
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPH NEURAL PRECONDITIONERS FOR ITERATIVE
SOLUTIONS OF SPARSE LINEAR SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Preconditioning is at the heart of iterative solutions of large, sparse linear sys-
tems of equations in scientific disciplines. Several algebraic approaches, which
access no information beyond the matrix itself, are widely studied and used, but
ill-conditioned matrices remain very challenging. We take a machine learning
approach and propose using graph neural networks as a general-purpose precon-
ditioner. They show attractive performance for many problems and can be used
when the mainstream preconditioners perform poorly. Empirical evaluation on
over 800 matrices suggests that the construction time of these graph neural pre-
conditioners (GNPs) is more predictable and can be much shorter than that of
other widely used ones, such as ILU and AMG, while the execution time is faster
than using a Krylov method as the preconditioner, such as in inner-outer GM-
RES. GNPs have a strong potential for solving large-scale, challenging algebraic
problems arising from not only partial differential equations, but also economics,
statistics, graph, and optimization, to name a few.

1 INTRODUCTION

Iterative methods are commonly used to solve large, sparse linear systems of equations Ax =
b. These methods typically build a Krylov subspace, onto which the original system is projected,
such that an approximate solution within the subspace is extracted. For example, GMRES (Saad
& Schultz, 1986), one of the most popularly used methods in practice, builds an orthonormal basis
{v1,v2, . . . ,vm} of the m-dimensional Krylov subspace by using the Arnoldi process and defines
the approximate solution xm ∈ x0 + span({v1,v2, . . . ,vm}), such that the residual norm ‖b −
Axm‖2 is minimized.

The effectiveness of Krylov methods heavily depends on the conditioning of the matrix A. Hence,
designing a good preconditioner is crucial in practice. In some cases (e.g., solving partial differential
equations, PDEs), the problem structure provides additional information that aids the development
of a preconditioner applicable to this problem or a class of similar problems. For example, multigrid
preconditioners are particularly effective for Poisson-like problems with a mesh. In other cases,
little information is known beyond the matrix itself. An example is the SuiteSparse matrix collec-
tion (Davis & Hu, 2011), which contains thousands of sparse matrices for benchmarking numerical
linear algebra algorithms. In these cases, a general-purpose (also called “algebraic”) preconditioner
is desirable; examples include ILU (Saad, 1994), approximate inverse (Chow & Saad, 1998), and
algebraic multigrid (AMG) (Ruge & Stüben, 1987). However, it remains very challenging to design
one that performs well universally.

In this work, we propose to use neural networks as a general-purpose preconditioner. Specifically,
we consider preconditioned Krylov methods for solving problems in the form AMu = b, where
M ≈ A−1 is the preconditioner, u is the new unknown, and x = Mu is the recovered solution. We
design a graph neural network (GNN) (Zhou et al., 2020; Wu et al., 2021) to assume the role of M
and develop a training method to learn M from select (b,x) pairs. This proposal is inspired by the
universal approximation property of neural networks (Hornik et al., 1989) and encouraged by their
widespread success in artificial intelligence (Bommasani et al., 2021).

Because a neural network is, in nature, nonlinear, our preconditioner M is not a linear operator
anymore. We can no longer build a Krylov subspace for AM when a Krylov subspace is defined for
only linear operators. Hence, we focus on flexible variants of the preconditioned Krylov methods
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instead. Specifically, we use flexible GMRES (FGMRES) (Saad, 1993), which considers M to be
different in every Arnoldi step. In this framework, all what matters is the subspace from which the
approximate solution is extracted. A nonlinear operator M can also be used to build this subspace
and hence the neural preconditioner is applicable to FGMRES.

We use a graph neural network because of the natural connection between a sparse matrix and the
graph adjacency matrix, similar to how AMG interprets the coefficient matrix with a graph. Many
GNN architectures access the graph structure through A-multiplications and they become polyno-
mials of A when the nonlinearity is omitted (Wu et al., 2019; Chen et al., 2020). This observation
bridges the connection between a GNN as an operator and the polynomial approximation of A−1,
the latter of which is an essential ingredient in the convergence theory of Krylov methods. In-
terestingly, a side benefit resulting from the access pattern of A is that the GNN is applicable to
not only sparse matrices, but also structured matrices that admit fast A-multiplications (such as
hierarchical matrices (Hackbusch, 1999; Hackbusch & Börm, 2002; Chen & Stein, 2023), Toeplitz
matrices (Chan & Jin, 2007; Chen et al., 2014), unassembled finite-element matrices (Ciarlet, 2002),
and Gauss-Newton matrices (Liu et al., 2023)).

There are a few advantages of the proposed graph neural preconditioner (GNP). It performs compar-
atively much better for ill-conditioned problems, by learning the matrix inverse from data, mitigating
the restrictive modeling of the sparsity pattern (as in ILU and approximate inverse), the insufficient
quality of polynomial approximation (as in using Krylov methods as the preconditioner), and the
challenge of smoothing over a non-geometric mesh (as in AMG). Additionally, empirical evaluation
suggests that the construction time of GNP is more predictable, inherited from the predictability
of neural network training, than that of ILU and AMG; and the execution time of GNP is much
shorter than GMRES as the preconditioner, which may be bottlenecked by the orthogonalization in
the Arnoldi process.

1.1 CONTRIBUTIONS

Our work has a few technical contributions. First, we offer a convergence analysis for FGMRES.
Although this method is well known and used in practice, little theoretical work was done, in part
because the tools for analyzing Krylov subspaces are not readily applicable (as the subspace is no
longer Krylov and we have no isomorphism with the space of polynomials). Instead, our analysis is
a posteriori, based on the computed subspace.

Second, we propose an effective approach to training the neural preconditioner; in particular, train-
ing data generation. While it is straightforward to train the neural network in an online-learning
manner—through preparing streaming, random input-output pairs in the form of (b,x)—it leaves
open the question regarding what randomness best suits the purpose. We consider the bottom eigen-
subspace of A when defining the sampling distribution and show the effectiveness of this approach.

Third, we develop a scale-equivariant GNN as the preconditioner. Because of the way that training
data are generated, the GNN inputs b can have vast different scales; meanwhile, the ground truth
operator A−1 is equivariant to the scaling of the inputs. Hence, to facilitate training, we design the
GNN by imposing an inductive bias that obeys scale-equivariance.

Fourth, we adopt a novel evaluation protocol for general-purpose preconditioners. The common
practice evaluates a preconditioner on a limited number of problems; in many occasions, these
problems come from a certain type of PDEs or an application, which constitutes only a portion of
the use cases. To broadly evaluate a new kind of general-purpose preconditioner and understand its
strengths and weaknesses, we propose to test it on a large number of matrices commonly used by the
community. To this end, we use the SuiteSparse collection and perform evaluation on a substantial
portion of it (all non-SPD, real matrices falling inside a size interval; over 800 from 50 application
areas in this work). To streamline the evaluation, we define evaluation criteria, limit the tuning of
hyperparameters, and study statistics over the distribution of matrices.

1.2 RELATED WORK

It is important to put the proposed GNP in context. The idea of using a neural network to con-
struct a preconditioner emerged recently. The relevant approaches learn the nonzero entries of the
incomplete factors (Li et al., 2023; Häusner et al., 2023) or their correction (Trifonov et al., 2024),
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or of the approximate inverse (Bånkestad et al., 2024). In these approaches, the neural network does
not directly approximate the mapping from b to x like ours does; rather, it is used to complete the
nonzeros of the predefined sparsity structure. A drawback of these approaches is that the predefined
sparsity imposes a nonzero lower bound on the approximation of A−1, which (and whose factors)
are generally not sparse. Moreover, although the neural network can be trained on a PDE problem
(by varying the coefficients, grid sizes, or boundary conditions) and generalizes well to the same
problem, it is unlikely that a single network can work well for all problems and matrices in life.

Approaches wherein the neural network directly approximates the matrix inverse are more
akin to physics-informed neural networks (PINNs) (Raissi et al., 2019) and neural operators
(NOs) (Rudikov et al., 2024; Kovachki et al., 2022; Li et al., 2020; 2021; Lu et al., 2021). How-
ever, the learning of PINNs requires a PDE (i.e., the physics) whose residual forms a partial training
loss, whereas NOs consider infinite-dimensional function spaces, with PDEs being the primary ap-
plication. In our case of a general-purpose preconditioner, there is not an underlying PDE; and not
every matrix problem relates to function spaces with additional properties to exploit (e.g., spatial
coordinates, smoothness, and decay of the Green’s function). For example, one may be interested
in finding the commute times between a node and all other nodes in a graph; this problem can be
solved by solving a linear system with respect the graph Laplacian matrix. The only information we
exploit is the matrix itself.

2 METHOD

Let A ∈ Rn×n. From now on, M is an operator Rn → Rn and we write M(v) to mean applying
the operator on v ∈ Rn. This notation includes the special case M(v) = Mv when M is a matrix.

2.1 FLEXIBLE GMRES

A standard preconditioned Krylov solver solves the linear system AMu = b by viewing AM as the
new matrix and building a Krylov subspace, from which an approximate solution um is extracted
and xm is recovered from Mum. It is important to note that a subspace, by definition, is linear.
However, applying a nonlinear operator M on the linear vector space does not result in a vector
space spanned by the mapped basis. Hence, convergence theory of xm = M(um) is broken.

We resort to flexible variants of Krylov solvers (Saad, 1993; Notay, 2000; Chen et al., 2016) and
focus on flexible GMRES for simplicity. FGMRES was designed such that the matrix M can change
in each Arnoldi step; we extend it to a fixed, but nonlinear, operator M.

Algorithm 1 in Section A summarizes the solver. The algorithm assumes a restart lengthm. Starting
from an initial guess x0 with residual vector r0 and 2-norm β, FGMRES runs m Arnoldi steps,
resulting in the relation

AZm = VmHm + hm+1,mvm+1e
>
m = Vm+1Hm, (1)

where Vm = [v1, . . . ,vm] ∈ Rn×m is orthonormal, Zm = [z1, . . . , zm] ∈ Rn×n contains m
columns zj = M(vj), Hm = [hij ] ∈ Rm×m is upper Hessenberg, and Hm = [hij ] ∈ R(m+1)×m

extends Hm with an additional row at the bottom. The approximate solution xm is computed in the
form xm ∈ x0 +span({z1, . . . , zm}) = {x0 +Zmy}, such that the residual norm ‖b−Axm‖2 =
‖βe1 − Hmy‖2 is minimized. If the residual norm is sufficiently small, the solution is claimed;
otherwise, let xm be the initial guess of the next Arnoldi cycle and repeat.

We provide a convergence analysis below, which is probably novel. All proofs are in Section B.
Theorem 1. Assume that FGMRES is run without restart and without breakdown. We use the tilde
notation to denote the counterpart quantities when FGMRES is run with a fixed preconditioner ma-
trix M̃. For any M̃ such that AM̃ can be diagonalized, as in X−1AM̃X = Λ = diag(λ1, . . . , λn),
the residual rm = b−Axm satisfies

‖rm‖2 ≤ κ2(X)ε(m)(Λ)‖r0‖2 + ‖QmQ>m − Q̃mQ̃>m‖2‖r0‖2, (2)

where κ2 denotes the 2-norm condition number, Qm (resp. Q̃m) is the thin-Q factor of AZm (resp.
AZ̃m), Pm denotes the space of degree-m polynomials, and

ε(m)(Λ) = min
p∈Pm, p(0)=1

max
i=1,...,n

|p(λi)|.
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Let us consider the two terms on the right-hand side of (2). The first term κ2(X)ε(m)(Λ)‖r0‖2 is the
standard convergence result of GMRES on the matrix AM̃. The factor ε(m)(Λ) is approximately
exponential in m, when the eigenvalues λi are located in an ellipse which excludes the origin;
see Saad (2003, Corollary 6.33). Furthermore, when the eigenvalues are closer to each other than to
the origin, the base of the exponential is close to zero, resulting in rapid convergence. Meanwhile,
when AM̃ is close to normal, κ2(X) is close to 1.

What M affects is the second term ‖QmQ>m − Q̃mQ̃>m‖2‖r0‖2. This term does not show conver-
gence on the surface, but one can always find an M̃ such that it vanishes, assuming no breakdown.
When M is close to A−1, AZm is a small perturbation of Vm by definition. Then, (1) suggests that
Hm is close to the identity matrix for all m and so is Hn.

Corollary 2. Assume that FGMRES is run without restart and without breakdown. On completion,
let Hn be diagonalizable, as in Y−1HnY = Σ = diag(σ1, . . . , σn). Then, the residual norm
satisfies

‖rm‖2 ≤ κ2(Y)ε(m)(Σ)‖r0‖2 for all m. (3)

See Section C for an approximately exponential convergence of ‖rm‖2 due to ε(m)(Σ).

Note that while our results assume infinite precision, another analysis (Arioli & Duff, 2009) was
conducted based on finite arithmetics. Such analysis uses the machine precision to bound the resid-
ual norm for a sufficiently large m, asserting backward stability of FGMRES, but we can obtain the
convergence rate under infinite precision.

2.2 TRAINING DATA GENERATION

We generate a set of (b,x) pairs to train M : b → x. Unlike neural operators where the data
generation is costly (e.g., requiring solving PDEs), which limits the training set size, for linear
systems, we can sample x from a certain distribution and obtain b = Ax with negligible cost,
which creates a streaming training set of (b,x) pairs without size limit.1

There is no free lunch. One may sample x ∼ N (0, In), which leads to b ∼ N (0,AA>). This
distribution is skewed toward the dominant eigen-subspace of AA>. Hence, using samples from
it for training may result in a poor performance of the preconditioner, when applied to inputs lying
close to the bottom eigen-subspace. One may alternatively want the training data b ∼ N (0, In),
which covers uniformly all possibilities of the preconditioner input on a sphere. However, in this
case, x ∼ N (0,A−1A−>) is also skewed in the spectrum, causing difficulty in network training.

We resort to the Arnoldi process to obtain an approximation of A−1A−>, which strikes a balance.
Specifically, we run the Arnoldi process in m steps without a preconditioner, which results in a
simplification of (1):

AVm = VmHm + hm+1,mvm+1e
>
m = Vm+1Hm. (4)

Let the singular value decomposition of Hm be WmSmZ>m, where Wm ∈ R(m+1)×m and Zm ∈
Rm×m are orthonormal and Sm ∈ Rm×m is diagonal. We define

x = VmZmS−1m ε, ε ∼ N (0, Im). (5)

Then, with simple algebra we obtain that

x ∈ range(Vm), x ∼ N (0,Σx
m), Σx

m = (VmH
+

m)(VmH
+

m)>,

b ∈ range(Vm+1), b ∼ N (0,Σb
m), Σb

m = (Vm+1Wm)(Vm+1Wm)>.

The covariance of b, Σb
m, is a projector, because both Vm+1 and Wm are orthonormal. As m

grows, this covariance tends to the identity In. By the theory of the Arnoldi process (Morgan,
2002), Vm+1 contains better and better approximations of the extreme eigenvectors as m increases.
Hence, N (0,Σb

m) has a high density close to the bottom eigen-subspace of A. Of course, because

1Neural operators learn the mapping from the boundary condition to the solution. Strictly speaking, while
x is the solution, b is not the boundary condition.
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×𝐿

𝑛×𝑑 𝑛×1

Lin

Figure 1: Our GNN architecture for the preconditioner M. The nonlinearity σ is ReLU. The
component s denotes the scale-equivariant operator (8).

Σb
m is low-rank, the distribution has zero density along many directions. Therefore, we sample x

from both N (0,Σx
m) and N (0, In) to form each training batch, to cover more important subspace

directions.

We note that the use of Gaussian distributions brings in the convenience to generally analyze the
input/output distributions. It is possible that other distributions are more effective if knowledge of x
exists and can be exploited.

2.3 SCALE-EQUIVARIANT GRAPH NEURAL PRECONDITIONER

We now define the neural network M that approximates A−1. Naturally, a (sparse) matrix A = [aij ]
admits a graph interpretation, similar to how AMG interprets the coefficient matrix with a graph.
Treating A as the graph adjacency matrix allows us to use GNNs (Kipf & Welling, 2017; Hamilton
et al., 2017; Velic̆ković et al., 2018; Xu et al., 2019) to parameterize the preconditioner. These
neural networks perform graph convolutions in a neighborhood of each node, reducing the quadratic
pairwise cost by ignoring nodes faraway from the neighborhood.

Our neural network is based on the graph convolutional network (GCN) (Kipf & Welling, 2017). A
GCN layer is defined as GCONV(X) = ReLU(ÂXW), where Â ∈ Rn×n is some normalization
of A, X ∈ Rn×din is input data, and W ∈ Rdin×dout is a learnable parameter.

Our neural network, as illustrated in Figure 1, enhances from GCN in a few manners:

1. We normalize A differently. Specifically, we define

Â = A/γ where γ = min
{
maxi

{∑
j |a|ij

}
,maxj

{∑
i |a|ij

}}
. (6)

The factor γ is an upper bound of the spectral radius of A based on the Gershgorin circle the-
orem (Gerschgorin, 1931). This avoids division-by-zero that may occur in the standard GCN
normalization, because the nonzeros of A can be both positive and negative.

2. We add a residual connection to GCONV, to allow stacking a deeper GNN without suffering the
smoothing problem (Chen et al., 2020). Specifically, we define a Res-GCONV layer to be

Res-GCONV(X) = ReLU(XU + ÂXW). (7)

Moreover, we let the parameters U and W be square matrices of dimension d× d, such that the
input/output dimensions across layers do not change. We stack L such layers.

3. We use an MLP encoder (resp. MLP decoder) before (resp. after) the L Res-GCONV layers to
lift (resp. project) the dimensions.

Additionally, the main novelty of the architecture is scale-equivariance. Note that the operator to
approximate, A−1, is scale-equivariant, but a general neural network is not guaranteed so. Because
the input b may have very different scales (due to the sampling approach considered in the preceding
subsection), to facilitate training, we design a parameter-free scaling s and back-scaling s−1:

s(·) =
√
n
τ · and s−1(·) = τ√

n
· , where τ = ‖b‖2. (8)

We apply s at the beginning and s−1 at the end of the neural network. Effectively, we restrict
the input space of the neural network from the full Rn to a more controllable space—the sphere√
nSn−1. Clearly, s guarantees scale-equivariance; i.e., M(αb) = αM(b) for any scalar α 6= 0.

5
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3 EVALUATION METHODOLOGY AND EXPERIMENT SETTING

Problems. Our evaluation strives to cover a large number of problems, which come from as di-
verse application areas as possible. To this end, we turn to the SuiteSparse matrix collection
https://sparse.tamu.edu, which is a widely used benchmark in numerical linear algebra.
We select all square, real-valued, and non-SPD matrices whose number of rows falls between 1K
and 100K and whose number of nonzeros is fewer than 2M. This selection results in 867 matrices
from 50 application areas. Some applications are involved with PDEs (such as computational fluid
dynamics), while others come from graph, optimization, economics, and statistics problems.

To facilitate solving the linear systems, we prescale each A by γ defined in (6). This scaling is a
form of normalization, which avoids the overall entries of the matrix being exceedingly small or
large. All experiments assume the ground truth solution x = 1.2 FGMRES starts with x0 = 0.

Compared methods. We compare GNP with three widely used general-purpose preconditioners—
ILU, AMG, and GMRES (using GMRES to precondition GMRES is also called inner-outer
GMRES)—and one simple-to-implement but weak preconditioner—Jacobi. The endeavor of pre-
conditioning over 800 matrices from different domains limits the choices, but these preconditioners
are handy with Python software support.

ILU comes from scipy.sparse.linalg.spilu; it in turn comes from SuperLU (Li, 2005;
Li & Shao, 2010), which implements the thresholded version of ILU (Saad, 1994). We use
the default drop tolerance and fill factor without tuning. AMG comes from PyAMG (Bell
et al., 2023). Specifically, we use pyamg.blackbox.solver().aspreconditioner
as the preconditioner, with the configuration of the blackbox solver computed from
pyamg.blackbox.solver configuration. GMRES is self-implemented. For (the inner)
GMRES, we use 10 iterations and stop it when it reaches a relative residual norm tolerance of 1e-6.
For (the outer) FGMRES, the restart cycle is 10.

Note that sophisticated preconditioners require tremendous efforts to implement robustly. Hence,
we prioritize ones that are more robust and that come with continual supports. For example, we also
experiment with AmgX (Naumov et al., 2015) but find that while being faster, it throws more errors
than does PyAMG. See Section E.4 for details.

Stopping criteria. The stopping criteria of all linear system solutions are rtol = 1e-8
and maxiters = 100. For time comparisons, we additionally run experiments by enabling
timeout and disabling maxiters. We set the timeout to be the maximum solution time among
all preconditioners when using maxiters = 100 as the stopping criterion.

Evaluation metrics. Evaluating the solution qualities and comparing different methods for a large
number of problems require programmable metrics, but defining these metrics is harder than it ap-
pears to be. Comparing the number of iterations alone is insufficient, because the per-iteration time
of each method is different. However, to compare time, one waits until the solution reaches rtol,
which is impossible to set if one wants all solutions to reach this tolerance. Thus, we can use
maxiters and timeout to terminate a solution. However, one solution may reach maxiters
early (in time) and attain poor accuracy, while another solution may reach timeout very late but
attain good accuracy. Which one is better is debatable.

Hence, we propose two novel metrics, depending on the use of the stopping criteria. The first one,
area under the relative residual norm curve with respect to iterations, is defined as

Iter-AUC =

iters∑
i=0

log10 ri − log10 rtol, ri = ‖b−Axi‖2/‖b‖2,

where iters is the actual number of iterations when FGMRES stops and ri is the relative residual
norm at iteration i. We take logarithm because residual plots are typically done in the log scale.
This metric compares methods based on the iteration count, taking into account the history (e.g.,
convergence speed at different stages) rather than the final error alone. This metric is used when the
stopping criteria are rtol and maxiters.

2This is a common practice. Avoid setting x to be Gaussian random, because this (partially) matches the
training data generation, resulting in the inability to test out-of-distribution cases.
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Figure 2: Percentage of problems on which each preconditioner per-
forms the best.

by #iter by time
25% 1.91e+00 1.18e+00
50% 6.74e+00 2.33e+00
75% 6.78e+03 8.16e+01
100% 1.89e+10 1.91e+10

Table 1: Distribution of the
residual-norm ratio between
the second best preconditioner
and GNP, when GNP performs
the best. Distribution is de-
scribed by using percentiles.

Figure 3: Preconditioner construction time and solution time (using maxiters to stop). The con-
struction time of Jacobi is negligible and not shown. GMRES does not require construction.

The second metric, area under the relative residual norm curve with respect to time, is defined as

Time-AUC =

∫ T

0

[log10 r(t)− log10 rtol] dt ≈
iters∑
i=1

[log10 ri − log10 rtol](ti − ti−1),

where T is the elapsed time when FGMRES stops, r(t) is the relative residual norm at time t, and ti
is the elapsed time at iteration i. This metric compares methods based on the solution time, taking
into account the history of the errors. It is used when the stopping criteria are rtol and timeout.

Hyperparameters. To feasibly train over 800 GNNs, we use the same set of hyperparameters for
each of them without tuning. There is a strong potential that the GNN performance can be greatly
improved with careful tuning. Our purpose is to understand the general behavior of GNP, particu-
larly its strengths and weaknesses. We use L = 8 Res-GCONV layers, set the layer input/output
dimension to 16, and use 2-layer MLPs with hidden dimension 32 for lifting/projection. We use
Adam (Kingma & Ba, 2015) as the optimizer, set the learning rate to 1e-3, and train for 2000 steps
with a batch size of 16. We apply neither dropouts nor weight decays. Because data are sampled
from the same distribution, we use the model at the best training epoch as the preconditioner, without
resorting to a validation set.

We use the `1 residual norm ‖AM(b)−Ax‖1 as the training loss, as a common practice of robust
regression. We use m = 40 Arnoldi steps when sampling the (x,b) pairs according to (5). Among
the 16 pairs in a batch, 8 pairs follow (5) and 8 pairs follow x ∼ N (0, In).

Compute environment. Our experiments are conducted on a machine with one Tesla V100(16GB)
GPU, 96 Intel Xeon 2.40GHz cores, and 386GB main memory. All code is implemented in Python
with Pytorch. All computations (training and inference) use the GPU whenever supported.

4 RESULTS

We organize the experiment results by key questions of interest.

How does GNP perform compared with traditional preconditioners? We consider three factors:
convergence speed, runtime speed, and preconditioner construction cost.

In Figure 2 we show the percentage of problems on which each preconditioner performs the best,
with respect to iteration counts and solution time (see the Iter-AUC and Time-AUC metrics defined
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Figure 4: Breakdown of best preconditioners with respect to matrix sizes, condition numbers, and
application areas. Only the application areas with the top number of problems are shown. The last
bar in the middle plot is for condition number ≥ 1016.

in the preceding section). GNP performs the best for a substantial portion of the problems in both
metrics. In comparison, ILU and AMG perform the best for more problems, while Jacobi, GMRES
(as a preconditioner), and no preconditioner performs the best for fewer problems in the time metric.

That ILU and AMG are the best for more problems does not compromise the competitiveness of
GNP. For one reason, they are less robust and sometimes bare a significantly higher cost in construc-
tion, as will be revealed later. Another reason is that GNP can be used when other preconditioners
are less satisfactory. In Table 1, we summarize the distribution of the residual-norm ratio between the
second best preconditioner and GNP, when GNP is the best. The ratio means a factor of x decrease
in the residual norm if GNP is used in place of other preconditioners. Under the Iter-AUC metric,
a factor of 6780x decrease can be seen at the 75th percentile, and in the best occasion, more than
ten orders of magnitude decrease is seen. Similarly under the Time-AUC metric. These significant
reductions manifest the usefulness of GNP.

In Figure 3 and Figure 8 of Section E.2, we plot the preconditioner construction time and solution
time for each matrix and each preconditioner. Here, the solution is terminated by maxiters rather
than timeout (such that the times are different across matrices). Two observations can be made.
First, the training time of GNP is nearly proportional to the matrix size, while the construction time
of ILU and AMG is hardly predictable. Even though for many of the problems, the time is only a
fraction of that of GNP, there exist quite a few cases where the time is significantly longer. In the
worst case, the construction of the AMG preconditioner is more than an order of magnitude more
costly than that of GNP.

Second, there is a clear gap between the construction and solution time for GNP, but no such gap
exists for ILU and AMG. One is tempted to compare the overall time, but one preconditioner can be
used for any number of right-hand sides, and hence different conclusions may be reached regarding
time depending on this number. When it is large, the solution time dominates, in which case one
sees that in most of the cases GNP is faster ILU, AMG, and GMRES.

On what problems does GNP perform the best? We expand the granularity of Figure 2 into
Figure 4, overlaid with the distributions of the matrices regarding the size, the condition number, and
the application area, respectively. One finding is that GNP is particularly useful for ill-conditioned
matrices (i.e., those with a condition number ≥ 1016). ILU is less competitive in these problems,
possibly because it focuses on the sparsity structure, whose connection with the spectrum is less
clear. Another finding is that GNP is particularly useful in three application areas: chemical process
simulation problems, economic problems, and eigenvalue/model reduction problems. These areas
constitute many problems in the dataset; both the number and the proportion of them in which GNP
performs the best are substantially high.

On the other hand, the matrix size does not affect much the GNP performance. One sees this
more clearly when consulting Figure 9 in Section E.3, which is a “proportion” version of Figure 4:
the proportion of problems on which GNP performs the best is relatively flat across matrix sizes.
Similarly, symmetry does not appear to play a distinguishing role either: GNP performs the best on
7.6% of the symmetric matrices and 17.5% of the nonsymmetric matrices.

How robust is GNP? We summarize in Table 2 the number of failures for each preconditioner. GNP
and GMRES are highly robust. We see that neural network training does not cause any troubles,
which is a practical advantage. In contrast, ILU fails for nearly half of the problems, AMG fails for
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Table 2: Failures of preconditioners (count and proportion).

GNP ILU AMG Jacobi GMRES as precond

Construction failure 0 (0.00%) 348 (40.14%) 62 (7.15%) N/A N/A
Solution failure 1 (0.12%) 61 ( 7.04%) 5 (0.58%) 53 (6.11%) 2 (0.23%)

Figure 5: Example convergence histories.

nearly 8%, and Jacobi fails for over 6%. According to the error log, the common failures of ILU
are that “(f)actor is exactly singular” and that “matrix is singular ... in file ilu dpivotL.c”, while the
common failures of AMG are “array ... contain(s) infs or NaNs”. Meanwhile, solution failures occur
when the residual norm tracked by the QR factorization of the upper Hessenberg Hm fails to match
the actual residual norm. While ILU and AMG perform the best for more problems than does GNP,
safeguarding their robustness is challenging, rendering GNP more attractive.

What does the convergence history look like? In Figure 5, we show a few examples when GNP
performs the best. Note that in this case, ILU fails for most of the problems, in either the construction
or the solution phase. The examples indicate that the convergence of GNP either tracks that of
other preconditioners with a similar rate (Simon/venkat25), or becomes significantly faster.
Notably, on VanVelzen/std1 Jac3, GNP uses only four iterations to reach 1e-8, while other
preconditioners take 100 iterations but still cannot decrease the relative residual to below 1e-2.

We additionally plot the convergence curves with respect to time in Figure 10 in Section E.6. An
important finding to note is that GMRES as a preconditioner generally takes much longer time to run
than GNP. This is because GMRES is bottlenecked by the orthogonalization process, shadowing the
trickier cost comparison between more matrix-vector multiplications in GMRES and fewer matrix-
matrix multiplications in GNP.

Are the proposed training-data generation and the scale-equivariance design necessary? In
Figure 6, we compare the proposed designs versus alternatives, for both the training loss and the
relative residual norm. In the comparison of training data generation, using x ∼ N (0, In) leads
to lower losses, while using b ∼ N (0, In) leads to higher losses. This is expected, because the
former expects similar outputs from the neural network, which is easier to train, while the latter
expects drastically different outputs, which make the network difficult to train. Using x from the
proposed mixture leads to losses lying in between. This case leads to the best preconditioning
performance—more problems having lower residual norms (especially those near rtol). In other
words, the proposed training data generation strikes the best balance between easiness of neural
network training and goodness of the resulting preconditioner.

In the comparison of using the scaling operator s versus not, we see that the training behaviors barely
differ between the two choices, but using scaling admits an advantage that more problems result in
lower residual norms. These observations corroborate the choices we make in the neural network
design and training data generation.

5 DISCUSSIONS AND CONCLUSIONS

We have presented a GNN approach to preconditioning Krylov solvers. This is the first work in our
knowledge to use a neural network as an approximation to the matrix inverse, without exploiting
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Figure 6: Left: comparison of training data generation; right: comparison of scale-equivariance.

information beyond the matrix itself (i.e., an algebraic preconditioenr). Compared with traditional
algebraic preconditioners, this approach is robust with predictable construction costs and is the most
effective in many problems. We evaluate the approach on more than 800 matrices from 50 applica-
tion areas, the widest coverage in the literature.

One common skepticism on neural network approaches for preconditioning is that in general, net-
work training is costly and in our case, the network can be used for only one A. We have shown
to the contrary, our training cost sometimes can be much lower than the construction cost of widely
used preconditioners such as ILU and AMG, because network training is more predictable while the
other preconditioners suffer the manipulation of the irregular nonzero patterns. Moreover, a benefit
of neural networks is that compute infrastructures and library supports are in place, which facilitate
implementation and offer robustness, as opposed to other algebraic preconditioners whose imple-
mentations are challenging and robustness is extremely difficult to achieve. Additionally, traditional
algebraic preconditioners are constructed for only one A as well, not more flexible than ours.

While one may hope that a single neural network can solve many, if not all, linear systems (different
A’s), as recent approaches (PINN, NO, or learning the incomplete factors) appear to suggest, it is
unrealistic to expect that a single network has the capacity to learn the matrix inverse for all matrices.
Existing approaches work on a distribution of linear systems for the same problem and generalize
under the same problem (e.g., by varying the grid size or PDE coefficients). For GNP to achieve
so, we may fine-tune a trained network with a cost lower than training from scratch, or augment the
GNN input with extra information (e.g., PDE coefficients). There unlikely exists an approach that
remains effective beyond the problem being trained on.

Our work can be extended in many avenues. First, an immediate follow up is the preconditioning of
SPD matrices. While a recent work on PDEs (Rudikov et al., 2024) shows promise on the combined
use of NOs and flexible CG (Notay, 2000), it is relatively fragile with respect to a large variation
of the preconditioner in other problems. We speculate that a split preconditioner can work more
robustly and some form of autoencoder networks better serves this purpose.

Second, while GNP is trained for an individual matrix in this work for simplicity, it is possible to
extend it to a sequence of evolving matrices, such as in sequential problems or time stepping. Con-
tinual learning (Wang et al., 2024), which is concerned with continuously adapting a trained neural
network for slowly evolving data distributions, can amortize the initial preconditioner construction
cost with more and more linear systems in sequel.

Third, the GPU memory limits the size of the matrices and the complexity of the neural networks
that we can experiment with. Future work can explore multi-GPU and/or distributed training of
GNNs (Kaler et al., 2022; 2023) for scaling GNP to even larger matrices. The training for large
graphs typically uses neighborhood sampling to mitigate the “neighborhood explosion” problem
in GNNs (Hamilton et al., 2017; Chen et al., 2018). Some sampling approaches, such as layer-
wise sampling (Chen et al., 2018), are tied to sketching the matrix product ÂX inside the graph
convolution layer (7) with certain theoretical guarantees (Chen & Luss, 2018).

Fourth, while we use the same set of hyperparameters for evaluation, nothing prevents problem-
specific hyperparameter tuning when one works on an application, specially a challenging one where
no general-purpose preconditioners work sufficiently well. We expect that this paper’s results based
on a naive hyperparameter setting can be quickly improved by the community. Needless to say,
improving the neural network architecture can push the success of GNP much farther.
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J. W. Ruge and K. Stüben. Algebraic multigrid. In Stephen F. McCormick (ed.), Multigrid Methods,
Frontiers in Applied Mathematics, chapter 4. SIAM, 1987.

Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with
Applications, 1(4):387–402, 1994.

Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific
Computing, 14(2):461–469, 1993.

Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–
869, 1986.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, second edition, 2003.

Vladislav Trifonov, Alexander Rudikov, Oleg Iliev, Ivan Oseledets, and Ekaterina Muravleva. Learn-
ing from linear algebra: A graph neural network approach to preconditioner design for conjugate
gradient solvers. Preprint arXiv:2405.15557, 2024.
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A FGMRES

FGMRES is summarized in Algorithm 1.

Algorithm 1 FGMRES with M being a nonlinear operator

1: Let x0 be given. Define Hm ∈ R(m+1)×m and initialize all its entries hij to zero
2: loop until maxiters is reached
3: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
4: for j = 1, . . . ,m do
5: Compute zj = M(vj) and w = Azj
6: for i = 1, . . . , j do
7: Compute hij = w>vi and w← w − hijvi
8: end for
9: Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10: end for
11: Define Zm = [z1, . . . , zm] and compute xm = x0 +Zmym where ym = argminy ‖βe1−Hmy‖2
12: If ‖b−Axm‖2 < tol, exit the loop; otherwise, set x0 ← xm
13: end loop

B PROOFS

Proof of Theorem 1. Write ‖rm‖2 ≤ ‖r̃m‖2 + ‖rm − r̃m‖2. It is well known that
‖r̃m‖2 ≤ κ2(X)ε(m)(Λ)‖r0‖2;

see, e.g., Saad (2003, Proposition 6.32). On the other hand, because rm = r0−AZmym where ym
minimizes ‖r0 −AZmy‖2, we have rm = r0 − (AZm)(AZm)+r0 = r0 −QmQ>mr0. Therefore,
‖rm − r̃m‖2 = ‖QmQ>mr0 − Q̃mQ̃>mr0‖2 ≤ ‖QmQ>m − Q̃mQ̃>m‖2‖r0‖2.

Proof of Corollary 2. By taking M̃ = A−1VnHnV>n and noting that V>n = V−1n , we have

(VnY)−1AM̃(VnY) = diag(σ1, . . . , σn).

Then, following Theorem 1, ‖rm‖2 ≤ κ2(VnY)ε(m)(Σ)‖r0‖2. We conclude the proof by noting
that κ2(VnY) = κ2(Y).

C APPROXIMATELY EXPONENTIAL CONVERGENCE OF ‖rm‖2

We could bound the minimax polynomial ε(m) by using Chebyshev polynomials to obtain an (ap-
proximately) exponential convergence of the residual norm ‖rm‖2 for large m.

Assume that all the eigenvalues σi of Σ are enclosed by an ellipse E(c, d, a) which excludes the
origin, where c is the center, d is the focal distance, and a is major semi-axis. We have

ε(m)(Σ) ≤ min
p∈Pm, p(0)=1

max
σ∈E(c,d,a)

|p(σ)|,

by the fact that the maximum modulus of a complex analytical function is reached on the boundary
of the domain. Then, we invoke Eqn (6.119) of Saad (2003) and obtain

ε(m)(Σ) ≤ Cm(a/d)

Cm(c/d)
,

where Cm denotes the (complex) Chebyshev polynomial of degree m. When m is large,

Cm(a/d)

Cm(c/d)
≈

(
a+
√
a2 − d2

c+
√
c2 − d2

)m
,

which gives an (approximately) exponential function in m. Applying Corollary 2, we conclude that
when m is large,

‖rm‖2 / κ2(Y)‖r0‖2

(
a+
√
a2 − d2

c+
√
c2 − d2

)m
.
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D SCALABILITY

Based on the architecture outlined in Figure 1, the computational cost of GNP is dominated by
matrix-matrix multiplications, where the left matrix is either A (e.g., in GCONV) or a tall one that
has n rows (e.g., in the MLP and Lin layers and in GCONV). This forward analysis holds true for
training and inference, because the back propagation also uses these matrix-matrix multiplications.
Hence, the computational cost of GNP scales as O(nz(A)), the same as that of the Krylov solver.

Practical considerations, on the other hand, are more sensitive to the constants hidden inside the big-
O notation. For example, one needs to store many (but still a constant number of) vectors of length n,
due to the batch size, the hidden dimensions of the neural network, and the automatic differentiation.
Denote by c this constant number; then, the GPU faces a storage pressure of nz(A) + cn. Once
this amount is beyond the memory capacity of the GPU, one either performs training (and even
inference) by using CPU only, offloads some data to the CPU and transfers them back to the GPU on
demand, or undertakes more laborious engineering by distributing A and other data across multiple
GPUs. For the last option (multi-GPU and/or distributed training), the literature of GNN training
brings in additional techniques (such as sampling and mini-batching the graph) to accelerate the
computation (Kaler et al., 2022; 2023).

E ADDITIONAL EXPERIMENT RESULTS

E.1 ADDITIONAL METRICS FOR COMPARING PRECONDITIONERS

In addition to the Iter-AUC and Time-AUC metrics, one may be interested in using the final relative
residual norm to compare the preconditioners. To this end, we summarize the results in Figure 7
by using this residual metric, as an extension of Figure 2. Note that for each problem, we solve the
linear system twice, once using rtol and maxiters as the stopping criteria; and the other time
using rtol and timeout. Hence, there are two charts in Figure 7, depending on how the iterations
are terminated.

Figure 7: Percentage of problems on which each preconditioner performs the best.

We see that across these two termination scenarios, observations are similar. Compared to the use
of the Iter-AUC and Time-AUC metrics, GNP is the best for a similar portion of problems under the
residual metric. The portion of problems that ILU and GMRES (as a preconditioner) perform the
best increases under this metric, while the portion that AMG performs the best decreases. Jacobi
and no preconditioner remain less competitive.

E.2 PRECONDITIONER CONSTRUCTION TIME AND SOLUTION TIME

In Figure 8, we plot the preconditioner construction time and solution time for each matrix and each
preconditioner. This figure is a counterpart of Figure 3 by removing the log scale in the y axis. One
sees that the GNP construction time is nearly proportional to the matrix size.

E.3 BREAKDOWN OF BEST PRECONDITIONERS WITH RESPECT TO MATRIX DISTRIBUTIONS

In Figure 9, we plot the proportion of problems on which each preconditioner performs the best,
for different matrix sizes, condition numbers, and application areas. This figure is a counterpart
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Figure 8: Preconditioner construction time and solution time (using maxiters to stop). The y axis
is in the linear scale.

of Figure 4. The main observation is that the proportion of problems on which GNP performs the
best is relatively flat across matrix sizes. Other observations follow closely from those of Figure 4;
namely, GNP is particularly useful for ill-conditioned problems and some application areas (chemi-
cal process simulation problems, economic problems, and eigenvalue/model reduction problems).

Figure 9: Proportion of problems on which each preconditioner performs the best, for different
matrix sizes, condition numbers, and application areas. Only the application areas with the top
number of problems are shown. The last bar in the middle plot is for condition number ≥ 1016.
Note that not every matrix has a known condition number.

E.4 COMPARISON BETWEEN PYAMG AND AMGX

Besides PyAMG, another notable implementation of AMG (which supports using it as a precondi-
tioner and supports GPU) is AmgX https://github.com/NVIDIA/AMGX. Here, we com-
pare the two implementations in terms of robustness and speed.

Unlike PyAMG, which is a blackbox, AmgX leaves the choice of the AMG method and the
parameters to the user. We used the driver examples/amgx capi.c and the configuration
src/configs/FGMRES AGGREGATION.json, which appears to be the most reasonable for
the diverse matrices and application areas at hand. This setting uses aggregation-based AMG rather
than classical AMG, which is also consistent with the preference expressed by PyAMG.

Here are some findings.

AmgX is less robust than PyAMG. Table 3 shows that AmgX causes more failures during the con-
struction as well as the solution phase. In fact, there were three cases where AmgX hanged, which
hampered automated benchmarking.

Table 3: Failures of two implementations of AMG.

PyAMG AmgX

Construction failure 62 (7.15%) 105 (12.11%)
Solution failure 5 (0.58%) 36 (4.15%)

Despite a lack of robustness, the construction of AmgX is much faster than that of PyAMG. For
AmgX, the distribution of the preconditioner construction time has a minimum 0.006s, median
0.017s, and maximum 4.895s. In contrast, the distribution for PyAMG has a minimum 0.005s,
median 0.286, and maximum 8505.1s. Nevertheless, there are still 16% of the cases where the
PyAMG preconditioner is faster to construct than the AmgX preconditioner.
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We skip the comparison of the solution time. This is because in AmgX, the Krylov solver and
the preconditioner are bundled inside a C complementation. A fair comparison requires isolating
the preconditioner from the solver, because our benchmarking framework implements the solver in
Python. However, the isolation is beyond scope due to the complexity of the implementation, such as
the use of data structures and cuda handling. Nevertheless, we expect that the solution time of AmgX
is faster than that of PyAMG, based on the observations made for preconditioner construction.

E.5 CHANGING THE DEFAULT PYAMG SOLVER

The blackbox solver of PyAMG, pyamg.blackbox.solver, uses the classical-style smoothed
aggregation method pyamg.aggregation.smoothed aggregation solver (SA). For
nonsymmetric matrices, however, the AIR method works better (Manteuffel et al., 2019; 2018).
In this experiment, we modify the blackbox solver by calling pyamg.classical.air solver
for nonsymmetric matrices.

We first tried using the default options of AIR, but encountered “zero diagonal encountered in Ja-
cobi” errors. These errors were caused by the use of jc jacobi as the post-smoother. Then, we
replaced the smoothers with the default ones used by SA (gauss seidel nr). In this case, the
solver hung on the problem FIDAP/ex40. Before this, 105 problems were solved, among which
83 were nonsymmetric. The results of these 83 systems are summarized in Table 4, suggesting that
AIR is indeed better but not always.

Table 4: Counts of problems when comparing AIR with SA for nonsymmetric matrices.

AIR is is better than SA AIR is worse The two are equal

By iteration count 14 8 61
By final residual 50 29 4

Overall, we can conclude that AIR has not exhibited its full potential for nonsymmetric matrices.
We speculate that a robust implementation of AIR is challenging and that might be the reason why
the authors did not use it for the blackbox solver in the first place.

E.6 CONVERGENCE HISTORIES

In Figure 10, we show the convergence histories of the systems appearing in Figure 5, with re-
spect to both iteration count and time. We also plot the training curves. The short solution time
of GNP is notable, especially when compared with the solution time of GMRES as a precondi-
tioner. The training loss generally stays on the level of 1e-2 to 1e-3. For some problems (e.g.,
VanVelzen std1 Jac3), training does not seem to progress well, but the training loss is already
at a satisfactory point in the first place, and hence the preconditioner can be rather effective. We
speculate that this behavior is caused by the favorable architectural inductive bias in the GNN.

To provide further examples, we show the convergence histories of all systems in the application
areas identified by Figure 4 to favor GNP: chemical process simulation problems (Figures 11–13),
economic problems (Figures 14–16), and eigenvalue/model reduction problems (Figures 17–18). In
many occasions, when GNP performs the best, it outperforms the second best substantially. It can
even decrease the relative residual norm under rtol while other preconditioners barely solve the
system.
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Figure 10: Convergence of the linear system solutions and training history of the preconditioners,
for the matrices shown in Figure 5.
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Figure 11: Convergence of the linear system solutions for chemical process simulation problems
(1/3).
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Figure 12: Convergence of the linear system solutions for chemical process simulation problems
(2/3).
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Figure 13: Convergence of the linear system solutions for chemical process simulation problems
(3/3).
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Figure 14: Convergence of the linear system solutions for economic problems (1/3).
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Figure 15: Convergence of the linear system solutions for economic problems (2/3).
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Figure 16: Convergence of the linear system solutions for economic problems (3/3).
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Figure 17: Convergence of the linear system solutions for eigenvalue/model reduction problems
(1/2).
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Figure 18: Convergence of the linear system solutions for eigenvalue/model reduction problems
(2/2).
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