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Abstract The tt̄H(bb̄) process is an essential channel in revealing the Higgs boson properties; however, its final state has an irreducible
background from the tt̄bb̄ process, which produces a top quark pair in association with a b quark pair. Therefore, understanding the
tt̄bb̄ process is crucial for improving the sensitivity of a search for the tt̄H(bb̄) process. To this end, when measuring the differential
cross section of the tt̄bb̄ process, we need to distinguish the b-jets originating from top quark decays and additional b-jets originating
from gluon splitting. In this paper, we train deep neural networks that identify the additional b-jets in the tt̄bb̄ events under the
supervision of a simulated tt̄bb̄ event data set in which true additional b-jets are indicated. By exploiting the special structure of
the tt̄bb̄ event data, several loss functions are proposed and minimized to directly increase matching efficiency, i.e., the accuracy
of identifying additional b-jets. We show that, via a proof-of-concept experiment using synthetic data, our method can be more
advantageous for improving matching efficiency than the deep learning-based binary classification approach presented in [1]. Based
on simulated tt̄bb̄ event data in the lepton+jets channel from pp collision at

√
s � 13 TeV, we then verify that our method can identify

additional b-jets more accurately: compared with the approach in [1], the matching efficiency improves from 62.1% to 64.5% and
from 59.9% to 61.7% for the leading order and the next-to-leading order simulations, respectively.

1 Introduction

Since discovering the Higgs boson at the large hadron collider (LHC) [2, 3], its consistency with the standard model has been tested
extensively in many different channels. In 2018, there were observations of Higgs boson production in association with a top quark
pair (tt̄H), which is an important channel in revealing the Higgs boson properties [4, 5]. As the branching fraction of the Higgs boson
to bb̄ is the largest, among tt̄H, the tt̄H(bb̄) process can be measured with the best statistical precision. However, the final state of
the tt̄H(bb̄) process has an irreducible background from the tt̄bb̄ process, which produces a top quark pair in association with a b
quark pair. Therefore, understanding the tt̄bb̄ process precisely is essential for improving the sensitivity of a search for the tt̄H(bb̄)
process.

For the tt̄bb̄ process, the theoretical next-to-leading-order (NLO) calculation was done [6] in the same phase space where the
inclusive cross sections were measured at

√
s � 8 TeV in the CMS experiment [7]. This analysis was updated with more data at√

s � 13 TeV recently, including inclusive cross section measurements in the dilepton channel [8], the lepton+jets channel [9], and
the hadronic channel [10]. The inclusive and the differential tt̄bb̄ cross sections were also measured in the ATLAS experiment [11].
However, these measurements in different channels show consistently that the measured inclusive cross sections are higher than the
theoretical predictions and that there are large uncertainties in both theoretical and experimental results.

The final state of the tt̄bb̄ process contains b-jets from top quark decays and additional b-jets from gluon splitting, as shown in
the Feynman diagram in Fig. 1. By identifying the origin of the b-jets in the tt̄bb̄ process and measuring their respective differential
cross sections, we can provide more information to the theorists to lessen the mismatch between the theoretical and experimental
results and the uncertainties in both results. In this regard, we consider the problem of predicting which b-jets correspond to the
additional b-jets originating from gluon splitting based on the kinematic observables derived from the final state objects in the tt̄bb̄
process.

Due to the high-dimensional nature and complicated stochastic generative processes of the relevant observables, however, there
are no simple rules to distinguish between the b-jets from top quark decays and those from gluon splitting in real tt̄bb̄ event data.
It is also challenging to manually engineer features useful for the task, even if we have some knowledge of the underlying physics
model. Fortunately, recent advances in neural networks and deep learning have enabled discovering useful discriminative patterns
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Fig. 1 Feynman diagram of the
tt̄bb̄ process in the lepton+jets
channel

in the data by using multiple network layers. The process in the learning algorithm via multiple layers finds simple and disentangled
representations of data and improves the predictions [12].

In various high-energy physics problems under similar challenges mentioned above, deep learning techniques have been applied
to analyze high-dimensional and complex data obtained from the LHC experiments [13–16]. In jet identification problems, of which
the goal is to classify the type of jets from data, many deep learning methods have been successful in flavor tagging, jet substructure
tagging, and quark/gluon tagging [17–24]. More relevant to our problem are the jet-parton assignments for the tt̄ process [25] and
the tt̄H process [26], but they have not specifically attempted to identify the additional b-jets in the tt̄bb̄ process.

In this paper, we apply deep learning techniques to identify the two additional b-jets originating from gluon splitting from the
other b-jets originating from top quark decays in the tt̄bb̄ process. Specifically, we train deep neural networks (DNNs) that identify
additional b-jets under the supervision of a simulated tt̄bb̄ event data set in which true additional b-jets are indicated.

A few learning-based attempts have already been made to tackle this problem. In the CMS experiment, using early data at
√
s �

8 TeV, identifying the additional b-jets was attempted for the first time with a boosted decision tree (BDT) in the dilepton channel
[27]. Another recent work trained a deep neural network (DNN) as a binary classifier to determine whether a pair of b-jets is a pair
of additional b-jets in the lepton+jets channel [1]. However, during training, these methods do not exploit the fact that every tt̄bb̄
event has at least a pair of additional b-jets and only a single pair for most cases, thus giving up further possible improvements in
the identification performance. More strictly speaking, these binary classification approaches cannot even be considered as exactly
solving the targeted problem. This is because we do not have to classify for every b-jet pair if it is an additional b-jet pair; instead,
only one additional b-jet pair needs to be correctly identified among the b-jets contained in each event.

In this study, by defining a learning problem that is much more specialized to the problem of identifying additional b-jets in the
tt̄bb̄ process, we further improve the identification performance than the previous binary classification approach. Specifically, we
design a DNN-based model whose prediction conforms to the special structure of tt̄bb̄ event data, where (in most cases) there is
only one additional b-jet pair in each event. We then train this model to directly maximize the matching efficiency, i.e., the ratio of
successfully identified events to the total number of events, the improvement of which precisely matches our goal. Since the matching
efficiency itself is a highly non-smooth objective, we suggest surrogate objective functions suitable for gradient-based optimization.
We discuss the advantages our method can have over the binary classification approach via a proof-of-concept experiment using
synthetic data. We then show that we can identify additional b-jets more accurately by increasing matching efficiency directly rather
than the binary classification accuracy via experiments using simulated tt̄bb̄ event data. In the experiments, we follow the data
simulation scheme of [1] for both leading order and next-to-leading order calculations and consider the lepton+jets channel, which
is advantageous for precise measurements due to its large branching fraction, as discussed in [1].

The paper is organized as follows. We define the deep learning-based additional b-jet identification problem in Sect. 2. We then
propose methods to maximize matching efficiency directly in Sect. 3, discussing its difference to the binary classification approach.
Section 4 presents experimental results on simulated tt̄bb̄ event data in the lepton+jets channel.

2 Deep learning-based additional b-jet identification

2.1 Problem definition

Our purpose is to precisely predict which of the b-jets in a tt̄bb̄ event correspond to the additional b-jets from gluon splitting. To
achieve this goal, we train deep neural networks that can identify additional b-jets using a simulated tt̄bb̄ event data set in which
true additional b-jets are indicated.

We now describe how the tt̄bb̄ event data are defined. We regard a tt̄bb̄ event datum as the collection of every pair of b-jets in the
event. Each b-jet pair is represented by a multi-dimensional vector consisting of kinematic observables derived from its b-jets and
other final state objects in the event. (Further details on the considered kinematic observables are provided in Sect. 4.1.) Suppose
there are N tt̄bb̄ event data. Denote by ci , i � 1, . . . , N the numbers of b-jet pairs in each event and by F the dimension of the vector
representing each b-jet pair. Then denote the event matrices comprised with all b-jet pairs (or vectors) in each event as Mi ∈ R

ci×F ,
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i � 1, . . . , N . Most tt̄bb̄ events contain a single pair of additional b-jets among the b-jet pairs in the event, which are the cases that
our model assumes. When an event in our data has more than one pair of additional b-jets, e.g., from two gluon splittings [28], we
consider the pair consisting of the two additional b-jets with the highest transverse momentum pT as the single pair of additional
b-jets to identify.1 Let yi ∈ {1, . . . , ci }, i � 1, . . . , N be the indices to indicate the pair of additional b-jets in each event. Here, the
additional b-jet pair becomes the signal to be sought, while the other pairs form the background.

Our performance criterion is the matching efficiency, i.e., the accuracy of identifying additional b-jet pair (or the signal) from
each event. Given N tt̄bb̄ event data {(M1, y1), . . . , (MN , yN )}, matching efficiency is defined as follows:

Matching efficiency � 1

N

N∑

i�1

δ(yi , ŷ(Mi )), (1)

where δ(·, ·) denotes the Kronecker delta function, i.e., δ(y, ŷ) � 1 if y � ŷ and zero otherwise, and ŷ(Mi ) denotes the index
predicted on the event matrix Mi . Increasing matching efficiency becomes our ultimate goal to train the identification models.

2.2 Previous approach

Based on deep learning methods, there has been an attempt to identify additional b-jets in the tt̄bb̄ events [1]. Specifically, they
trained a binary classifier to discriminate whether each pair of b-jets is an additional b-jet pair or not. For this purpose, all the training
event data {(M1, y1), . . . , (MN , yN )} are separated to construct the b-jet pair data {(x1, ξ1), . . . , (xNp , ξNp )}, where xi ∈ R

F and

ξi ∈ {0, 1} for i � 1, . . . , Np are, respectively, individual b-jet pairs and their corresponding labels, and Np � ∑N
i�1 ci is the total

number of b-jet pairs. Here, the labels are 1 for additional b-jet pairs and 0 otherwise. Note that, when collecting pairs from a single
event, there is only one pair with the label of 1 according to the assumption used in Sect. 2.1.

The binary classifier is modeled as a deep feedforward neural network f : RF → [0, 1] as detailed in Appendix B. Given an
input b-jet pair, it returns the value between zero and one, which can be conceptually interpreted as the probability for the input pair
to be label 1. The model parameters are trained to minimize the binary cross-entropy loss (LBCE ) defined as follows:2

LBCE � − 1

Np

Np∑

i�1

(ξi log f (xi ) + (1 − ξi ) log(1 − f (xi ))). (2)

After training the model, when a prediction is to be made for an event data unseen during training, e.g., that from a test data set,
they select the pair with the highest model output value to be the pair of additional b-jets.

Although the suggested method showed better performance than another method using a physics-based feature, it is difficult to
say that this method is optimally designed to increase the matching efficiency for a couple of reasons. First, there is no need to
classify for every b-jet pair if it is an additional b-jet pair as in this approach. Instead, only one additional b-jet pair must be correctly
identified in each event. In terms of training objectives, the approach in [1] is to maximize the binary classification accuracy for b-jet
pairs, whereas it is desired to maximize the matching efficiency for tt̄bb̄ events; thus, the objective pursued in [1] does not precisely
match our goal. Methods that maximize the binary classification accuracy would not generally achieve better matching efficiency
than methods that directly maximize the matching efficiency. Second, while training the DNNs on how to process each b-jet pair in
[1], they do not utilize information on the other b-jets involved in the corresponding event. If such information is provided during
training, further performance improvements will be available by allowing the DNNs to extract more useful features for identifying
additional b-jet pairs from comparing b-jets (or b-jet pairs) within each tt̄bb̄ event. Considering the above discussion, in the next
section, we propose a learning method much more specialized for this problem, which directly maximizes the matching efficiency
and utilizes more information available in each tt̄bb̄ event data during training.

3 Directly maximizing matching efficiency

3.1 Prediction model

We first propose the form of our prediction model to be used in maximizing matching efficiency directly. Given event matrices
Mi ∈ R

ci×F , i � 1, . . . , N as the input, our model f : Rci×F → [0, 1]ci is set to3

f � ( f1, . . . , fci ), (3)

1 Due to this assumption, for the events containing multiple additional b-jet pairs, our method will not figure out all the additional b-jet pairs but predict only
one additional b-jet pair with the highest pT, which can still be informative in studying the tt̄bb̄ process. (Referring to Fig. 4 in Appendix A, the fractions of
such events in our simulations are 17.2% and 22.6% at the leading order (LO) and the next-to-leading order (NLO), respectively.)
2 To be precise, the objective function in eq. (2) is the sample average of the losses l(ξi , f (xi )) � −ξi log f (xi ) − (1 − ξi ) log(1 − f (xi )), i � 1, . . . , Np ,
but we denote such an average by ‘loss’ for simplicity.
3 Hence, our model should deal with varying sizes of input and output according to ci , i � 1, . . . , N .
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where the output of each f j : Rci×F → [0, 1] can be interpreted as the probability of the j-th b-jet pair (or the j-th row of Mi ) being
the pair of additional b-jets for j � 1, . . . , ci . Here, the output elements should sum to one, i.e.,

∑ci
j�1 f j (Mi ) � 1, so that the output

f (Mi ) can be a proper distribution for i � 1, . . . , N . By defining the output as such a probability distribution, this model inherently
assumes the presence of one additional b-jet pair in every tt̄bb̄ event. Moreover, the additional b-jet pair is straightforwardly predicted
to be the pair that returns the highest probability, i.e.,

ŷ(Mi ) � argmax
j∈{1,...,ci }

f j (Mi ), i � 1, . . . , N . (4)

We now briefly explain how to model such an f using deep neural networks. The constraint
∑ci

j�1 f j (Mi ) � 1 on the prediction
model in eq. (3) is usually realized by using the softmax function on some activation value (g1(Mi ), . . . , gci (Mi )) ∈ R

ci as

f j (Mi ) � exp(g j (Mi ))∑ci
k�1 exp(gk(Mi ))

, j � 1, . . . , ci , (5)

where g j : Rci×F → R denotes a function to return the j-th activation value. In modeling g j , j � 1, . . . , ci , we can make another
simplification to deal with different ci s (or the numbers of b-jet pairs) for each datum as follows:

g j (Mi ) � g(Mi, j :), j � 1, . . . , ci , (6)

where Mi, j : ∈ R
F denotes the j-th row of Mi ∈ R

ci×F , and g : RF → R can be modeled as a deep neural network as explained
in Appendix B. Note that this model applies identical operations to each b-jet pair (or row vector); hence permutation-equivariant,
i.e., the output f (Mi ) ∈ [0, 1]ci is permuted identically according to the permutation of rows of the input Mi ∈ R

ci×F . Moreover,
this model allows processing each b-jet pair in conjunction with the other b-jet pairs included in the corresponding event during
training, while having similar modeling complexity to the binary classifier explained in Sect. 2.2.

3.2 Surrogate loss functions

When training the prediction model f , it is not easy to maximize the matching efficiency in eq. (1) itself since it is a highly non-
smooth objective, i.e., not differentiable in many different regions of the model parameter space, and even returns zero gradients when
differentiable. Therefore, we propose appropriate relaxations or surrogates of eq. (1) which can be optimized by usual gradient-based
methods to increase matching efficiency directly.

In terms of our model presented in the previous section, observe that the δ(yi , ŷ(Mi )) value in eq. (1) becomes one if fyi (Mi )
is the largest among { f1(Mi ), . . . , fci (Mi )} and zero otherwise according to eq. (4). Hence, we can maximize fyi (Mi ) instead of
δ(yi , ŷ(Mi )) while minimizing f j (Mi ) for j �� yi to make the δ(yi , ŷ(Mi )) value one and consequently increase the matching
efficiency. Since the usual machine learning problems are formulated as ‘minimizing losses,’ we define our first surrogate loss
function (denoted L1) as follows:4

L1 � − 1

N

N∑

i�1

⎛

⎝ fyi (Mi ) −
∑

j ��yi

f j (Mi )

⎞

⎠. (7)

Our problem can also be considered as a ranking problem, in which the goal is to assign the highest rank (or score) to the additional
b-jet pair in each event matrix. To tackle the ranking problem, the authors in [29] first model the posterior probability that a datum is
ranked higher than another based on the score difference between the two data, with the score obtained from a neural network. They
then propose a probabilistic ranking loss function that compares the posterior to the target posterior (reflecting the desired ranking)
via the cross-entropy loss and minimize the loss on the available training data pairs to obtain neural network parameters. Similarly,
we can guide our model to return a higher rank for the additional b-jet pair rather than the other pairs in each event by minimizing
the following loss function (denoted L2):

L2 � − 1

N

N∑

i�1

∑

j ��yi

log

(
fyi (Mi )

fyi (Mi ) + f j (Mi )

)
, (8)

where the posterior inside the log can be interpreted as the probability of the yi -th b-jet pair being ranked higher than the j-th b-jet
pair.

From a slightly different perspective, it is possible to deem an event matrix’s row indices as distinctive categories to which the
additional b-jet pair belongs. The problem can then be viewed as a multi-class classification problem to predict the class, i.e., the
additional b-jet pair index, for each event matrix; corresponding classification accuracy becomes exactly the same as the matching

4 Minimizing another loss function L � − 1
N

∑N
i�1 fyi (Mi ) has yielded almost similar performance to minimizing L1 in subsequent experiments hence

omitted for brevity.
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(a) An example matrix (b) Trained models (c) Matching efficiency

Fig. 2 Experimental results from synthetic data. (a) An example matrix is illustrated. (b) The level sets of the trained models are drawn over the data scatter
plot. (c) Matching efficiencies (evaluated on a test data set) for each of the loss functions are shown

efficiency in eq. (1). Hence, the widely used (categorical) cross-entropy loss (denoted L3) for these classification problems can also
serve as our surrogate loss:

L3 � − 1

N

N∑

i�1

log fyi (Mi ). (9)

Based on this interpretation, though not used as often as the cross-entropy loss in classification problems, we can also consider
minimizing the mean squared error loss (denoted L4) defined as:

L4 � 1

N

N∑

i�1

‖ f (Mi ) − one_hot(yi )‖2, (10)

where one_hot(yi ) � [0, . . . , 1, . . . , 0] ∈ R
ci is the one-hot encoding whose yi -th element is one.

3.3 A proof-of-concept experiment

We now conduct a proof-of-concept experiment using synthetic data to provide an insight into how minimizing the proposed loss
functions can be advantageous over the binary classification approach. For this purpose, we generate two-dimensional data points
and construct matrices from them to follow the assumption in the structure of the tt̄bb̄ event data, which have only a single row
vector of label 1 (as the signal) in each matrix. Specifically, each matrix consists of a signal vector in class 1 sampled from the
two-dimensional normal distribution and three background vectors in class 0 obtained by translating the class 1 vector to the left
slightly and injecting noise along the vertical axis, as shown in Fig. 2a. This setup will make the binary classification approach suffer
from a significant overlap between data from classes 0 and 1 since, during training, all vectors are given mixed regardless of their
originated matrices, as shown in Fig. 2b.

We train simple linear models to identify class 1 data by minimizing the suggested loss functions in eqs. (7), (8), (9), (10), and the
binary cross-entropy loss in eq. (2). (Further details of the experiments are explained in Appendix C.) For each of the trained models,
we plot their decision boundaries or level sets, i.e., the set of input points with identical output values, in Fig. 2b. Considering the
structure of the matrices, the models should return larger outputs for the points with larger horizontal axis values for a successful
identification; hence, the vertical decision boundaries or level sets are desired. However, the binary classification approach gives a
somewhat arbitrary decision boundary due to the significant overlap between classes. On the other hand, observe that the level sets
of the models obtained from minimizing eqs. (7), (8), (9), (10) are almost vertical as desired. Thanks to the loss functions formulated
to exploit the special structure of the data, these models can learn how to discriminate the data inside each matrix.

The matching efficiency of each model is evaluated on a test data set sampled in the same way as the training data set. According
to Fig. 2c, the models trained using the proposed loss functions obtain matching efficiency of one, i.e., identify the class 1 data
perfectly for all matrices, while that from the binary classification approach shows a much lower value. Although the setup is
dexterously designed to reveal the difference between the approaches apparently, this experiment effectively verifies the concept
that minimizing the suggested loss functions can be more beneficial than the binary classification approach in identifying a single
signal vector from each matrix where all other vectors belong to the backgrounds.
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4 Experiments on simulated tt̄bb̄ event data

4.1 Simulated data set

We now examine if the proposed methods can achieve better matching efficiency than the binary classification approach on simulated
tt̄bb̄ event data. Here, we follow the overall simulation scheme of [1] to generate data. The simulated tt̄bb̄ events in pp collisions
are produced at a center-of-mass energy of 13 TeV. Using the MadGraph5_aMC@NLO program (v2.6.6) [30], we generated 31
million events and 8.2 million events for the tt̄bb̄ samples at the leading order and the next-to-leading order, respectively. These
events are further interfaced to Pythia (v8.240) [31] for the hadronization. A W boson decays through MadSpin [32] with explicitly
specifying leptonic or hadronic decay, and the events are generated in a 4-flavor scheme, where the b quark has mass.

The generated events are processed using the detector simulation with the DELPHES package (v3.4.1) [33] for the CMS detector.
The physics objects used in this analysis are reconstructed based on the particle-flow algorithm [34] implemented in the DELPHES
framework. In the DELPHES fast simulation, the final momenta of all the physics objects, such as electrons, muons, and jets, are
smeared as a function of both the transverse momentum pT and the pseudorapidity η so that they can represent the detector effects.
The efficiencies of identifying the electrons, muons, and jets are parameterized as functions of pT and η based on information from
the measurements made by using the CMS data [33]. The particle-flow jets used in this analysis are reconstructed using the anti-kT

algorithm [35] with a distance parameter of 0.5 to cluster the particle-flow tracks and particle-flow towers.
The b-tagging efficiency is around 50% at the tight-working point of the deep combined secondary vertex (DeepCSV) algorithm

[20], which shows the best performance in the CMS measurement [36]. The corresponding fake b-tagging rates from the c-flavor
and the light flavor jets are set to around 2.6% and 0.1%, respectively.

Once events are produced, the tt̄bb̄ process is defined based on the particle-level jets obtained by clustering all final-state particles
at the generator level. A jet is considered as an additional b-jet if the jet is matched to the last b quark (before hadronization in the
decay chain) that is not directly from a top quark decay within �R( j, q) � √

�η( j, q)2 + �φ( j, q)2 < 0.5, where j denotes jets
at the generator level, and q denotes the last b quark. The additional b-jets are required to be within the experimentally accessible
kinematic region of pT > 20 GeV and |η|< 2.5. An event is considered a valid tt̄bb̄ event when there are at least two additional
b-jets at the generator level that satisfy these kinematic acceptance requirements. Under this condition to be a valid tt̄bb̄ event, 67%
of the generated samples remain. The other 33% of the events do not pass the acceptance requirement and are not considered as
signal events in our analysis.

We applied the following event selection to remove the main backgrounds from the multi-jet events and W+jet events. At the
reconstruction level of the lepton+jets channel, the event must have exclusively one lepton with pT > 30 GeV and |η|< 2.4.
According to this condition, 19.7% of the generated events survive. Jets are selected with a threshold of pT > 30 GeV and |η|< 2.5.
The tt̄bb̄ event has the final state of four b-jets (including the two additional b-jets) and two jets from one of the two W bosons in
top quark decays. However, the detector acceptance and the efficiencies of the b-jet tagging algorithms are not 100%; hence, some
of the tt̄bb̄ events have fewer jets at the reconstruction level. We discarded the events containing b-jets fewer than three or jets fewer
than six in our experiments, resulting in 212,095 and 25,985 matchable events at the leading order and the next-to-leading order,
respectively. Here, matchable events denote our signal events containing two additional b-jets at the detector level, which match any
additional b-jet at the generator level within �R < 0.4.

After the event selection, we construct data for each tt̄bb̄ event by gathering every pair of b-jets in the event, as explained in
Sect. 2.1. Specifically, the variables representing a pair of b-jets are selected considering all possible combinations of the four-vectors
(as low-level features) of the final state objects, such as selected two b-tagged jets, a lepton, a reconstructed hadronic W boson, and
missing transverse energy (MET). We consider the total of 78 variables as listed in Section V of [1], which consists of two sets of
27 variables involving each b-tagged jet only and 24 variables involving both b-tagged jets together.

4.2 Experimental details

We train our model defined in Sect. 3.1 on simulated tt̄bb̄ event data by minimizing the proposed loss functions. We also consider two
models trained to minimize the binary cross-entropy loss under different input feature compositions for comparison purposes. For
the first model denoted by ‘Model 1,’ we follow the previous binary classification approach in [1] and use 78 variables to represent
each b-jet pair as explained in Sect. 4.1. The second model is inspired by [25, 26], which formulate the jet-parton assignment problem
as a binary classification one that determines whether each permutation of jets within an event is in the desired parton order. In this
model denoted by ‘Model 2,’ we expand variables for each b-jet pair to contain those involving the other b-jets in the corresponding
event, thereby utilizing the information inside the event not used in Model 1. Specifically, the variables to represent each b-jet pair
are expanded as x ′

i � [x	
i , z	i,1, . . . , z	i,B−2]	 ∈ R

78+27×(B−2), i � 1, . . . , Np , where xi ∈ R
78 is the variable for individual b-jet

pairs used in Model 1, zi, j ∈ R
27, j � 1, . . . , B − 2 denote the variables involving distinct single b-jets which are included in the

event containing xi but are not included in the pair xi , and B is the maximum value of the number of b-jets in the events in the data
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Table 1 Average matching
efficiency (Mat. eff.) and AUC on
the test set from different training
configurations for the LO samples
with the standard deviations in
parentheses. Bolds represent the
best and comparable methods
from the t-test with a significance
level of 5%

Loss functions Leading order (12,500) Leading order (50,000) Leading order (202,095)

Mat. eff. AUC Mat. eff. AUC Mat. eff. AUC

LBCE (Model 1) 0.609 (0.005) 0.771 (0.003) 0.616 (0.005) 0.780 (0.003) 0.621 (0.005) 0.785 (0.003)

LBCE (Model 2) 0.618 (0.003) 0.811 (0.003) 0.628 (0.003) 0.826 (0.004) 0.634 (0.003) 0.834 (0.004)
L1 0.621 (0.004) 0.734 (0.004) 0.630 (0.004) 0.736 (0.004) 0.641 (0.004) 0.738 (0.004)
L2 0.626 (0.004) 0.732 (0.005) 0.637 (0.004) 0.734 (0.005) 0.644 (0.003) 0.737 (0.005)
L3 0.623 (0.004) 0.742 (0.004) 0.638 (0.004) 0.737 (0.004) 0.645 (0.003) 0.741 (0.005)
L4 0.625 (0.004) 0.736 (0.005) 0.632 (0.004) 0.736 (0.007) 0.639 (0.004) 0.739 (0.005)

Table 2 Average matching
efficiency (Mat. eff.) and AUC on
the test set from different training
configurations for the NLO
samples with the standard
deviations in parentheses. Bolds
represent the best and comparable
methods from the t-test with a
significance level of 5%

Loss functions Next-to-leading order (5,000) Next-to-leading order (10,000) Next-to-leading order (20,985)

Mat. eff. AUC Mat. eff. AUC Mat. eff. AUC

LBCE (Model 1) 0.592 (0.005) 0.750 (0.003) 0.594 (0.004) 0.757 (0.002) 0.599 (0.005) 0.763 (0.002)

LBCE (Model 2) 0.604 (0.005) 0.790 (0.003) 0.607 (0.005) 0.802 (0.006) 0.610 (0.005) 0.806 (0.006)
L1 0.603 (0.004) 0.717 (0.003) 0.609 (0.004) 0.723 (0.004) 0.611 (0.004) 0.730 (0.003)
L2 0.603 (0.004) 0.718 (0.006) 0.614 (0.005) 0.721 (0.004) 0.617 (0.005) 0.721 (0.004)
L3 0.604 (0.004) 0.719 (0.005) 0.609 (0.004) 0.733 (0.004) 0.616 (0.005) 0.726 (0.004)
L4 0.564 (0.018) 0.671 (0.014) 0.611 (0.005) 0.729 (0.005) 0.617 (0.006) 0.724 (0.006)

set.5 Since there are no specified rules to determine the order of single b-jets in each event, we consider all possible permutations
during training by randomly shuffling the order and constructing different input values for every iteration. To predict the additional
b-jet pair in an event using this model, we collect the output values from all possible permutations (of single b-jet variables) for
each pair and choose the pair with the highest model output value. Note that, despite utilizing more information from tt̄bb̄ event data
than Model 1, using Model 2 ends up maximizing the binary classification accuracy by minimizing LBCE . Therefore, it would be
difficult for this method to yield a better matching efficiency than our method of directly maximizing the matching efficiency, in a
similar context discussed in Sect. 2.2.

When constructing deep neural networks (DNNs) for eq. (3) (or g in eq. (6) to be specific) and eq. (11) (in Appendix B), we
utilize the L2 regularizer (only for the parameters in the first layer of DNNs) with a coefficient of 0.01 and the dropout layer [37]
with a dropout rate of 0.08 to prevent overfitting on training data, and the batch normalization layer (except for the case of L2) [38]
to increase the training speed. Adam optimizer [39] is applied to train the models with a batch size of 2,048 and a learning rate of
1e-3. We conducted all the experiments using Keras [40].

The data set is split into training, validation, and test sets with varying sizes. The considered training/validation/test data split
configurations are (i) 10,000/2,500/10,000 events, (ii) 40,000/10,000/10,000 events, (iii) 161,676/40,419/10,000 events for the tt̄bb̄
samples at the leading order (LO), and (iv) 4,000/1,000/5,000 events, (v) 8,000/2,000/5,000 events, (vi) 16,788/4,197/5,000 events
for the samples at the next-to-leading order (NLO). We use the validation set to determine hyperparameters required for training
the deep neural network, such as the number of hidden layers L, the dimension of hidden variables d, and the number of training
epochs T ; we consider L ∈ {2, 4, 6, 8, 10}, d ∈ {25, 50, 100, 200}, and T ∈ {50, 100, 150, 200} in the search. For each data split
condition and loss function, we first train the models according to each hyperparameter setting using the training set and select the
hyperparameter that gives the best matching efficiency on the validation set, averaged over five runs for different random seeds to
split the data sets. The hyperparameter tuning results are reported in Appendix D.

After the hyperparameter tuning, we train models by minimizing the loss functions using both training and validation sets from
each data split configuration. The final performance on the test set is then averaged over fifty runs (with ten different random
initializations of the model parameters for five different random seeds to split the data sets). For the performance metric, we consider
the matching efficiency defined in eq. (1) and the area under the ROC curve (AUC), a widely used metric for the binary classification.
Note that for the models minimizing the surrogate loss functions, the AUC is calculated for a binary classifier that classifies each
b-jet pair to class 1 when the model output for the pair, e.g., values from eq. (6), exceeds a given threshold and to class 0 otherwise.

4.3 Experimental results

The matching efficiency and the AUC score of the trained models are reported in Tables 1 and 2 for the leading-order (LO) samples
and the next-to-leading order (NLO) samples, respectively. The first row in each table represents the sample configurations with the
number of data used to train the models in parentheses.

5 If the number of b-jets in the event containing xi is less than B, the remaining single b-jet variables in x ′
i are set to the average of all single b-jet variable

values in the data set.
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(a) ΔR for LO samples (b) Invariant mass for LO samples

(c) ΔR for NLO samples (d) Invariant mass for NLO samples

Fig. 3 Reconstructed-level distributions of �R (angular distance) and invariant mass of b-jet pairs in the test sets of LO samples (for (a) and (b)) and NLO
samples (for (c) and (d)). The additional b-jet pairs are denoted the signal (sig), and the other b-jet pairs are denoted the background (bkg). Additional b-jet
pairs are identified according to three different criteria (true: matched to the generator-level information at the LO or NLO, BCE: the prediction from the
binary classification approach, CE: the prediction from our method using L3, i.e., the cross-entropy loss)

From the tables, we can make a few observations. First, minimizing the binary cross-entropy loss (LBCE ) using Model 2 yields the
best AUC score, but this does not necessarily lead to the best matching efficiency. Comparing Model 1 and Model 2 (both minimizing
LBCE ) shows that the matching efficiency can be improved by simply extending the input features to provide more information
about the event to which each b-jet pair belongs. However, such an improvement is not as much as minimizing our proposed loss
functions designed to maximize the matching efficiency directly; Model 2 shows performance gains in average matching efficiency
up to 1.3 percent points from Model 1, while minimizing our loss functions shows those up to 2.4 percent points. As the number
of training data grows, the overall identification performance increases, and the performance advantage of our methods over the
binary classification approaches is maintained in most cases. (Only when the number of training data is small for NLO samples,
minimizing LBCE using Model 2 shows a comparable matching efficiency to our methods.) For most of the considered training
configurations, minimizing the probabilistic ranking loss (L2) or the cross-entropy loss (L3) shows the best matching efficiency.
Compared to minimizing LBCE using Model 1, which corresponds to the previous approach in [1], the matching efficiency improves
from 62.1% to 64.4-64.5% and from 59.9% to 61.6-61.7% for the LO and NLO samples, respectively, under the configurations with
the largest number of training samples. From these observations, we can conclude that simply changing the loss functions to directly
maximize matching efficiency (especially using the L2 or L3) shows a definite performance improvement in identifying additional
b-jets in the tt̄bb̄ event data samples both at the leading order and the next-to-leading order.
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Fig. 4 Histograms for the number
of generator-level additional b-jets
in simulated tt̄bb̄ events at both the
leading order (LO) and the
next-to-leading order (NLO). Note
that most events have two
additional b-jets (82.8% for LO
and 77.4% for NLO)
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We can also examine the identification performance qualitatively by observing distributions of kinematic observables derived
from b-jet pairs. In Fig. 3, we obtain reconstructed-level distributions of both �R (the angular difference) and the invariant mass
for the additional b-jet pairs and the other pairs identified from the test sets of both the LO and NLO samples. Here, we consider
three different identification results based on (i) the true label (matched to the generator-level information at the LO or NLO),
(ii) the prediction from the binary classification approach (using Model 1), and (iii) the prediction from our method using L3 (the
cross-entropy loss); all the considered prediction models are trained according to the data split conditions with the largest training set
size in Sect. 4.2. Compared to the binary classification approach, the distributions acquired from our method using L3 get closer to
the true distribution, which can be considered the ideal case of 100% accuracy. Since observable improvements in the distributions
occur relatively uniformly across the entire bins, our identification performance improvements can be considered plausible from a
physical viewpoint as well.

5 Conclusions

In measuring the differential cross sections of the tt̄bb̄ process from the properties of its b-jets, it is crucial to identify additional b-jets
originating from gluon splitting correctly. In this paper, we have proposed different loss functions to directly maximize matching
efficiency, i.e., the accuracy of identifying additional b-jets. Unlike the previous deep learning-based binary classification approach
in [1], these loss functions are designed to fully exploit the special structure of the tt̄bb̄ event data, as discussed via a simple synthetic
data experiment. Using the simulated tt̄bb̄ event data in the lepton+jets channel from pp collision at

√
s � 13 TeV, we have also

verified that directly maximizing the matching efficiency via our method shows better performance in identifying additional b-jets
than the previous approach.

In the future, our simulation can be extended in line with the settings of Run-3 at the LHC or the High Luminosity LHC (HL-LHC)
to verify our method’s applicability. To improve the identification performance further, we can consider utilizing more sophisticated
high-level features such as the b-tag discriminator or modifying the neural network architectures to obtain better discriminative
features. Another topic worthy of further study is learning to improve the sensitivity of the tt̄bb̄ and tt̄H(bb̄) processes by utilizing
the additional b-jet identification models trained on each of the tt̄bb̄ and tt̄H(bb̄) event data as sorts of feature extractor. These future
works would ultimately lead to a more precise understanding of the tt̄bb̄ process and help search the tt̄H(bb̄) process to study the
properties of the Higgs boson.
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Appendix

A The histograms for the number of additional b-jets in simulated tt̄bb̄ events

Figure 4 depicts the histograms for the number of generator-level additional b-jets in simulated tt̄bb̄ events (as explained in Sect. 4.1)
at both the leading order (LO) and the next-to-leading order (NLO). Here, we denote the b-jets which do not originate from top quark
decays as the generator-level additional b-jets. When counting events in the histograms, we have considered only the events that
satisfy the kinematic constraints of the tt̄bb̄ event data in the lepton+jets channel, e.g., the requirements for at least two additional
b-jets as well as the constraints on the transverse momentum pT and the pseudorapidity η values of a lepton and jets, as explained
in Sect. 4.1. Such a kinematic selection has not been applied to the generator-level additional b-jets, the numbers of which have to
be counted. In the histograms, the numbers of events are normalized with respect to the total number of considered tt̄bb̄ events in
each simulation, and events with more than five additional b-jets are included in the last bin.

B The deep feedforward neural network

A deep feedforward neural network f : Rm → R
n with L hidden layers can be modeled as follows:

hi � σi (Wihi−1 + bi ), i � 1, . . . , L ,

f (x) � σ (WL+1hL + bL+1),
(11)

where hi ∈ R
d , i � 1, . . . , L denote the hidden variables, h0 is set to be the input x ∈ R

m , σi (·), i � 1, . . . , L denote nonlinear
activation functions, and Wi , bi for i � 1, . . . , L + 1, respectively, denote the matrix and vector parameters with sizes defined
accordingly as above. In the case of binary classification, the output dimension n is set to one and the activation function σ (·) for
the output is usually chosen to be the sigmoid function σ (s) � 1

1+exp(−s) . For general n-dimensional vector outputs, σ (·) is set to be
an identity.

C Details for the proof-of-concept experiment

To generate synthetic data in Sect. 3.3, we first sample N data in class 1 from the two-dimensional normal distribution, i.e.,
x1i ∼ N (0, I ), i � 1, . . . , N with I ∈ R

2×2 as the identity matrix. We draw three data points in class 0 by translating each
class 1 datum along the horizontal axis for a constant and then inject the Gaussian noise along the vertical axis, in specific,
x0i, j � x1i + (−0.03, ε j ) ∈ R

2 with ε j ∼ N (−0.01, 0.1) for i � 1, . . . , N , j � 1, 2, 3. We then randomly stack the vectors
x0i,1, x0i,2, x0i,3, x1i ∈ R

2 to construct each matrix Mi ∈ R
4×2 for i � 1, . . . , N .

For the approaches directly maximizing matching efficiency using the surrogate losses in Eqs. (7), (8), (9), (10), the function
g : R2 → R in Eq. (6) is defined as g(x) � xW +b, where W ∈ R

2×1, b ∈ R are the model parameters. For the binary classification
approach that minimizes Eq. (2), we consider the model f : R2 → [0, 1] defined as f (x) � σ (xW + b), where W , b are the model
parameters of identical size as the above, and σ (·) denotes the sigmoid function.

D The hyperparameter tuning results

We report in Tables 3 and 4 the hyperparameter tuning results in Sect. 4.2 for each data split condition and loss function. The first
row in each table represents the sample configurations with the number of data used to train the models in parentheses.

Table 3 Hyperparameter tuning
results for each data split
condition and loss function for the
LO samples. L, d, and T represent
the number of hidden layers, the
dimension of hidden variables,
and the number of training epochs,
respectively

Loss functions Leading order (10,000) Leading order (40,000) Leading order (161,676)
(L, d, T ) (L, d, T ) (L, d, T )

LBCE (Model 1) (10, 100, 50) (2, 50, 200) (8, 100, 150)

LBCE (Model 2) (10, 25, 150) (2, 100, 200) (2, 200, 150)
L1 (4, 100, 50) (4, 100, 100) (2, 100, 200)
L2 (2, 25, 50) (2, 50, 150) (2, 100, 200)
L3 (10, 25, 200) (4, 100, 50) (8, 100, 100)
L4 (10, 50, 200) (2, 100, 150) (2, 200, 200)

123



Eur. Phys. J. Plus         (2022) 137:870 Page 11 of 12   870 

Table 4 Hyperparameter tuning
results for each data split
condition and loss function for the
NLO samples. L, d, and T
represent the number of hidden
layers, the dimension of hidden
variables, and the number of
training epochs, respectively

Loss functions Next-to-leading order
(4,000)

Next-to-leading order
(8,000)

Next-to-leading order
(16,788)

(L, d, T ) (L, d, T ) (L, d, T )

LBCE (Model 1) (2, 50, 50) (2, 25, 50) (8, 25, 200)

LBCE (Model 2) (10, 50, 50) (2, 25, 100) (10, 50, 50)
L1 (2, 50, 150) (2, 25, 200) (10, 50, 150)
L2 (6, 25, 50) (2, 25, 50) (2, 25, 50)
L3 (4, 50, 100) (10, 25, 150) (8, 50, 200)
L4 (4, 100, 50) (10, 25, 200) (4, 100, 150)
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