118

with real-world application scenarios. In contrast 119

to traditional supervised learning methods that re- 120

quire extensive training samples with fine-grained 121

annotations (e.g., text-to-SQL (Lee et al., 2022)), 122

EHRAgent demonstrates its efficiency by necessitat- 123

ing only four demonstrations. Our findings suggest 124

that EHRAgent improves multi-tabular reasoning 125

on EHRs by autonomous code generation and ex- 126

ecution with environmental feedback. To the best 127

of our knowledge, EHRAgent represents one of the 128

first LLM agents for complex medical reasoning 129

on EHRs with external tools and code interface. 130

Our main contributions are as follows: 131

• We propose EHRAgent, an LLM agent aug- 132

mented with external tools and medical knowledge, 133

to solve few-shot multi-tabular reasoning derived 134

from EHRs with only four demonstrations; 135

• Planning with a code interface, EHRAgent 136

enables the LLM agent to formulate a clinical 137

problem-solving process as an executable code plan 138

of action sequences, along with a code executor; 139

• We introduce interactive coding between the 140

LLM agent and code executor, iteratively refining 141

plan generation and optimizing code execution by 142

examining environmental feedback in depth; 143

• Experiments on three EHR datasets show that 144

EHRAgent improves the strongest baseline on multi- 145

hop reasoning by up to 29.6% in success rate. 146

2 Preliminaries 147

Problem Formulation. In this work, we focus 148

on addressing health-related queries by leveraging 149

information from structured EHRs. The reference 150

EHR, denoted as R = {R0, R1, · · · }, comprises 151

multiple tables, while C = {C0, C1, · · · } corre- 152

sponds to the column descriptions within R. For 153

each given query in natural language, denoted as q, 154

our goal is to extract the final answer by utilizing 155

the information within both R and C. 156

LLM Agent Setup. We further formulate the plan- 157

ning process for LLMs as autonomous agents in 158

EHR question answering. For initialization, the 159

LLM agent is equipped with a set of pre-built tools 160

M = {M0,M1, · · · } to interact with and address 161

queries derived from EHRs R. Given an input 162

query q ∈ Q from the task space Q, the objec- 163

tive of the LLM agent is to design a T -step execu- 164

tion plan P = (a1, a2, · · · , aT), with each action 165

at selected from the tool set at ∈ M. Specifi- 166

cally, we generate the action sequences (i.e., plan) 167

2

Question: What is the maximum total hospital
cost that involves a diagnosis named comp-
oth vasc dev/graft since 1 year ago?Clinician

EHR2SQL

Clinician

+
DB

+
Engineering

select max(t1.c1) from (
select sum(cost.cost) as
c1 from cost where
cost.hadm_id in …

EHRAgent (Ours)

LLM Agent

Assume you have knowledge of following
medical records: [record_description].
Write a Python code to solve the given
question. You can use the following
functions: [api_name, api_description].
Here are some examples: [examples]. The
related knowledge to the question is
given: [knowledge]. Question: [question].
Solution:

Medical
Records

(1) Charted events are stored in a series of
‘events’ tables…

(2) Tables prefixed with ‘d_’ are dictionary…
(3) Four databases are used to define and

track patient stays…

Tool Set

def LoadDB(DBName):
Load the database DBName …

def FilterDB(CONDITIONS):
Filter the data with CONDITIONS …

def GetValue(ARGUMENT):
Get the values of the selected columns …

- As comp-oth vasc dev/graft is a diagnose,
the corresponding ICD9_CODE can be found in
the d_icd_diagnoses database.
- The ICD9_CODE can be used to find the
corresponding HADM_ID in the diagnoses_icd
database.
- The HADM_ID can be used to find the
corresponding COST in the cost database.

Medical
Knowledge

...
icd_code = GetValue("ICD9_CODE")
diagnoses_icd_db = LoadDB("diagnoses_icd")
filtered_icd_db = FilterDB("ICD9_CODE={icd_code}")
hadm_id_list = GetValue("HADM_ID")
max_cost = 0
for hadm_id in hadm_id_list:

cost_db = LoadDB("cost")
filtered_cost_db = FilterDB("HADM_ID={hadm_id}")
cost = GetValue("COST", sum)
if cost > max_cost:

max_cost = cost
answer = max_cost LLM Agent

date = Calendar("-1 year")
diagnosis_db = LoadDB("d_icd_diagnoses")
filtered_diagnosis_db = FilterDB("SHORT_TITLE=comp
-oth vasc dev/graft")
icd_code = GetValue("ICD9_CODE")
max_cost = 0
for hadm_id in hadm_id_list:

cost_db = LoadDB("cost")
filtered_cost_db = FilterDB(”ICD9_CODE={icd_code}")
...

LLM Agent

Runtime Error: There is not column named
"ICD9_CODE" in the "cost" database. Please
debug the planning program accordingly.

Executor

Figure 2: Overview of our proposed LLM agent, EHRAgent, for complex tabular reasoning tasks on EHRs. Given an
input clinical question based on EHRs, EHRAgent initially incorporates relevant medical knowledge. Subsequently,
EHRAgent decomposes the task and generates a plan (i.e., code) based on EHR descriptions, tool function definitions,
few-shot examples, and integrated medical knowledge. Upon execution, EHRAgent iteratively debugs the code
following the environmental feedback and ultimately generates the final solution.

by prompting the LLM agent following a policy168

pq ∼ π(a1, · · · , aTq |q;R,M) : Q × R × M →169

∆(M)Tq , where ∆(·) is a probability simplex func-170

tion. The final output is obtained by executing the171

entire plan y ∼ ρ(y|q, a1, · · · , aTq), where ρ is a172

plan executor interacting with EHRs.173

Planning with Code Interface. To mitigate ambi-174

guities and misinterpretations in plan generation,175

an increasing number of LLM agents (Gao et al.,176

2023; Liang et al., 2023; Sun et al., 2023; Chen177

et al., 2023a) employ code prompts as planner in-178

terface instead of natural language prompts. The179

code interface enables LLM agents to formulate180

an executable code plan as action sequences, in-181

tuitively transforming natural language question-182

answering into iterative coding (Yang et al., 2023).183

Consequently, the planning policy π(·) turns into184

a code generation process, with a code execution185

as the executor ρ(·). We then track the outcome of186

each interaction back to the LLM agent, which can187

be either a successful execution result or an error188

message, to iteratively refine the generated code-189

based plan. This interactive process, a multi-turn190

dialogue between the planner and executor, takes191

advantage of the advanced reasoning capabilities of192

LLMs to optimize plan refinement and execution.193

3 EHRAgent: LLMs as Medical Agents 194

In this section, we present EHRAgent (Figure 2), 195

an LLM agent that enables multi-turn interactive 196

coding to address multi-hop reasoning tasks on 197

EHRs. EHRAgent comprises four key components: 198

(1) Medical Knowledge Integration: EHRAgent 199

summarizes the most important relevant informa- 200

tion to facilitate a comprehensive understanding of 201

EHRs. (2) Interactive Coding with Execution 202

Feedback: EHRAgent harnesses LLMs as assistant 203

agents in a multi-turn conversation with a code ex- 204

ecutor. (3) Debugging via Error Tracing: Rather 205

than simply sending back information from the 206

code executor, EHRAgent thoroughly analyzes er- 207

ror messages to identify the root causes through 208

iterations until a final solution. (4) Plan Refine- 209

ment with Long-Term Memory: Using long-term 210

memory, EHRAgent selects the most relevant suc- 211

cessful cases as demonstrations from past experi- 212

ences for effective plan refinement. We summarize 213

the workflow of EHRAgent in Algorithm 1. 214

3.1 Medical Knowledge Integration 215

We first incorporate medical knowledge into 216

EHRAgent for a comprehensive understanding of 217

3

Algorithm 1: Overview of EHRAgent.
Input: q: input question;R: reference EHRs; Ci:

column description of EHR Ri; D:
descriptions of EHRsR; T : the maximum
number of steps; T : definitions of tool
function.

Initialize t← 0, C(0)(q)← ∅, O(0)(q)← ∅
// Medical Knowledge Integration
I = [D; C0; C1; · · ·]
B(q) = LLM([I; q])
// Examples Retrieval from Long-Term Memory
E(q) = argTopKmax(sim(q, qi|qi ∈ L))
// Plan Generation
C(0)(q) = LLM([I; T ; E(q); q;B(q)])

while t < T & TERMINATE /∈ O(t)(q) do
// Code Execution
O(t)(q) = EXECUTE(C(t)(q))
// Debugging and Plan Modification
C(t+1)(q) = LLM(DEBUG(O(t)(q)))
t← t+ 1

Output: Final answer (solved) or error message
(unsolved) from O(t)(q).

EHRs within a limited context length. Given218

an EHR-based clinical question q and the refer-219

ence EHRs R = {R0, R1, · · · }, the objective of220

knowledge integration is to generate descriptions of221

knowledge most relevant to q, thereby facilitating222

the identification and location of potential useful223

references within R. For example, given a query224

related to ‘Aspirin’, we expect LLMs to locate the225

drug ‘Aspirin’ at the PRESCRIPTION table, under226

the prescription_name column in the EHR.227

To achieve this, we initially maintain a thorough228

introduction I of all the reference EHRs, includ-229

ing overall data descriptions D and the detailed230

column descriptions Ci for each individual EHR231

Ri, expressed as I = [D; C0; C1; · · ·]. To further232

extract additional background knowledge essential233

for addressing the complex query q, we then distill234

key information from the detailed introduction I.235

Specifically, we directly prompt LLMs to generate236

the relevant knowledge B(q) based on demonstra-237

tions, denoted as B(q) = LLM([I; q]).238

3.2 Interactive Coding with Execution239

We then introduce interactive coding between the240

LLM agent (i.e., code generator) and code executor241

to facilitate iterative plan refinement. EHRAgent242

integrates LLMs as an assistant agent with a code243

executor within a multi-turn conversation. The244

code executor retrieves and executes the generated245

code and then provides the execution results back to246

the LLM. Within the conversation, EHRAgent navi-247

gates the subsequent phase of the dialogue, where248

the LLM agent is expected to either (1) continue249

to iteratively adjust its original code in response to 250

any errors encountered or (2) finally deliver a con- 251

clusive answer based on the successful execution 252

outcomes. 253

LLM Agent. To generate accurate code snippets 254

C(q) as solution plans for the query q, we prompt 255

the LLM agent with a combination of the EHR 256

introduction I , tool function definitions T , a set of 257

K-shot examples E1, · · · , EK , the input query q, 258

and the integrated medical knowledge relevant to 259

the query B(q): 260

C(q) = LLM([I; T ;E1, · · · , EK ; q;B(q)]).
(1) 261

Leveraging the AutoGen infrastructure (Wu et al., 262

2023) of automated multi-agent conversation, we 263

develop the LLM agent to (1) generate code within 264

a designated coding block as required, (2) modify 265

the code according to the outcomes of its execution, 266

and (3) insert a specific code “TERMINATE” at 267

the end of its response to indicate the conclusion 268

of the conversation. 269

Code Executor. The code executor automatically 270

extracts the code from the LLM agent’s output and 271

executes it within the local environment: O(q) = 272

EXECUTE(C(q)). After execution, it sends back 273

the execution results to the LLM agent for potential 274

plan refinement and further processing. 275

3.3 Rubber Duck Debugging via Error 276

Tracing 277

Our empirical observations indicate that LLM 278

agents tend to make slight modifications to the code 279

snippets based on the error message without further 280

debugging. In contrast, human programmers often 281

delve deeper, identifying bugs or underlying causes 282

by analyzing the code implementation against the 283

error descriptions (Chen et al., 2023b). Inspired 284

by this, we integrate a ‘rubber duck debugging’ 285

pipeline with error tracing to refine plans with the 286

LLM agent. Specifically, we provide detailed trace 287

feedback, including error type, message, and loca- 288

tion, all parsed from the error information by the 289

code executor. Subsequently, this error context is 290

presented to a ‘rubber duck’ LLM, prompting it to 291

generate the most probable causes of the error. The 292

generated explanations are then fed back into the 293

conversation flow, aiding in the debugging process. 294

For the t-th interaction between the LLM agent and 295

the code executor, the process is as follows: 296

O(t)(q) = EXECUTE(C(t)(q)),

C(t+1)(q) = LLM(DEBUG(O(t)(q))).
(2) 297

4

The interaction ends either when a ‘TERMINATE’298

signal appears in the generated messages or when299

t reaches a pre-defined threshold of steps T .300

3.4 Plan Refinement with Long-term Memory301

Due to the vast volume of information within302

EHRs and the complexity of the clinical questions,303

there exists a conflict between limited input con-304

text length and the number of few-shot examples.305

Specifically, K-shot examples may not adequately306

cover the entire question types as well as the EHR307

information. To address this, we maintain a long-308

term memory L for storing past successful code309

snippets and reorganizing few-shot examples by310

retrieving the most relevant samples from L. Con-311

sequently, the LLM agent can learn from and ap-312

ply patterns observed in past successes to current313

queries. The selection of K-shot demonstrations314

E(q) is defined as follows:315

E(q) = arg TopKmax(sim(q, qi|qi ∈ L)), (3)316

where arg TopKmax(·) identifies the indices of317

the top K elements with the highest values from318

L, and sim(·, ·) calculates the similarity between319

two questions, employing negative Levenshtein dis-320

tance as the similarity metric. Subsequent to this321

retrieval process, the newly acquired K-shot exam-322

ples E(q) replace the originally predefined exam-323

ples E1, · · · , EK in Eq. (1). This updated set of324

examples serves to reformulate the prompt, guiding325

the LLM agent in plan refinement:326

C(q) = LLM([I; T ; E(q); q;B(q)]). (4)327

4 Experiments328

4.1 Experiment Setup329

Tasks and Datasets. We evaluate EHRAgent on330

three publicly available structured EHR datasets,331

MIMIC-III (Johnson et al., 2016), eICU (Pollard332

et al., 2018), and TREQS (Wang et al., 2020)333

for multi-hop question and answering on EHRs.334

These questions originate from real-world clinical335

needs and cover a wide range of tabular queries336

commonly posed within EHRs. During the data337

pre-processing stage, we create EHR question-338

answering pairs by considering text queries as339

questions and executing SQL commands in the340

database to automatically generate the correspond-341

ing ground-truth answers. Throughout this process,342

we filter out samples containing unexecutable SQL343

commands or yielding empty results. Our final344

Table 1: Dataset statistics.

Dataset # Examples # Table # Row/Table # Table/Q

MIMIC-III 580 17 81k 2.52
eICU 580 10 152k 1.74

TREQS 996 5 498k 1.48
Average 718.7 10.7 243.7k 1.91

dataset includes an average of 10.7 tables and 718.7 345

examples per dataset, with an average of 1.91 tables 346

required to answer each question. Dataset statis- 347

tics are available in Table 1. We include additional 348

dataset details in Appendix A. 349

Tool Sets. To enable LLMs in complex operations 350

such as calculations and information retrieval, we 351

integrate external tools in EHRAgent during the in- 352

teraction with EHRs. Our toolkit can be easily 353

expanded with natural language tool function defi- 354

nitions in a plug-and-play manner. Tool set details 355

are available in Appendix B. 356

Baselines. We compare EHRAgent with eight LLM- 357

based planning, tool use, and coding methods, in- 358

cluding five baselines with natural language inter- 359

faces and three with coding interfaces. We summa- 360

rize their key designs in Appendix C. 361

Evaluation Protocol. Our primary evaluation met- 362

ric is the success rate, quantifying the percentage 363

of queries that the model successfully handles. Fur- 364

thermore, we assess the completion rate, which 365

represents the percentage of queries that the model 366

is able to generate executable plans (even not yield 367

correct results). We categorize input queries into 368

various complexity levels (I-IV) based on the num- 369

ber of tables involved in solution generation. See 370

Appendix A.2 for more details. 371

Implementation Details. We employ GPT-4 (Ope- 372

nAI, 2023) as the base LLM model for all experi- 373

ments. We set the temperature to 0 when making 374

API calls to GPT-4 to eliminate randomness and set 375

the pre-defined threshold of steps (T) to 10. Due to 376

the maximum length limitations of input context in 377

baselines (e.g., ReAct and Chameleon), we use the 378

same initial four-shot demonstrations (K = 4) for 379

all baselines and EHRAgent to ensure a fair com- 380

parison. Additional implementation details with 381

prompt templates are available in Appendix D. 382

4.2 Main Results 383

Table 2 summarizes the experimental results of 384

EHRAgent and baselines on multi-tabular reason- 385

ing within EHRs. From the results, we have the 386

following observations: 387

5

Table 2: Main results of success rate (i.e., SR.) and completion rate (i.e., CR.) on MIMIC-III, eICU, and TREQS
datasets. The complexity of questions increases from Level I (the simplest) to Level IV (the most difficult).

Dataset (→) MIMIC-III eICU TREQS

Complexity Level (→) I II III IV All I II III All I II III All

Methods (↓) /Metrics (→) SR. SR. CR. SR. SR. CR. SR. SR. CR.

w/o Code Interface

CoT (Wei et al., 2022) 29.33 12.88 3.08 2.11 9.58 38.23 26.73 33.00 8.33 27.34 65.65 11.22 9.15 0.00 9.84 54.02
Self-Consistency (Wang et al., 2023e) 33.33 16.56 4.62 1.05 10.17 40.34 27.11 34.67 6.25 31.72 70.69 12.60 11.16 0.00 11.45 57.83
Chameleon (Lu et al., 2023) 38.67 14.11 4.62 4.21 12.77 42.76 31.09 34.68 16.67 35.06 83.41 13.58 12.72 4.55 12.25 60.34
ReAct (Yao et al., 2023b) 34.67 12.27 3.85 2.11 10.38 25.92 27.82 34.24 15.38 33.33 73.68 33.86 26.12 9.09 29.22 78.31
Reflexion (Shinn et al., 2023) 41.05 19.31 12.57 11.96 19.48 57.07 38.08 33.33 15.38 36.72 80.00 35.04 29.91 9.09 31.53 80.02

w/ Code Interface

LLM2SQL (Nan et al., 2023) 23.68 10.64 6.98 4.83 13.10 44.83 20.48 25.13 12.50 23.28 51.72 39.61 36.43 12.73 37.89 79.22
Self-Debugging (Chen et al., 2023b) 50.00 46.93 30.12 27.61 39.05 71.24 32.53 21.86 25.00 30.52 66.90 43.54 36.65 18.18 40.10 84.44
AutoGen (Wu et al., 2023) 36.00 28.13 15.33 11.11 22.49 61.47 42.77 40.70 18.75 40.69 86.21 46.65 19.42 0.00 33.13 85.38
EHRAgent (Ours) 71.58 66.34 49.70 49.14 58.97 85.86 54.82 53.52 25.00 53.10 91.72 78.94 61.16 27.27 69.70 88.02

(1) EHRAgent significantly outperforms all the base-388

lines on all three datasets with a performance gain389

of 19.92%, 12.41%, and 29.60%, respectively. This390

indicates the efficacy of our key designs, namely391

interactive coding with environment feedback and392

domain knowledge injection, as they gradually re-393

fine the generated code and provide sufficient back-394

ground knowledge during the planning process. Ex-395

perimental results with additional base LLMs are396

available in Appendix E.1.397

(2) CoT, Self-Consistency, and Chameleon all ne-398

glect environmental feedback and cannot adap-399

tively refine their planning processes. Such defi-400

ciencies hinder their performance in EHR question-401

answering scenarios, as the success rates for these402

methods on three datasets are all below 40%.403

(3) ReAct and Reflexion both consider environment404

feedback but are restricted to tool-generated error405

messages. Consequently, they potentially overlook406

the overall planning process. Moreover, they both407

lack a code interface, which prevents them from408

efficient action planning, and results in lengthy409

context execution and lower completion rates.410

(4) LLM2SQL leverages LLM to directly generate411

SQL queries for EHR question-answering tasks.412

However, the gain is rather limited, as the LLM413

still struggles to generate high-quality SQL codes414

for execution. Besides, the absence of a dedicated415

code debugging module further impedes its overall416

performance for this challenging task.417

(5) Self-Debugging and AutoGen present a notable418

performance gain over other baselines, as they419

leverage code interfaces and consider the errors420

from the coding environment, leading to a large421

improvement in the completion rate. However, as422

Table 3: Ablation studies on success rate (i.e., SR.)
and completion rate (i.e., CR.) under different question
complexity (I-IV) on MIMIC-III dataset.

Complexity level I II III IV All

Metrics SR. SR. CR.

EHRAgent 71.58 66.34 49.70 49.14 58.97 85.86
w/o medical knowledge 68.42 33.33 29.63 20.00 33.66 69.22
w/o interactive coding 45.33 23.90 20.97 13.33 24.55 62.14
w/o debugging 55.00 38.46 41.67 35.71 42.86 77.19
w/o long-term memory 65.96 54.46 37.13 42.74 51.73 83.42

they fail to model medical knowledge or identify 423

underlying root causes from error patterns, their 424

success rates are still sub-optimal. 425

4.3 Quantitative Analysis 426

Ablation Studies. Our ablation studies on MIMIC- 427

III (Table 3) demonstrate the effectiveness of all 428

four components in EHRAgent. Interactive coding 429

is the most significant contributor across all com- 430

plexity levels, which highlights the importance of 431

code generation in planning and environmental in- 432

teraction for refinement. In addition, more chal- 433

lenging tasks benefits more from knowledge inte- 434

gration, indicating that comprehensive understand- 435

ing of EHRs facilitates the complex multi-tabular 436

reasoning in effective schema linking and reference 437

(e.g., tables, columns, and condition values) identi- 438

fication. Detailed analysis with additional results 439

on eICU is available in Appendix E.2. 440

Effect of Question Complexity. We take a closer 441

look at the model performance by considering 442

multi-dimensional measurements of question com- 443

plexity, exhibited in Figure 3. Although the perfor- 444

mances of both EHRAgent and the baselines gener- 445

6

1 2 3 4 5 6 7
Element in Question

0

20

40

60

80

100
Su

cc
es

s R
at

e
ReAct
Chameleon
AutoGen
Self-Debugging
EHRAgent

(a) success rate

1 2 3 4 5 6 7
Element in Question

20

40

60

80

100

Co
m

pl
et

io
n

Ra
te

(b) completion rate

1 2 3 4 5 6 7 8 9 10 11 12 13
Columns in Solution

0

20

40

60

80

100

Su
cc

es
s R

at
e

(c) success rate

1 2 3 4 5 6 7 8 9 10 11 12 13
Columns in Solution

0

20

40

60

80

100
Co

m
pl

et
io

n
Ra

te

(d) completion rate

Figure 3: Success rate and completion rate under dif-
ferent question complexity, measured by the number of
elements (i.e., slots) in each question (upper) and the
number of columns involved in each solution (bottom).

ally decrease with an increase in task complexity446

(either quantified as more elements in queries or447

more columns in solutions), EHRAgent consistently448

outperforms all the baselines at various levels of449

difficulty. Appendix F.1 includes additional analy-450

sis on the effect of various question complexities.451

Sample Efficiency. Figure 4 illustrates the model452

performance w.r.t. number of demonstrations for453

EHRAgent and the two strongest baselines, Auto-454

Gen and Self-Debugging. Compared to supervised455

learning (e.g., text-to-SQL (Wang et al., 2020;456

Raghavan et al., 2021; Lee et al., 2022)) that re-457

quires extensive training on over 10K samples458

with detailed annotations (e.g., SQL code), LLM459

agents enable complex tabular reasoning using a460

few demonstrations only. One interesting finding461

is that as the number of examples increases, both462

the success and completion rate of AutoGen tend463

to decrease, mainly due to the context limitation464

of LLMs. Notably, the performance of EHRAgent465

remains stable with more demonstrations, which466

may benefit from its integration of a ‘rubber duck’467

debugging module and the adaptive mechanism for468

selecting the most relevant demonstrations.469

4.4 Error Analysis470

Figure 5 presents a summary of error types identi-471

fied in the solution generation process of EHRAgent472

based on the MIMIC-III, as determined through473

manual examinations and analysis. The majority474

of errors occur because the LLM agent consistently475

0 1 2 3 4 5 6 7 8
Examples

10

20

30

40

50

60

Su
cc

es
s R

at
e

EHRAgent
Self-Debugging
AutoGen

(a) success rate

0 1 2 3 4 5 6 7 8
Examples

50

60

70

80

90

Co
m

pl
et

io
n

Ra
te

EHRAgent
Self-Debugging
AutoGen

(b) completion rate

Figure 4: Success rate and completion rate under differ-
ent numbers of demonstrations.

13.59% Date/Time
14.56% Context Length
20.39% Incorrect Logic
16.02% Incorrect SQL Command
8.74% Fail to Follow Instructions
26.70% Fail to Debug

Figure 5: Percentage of mistake examples in different
categories on MIMIC-III dataset.

fails to identify the root cause of these errors within 476

T -step trails, resulting in plans that are either in- 477

complete or inexcusable. Additional analysis of 478

each error type is available in Appendix F.2. 479

4.5 Case Study 480

Figure 6 showcases a comparative case study of 481

the interactive coding process between AutoGen 482

and EHRAgent for the same given query. When exe- 483

cuted with error feedback, AutoGen directly sends 484

back the original error messages, making slight 485

modifications (e.g., changing the surface string of 486

the arguments) without reasoning the root cause of 487

the error. In contrast, EHRAgent can identify the 488

underlying causes of the errors through interactive 489

coding and debugging processes. It successfully 490

discovers the underlying error causes (taking into 491

account case sensitivity), facilitating accurate code 492

refinement. Extensive case studies showcasing the 493

effectiveness of different components in EHRAgent 494

are available in Appendix G. 495

5 Related Work 496

Augmenting LLMs with External Tools. LLMs 497

have rapidly evolved from text generators into 498

core computational engines of autonomous agents, 499

with advanced planning and tool-use capabili- 500

ties (Schick et al., 2023; Shen et al., 2023; Wang 501

et al., 2023d; Yuan et al., 2024a,b). LLM agents 502

equip LLMs with planning capabilities (Wei et al., 503

2022; Yao et al., 2023a) to decompose a large and 504

hard task into multiple smaller and simpler steps 505

7

Question: Was the rdw value of patient 273 second measured greater than that first measured on the last hospital visit?
AutoGen

Error: The filtering query LABEL=RDW is incorrect.

...
As RDW is a laboratory test, we can find the corresponding
ITEMID in the d_labitems database.
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

...
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=Red cell
distribution width (RDW)')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Error: The filtering query LABEL=Red cell distribution
width (RDW) is incorrect.

...
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

EHRAgent
...
As RDW is a laboratory test, we can find the corresponding
ITEMID in the d_labitems database.
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Error: The filtering query LABEL=RDW is incorrect.

There is no RDW value in the column. Five example values in
the column are rbc, cd7, i, cd8, rdw.
Potential Reasons: The most possible reason for the error is
that the filter condition for the 'LABEL' column in the
'd_labitems' database is case-sensitive. The error message
indicates that there is a 'rdw' value in the column, but not
'RDW'. Therefore, the filter condition 'LABEL="RDW"' does not
match any records. The filter condition should be changed to
'LABEL="rdw"'.

...
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=rdw')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Figure 6: Comparative case study of the interactive coding process between AutoGen (left) and EHRAgent (right),
where EHRAgent delves deeper into environmental feedback via debugging module to achieve plan refinement.

for efficiently navigating complex real-world sce-506

narios. By integrating with external tools, LLM507

agents access external APIs for additional knowl-508

edge beyond training data (Shen et al., 2023; Huang509

et al., 2022; Lu et al., 2023; Patil et al., 2023; Qin510

et al., 2023b; Li et al., 2023), such as real-time in-511

formation (Nakano et al., 2022; Parisi et al., 2022),512

computational capability (Schick et al., 2023), and513

coding proficiency (Wu et al., 2023; Zhang et al.,514

2023; Gao et al., 2023; Chen et al., 2023a; Nan515

et al., 2023). The disconnection between plan516

generation and execution, however, prevents LLM517

agents from effectively and efficiently preventing518

error propagation and learning from environmen-519

tal feedback (Yao et al., 2023b; Shinn et al., 2023;520

Yang et al., 2023). To this end, we leverage inter-521

active coding to learn from dynamic interactions522

between the planner and executor, iteratively refin-523

ing generated code by incorporating insights from524

error messages. Furthermore, EHRAgent extends525

beyond the limitation of short-term memory ob-526

tained from in-context learning, leveraging long-527

term memory (Sun et al., 2023; Wang et al., 2023b)528

by rapid retrieval of highly relevant and successful529

experiences accumulated over time.530

LLM Agents for Scientific Discovery. Augment-531

ing LLMs with domain-specific tools, LLM agents532

have demonstrated capabilities of autonomous de-533

sign, planning, and execution in accelerating sci-534

entific discovery (Wang et al., 2023a,c; Xi et al.,535

2023; Zhao et al., 2023), including organic synthe-536

sis (Bran et al., 2023), material design (Boiko et al.,537

2023), and gene prioritization (Jin et al., 2023). In538

the medical field, MedAgents (Tang et al., 2023), 539

a multi-agent collaboration framework, leverages 540

role-playing LLM-based agents in a task-oriented 541

multi-round discussion for multi-choice questions 542

in medical entrance examinations. Similarly, Ab- 543

basian et al. (2023) develop a conversational agent 544

to enhance LLMs using Langchain tools1 for gen- 545

eral medical question and answering tasks. Differ- 546

ent from existing LLM agents in medical and sci- 547

entific domains, EHRAgent integrates LLMs with 548

interactive code interface, targeting complex tab- 549

ular tasks derived from real-world EHRs through 550

autonomous code generation and execution. 551

6 Conclusion 552

In this study, we developed EHRAgent, an LLM 553

agent equipped with an interactive code interface 554

for multi-tabular reasoning on real-world EHRs. 555

By leveraging the emergent few-shot learning ca- 556

pabilities of LLMs, EHRAgent enables autonomous 557

code generation and execution to address compli- 558

cated clinical tasks, including database operations 559

on EHRs with minimal demonstrations. Further- 560

more, we improve EHRAgent by interactive cod- 561

ing with execution feedback, along with a long- 562

term memory mechanism, thereby effectively fa- 563

cilitating plan optimization for multi-step problem- 564

solving. Our experiments on real-world EHR 565

datasets demonstrate the advantages of EHRAgent 566

over baseline LLM agents in autonomous coding 567

and improved medical reasoning. 568

1https://github.com/langchain-ai/langchain

8

https://github.com/langchain-ai/langchain

Limitations569

EHRAgent holds considerable potential for positive570

social impact in a wide range of clinical tasks and571

applications, including but not limited to patient572

cohort definition, clinical trial recruitment, case573

review selection, and treatment decision-making574

support. One potential limitation is that while the575

framework of our proposed EHRAgent is broadly576

applicable to various scenarios, it currently relies577

on code generation for tool usage and problem-578

solving. Furthermore, the adaptation and general-579

ization of EHRAgent in low-resource languages is580

constrained by the availability of relevant resources581

and training data. Additionally, given the demands582

for privacy, safety, and ethical considerations in583

real-world clinical settings, our goal is to further584

advance EHRAgent by mitigating biases and ad-585

dressing ethical implications, thereby contributing586

to the development of responsible artificial intelli-587

gence for healthcare and medicine.588

Privacy Statements589

In compliance with the PhysioNet Credentialed590

Health Data Use Agreement 1.5.02, we strictly591

prohibit the transfer of confidential patient data592

(MIMIC-III and eICU) to third parties, including593

through online services like APIs. To ensure re-594

sponsible usage of Azure OpenAI Service based595

on the guideline3, we have opted out of the hu-596

man review process by requesting the Azure Ope-597

nAI Additional Use Case Form4, which prevents598

third-parties (e.g., Microsoft) from accessing and599

processing sensitive patient information for any600

purpose. We continuously and carefully monitor601

our compliance with these guidelines and the rele-602

vant privacy laws to uphold the ethical use of data603

in our research and operations.604

References605

Mahyar Abbasian, Iman Azimi, Amir M. Rahmani, and606
Ramesh Jain. 2023. Conversational health agents: A607
personalized llm-powered agent framework.608

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-609
son, Dmitry Lepikhin, Alexandre Passos, Siamak610
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng611
Chen, et al. 2023. Palm 2 technical report.612

2https://physionet.org/about/licenses/
physionet-credentialed-health-data-license-150/

3https://physionet.org/news/post/
gpt-responsible-use

4https://aka.ms/oai/additionalusecase

Duane Bender and Kamran Sartipi. 2013. Hl7 fhir: 613
An agile and restful approach to healthcare infor- 614
mation exchange. In Proceedings of the 26th IEEE 615
international symposium on computer-based medical 616
systems, pages 326–331. IEEE. 617

Daniil A Boiko, Robert MacKnight, Ben Kline, and 618
Gabe Gomes. 2023. Autonomous chemical research 619
with large language models. Nature, 624(7992):570– 620
578. 621

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas- 622
sari, Andrew White, and Philippe Schwaller. 2023. 623
Augmenting large language models with chemistry 624
tools. In NeurIPS 2023 AI for Science Workshop. 625

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 626
William W. Cohen. 2023a. Program of thoughts 627
prompting: Disentangling computation from reason- 628
ing for numerical reasoning tasks. Transactions on 629
Machine Learning Research. 630

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 631
Denny Zhou. 2023b. Teaching large language mod- 632
els to self-debug. 633

Martin R Cowie, Juuso I Blomster, Lesley H Curtis, 634
Sylvie Duclaux, Ian Ford, Fleur Fritz, Samantha 635
Goldman, Salim Janmohamed, Jörg Kreuzer, Mark 636
Leenay, et al. 2017. Electronic health records to 637
facilitate clinical research. Clinical Research in Car- 638
diology, 106:1–9. 639

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 640
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 641
ham Neubig. 2023. Pal: Program-aided language 642
models. In International Conference on Machine 643
Learning, pages 10764–10799. PMLR. 644

Tracy D Gunter and Nicolas P Terry. 2005. The emer- 645
gence of national electronic health record architec- 646
tures in the united states and australia: models, costs, 647
and questions. Journal of medical Internet research, 648
7(1):e383. 649

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and 650
Igor Mordatch. 2022. Language models as zero-shot 651
planners: Extracting actionable knowledge for em- 652
bodied agents. In International Conference on Ma- 653
chine Learning, pages 9118–9147. PMLR. 654

Lavender Yao Jiang, Xujin Chris Liu, Nima Pour Neja- 655
tian, Mustafa Nasir-Moin, Duo Wang, Anas Abidin, 656
Kevin Eaton, Howard Antony Riina, Ilya Laufer, 657
Paawan Punjabi, et al. 2023. Health system-scale 658
language models are all-purpose prediction engines. 659
Nature, pages 1–6. 660

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, 661
Hanyi Fang, and Peter Szolovits. 2021. What disease 662
does this patient have? a large-scale open domain 663
question answering dataset from medical exams. Ap- 664
plied Sciences, 11(14):6421. 665

9

http://arxiv.org/abs/2310.02374
http://arxiv.org/abs/2310.02374
http://arxiv.org/abs/2310.02374
http://arxiv.org/abs/2305.10403
https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150/
https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150/
https://physionet.org/news/post/gpt-responsible-use
https://physionet.org/news/post/gpt-responsible-use
https://aka.ms/oai/additionalusecase
https://ieeexplore.ieee.org/document/6627810
https://ieeexplore.ieee.org/document/6627810
https://ieeexplore.ieee.org/document/6627810
https://ieeexplore.ieee.org/document/6627810
https://ieeexplore.ieee.org/document/6627810
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
https://openreview.net/forum?id=wdGIL6lx3l
https://openreview.net/forum?id=wdGIL6lx3l
https://openreview.net/forum?id=wdGIL6lx3l
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
https://link.springer.com/article/10.1007/s00392-016-1025-6
https://link.springer.com/article/10.1007/s00392-016-1025-6
https://link.springer.com/article/10.1007/s00392-016-1025-6
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://www.jmir.org/2005/1/e3/
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://www.nature.com/articles/s41586-023-06160-y
https://www.nature.com/articles/s41586-023-06160-y
https://www.nature.com/articles/s41586-023-06160-y
https://www.mdpi.com/2076-3417/11/14/6421
https://www.mdpi.com/2076-3417/11/14/6421
https://www.mdpi.com/2076-3417/11/14/6421
https://www.mdpi.com/2076-3417/11/14/6421
https://www.mdpi.com/2076-3417/11/14/6421

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.666
2023. Genegpt: Augmenting large language models667
with domain tools for improved access to biomedical668
information.669

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H670
Lehman, Mengling Feng, Mohammad Ghassemi,671
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,672
and Roger G Mark. 2016. Mimic-iii, a freely accessi-673
ble critical care database. Scientific data, 3(1):1–9.674

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu675
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo,676
Jong-Yeup Kim, and Edward Choi. 2022. EHRSQL:677
A practical text-to-SQL benchmark for electronic678
health records. In Thirty-sixth Conference on Neural679
Information Processing Systems Datasets and Bench-680
marks Track.681

Guohao Li, Hasan Abed Al Kader Hammoud, Hani682
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.683
CAMEL: Communicative agents for ”mind” explo-684
ration of large language model society. In Thirty-685
seventh Conference on Neural Information Process-686
ing Systems.687

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol688
Hausman, Brian Ichter, Pete Florence, and Andy689
Zeng. 2023. Code as policies: Language model690
programs for embodied control. In 2023 IEEE In-691
ternational Conference on Robotics and Automation692
(ICRA), pages 9493–9500. IEEE.693

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-694
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and695
Jianfeng Gao. 2023. Chameleon: Plug-and-play696
compositional reasoning with large language models.697
In Thirty-seventh Conference on Neural Information698
Processing Systems.699

Joshua C Mandel, David A Kreda, Kenneth D Mandl,700
Isaac S Kohane, and Rachel B Ramoni. 2016.701
Smart on fhir: a standards-based, interoperable apps702
platform for electronic health records. Journal703
of the American Medical Informatics Association,704
23(5):899–908.705

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein706
Abad, Harlan M Krumholz, Jure Leskovec, Eric J707
Topol, and Pranav Rajpurkar. 2023. Foundation mod-708
els for generalist medical artificial intelligence. Na-709
ture, 616(7956):259–265.710

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,711
Long Ouyang, Christina Kim, Christopher Hesse,712
Shantanu Jain, Vineet Kosaraju, William Saunders,713
et al. 2022. Webgpt: Browser-assisted question-714
answering with human feedback. arXiv preprint715
arXiv:2112.0933.716

Linyong Nan, Ellen Zhang, Weijin Zou, Yilun Zhao,717
Wenfei Zhou, and Arman Cohan. 2023. On evalu-718
ating the integration of reasoning and action in llm719
agents with database question answering.720

OpenAI. 2023. Gpt-4 technical report. arXiv.721

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm: 722
Tool augmented language models. 723

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 724
Joseph E. Gonzalez. 2023. Gorilla: Large language 725
model connected with massive apis. 726

Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, 727
Leo A. Celi, Roger G. Mark, and Omar Badawi. 2018. 728
The eICU collaborative research database, a freely 729
available multi-center database for critical care re- 730
search. Scientific Data, 5(1):180178. 731

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 732
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, 733
Chaojun Xiao, Chi Han, et al. 2023a. Tool learning 734
with foundation models. 735

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 736
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 737
Bill Qian, et al. 2023b. Toolllm: Facilitating large 738
language models to master 16000+ real-world apis. 739

Preethi Raghavan, Jennifer J Liang, Diwakar Mahajan, 740
Rachita Chandra, and Peter Szolovits. 2021. emrk- 741
bqa: A clinical knowledge-base question answering 742
dataset. In Proceedings of the 20th Workshop on 743
Biomedical Language Processing, pages 64–73. 744

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta 745
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 746
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 747
Toolformer: Language models can teach themselves 748
to use tools. In Thirty-seventh Conference on Neural 749
Information Processing Systems. 750

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 751
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 752
GPT: Solving AI tasks with chatGPT and its friends 753
in hugging face. In Thirty-seventh Conference on 754
Neural Information Processing Systems. 755

Noah Shinn, Federico Cassano, Ashwin Gopinath, 756
Karthik R Narasimhan, and Shunyu Yao. 2023. Re- 757
flexion: language agents with verbal reinforcement 758
learning. In Thirty-seventh Conference on Neural 759
Information Processing Systems. 760

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, 761
and Chao Zhang. 2023. Adaplanner: Adaptive plan- 762
ning from feedback with language models. In Thirty- 763
seventh Conference on Neural Information Process- 764
ing Systems. 765

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Yilun 766
Zhao, Xingyao Zhang, Arman Cohan, and Mark Ger- 767
stein. 2023. Medagents: Large language models as 768
collaborators for zero-shot medical reasoning. 769

Surendrabikram Thapa and Surabhi Adhikari. 2023. 770
Chatgpt, bard, and large language models for biomed- 771
ical research: opportunities and pitfalls. Annals of 772
Biomedical Engineering, 51(12):2647–2651. 773

10

http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
https://www.nature.com/articles/sdata201635
https://www.nature.com/articles/sdata201635
https://www.nature.com/articles/sdata201635
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://ieeexplore.ieee.org/abstract/document/10160591
https://ieeexplore.ieee.org/abstract/document/10160591
https://ieeexplore.ieee.org/abstract/document/10160591
https://openreview.net/forum?id=HtqnVSCj3q
https://openreview.net/forum?id=HtqnVSCj3q
https://openreview.net/forum?id=HtqnVSCj3q
https://academic.oup.com/jamia/article/23/5/899/2379865
https://academic.oup.com/jamia/article/23/5/899/2379865
https://academic.oup.com/jamia/article/23/5/899/2379865
https://www.nature.com/articles/s41586-023-05881-4
https://www.nature.com/articles/s41586-023-05881-4
https://www.nature.com/articles/s41586-023-05881-4
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2311.09721
http://arxiv.org/abs/2205.12255
http://arxiv.org/abs/2205.12255
http://arxiv.org/abs/2205.12255
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
https://www.nature.com/articles/sdata2018178
https://www.nature.com/articles/sdata2018178
https://www.nature.com/articles/sdata2018178
https://www.nature.com/articles/sdata2018178
https://www.nature.com/articles/sdata2018178
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://aclanthology.org/2021.bionlp-1.7/
https://aclanthology.org/2021.bionlp-1.7/
https://aclanthology.org/2021.bionlp-1.7/
https://aclanthology.org/2021.bionlp-1.7/
https://aclanthology.org/2021.bionlp-1.7/
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=rnKgbKmelt
https://openreview.net/forum?id=rnKgbKmelt
https://openreview.net/forum?id=rnKgbKmelt
http://arxiv.org/abs/2311.10537
http://arxiv.org/abs/2311.10537
http://arxiv.org/abs/2311.10537
https://link.springer.com/article/10.1007/s10439-023-03284-0
https://link.springer.com/article/10.1007/s10439-023-03284-0
https://link.springer.com/article/10.1007/s10439-023-03284-0

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao774
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,775
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,776
and Ji-Rong Wen. 2023a. A survey on large language777
model based autonomous agents.778

Ping Wang, Tian Shi, and Chandan K Reddy. 2020.779
Text-to-sql generation for question answering on elec-780
tronic medical records. In Proceedings of The Web781
Conference 2020, pages 350–361.782

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu,783
Xifeng Yan, Jianfeng Gao, and Furu Wei. 2023b.784
Augmenting language models with long-term mem-785
ory. In Thirty-seventh Conference on Neural Infor-786
mation Processing Systems.787

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu788
Zhang, Satyen Subramaniam, Arjun R. Loomba,789
Shichang Zhang, Yizhou Sun, and Wei Wang.790
2023c. Scibench: Evaluating college-level scientific791
problem-solving abilities of large language models.792

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,793
Lifan Yuan, Hao Peng, and Heng Ji. 2023d. Mint:794
Evaluating llms in multi-turn interaction with tools795
and language feedback.796

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,797
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,798
and Denny Zhou. 2023e. Self-consistency improves799
chain of thought reasoning in language models. In800
The Eleventh International Conference on Learning801
Representations.802

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten803
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,804
and Denny Zhou. 2022. Chain-of-thought prompt-805
ing elicits reasoning in large language models. In806
Advances in Neural Information Processing Systems,807
volume 35, pages 24824–24837. Curran Associates,808
Inc.809

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,810
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,811
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-812
lah, Ryen W White, Doug Burger, and Chi Wang.813
2023. Autogen: Enabling next-gen llm applications814
via multi-agent conversation.815

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen816
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,817
Senjie Jin, Enyu Zhou, et al. 2023. The rise and818
potential of large language model based agents: A819
survey.820

John Yang, Akshara Prabhakar, Karthik Narasimhan,821
and Shunyu Yao. 2023. Intercode: Standardizing822
and benchmarking interactive coding with execution823
feedback.824

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang825
Shin, Kaleb E Smith, Christopher Parisien, Colin826
Compas, Cheryl Martin, Anthony B Costa, Mona G827
Flores, et al. 2022. A large language model for828
electronic health records. NPJ Digital Medicine,829
5(1):194.830

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 831
Thomas L. Griffiths, Yuan Cao, and Karthik R 832
Narasimhan. 2023a. Tree of thoughts: Deliberate 833
problem solving with large language models. In 834
Thirty-seventh Conference on Neural Information 835
Processing Systems. 836

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 837
Shafran, Karthik R Narasimhan, and Yuan Cao. 838
2023b. React: Synergizing reasoning and acting 839
in language models. In The Eleventh International 840
Conference on Learning Representations. 841

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung, 842
Hao Peng, and Heng Ji. 2024a. CRAFT: Customiz- 843
ing LLMs by creating and retrieving from specialized 844
toolsets. In The Twelfth International Conference on 845
Learning Representations. 846

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, 847
Yongliang Shen, Ren Kan, Dongsheng Li, and De- 848
qing Yang. 2024b. Easytool: Enhancing llm-based 849
agents with concise tool instruction. 850

Jieyu Zhang, Ranjay Krishna, Ahmed H. Awadallah, 851
and Chi Wang. 2023. Ecoassistant: Using llm assis- 852
tant more affordably and accurately. 853

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu 854
Lin, Yong-Jin Liu, and Gao Huang. 2023. Expel: 855
Llm agents are experiential learners. 856

A Dataset Details 857

A.1 Task Details 858

We evaluate EHRAgent on three publicly available 859

EHR datasets from two text-to-SQL medical ques- 860

tion answering (QA) benchmarks (Lee et al., 2022), 861

EHRSQL5 and TREQS6, built upon structured 862

EHRs from MIMIC-III and eICU. EHRSQL and 863

TREQS serve as text-to-SQL benchmarks for as- 864

sessing the performance of medical QA models, 865

specifically focusing on generating SQL queries 866

for addressing a wide range of real-world questions 867

gathered from over 200 hospital staff. Questions 868

within EHRSQL and TREQS, ranging from simple 869

data retrieval to complex operations such as calcula- 870

tions, reflect the diverse and complex clinical tasks 871

encountered by front-line healthcare professionals. 872

A.2 Question Complexity Level 873

We categorize input queries into various complex- 874

ity levels (levels I-IV for MIMIC-III and levels 875

I-III for eICU and TREQS) based on the number of 876

tables involved in solution generation. For exam- 877

ple, given the question ‘How many patients were 878

given temporary tracheostomy?’, the complexity 879

5https://github.com/glee4810/EHRSQL
6https://github.com/wangpinggl/TREQS

11

http://arxiv.org/abs/2308.11432
http://arxiv.org/abs/2308.11432
http://arxiv.org/abs/2308.11432
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://openreview.net/forum?id=BryMFPQ4L6
https://openreview.net/forum?id=BryMFPQ4L6
https://openreview.net/forum?id=BryMFPQ4L6
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2306.14898
http://arxiv.org/abs/2306.14898
http://arxiv.org/abs/2306.14898
http://arxiv.org/abs/2306.14898
http://arxiv.org/abs/2306.14898
https://www.nature.com/articles/s41746-022-00742-2
https://www.nature.com/articles/s41746-022-00742-2
https://www.nature.com/articles/s41746-022-00742-2
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
http://arxiv.org/abs/2401.06201
http://arxiv.org/abs/2401.06201
http://arxiv.org/abs/2401.06201
http://arxiv.org/abs/2310.03046
http://arxiv.org/abs/2310.03046
http://arxiv.org/abs/2310.03046
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/2308.10144
https://github.com/glee4810/EHRSQL
https://github.com/wangpinggl/TREQS

level is categorized as II, indicating that we need880

to extract information from two tables (admission881

and procedure) to generate the solution. Further-882

more, we also conduct a performance analysis (see883

Figure 3) based on additional evaluation metrics884

related to question complexity, including (1) the885

number of elements (i.e., slots) in each question886

and (2) the number of columns involved in each887

solution. Specifically, elements refer to the slots888

within each template that can be populated with889

pre-defined values or database records.890

A.3 MIMIC-III891

MIMIC-III (Johnson et al., 2016)7 covers 38,597892

patients and 49,785 hospital admissions informa-893

tion in critical care units at the Beth Israel Dea-894

coness Medical Center ranging from 2001 to 2012.895

It includes deidentified administrative information896

such as demographics and highly granular clini-897

cal information, including vital signs, laboratory898

results, procedures, medications, caregiver notes,899

imaging reports, and mortality.900

A.4 eICU901

Similar to MIMIC-III, eICU (Pollard et al., 2018)8902

includes over 200,000 admissions from multiple903

critical care units across the United States in 2014904

and 2015. It contains deidentified administrative in-905

formation following the US Health Insurance Porta-906

bility and Accountability Act (HIPAA) standard907

and structured clinical data, including vital signs,908

laboratory measurements, medications, treatment909

plans, admission diagnoses, and medical histories.910

A.5 TREQS911

TREQS (Wang et al., 2020) is a healthcare ques-912

tion and answering benchmark that is built upon913

the MIMIC-III (Johnson et al., 2016) dataset. In914

TREQS, questions are generated automatically us-915

ing pre-defined templates with the text-to-SQL task.916

Compared to the MIMIC-III dataset within the917

EHRSQL (Lee et al., 2022) benchmark, TREQS918

has a narrower focus in terms of the types of ques-919

tions and the complexity of SQL queries. Specifi-920

cally, it is restricted to only five tables but includes921

a significantly larger number of records (Table 1)922

within each table.923

7https://physionet.org/content/mimiciii/1.4/
8https://physionet.org/content/eicu-crd/2.0/

B Tool Set Details 924

To obtain relevant information from EHRs and en- 925

hance the problem-solving capabilities of LLM- 926

based agents, we augment LLMs with the follow- 927

ing tools: 928

⋄ Database Loader loads a specific table from the 929

database. 930

⋄ Data Filter applies specific filtering condition to 931

the selected table. These conditions are defined 932

by a column name and a relational operator. The 933

relational operator may take the form of a compari- 934

son (e.g., "<" or ">") with a specific value, either 935

with the column’s values or the count of values 936

grouped by another column. Alternatively, it could 937

be operations such as identifying the minimum or 938

maximum values within the column. 939

⋄ Get Value retrieves either all the values within 940

a specific column or performs basic operations on 941

all the values, including calculations for the mean, 942

maximum, minimum, sum, and count. 943

⋄ Calculator calculates the results from input 944

strings. We leverage the WolframAlpha API por- 945

tal9, which can handle both straightforward calcu- 946

lations such as addition, subtraction, and multipli- 947

cation and more complex operations like averaging 948

and identifying maximum values. 949

⋄ Date Calculator calculates the target date based 950

on the input date and the provided time interval 951

information. 952

⋄ SQL Interpreter interprets and executes SQL 953

code written by LLMs. 954

C Baseline Details 955

We compare baselines and EHRAgent on the inclu- 956

sion of different components in Table 4. 957

⋄ CoT (Wei et al., 2022): It enhances the com- 958

plex reasoning capabilities of original LLMs by 959

generating a series of intermediate reasoning steps. 960

⋄ Self-Consistency (Wang et al., 2023e): It im- 961

proves CoT by sampling diverse reasoning paths to 962

replace the native greedy decoding and select the 963

most consistent answer. 964

⋄ Chameleon (Lu et al., 2023): It employs LLMs 965

as controllers and integrates a set of plug-and- 966

play modules, enabling enhanced reasoning and 967

problem-solving across diverse tasks. 968

⋄ ReAct (Yao et al., 2023b): It integrates reasoning 969

with tool-use by guiding LLMs to generate interme- 970

diate verbal reasoning traces and tool commands. 971

9https://products.wolframalpha.com/api

12

https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/eicu-crd/2.0/
https://products.wolframalpha.com/api

⋄ Reflexion (Shinn et al., 2023): It leverages verbal972

reinforcement to teach LLM-based agents to learn973

from linguistic feedback from past mistakes.974

⋄ LLM2SQL (Nan et al., 2023): It augments975

LLMs with a code interface to generate SQL976

queries for retrieving information from EHRs for977

question answering.978

⋄ Self-Debugging (Chen et al., 2023b): It teaches979

LLMs to debug by investigating execution results980

and explaining the generated code in natural lan-981

guage.982

⋄ AutoGen (Wu et al., 2023): It unifies LLM-based983

agent workflows as multi-agent conversations and984

uses the code interface to encode interactions be-985

tween agents and environments.986

D Additional Implementation Details987

D.1 Hardware and Software Details988

All experiments are conducted on CPU: Intel(R)989

Core(TM) i7-5930K CPU @ 3.50GHz and GPU:990

NVIDIA GeForce RTX A5000 GPUs, using991

Python 3.9 and AutoGen 0.2.010.992

D.2 Code Generation Details993

Given that the majority of LLMs have been pre-994

trained on Python code snippets (Gao et al., 2023),995

and Python’s inherent modularity aligns well with996

tool functions, we choose Python 3.9 as the primary997

language for interaction coding between the LLM998

agent and the code executor.999

D.3 Prompt Details1000

In the subsequent subsections, we detail the prompt1001

templates employed in EHRAgent. The complete1002

version of the prompts is available at our code1003

repository due to space limitations.1004

⋄ Prompt for Code Generation. We first present1005

the prompt template for EHRAgent in code genera-1006

tion as follows:1007

1008
<LLM_Agent> Prompt

Assume you have knowledge of several tables:
{OVERALL_EHR_DESCRIPTIONS}
Write a python code to solve the given question.

You can use the following functions:
{TOOL_DEFINITIONS}
Use the variable 'answer' to store the answer

of the code. Here are some examples:
{4-SHOT_EXAMPLES}
(END OF EXAMPLES)
Knowledge:
{KNOWLEDGE}

10https://github.com/microsoft/autogen

Question: {QUESTION}
Solution:

⋄ Prompt for Knowledge Integration. We then 1009

present the prompt template for knowledge 1010

integration in EHRAgent as follows: 1011

1012
<Medical_Knowledge> Prompt

Read the following data descriptions, generate
the background knowledge as the context
information that could be helpful for
answering the question.

{OVERALL_EHR_DESCRIPTIONS}
For different tables, they contain the

following information:
{COLUMNAR_DESCRIPTIONS}

{4-SHOT_EXAMPLES}

Question: {QUESTION}
Knowledge:

⋄ Prompt for ‘Rubber Duck’ Debugging. The 1013

prompt template used for debugging module in 1014

EHRAgent is shown as follows: 1015

1016
<Error_Exploration> Prompt

Given a question:
{QUESTION}
The user has written code with the following

functions:
{TOOL_DEFINITIONS}

The code is as follows:
{CODE}

The execution result is:
{ERROR_INFO}

Please check the code and point out the most
possible reason to the error.

⋄ Prompt for Few-Shot Examples. The prompt 1017

template used for few-shot examples in EHRAgent 1018

is shown as follows: 1019

1020
<Few_Shot_Examples> Prompt

Question: {QUESTION_I}
Knowledge:
{KNOWLEDGE_I}
Solution: {CODE_I}

Question: {QUESTION_II}
Knowledge:
{KNOWLEDGE_II}
Solution: {CODE_II}

Question: {QUESTION_III}
Knowledge:
{KNOWLEDGE_III}
Solution: {CODE_III}

Question: {QUESTION_IV}

13

https://github.com/microsoft/autogen

Table 4: Comparison of baselines and EHRAgent on the inclusion of different components.

Baselines Tool Use Code
Interface

Environment
Feedback Debugging Error

Exploration
Medical

Knowledge
Long-term
Memory

w/o Code Interface

CoT (Wei et al., 2022) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Self-Consistency (Wang et al., 2023e) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Chameleon (Lu et al., 2023) ✓ ✗ ✗ ✗ ✗ ✗ ✗

ReAct (Yao et al., 2023b) ✓ ✗ ✓ ✗ ✗ ✗ ✗

Reflexion (Shinn et al., 2023) ✓ ✗ ✓ ✓ ✗ ✗ ✗

w/ Code Interface

LLM2SQL (Nan et al., 2023) ✗ ✓ ✗ ✗ ✗ ✗ ✗

Self-Debugging (Chen et al., 2023b) ✗ ✓ ✓ ✓ ✗ ✗ ✗

AutoGen (Wu et al., 2023) ✓ ✓ ✓ ✓ ✗ ✗ ✗

EHRAgent (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Knowledge:
{KNOWLEDGE_IV}
Solution: {CODE_IV}

E Additional Experimental Results1021

E.1 Effect of Base LLMs1022

Table 5 presents a summary of the experimental1023

results obtained from EHRAgent and all baselines1024

using a different base LLM, GPT-3.5-turbo. The1025

results clearly demonstrate that EHRAgent contin-1026

ues to outperform all the baselines, achieving a per-1027

formance gain of 6.72%. This highlights the ability1028

of EHRAgent to generalize across different base1029

LLMs as backbone models. When comparing the1030

experiments conducted with GPT-4 (Table 2), the1031

performance of both the baselines and EHRAgent1032

decreases. This can primarily be attributed to the1033

weaker capabilities of instruction-following and1034

reasoning in GPT-3.5-turbo.1035

E.2 Additional Ablation Studies1036

We conduct additional ablation studies to evalu-1037

ate the effectiveness of each module in EHRAgent1038

on eICU in Table 6 and obtain consistent results.1039

From the results from both MIMIC-III and eICU,1040

we observe that all four components contribute sig-1041

nificantly to the performance gain.1042

⋄ Medical Knowledge Integration. Out of all the1043

components, the medical knowledge injection mod-1044

ule mainly exhibits its benefits in challenging tasks.1045

These tasks often involve more tables and require1046

a deeper understanding of domain knowledge to1047

associate items with their corresponding tables.1048

⋄ Interactive Coding. The interactive coding inter-1049

face is the most significant contributor to the perfor-1050

mance gain across all complexity levels. This veri-1051

fies the importance of utilizing the code interface1052

Table 5: Experimental results of success rate (i.e., SR.)
and completion rate (i.e., CR.) on MIMIC-III using
GPT-3.5-turbo as the base LLM. The complexity of
questions increases from Level I (the simplest) to Level
IV (the most difficult).

Dataset (→) MIMIC-III

Complexity Level (→) I II III IV All

Methods (↓) /Metrics (→) SR. SR. CR.

w/o Code Interface

CoT (Wei et al., 2022) 23.16 10.40 2.99 1.71 8.62 41.55
Self-Consistency (Wang et al., 2023e) 25.26 11.88 4.19 2.56 10.52 47.59
Chameleon (Lu et al., 2023) 27.37 11.88 3.59 2.56 11.21 47.59
ReAct (Yao et al., 2023b) 26.32 10.89 3.59 3.42 9.66 61.21
Reflexion (Shinn et al., 2023) 30.53 12.38 9.58 8.55 13.28 66.72

w/ Code Interface

LLM2SQL (Nan et al., 2023) 21.05 15.84 4.19 2.56 10.69 59.49
Self-Debugging (Chen et al., 2023b) 36.84 33.66 22.75 16.24 27.59 72.93
AutoGen (Wu et al., 2023) 28.42 25.74 13.17 10.26 19.48 52.42
EHRAgent (Ours) 43.16 42.57 29.94 18.80 34.31 78.80

for planning instead of natural languages, which 1053

enables the model to avoid overly complex contexts 1054

and thus leads to a substantial increase in the com- 1055

pletion rate. Additionally, the code interface also 1056

allows the debugging module to refine the planning 1057

with execution feedback, improving the efficacy of 1058

the planning process. 1059

⋄ Debugging Module. The ‘rubber duck’ debug- 1060

ging module enhances the performance by guiding 1061

the LLM agent to figure out the underlying reasons 1062

for the error messages. This enables EHRAgent to 1063

address the intrinsic error that occurs in the original 1064

reasoning steps. 1065

⋄ Long-term Memory. Following the reinforce- 1066

ment learning setting (Sun et al., 2023; Shinn et al., 1067

2023), the long-term memory mechanism improves 1068

performance by justifying the necessity of select- 1069

ing the most relevant demonstrations for planning. 1070

14

In order to simulate the scenario where the ground1071

truth annotations (i.e., rewards) are unavailable, we1072

further evaluate the effectiveness of the long-term1073

memory on the completed cases in Table 7, regard-1074

less of whether they are successful or not. The re-1075

sults indicate that the inclusion of long-term mem-1076

ory with completed cases increases the completion1077

rate but tends to reduce the success rate across most1078

difficulty levels, as some incorrect cases might be1079

included as the few-shot demonstrations. Nonethe-1080

less, it still outperforms the performance without1081

long-term memory, confirming the effectiveness of1082

the memory mechanism.1083

Table 6: Additional ablation studies on success rate
(i.e., SR.) and completion rate (i.e., CR.) under different
question complexity (I-III) on eICU dataset.

Complexity level I II III All

Metrics SR. SR. CR.

EHRAgent 54.82 53.52 25.00 53.10 91.72
w/o medical knowledge 36.75 28.39 6.25 30.17 47.24
w/o interactive coding 46.39 44.97 6.25 44.31 65.34
w/o debugging 50.60 46.98 12.50 47.07 70.86
w/o long-term memory 52.41 44.22 18.75 45.69 78.97

Table 7: Comparison on long-term memory (i.e., LTM)
design under different question complexity (I-IV) on
MIMIC-III dataset.

Complexity level I II III IV All

Metrics SR. SR. CR.

EHRAgent (LTM w/ Success) 71.58 66.34 49.70 49.14 58.97 85.86
LTM w/ Completion 76.84 60.89 41.92 34.48 53.24 90.05
w/o LTM 65.96 54.46 37.13 42.74 51.73 83.42

E.3 Cost Estimation1084

Using GPT-4 as the foundational LLM model, we1085

report the average cost of EHRAgent for each query1086

in the MIMIC-III, eICU, and TREQS datasets as1087

$0.60, $0.17, and $0.52, respectively. The cost is1088

mainly determined by the complexity of the ques-1089

tion (i.e., the number of tables required to answer1090

the question) and the difficulty in locating relevant1091

information within each table.1092

F Additional Empirical Analysis1093

F.1 Additional Question Complexity Analysis1094

We further analyze the model performance by con-1095

sidering various measures of question complexity1096

based on the number of elements in questions, and1097

the number of columns involved in solutions, as1098

shown in Figure 3. Incorporating more elements 1099

requires the model to either perform calculations or 1100

utilize domain knowledge to establish connections 1101

between elements and specific columns. Similarly, 1102

involving more columns also presents a challenge 1103

for the model in accurately locating and associ- 1104

ating the relevant columns. We notice that both 1105

EHRAgent and baselines generally exhibit lower 1106

performance on more challenging tasks11. Notably, 1107

our model consistently outperforms all the baseline 1108

models across all levels of difficulty. Specifically, 1109

for those questions with more than 10 columns, 1110

the completion rate of those open-loop baselines 1111

is very low (less than 20%), whereas EHRAgent 1112

can still correctly answer around 50% of queries, 1113

indicating the robustness of EHRAgent in handling 1114

complex queries with multiple elements. 1115

F.2 Additional Error Analysis 1116

We conducted a manual examination to analyze all 1117

incorrect cases generated by EHRAgent in MIMIC- 1118

III. Figure 5 illustrates the percentage of each type 1119

of error frequently encountered during solution gen- 1120

eration: 1121

⋄ Date/Time. When addressing queries related to 1122

dates and times, it is important for the LLM agent 1123

to use the ‘Calendar’ tool, which bases its calcu- 1124

lations on the system time of the database. This 1125

approach is typically reliable, but there are situa- 1126

tions where the agent defaults to calculating dates 1127

based on real-world time. Such instances may lead 1128

to potential inaccuracies. 1129

⋄ Context Length. This type of error occurs when 1130

the input queries or dialog histories are excessively 1131

long, exceeding the context length limit. 1132

⋄ Incorrect Logic. When solving multi-hop rea- 1133

soning questions across multiple databases, the 1134

LLM agent may generate executable plans that 1135

contain logical errors in the intermediate reasoning 1136

steps. For instance, in computing the total cost of a 1137

hospital visit, the LLM agent might erroneously 1138

generate a plan that filters the database using 1139

patient_id instead of the correct admission_id. 1140

⋄ Incorrect SQL Command. This error type 1141

arises when the LLM agent attempts to integrate 1142

the SQLInterpreter into a Python-based plan to 1143

derive intermediate results. Typically, incorrect 1144

SQL commands result in empty responses from 1145

11Exceptions may exist when considering questions of
seven elements in Figures 3(a) and 3(b), as it comprises only
eight samples and may not be as representative.

15

SQLInterpreter, leading to the failure of subse-1146

quent parts of the plan.1147

⋄ Fail to Follow Instructions. The LLM agent of-1148

ten fails to follow the instructions provided in the1149

initial prompt or during the interactive debugging1150

process.1151

⋄ Fail to Debug. Despite undertaking all T -step1152

trials, the LLM agent consistently fails to identify1153

the root cause of errors, resulting in plans that are1154

either incomplete or inexcusable.1155

G Additional Case Studies1156

We present additional case studies to showcase the1157

effectiveness of each module in EHRAgent, includ-1158

ing medical knowledge integration (Figure 7), code1159

interface (Figures 8 and 9), and long-term memory1160

(Figure 10).1161

Question: count the number of patients who were prescribed
aspirin ec within 2 month after having received a venous
cath nec procedure until 4 year ago.

EHRAgent

Knowledge:
- As aspirin ec is a drug, we can find the corresponding
information in the prescriptions database.
- As venous cath nec is a procedure, we can find the
corresponding ICD9_CODE in the d_icd_procedures database.
- The ICD9_CODE can be used to find the corresponding HADM_ID in
the procedures_icd database.
- The HADM_ID can be used to find the corresponding SUBJECT_ID in
the admissions database.
- We can then count the number of unique SUBJECT_IDs in the
prescriptions database who were prescribed aspirin ec within 2
months after having received a venous cath nec procedure until 4
years ago.

Figure 7: Case study of medical knowledge injection
in EHRAgent on MIMIC-III dataset. Given a question
related to ‘aspirin ec’ and ‘venous cath nec’, EHRAgent
effectively integrates knowledge about their potential
location in the database and the identifiers required to
associate them.

16

Question: what was the amount of pioglitazone that patient 16992 were prescribed in total?

ReAct
...
Observation 3: The corresponding HADM_ID are 155667, 107483.
Thought 4: We need to find the related information from
prescriptions database.
Action 4: LoadDB[prescriptions]
Observation 4: We have successfully loaded the prescriptions
database, including the following columns: Please modify it.
ROW_ID, SUBJECT_ID, HADM_ID, STARTDATE, ENDDATE, DRUG,
DOSE_VAL_RX, DOSE_UNIT_RX, ROUTE
Thought 5: Then, we need to filter information related to
HADM_ID=155667 and DRUG=pioglitazone.
Action 5: FilterDB[HADM_ID=155667, DRUG=pioglitazone]
Observation 5: We have successfully filtered the data (1 rows).
Thought 6: Then we need to get the DOSE_VAL_RX value.
Action 6: FilterDB[DOSE_VAL_RX, sum]
Observation 6: The corresponding DOSE_VAL_RX value is 6.0.
Thought 7: We need to find the related information from
prescriptions database.
Action 7: LoadDB[prescriptions]
Observation 7: We have successfully loaded the prescriptions
database, including the following columns: Please modify it.
ROW_ID, SUBJECT_ID, HADM_ID, STARTDATE, ENDDATE, DRUG,
DOSE_VAL_RX, DOSE_UNIT_RX, ROUTE
Thought 8: Then, we need to filter information related to
HADM_ID=155667 and DRUG=pioglitazone.
Action 8: FilterDB[HADM_ID=107483, DRUG=pioglitazone]
Observation 8: We have successfully filtered the data (1 rows).
Thought 9: Then we need to get the DOSE_VAL_RX value.
Action 9: FilterDB[DOSE_VAL_RX, sum]
Observation 9: The corresponding DOSE_VAL_RX value is 9.0.
...

EHRAgent
We can find the visiting information of patient 16992 in the
admissions database.
patient_db = LoadDB('admissions')
filtered_patient_db = FilterDB(patient_db, 'SUBJECT_ID=16992')
print(len(filtered_patient_db))
hadm_id_list = GetValue(filtered_patient_db, 'HADM_ID, list')
print(hadm_id_list)

As pioglitazone is a drug, we can find the corresponding
information in the prescriptions database.
prescriptions_db = LoadDB('prescriptions')

We can find the total amount of dose of pioglitazone that
patient 16992 were prescribed by summing up the DOSE_VAL_RX in
the prescriptions database.
total_dose = 0
for hadm_id in hadm_id_list:
 filtered_prescriptions_db = FilterDB(prescriptions_db,
'HADM_ID={}||DRUG=pioglitazone'.format(hadm_id))
 dose_list = GetValue(filtered_prescriptions_db, 'DOSE_VAL_RX,
list')
 print(dose_list)
 for dose in dose_list:
 total_dose += float(dose)

answer = total_dose

Figure 8: Case study 1 of code interface in EHRAgent on MIMIC-III Dataset. The baseline approach, ReAct, lacks a
code interface and encounters limitations when performing identical operations on multiple sets of data. It resorts to
generating repetitive action steps iteratively, leading to an extended solution trajectory that may exceed the context
limitations. In contrast, EHRAgent leverages the advantages of code structures, such as the use of ‘for loops’, to
address these challenges more efficiently and effectively. The steps marked in red on the left side indicate the
repeated actions by ReAct, while the steps marked in green are the corresponding code snippets by EHRAgent. By
comparing the length and number of steps, the code interface can help EHRAgent save much context space.

Question: Show me patient 28020's length of stay of the last hospital stay.

ReAct
Thought 1: First, we need to find the last hospital stay of
patient 28020.
Action 1: LoadDB[admissions]
Observation 1: We have successfully loaded the admissions
database, including the following columns: ROW_ID, SUBJECT_ID,
HADM_ID, ADMITTIME, DISCHTIME, ADMISSION_TYPE,
ADMISSION_LOCATION, DISCHARGE_LOCATION, INSURANCE, LANGUAGE,
MARITAL_STATUS, ETHNICITY, AGE.
Thought 2: Next, we need to filter the data to only include
records for patient 28020.
Action 2: FilterDB[SUBJECT_ID=28020, max(DISCHTIME)]
Observation 2: We have successfully filtered the data (1 rows).
Thought 3: Now we have the last hospital stay record for patient
28020. We need to find the length of stay for this stay.
Action 3: GetValue[DISCHTIME-ADMITTIME, duration]
Observation 3: The value you are querying does not exist. Please
modify it.
Thought 4: It seems there was an error in step 3. Let's correct
the mistake and try again.
Action 4: GetValue[DISCHTIME - ADMITTIME, Calendar]
Observation 4: The value you are querying does not exist. Please
modify it.
Thought 5: It seems that the calculation of the length of stay
is not possible using the given steps. I apologize for the
inconvenience.
Action 5: Finish[None]
Observation 5: Answer is INCORRECT

EHRAgent
Import the datetime module
import datetime

Load the admissions
databaseadmissions_db = LoadDB('admissions')

Filter the database for patient 28020
filtered_admissions_db = FilterDB(admissions_db,
'SUBJECT_ID=28020')

Get the ADMITTIME and DISCHTIME of the last hospital
stayadmit_disch_tuple = SQLInterpreter('SELECT ADMITTIME,
DISCHTIME FROM admissions WHERE SUBJECT_ID=28020 ORDER BY
ADMITTIME DESC LIMIT 1')

Extract the ADMITTIME and DISCHTIME from the tuple
admit_time, disch_time = admit_disch_tuple[0]

Convert the ADMITTIME and DISCHTIME to datetime
objectsadmit_time = datetime.datetime.strptime(admit_time, '%Y-
%m-%d %H:%M:%S')
disch_time = datetime.datetime.strptime(disch_time, '%Y-%m-%d
%H:%M:%S')

Calculate the length of hospital stay
length_of_stay = disch_time - admit_time

Store the answer
answer = length_of_stay.days

Figure 9: Case study 2 of code interface in EHRAgent on MIMIC-III Dataset. When encountering challenges in
tool use, ReAct will keep making trials and can be stuck in the modification process. On the other hand, with code
interface, EHRAgent can take advantage of Python built-in functions to help with debugging and code modification.

17

Question: count the number of times that patient 85895 received a ph lab test last month.

Original Examples
Question: What is the maximum total hospital cost that involves
a diagnosis named comp-oth vasc dev/graft since 1 year ago?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Had any tpn w/lipids been given to patient 2238 in
their last hospital visit?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: What was the name of the procedure that was given two
or more times to patient 58730?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: What was the last time patient 4718 had a peripheral
blood lymphocytes microbiology test in the last hospital visit?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Examples from Long-Term Memory
Question: Count the number of times that patient 52898 were
prescribed ns this month.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 14035 had a d10w
intake.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 99791 received a
op red-int fix rad/ulna procedure.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 54825 received a
rt/left heart card cath procedure last year.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Figure 10: Due to the constraints of limited context length, we are able to provide only a limited number of examples
to guide EHRAgent in generating solution code. For a given question, the initial set of examples is pre-defined
and fixed, which may not cover the specific reasoning logic or knowledge required to solve it. From the original
examples on the left, none of the questions related to either ‘count the number’ scenarios or procedure knowledge.
In contrast, when we retrieve examples from the long-term memory, the new set is exclusively related to ‘count the
number’ questions, thus providing a similar solution logic for reference.

18

	Introduction
	Preliminaries
	EHRAgent: LLMs as Medical Agents
	Medical Knowledge Integration
	Interactive Coding with Execution
	Rubber Duck Debugging via Error Tracing
	Plan Refinement with Long-term Memory

	Experiments
	Experiment Setup
	Main Results
	Quantitative Analysis
	Error Analysis
	Case Study

	Related Work
	Conclusion
	Dataset Details
	Task Details
	Question Complexity Level
	MIMIC-III
	eICU
	TREQS

	Tool Set Details
	Baseline Details
	Additional Implementation Details
	Hardware and Software Details
	Code Generation Details
	Prompt Details

	Additional Experimental Results
	Effect of Base LLMs
	Additional Ablation Studies
	Cost Estimation

	Additional Empirical Analysis
	Additional Question Complexity Analysis
	Additional Error Analysis

	Additional Case Studies

