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Abstract
Molecular surfaces imply fingerprints of interac-
tion patterns between proteins. However, non-
equivalent efforts have been paid to incorporat-
ing the abundant protein surface information for
analyzing proteins’ biological functions in juxta-
position to amino acid sequences and 3D struc-
tures. We propose a novel surface-based un-
supervised learning algorithm termed Surface-
VQMAE to overcome this obstacle. In light of
surface point clouds’ sparsity and disorder prop-
erties, we first partition them into patches and
obtain the sequential arrangement via the Mor-
ton curve. Successively, a Transformer-based ar-
chitecture named SurfFormer was introduced to
integrate the surface geometry and capture patch-
level relations. At last, we enhance the preva-
lent masked auto-encoder (MAE) with the vec-
tor quantization (VQ) technique, which estab-
lishes a surface pattern codebook to enforce a
discrete posterior distribution of latent variables
and achieve more condensed semantics. Our
work is the foremost to implement pretraining
purely on molecular surfaces and extensive ex-
periments on diverse real-life scenarios includ-
ing binding site scoring, binding affinity predic-
tion, and mutant effect estimation demonstrate its
effectiveness. The code is available at https:
//github.com/smiles724/VQMAE.

1. Introduction
Proteins are critical components of biological systems, per-
forming a diverse range of functions that support a broad
spectrum of cellular processes and biological pathways.
These complex macromolecules exhibit intricate, multi-
faceted characteristics, which can be expressed through
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various paradigms such as amino acid sequences, 3D struc-
tures, and the distinctive attributes of surface regions. The
past decade has witnessed progress in high-throughput
sequencing (HTS) technologies, cryogenic electron mi-
croscopy, and sophisticated protein structure prediction algo-
rithms (Jumper et al., 2021), which resulted in an explosion
of publicly accessible protein sequences and structures. To
leverage the large volume of those databases, many self-
supervised learning (SSL) studies have been introduced via
mechanisms like contrastive learning (Hermosilla & Ropin-
ski, 2022; Zhang et al., 2022b), denoising diffusion (Liu
et al., 2023; Zhang et al., 2023), and self-prediction (Zhang
et al., 2022b; Wu et al., 2022a; 2023d; Lee et al., 2023; Wu
et al., 2023b;a).

Yet, many vital biological processes, including membrane
transport and cell signaling, are governed by intricate net-
works of protein-protein interactions (PPIs) rather than sin-
gle proteins acting independently (Lin et al., 2024). In
contrast to sequence and structure, a protein’s molecular
surface, which is characterized by a compact and smooth
composition of atoms at its boundary and showcases both
chemical and geometric features, holds a more direct rele-
vance to biomolecular interactions and function (Mylonas
et al., 2021; Riahi et al., 2023). Despite that, current efforts
in protein representation learning predominantly concen-
trate on encoding amino acid sequences (Rives et al., 2021;
Lin et al., 2022) and 3D structural elements (Zhang et al.,
2022b), overlooking the indispensable part of surfaces.

Conducting self-supervision on molecular surfaces is not
easy due to numerous reasons. Firstly, the information den-
sity of surface point clouds is sparse compared to languages
or images. Instead, they are natural signals with heavy re-
dundancy thereby the pretraining tasks can be accomplished
even without holistic understanding (Chen et al., 2023).
Secondly and intuitively, surface point clouds are inherently
disordered and do not have a sequential arrangement like
words in a sentence or pixels in a picture. Moreover, it is
challenging to bridge the gap between the pretraining and
fine-tuning stages. Even though the popular masking and
reconstruction technique (Lin et al., 2022; Pang et al., 2022;
Zhang et al., 2022b; Luo et al., 2023) exhibits deep com-
prehension, no restriction has been imposed in the latent
space between the encoder and the decoder. On the contrary,
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existing algorithms usually resort to a universal learnable
embedding to represent the masked tokens, which may cap-
ture latent representations with a lower semantic level than
downstream problems.

In response to this gap, we introduce a new family of un-
supervised methods named Surface-VQMAE with several
key innovations for apprehending more effective surface
representations. Firstly, concerning its inherent sparsity
and disorder properties, our algorithm partitions the input
surface point cloud into multiple irregular patches and or-
ganizes them by the Morton curve. Secondly, a SurfFormer
architecture is proposed to grasp the interactions among
distinct patches and gain a global point cloud understanding.
It extends the vanilla attention mechanism (Vaswani et al.,
2017) by incorporating geometric structural information.
Last but not least, we successfully combine the prevailing
masked auto-encoder (MAE) framework (He et al., 2022)
with discrete latent representations by enforcing and pa-
rameterizing the posterior distribution of latent variables
to be categorical, which facilitates the feature extractor to
acquire more condensed semantics. We examine the gen-
eralization and robustness of Surface-VQMAE on diverse
protein engineering tasks. In the binding site evaluation task,
Surface-VQMAE achieves AUROC and a balanced accu-
racy of 94.78% and 87.16%, respectively. In the antibody-
antigen affinity prediction task, it outweighs all potential-
based and deep learning-based (DL) approaches. In the
mutant effect estimation task, Surface-VQMAE also attains
new state-of-the-art (SOTA) performance on nearly all met-
rics. All evidence indicates the promise of surface-based
DL, and we envision more efforts to investigate its potential
in a wider range of real-world applications.

2. Related Works
2.1. Protein Surface Representation

Over the past few years, a cluster of DL algorithms, in-
spired by advancements in the fields of language and vi-
sion, has emerged to harness the wealth embedded in pro-
tein sequences and structures (Wu et al., 2022a; Lin et al.,
2022; Zhang et al., 2022b; Wu et al., 2022b). Simultane-
ously, growing interests have been attracted to integrate
surface-related data to enhance protein representation learn-
ing (Leem et al., 2022; Lee et al., 2023). From a unique
viewpoint, the characteristics of the molecular surface dic-
tate the type and the strength of the interactions that a protein
can have with other molecules. It is defined based on van der
Waals (vdW) radii(Connolly, 1983) and is commonly rep-
resented as meshes derived from signed distance functions.
MaSIF (Leem et al., 2022) pioneered the use of mesh-based
geometric DL to abstract the internal parts of the protein
fold and delved into the analysis of protein interactions. A
subsequent study (Sverrisson et al., 2021) removed its high

pre-computation costs of featurization and demonstrated
competitiveness by modeling molecular surfaces as point
clouds with atom categories assigned to each point. Other
seminal works attempted to connect protein surfaces with
structures in a multi-modality manner (Somnath et al., 2021)
and conduct comprehensive pretraining strategies (Lee et al.,
2023). Nevertheless, none of the aforementioned studies
have rigorously explored SSL immediately on the informa-
tive molecular surfaces.

2.2. 3D Point Cloud Pretraining

Geometric DL is an umbrella term encompassing emerging
techniques that generalize neural networks to Euclidean and
non-Euclidean domains like manifolds and meshes. Point
clouds, a native representation of 3D data from range sen-
sors, have recently gained popularity in representing sur-
faces, and relevant SSL techniques have also been widely
studied. Among them, the contrastive kind has been exten-
sively investigated including DepthContrast (Zhang et al.,
2021) and CrossPoint (Afham et al., 2022). Another line of
research demonstrates the superiority of masked point mod-
eling (MPM) mechanisms. For instance, PointMAE (Pang
et al., 2022) extended the masked auto-encoder (MAE) by
randomly masking point patches and recovering masked
regions. PointM2AE (Zhang et al., 2022a) additionally uti-
lized a hierarchical Transformer and designed a correspond-
ing masking strategy. PointGPT (Chen et al., 2023) ex-
ploited an auto-regressive fashion to reconstruct the masked
patches. However, insufficient attention has been given to
the imposition of constraints on the representation space of
latent variables during pretraining, let alone assessing their
effectiveness in the context of molecular surfaces.

3. Method
3.1. Preliminaries of Protein Surface

Surface Generation. There are currently two distinct ap-
proaches to generating protein surfaces. The first, exempli-
fied by MaSIF (Gainza et al., 2020), relies on the MSMS
program (Sanner et al., 1996) to obtain meshes and hand-
crafted features (Mylonas et al., 2021; Stebliankin et al.,
2023; Li & Liu, 2023). However, it is time-consuming and
demands substantial memory resources. In contrast, the
second kind (Sverrisson et al., 2021) circumvents this obsta-
cle by adopting a fast sampling-based mechanism to attain
the surface point cloud, allowing for an end-to-end training
fashion.

It is assumed that a protein comprises either a set of
atoms Va = {vai }Ni=1 at the fine-grained level or residues
VR = {vRi }N

′

i=1 at the coarse-grained level. Each atom
vai has a corresponding chemical type tai ∈ R6 in the list
[C,H,O,N,S,Se] encoded as one-hot vectors and 3D co-
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Figure 1. The overall pipeline of our proposed Surface-VQMAE. The input surface point cloud is first preprocessed into patches through
the farthest point search (FPS) algorithm and acquires the sequential order via Morton code. It is further fed into a point cloud network to
aggregate patch representations. Then we randomly mask a portion of patches and replace them with relaxed codebook vectors. Both
visible token embeddings and sampled codebook vectors are forwarded to SurfFormer to gain a global point cloud understanding. Finally,
two pre-text tasks are proposed to reconstruct the center point coordinates and forecast surface curvatures.

ordinates xa
i ∈ R3. Then we describe the protein surface

as the level set of a smooth distance function to the atom
centers. To be specific, we first randomly draw an upsam-
pling ratio of η = 20 points from a normal distribution
N (µ = xa

i , σ = 10Å) for each atom center, obtaining
{xs

i}
ηN
i=1. Then we associate each atom type tai with a differ-

ent radius σa
i and define the smooth distance function with

a stable log-sum-exp reduction as:

SDF(xs
i ) = −f(xs

i ) · log
N∑
j=1

exp(−∥xs
i − xa

j ∥/σa
j ), (1)

f(xs
i ) =

∑N
j=1 exp(−∥xs

i − xa
j ∥)σa

j∑N
j=1 exp(−∥xs

i − xa
j ∥)

, (2)

where f(.) serves as the average atom radius in a neighbor-
hood of any surface point xs

i ∈ R3. After that, we let these
points converge towards this target level set (i.e., Equ. 1) by
gradient descent. That is, we derive the level set surface at a
radius of r = 1.05Å by minimizing the following squared
loss function:

E
(
xs
1, . . . ,x

s
ηN

)
=

1

2

ηN∑
i=1

(SDF (xs
i )− r)

2
. (3)

Subsequently, we remove points trapped inside the protein
and leverage the normalized gradient of the distance func-
tion SDF(.) at location xs

i as the normal vector ns
i . Finally,

we denote the pseudo protein surface as an oriented point
cloud S = {xs

i ,n
s
i}Mi=1. Here we resort to the KeOps li-

brary (Charlier et al., 2021) to implement this sampling
strategy efficiently on protein batches.

Last but not least, we employ a simple geometric aggre-
gation network (GeoAN) to attain the chemical features of
each point hs

i ∈ Rϕh . Particularly, for each surface point xs
i ,

we find the ζ = 16 nearest residues centers (Cα positions)
and their related residue types

{
xR
i , t

R
i

}ζ

i=1
. Then we use

an embedding layer to map tRi to its embedding eRi ∈ RϕR

and apply a multi-layer perception (MLP) to the vectors
eRi ⊕ 1/||xs

i − xR
i ||2. After that, we perform an average

pooling over these transformed vectors (i.e., i = 1, ..., ζ)
and append a second MLP to compute hs

i . Notably, we
collect the residue-level instead of atom-level internal in-
formation (Sverrisson et al., 2021) for the sake of hs

i and
observe slightly better empirical results.

Surface Patch Partition. A naive approach treats per
point as one token. However, such point-wise reconstruction
pretrain task tends to have unbearable computational cost
due to the quadratic complexity of self-attention (Yu et al.,
2022). Considering the inherent sparsity of surface point
clouds, we utilize the farthest point sampling (FPS) and
the K-nearest neighbors (KNN) algorithm to acquire center
points and point patches. To be explicit, we initially sample
center points Xc via FPS with a downsampling ratio of ρ.
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Then ρM point patches Xp are constructed by selecting
the K nearest points from Xs for each center point. The
partitioning procedure is formulated as:

Xc = FPS(Xs), Xc ∈ RρM×3, (4)

Xp = KNN(Xc,Xs) , Xp ∈ RρM×K×3. (5)

Notably, voxelization (Choy et al., 2019; Tian et al., 2023) is
another common option to divide point clouds into patches.
It projects the point clouds to 3D voxel grids and encodes
features of points inside the same voxel. However, it ignores
the rotation-translation equivariance and point densities can
change significantly in different voxels.

Sorting. Unlike 1D protein sequences, a point cloud lacks
sequential arrangement. To address this inherent disorder
dilemma, we borrow ideas from PointGPT (Chen et al.,
2023) and organize the point patches based on a geometric
ordering, namely the Morton-order curve (Morton, 1966).
Concretely, the coordinates of the center points Xc are first
encoded into one-dimensional space via Morton code, where
the order is determined. Then the point patches are arranged
in the same order and the procedure is written as follows:

O = argmax (MortonCode (Xc)) , O ∈ RρM×1, (6)

This order O not only introduces sequential properties to
point patches Xp but also preserves the essential local struc-
tures (Chen et al., 2023).

3.2. Backbone Architecture

To align with the hierarchical granularity of protein sur-
faces (i.e., point-level, and patch-level), we propose a hi-
erarchical scheme to capture varying degrees of surface
detail. Towards this goal, a point cloud network (e.g., quasi-
geodesic convolution networks) is first utilized to extract
fine-grained and local (i.e., point-wise) surface represen-
tations. Then SurfFormer is followed to excavate coarse-
grained and global (i.e., patch-wise) surface representations.

Point Cloud Network. We begin with the estimation
of a local coordinate system (ns

i ,u
s
i ,o

s
i ). Notably, the

surface point normal ns
i has already been gained using

the gradient of Equ. 1, and we smooth this vector field
by a Gaussian kernel with σn. Mathematically, ns

i =

Normalize
(∑M

j=1 exp
(
−
∥∥xs

i − xs
j

∥∥2 /2σ2
n

)
ns
j

)
.

Then we compute the tangent vectors us
i and os

i using the
efficient formula in Duff et al. (2017). To be explicit, let
ns
i = [χ1, χ2, χ3] be a unit vector, a = −1/(c + χ3), b =
aχ1χ2, and c = sign(χ3), then we get:

us
i =

[
1 + acχ2

1, bc,−cχ1

]
, os

i =
[
b, aχ2

2 + c,−χ2

]
.

(7)

In a later stage, we approximate the geodesic distance be-
tween two surface points xs

i and xs
j with their unit normals

as:
dij =

∥∥xs
i − xs

j

∥∥ · (2− ⟨ni,nj⟩) . (8)

The filters are then localized by a smooth Gaussian window
of radius σd, leading to w ( dij) = exp

(
−d2ij/2σ

2
d

)
. In the

neighborhood of any surface point xs
i , we define a vector

that encodes the relative position and orientation of neighbor
points xs

j in the local coordinate system (ns
i ,u

s
i ,o

s
i ) as:

pij =
(
xs
i − xs

j

)⊤ · [ns
i ⊕ us

i ⊕ os
i ] . (9)

Finally, the quasi-geodesic convolution is operated using a
trainable MLP to weigh features in a geodesic neighborhood
of the local reference surface point xs

i . The formula of the
l-th layer to update the vector signal is therefore:

hs
i
(l+1) =

∑
j∈N (i)

w(dij)MLP(pij)h
s
j
(l), (10)

where N (i) is the i’s geodesic neighborhood set determined
by the filter window size σd. We stack L1 layers of this
geodesic convolution as the point cloud network and note
that the choice of intermediate layers is completely free.
We envision future efforts to replace geodesic convolu-
tions (Sverrisson et al., 2021) with some other categories of
advanced 3D point cloud algorithms such as PointNet++ (Qi
et al., 2017) and PointMLP (Ma et al., 2022).

SurfFormer. At the last layer of the point cloud
network, we perform a max-pooling operation and a
MLP to aggregate initial patch features as hp

i =

MLP
(
Pool

({
hs
j
(L1)

∣∣∣xs
j ∈ Xp

i

}))
∈ Rϕp , accompa-

nied by a modified Transformer (Vaswani et al., 2017)
dubbed SurfFormer to capture pairwise interactions between
patches. SurfFormer has L2 layers and each layer consists
of standard layer-norm, feed-forward blocks, and a spe-
cially designed geometric multi-head self-attention to learn
global correlations in feature and geometric spaces among
surface patches. Particularly, the output patch feature at
the l-th layer is the weighted sum of all projected input
ones as hp

i
(l+1)

=
∑ρM

j=1 αij · hp
j
(l)
WV . Here, the weight

coefficient αij is calculated by a row-wise softmax on the
attention score as:

αij = Soft.


(
hp
i
(l)
WQ

)(
hp
i
(l)
WK + rijWG

)⊤

√
ϕp

 ,

(11)
where WQ,WK ,WV ,WG ∈ Rϕp×ϕp are all projection
matrices. Besides, rij ∈ Rϕp is a geometric structural em-
bedding. It is obtained by expanding the geodesic distance
dij with radial basis functions (Schütt et al., 2018) as:

rij,k = exp
(
−γ

(
∥dij − µk∥2

))
, (12)
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which is located at different centers 0Å ≤ µk ≤ 30Å every
30
ϕp

Å with γ = 10Å. rij can be perceived as an invariant
of relative positional encoding (RPE) (Shaw et al., 2018)
and its design satisfies the 3D roto-translational invariance.
Moreover, the order O gained from Equ. 6 enables the as-
signment of sinusoidal positional embedding (Vaswani et al.,
2017) to Xp and we add this absolute positional encoding
(APE) to every SurfFormer block to enhance a global point
cloud understanding (Chen et al., 2023).

3.3. VQ-MAE

Relying less on human-annotated data, SSL has significantly
advanced various domains including language, vision, and
AI for life science (Wu et al., 2022a). Among them, masked
auto-encoder (MAE) (He et al., 2022; Pang et al., 2022) is a
promising scheme that randomly masks a portion of input
data and takes advantage of an auto-encoder to reconstruct
explicit or implicit features corresponding to the original
masked content (Li et al., 2023).

Masking. Considering surface patches may overlap, we
mask them separately so that information is kept complete
in each patch. Besides, we constrain ρK = 1 to make a
trade-off between covering the entire point cloud and min-
imizing the patch overlap. With a masking ratio δ, the
coordinate sets of masked and visible patches are denoted
as Xp,m ∈ RδρM×K×3 and Xp,vis ∈ R(1−δ)ρM×K×3, re-
spectively. Empirical practice finds that a masking strategy
at a high ratio (δ ≥ 50%) works perfectly in spite of the
uneven density in surface point clouds.

Tokenization. For each masked patch token in Xp,m,
rather than using a shared learnable mask embedding, we
replace its representation hp,m

i with a code embedding e
through the vector quantization (VQ) technique. Remark-
ably, the vanilla VQ (Van Den Oord et al., 2017) faces sev-
eral intrinsic flaws. For instance, the evidence lower bound
(ELB) becomes difficult to optimize as the posterior distri-
bution q(.) is a discrete distribution. Though attempts have
been made to address this issue, such as an online cluster as-
signment procedure in conjunction with the straight-through
estimator (Van Den Oord et al., 2017), the optimization re-
mains sub-optimal. More importantly, it is better to express
some uncertainty over latent vectors as the posterior distri-
bution q(.) does not generally need to be deterministic. As
a consequence, we draw inspiration from dVAE (Ramesh
et al., 2021) and enable retrieving vectors anywhere in the
convex hull of codebook vectors.

Specifically, we define a codebook Q = {(i, e(i))}NB
i=1 with

size NB as the set of finite pairs of code i and its code
embedding e(i) ∈ Rϕp . Then the sampled latent vector

zp,mi is then a weighted sum of these codebook vectors as:

zp,mi =

NB∑
i=1

exp

(
gi+log(q(ej |hp,m

i ))
τ

)
∑NB

j=1 exp

(
gj+log(q(ej |hp,m

i ))
τ

) · ei. (13)

This re-parameterization trick is realized via Gumble Soft-
max relaxation (Jang et al., 2016) and gi is an identical and
independent sample from the Gumble distribution. As the
temperature τ → 0, the relaxation becomes tight.

Decoding and Prediction Targets. At last, we merge vis-
ible token embeddings and sampled codebook vectors from
the relaxed posterior together as Hp(0) = Hp,vis ⊕ Zp,m ∈
RρM×ϕp and forward them to SurfFormer and decoders for
the final pre-text tasks. This VQ masking approach suc-
cessfully avoids early leakage of location information to
SurfFormer, whose output is denoted as Hp(L2).

Here, we introduce two categories of prediction targets, i.e.,
point statistics, and surface properties, to guide model learn-
ing geometric characteristics of surface clouds. The first
type is conventionally reconstructing the coordinates of cen-
ter points Xc,m for each masked surface patch. Following
prior works (Li et al., 2023; Chen et al., 2023), a simple
MLP is used to project to a vector that has the same number
of dimensions as the total number of coordinates in a point
patch. Then followed by a reshape operation, the predicted
positions for masked surface patches are acquired as:

X̂ = Reshape
(
MLP

(
Hp(L2)

))
, X̂ ∈ RδρM×K×3.

(14)
The second target is based on the 3D shape geometry, and
we select surface curvatures as they can be calculated in a
closed form from local points (Tian et al., 2023). For each
masked surface patch Xp,m

i ∈ RK×3 with its center point
xc,m
i ∈ R3, we first compute a covariance matrix:

Σ =
1

k

∑
xp,m
i,j ∈Xp,m

i

xp,m
i,j xp,m

i,j
⊤−xc,m

i xc,m
i

⊤
, Σ ∈ R3×3.

(15)
Then after the eigen-decomposition of Σ (e.g., singular
value decomposition or eigenvalue decomposition), eigen-
values can be attained as ϵ1, ϵ2, and ϵ3. The three pseudo
curvatures vectors ψ = {ψi}3i=1 can be therefore computed
as (Mitra & Nguyen, 2003):

ψi =
ϵi∑3
j=1 ϵj

, i ∈ {1, 2, 3}. (16)

Similarly, another MLP is appended to Hp(L2) to forecast
curvatures, denoted as ψ̂. It can be proved that this curvature
target is roto-translation invariant (see Appendix A). No-
ticeably, we merely employ two lightweight decoders (i.e.,
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MLPs) for different targets separately, to enforce the encoder
to embed more semantics of the surface point clouds (Zhang
et al., 2022a). We tried heavyweight decoders such as Fold-
ingNet (Yang et al., 2018) to reconstruct the sub-clouds but
observed no discernible improvements.

Training Losses. The overall training objective is con-
stituted of three parts: the typical losses to recover the
coordinates and curvatures for each surface patch and the
Kullback-Leibler (KL) divergence to approximate the de-
sired latent distribution p(.). Rigorously, the total loss L
can be written as:

L =ν1Lrec

(
Xp,m, X̂

)
+ ν2Lcur

(
ψ, ψ̂

)
+ ν3LKL (q (Z

p,m|Hp,m) , p(Zp,m))
(17)

where ν1, ν2, and ν3 are pre-defined hyperparameters to
balance the weights of different loss terms. p(.) is the prior
on the latent space and is usually initialized to a uniform
distribution over all codebook vectors. Lcur(.) is supervised
via a root mean squared error (RMSE). Meanwhile, the
reconstruction loss Lrec(.) is formulated using the l2-norm
Chamfer distance (Fan et al., 2017) as:

Lrec =
1

δρMK

δρM∑
i=1

( ∑
a∈X̂i

min
b∈Xp,m

i

∥a− b∥22

+
∑

a∈b∈Xp,m
i

min
X̂i

∥a− b∥22
)
.

(18)

4. Experiments
To verify the effectiveness of Surface-VQMAE, we examine
three crucial real-world PPI applications. More experimen-
tal details are explained in the Appendix B.

Pretraining Data. The unlabeled data for pretraining
Surface-VQMAE is procured from PDB-REDO (Joosten
et al., 2014). It contains refined X-ray structures in PDB,
and we cluster protein chains based on 50% sequence iden-
tity as Luo et al. (2023), which leads to 38,413 chain clusters.
These clusters are further randomly divided into the training,
validation, and test sets by 95%/0.5%/4.5%, respectively.

4.1. Protein Interface Scoring

Problem Statement and Background. The arrival of
successful monomer folding algorithms such as Al-
phaFold (Jumper et al., 2021) marks a significant advance-
ment in multimer folding. Leveraging them alongside
molecular docking tools allows for predicting complexes
when the structures of individual target proteins are known,
a crucial step in drug, vaccine, and therapeutic development.
However, modern docking computational tools (Andrusier

et al., 2007; Leman et al., 2020) often yield numerous can-
didate complexes with seemingly favorable binding scores
that ultimately fail confirmation in laboratory settings. This
discrepancy underscores the pressing need for robust scoring
functions. DL emerges as a promising avenue to assess and
rank the binding strength of the predicted protein complex.

Dataset and Metrics. Following Stebliankin et al. (2023),
PPI pairs are taken from the PRISM list of nonredundant pro-
teins (Baspinar et al., 2014), the ZDock benchmark (Vreven
et al., 2015), PDBBind (Liu et al., 2015), and Structural
Antibody Database (SAbDab) (Dunbar et al., 2014). The
train and test splits are based on sequence and structural
similarity. Concretely, sequence splits are performed using
CD-HIT60, and structural splits are performed using TM-
align. This results in 2,958 and 356 proteins, respectively,
and 10% of the training set is reserved for validation. We
pick up six metrics for comparison, containing area under
the receiver operating characteristic (AUROC), average pre-
cision (AP), balanced accuracy (BAcc.), F1 score, precision,
and recall.

Baselines. Two sorts of benchmarks are selected for fair
comparison. The first category contains seven empirical-
based tools. Among them, FireDock (Andrusier et al.,
2007), PyDock (Cheng et al., 2007), RosettaDock (Le-
man et al., 2020), and ZRANK2 (Pierce & Weng, 2008)
are energy-based methods, whose binding score is de-
fined as the weighted sum of energy terms. Meanwhile,
AP-PISA (Viswanath et al., 2013), SIPPER (Pons et al.,
2011) and CP-PIE (Ravikant & Elber, 2010) are potential-
based algorithms, which involve computing the atomic and
residue-level iteration properties including frequency of in-
teraction types and solvent-accessible surface area (SASA).
In addition, three ML-based mechanisms are considered.
MaSIF (Leem et al., 2022) pioneers the use of mesh-based
geometric DL to predict protein interactions. dMaSIF (Sver-
risson et al., 2021) extends MaSIF by bypassing the pre-
computation of physico-chemical features and instead cal-
culating molecular surfaces directly from the atomic point
cloud in real time. PIsToN (Stebliankin et al., 2023) adapts
a vision Transformer (ViT) for protein binding assessment.

Results. Table 1 documents the outcomes, where the best
and second-best performance is in bold and underlined re-
spectively. The superiority of Surface-VQMAE is evident
from its outstanding AUROC score of 0.9583, which is
1.03% than the next best method PIsTON. Additionally,
Surface-VQMAE outperforms all other models in terms
of AP (0.9503), BAcc. (87.16%), and F1-score (0.8709).
This phenomenon illustrates that Surface-VQMAE can rank
the native binding complexes more accurately than existing
energy-based, potential-based, and DL tools.
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Table 1. Classification performance of protein binding scoring functions, where red cells stand for surface-based algorithms. Scores for
the baselines are directly reported from PIsToN (Stebliankin et al., 2023).

Method AUROC AP BAcc F1 Precision Recall

SIPPER 74.52 72.23 68.64 70.32 66.80 74.23
RosettaDock 75.28 82.77 76.06 69.81 94.50 55.34
ZRANK2 83.56 87.37 77.89 74.36 88.48 64.13
PyDock 86.11 87.17 77.66 77.62 77.79 77.45
CP-PIE 88.11 89.28 81.03 79.94 84.87 75.55
AP-PISA 89.85 90.30 81.98 81.28 84.63 78.18
FireDock 89.95 90.54 81.83 81.58 82.81 80.38
MaSIF 82.52 83.96 74.93 72.51 80.25 66.13
dMaSIF 89.81 89.67 81.34 81.60 80.49 82.74
PIsToN 93.55 94.41 85.25 84.59 88.55 80.97

Surface-VQMAE 94.78 95.03 87.16 87.09 90.92 83.58

4.2. Antibody-antigen Binding Prediction

Problem Statement and Background. Accurate predic-
tion of protein–ligand binding affinity (∆G) has a variety of
applications including antibody design in immunotherapy,
enzyme engineering for reaction optimization, and construc-
tion of biosensors (Guo & Yamaguchi, 2022). It can greatly
lower the overall cost of drug discovery in structure-based
drug design (Wu et al., 2023c).

Dataset and Metrics. The test data come from
SAbDab (Dunbar et al., 2014) with 4,883 antibody-antigen
complexes after removing duplicates and structures with-
out antigens. Among them, 566 instances have binding
affinity labels and are used as the test set. Our training set
comes from Myung et al. (2022) with 197 complexes af-
ter removing instances appeared in the test set. Then they
are randomly split into two halves with a validation ratio
of 50%. Following Jin et al. (2023), we emulate a more
realistic scenario and predict the structure of all antibody-
antigen complexes in the test set using ZDock (Vreven et al.,
2015). Here, only the Pearson correlation is employed as
the evaluation metric.

Baselines. We compare our method with two groups. The
first is physic-based potentials, including ZRANK (Pierce
& Weng, 2007), ZRANK2 (Pierce & Weng, 2008), Roset-
taDock (Leman et al., 2020), PyDock (Cheng et al., 2007),
SIPPER (Pons et al., 2011), AP-PISA (Viswanath et al.,
2013), CP-PIE (Ravikant & Elber, 2010), FireDock, and
FireDock AB (Andrusier et al., 2007). The second is a
ML-based approach, i.e., Neural Euler’s Rotation Equations
(NERE) (Jin et al., 2023), which predicts a rotation by mod-
eling the force and torque between protein and ligand atoms.

Results. We inspect the capability of Surface-VQMAE
in two circumstances, namely, crystal and docked struc-
tures. As shown in Table 2, our model outperforms existing

physics-based potentials and NERE significantly with an
average increase of 36.9%. It can also be observed that the
Pearson correlations decrease tremendously for all models
when transferring from ground truth to predicted structures.
However, Surface-VQMAE is less sensitive and more robust
to this docking error than NERE.

Table 2. Performance of binding affinity estimation (∆G) on the
SAbDab test set, where yellow and red cells indicate structure-
based and surface-based algorithms separately. Scores for the
baselines are directly reported from NERE (Jin et al., 2023).

Crystal ZDock

SIPPER -0.138 0.003
RosettaDock 0.064 0.025
ZRANK 0.318 0.163
ZRANK2 0.176 0.151
PyDocK 0.248 0.164
CP-PIE 0.234 0.120
AP-PISA 0.323 0.144
FireDock 0.101 -0.052
FireDock-AB 0.199 0.042
NERE 0.340 0.234

Surface-VQMAE 0.411 0.358

4.3. Mutant Effect Prediction

Problem Statement and Background. Antibodies play a
crucial role in recognizing and binding to proteins present on
the pathogen surfaces, initiating immune responses through
interactions with receptor proteins in immune cells. So, it is
essential to develop methods to regulate these interactions.
A common strategy for manipulation is to mutate amino
acids at the interface, and computational techniques are
necessary to guide the identification of beneficial mutations
by predicting their effects on binding strength. This is often
assessed through the change in binding free energy, (i.e.,
∆∆G).
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Table 3. Evaluation of mutant effect prediction (∆∆G) on the SKEMPI.v2 dataset, where yellow, blue, and red cells are sequence-based,
structure-based, and surface-based methods respectively. Scores for the baselines are directly reported from RDE-Net (Luo et al., 2023).

Method Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089 0.6582
ESM-1v 0.0073 -0.0118 0.1921 0.1572 1.9609 1.3683 0.5414
PSSM 0.0826 0.0822 0.0159 0.0666 1.9978 1.3895 0.5260
MSA Transf. 0.1031 0.0868 0.1173 0.1313 1.9835 1.3816 0.5768
Tranception 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883 0.5885
ESM-IF 0.2241 0.2019 0.3194 0.2806 1.8860 1.2857 0.5899
B-factor 0.2042 0.1686 0.2390 0.2625 2.0411 1.4402 0.6044
DDGPred 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
End-to-End 0.3873 0.3587 0.6373 0.4882 1.6198 1.1761 0.7172
MIF-Net. 0.3965 0.3509 0.6523 0.5134 1.5932 1.1469 0.7329
RDE-Net. 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454
PPIFormer 0.4281 0.3995 0.6450 0.5304 1.6420 1.1186 0.7380

Surface-VQMAE 0.4694 0.4324 0.6482 0.5611 1.5876 1.1271 0.7469

Dataset and Metrics. Evaluation is carried out in the
widely recognized SKEMPI.v2 database (Jankauskaitė et al.,
2019). It contains data on changes in the thermodynamic
parameters and kinetic rate constants after mutation for
structurally resolved PPIs. The latest version contains man-
ually curated binding data for 7,085 mutations. The dataset
is split into three folds by structure, each containing unique
protein complexes that do not appear in other folds. Two
folds are used for train and validation, and the remaining
one is used for test. This yields three different sets of pa-
rameters and ensures that every data point in SKEMPI.v2 is
tested once.

We employ five metrics to assess the accuracy of ∆∆G
predictions, encompassing Pearson and Spearman correla-
tion coefficients, RMSE, mean absolute error (MAE), and
AUROC. Calculating AUROC involves classifying muta-
tions according to the direction of their ∆∆G values. In
real-world scenarios, particular attention is given to the cor-
relation observed within a specific protein complex. To
address this, we adopt the approach of Luo et al. (2023)
by organizing mutations according to their associated struc-
tures. Groups with fewer than ten mutation data points are
excluded from this analysis. Subsequently, correlation cal-
culations are conducted independently for each structure,
introducing two additional metrics: the average per-structure
Pearson and Spearman correlation coefficients.

Baselines. We evaluate the effectiveness of Surface-
VQMAE against various categories of techniques. The
initial kind encompasses conventional empirical energy
functions such as Rossetta Cartesian ∆∆G (Alford et al.,
2017) and FoldX. The second grouping comprises sequence
or evolution-based methodologies, exemplified by ESM-
1v (Meier et al., 2021), PSSM (position-specific scoring

matrix), MSA Transformer (Rao et al., 2021), Trancep-
tion (Notin et al., 2022), and ESM-IF (Hsu et al., 2022).
The third category includes structure-based models such as
DDGPred (Shan et al., 2022), End-to-End, and Masked
Inverse Folding (MIF-Network) (Yang et al., 2022) that
adopt Graph Transformer (GT) (Luo et al., 2023) as the
encoder with an MLP to directly forecast ∆∆G. Besides,
B-factors is the network that anticipates the B-factor of
residues and incorporates the projected B-factor in lieu of
entropy for ∆∆G prediction. Lastly, Rotamer Density Esti-
mator (RDE-Network) (Luo et al., 2023) uses a flow-based
generative model to estimate the probability distribution
of rotamers and uses entropy to measure flexibility. PPI-
Former (Bushuiev et al., 2023) is pretrained on a newly
collected non-redundant 3D PPI interface dataset PPIRef
through the mask language modeling (MLM) technique.

Results. As displayed in Table 3, our Surface-VQMAE
is better or more competitive in all regression metrics.
Precisely, it achieves the highest per-structure Spearman
(0.4324) and Pearson’s (0.4694) correlations, which are
considered the primary metrics because the correlation of
one specific protein complex is the most important. Per-
formance on subsets of single-mutation and multi-mutation
is removed to Appendices 5 and 6 due to space limitation.
In particular, multiple point mutations are often required
for successful affinity maturation (Sulea et al., 2018), and
Surface-VQMAE outperforms RDE-Net and PPIFormer by
a large margin in the multi-mutation subset.

4.4. Ablation Studies and Visualization

We conduct additional experiments to investigate the con-
tributions of different components of Surface-VQMAE and
display the analysis in Appendix C.2. It can be found that
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the removal of SurfFormer, the introduction of MAE, and
the VQ technique, all induce performance detriment. This
phenomenon verifies the necessity of our hierarchical back-
bone design and the constraint on MAE’s latent variable
space. Additionally, we visualize the impact of different
FPS downsampling ratios and give some examples of sur-
face patches in Appendix C.3.

5. Conclusion
Interactions between proteins and other biomolecules are
the basis of protein function in most biological processes. In
this study, we introduce a novel surface-based protein struc-
tural pretraining method, i.e., Surface-VQMAE, to excavate
information from massive unlabeled molecular surfaces. We
validate its effectiveness through three vital and challeng-
ing downstream tasks, containing protein interface scoring,
antibody-antigen binding prediction, and mutant effect pre-
diction.

Limitations
Despite the fruitful progress of Surf-VQMAE in taking the
first step for surface-based pretraining, there exists still room
for future improvements. A potential limitation arises from
solely relying on a single downsampling technique (FPS)
without investigating alternative methods. Exploring dif-
ferent approaches could reveal varying trade-offs between
representation quality and computational efficiency. More-
over, our study may not thoroughly examine the influence of
noise or outliers in the surface data, which could impact the
downsampling process and subsequent analysis outcomes.
Furthermore, the generalizability of our findings might be
constrained to specific protein structures or datasets utilized
in the study such as SKEMPI and SAbDab. It underscores
the need for caution when extrapolating the proposed ap-
proach to diverse contexts.
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Fernández-Recio, J., and Moal, I. H. Skempi 2.0: an
updated benchmark of changes in protein–protein bind-
ing energy, kinetics and thermodynamics upon mutation.
Bioinformatics, 35(3):462–469, 2019.

Jin, W., Sarkizova, S., Chen, X., Hacohen, N., and Uhler,
C. Unsupervised protein-ligand binding energy predic-
tion via neural euler’s rotation equation. arXiv preprint
arXiv:2301.10814, 2023.

Joosten, R. P., Long, F., Murshudov, G. N., and Perrakis, A.
The pdb redo server for macromolecular structure model
optimization. IUCrJ, 1(4):213–220, 2014.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
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A. Analysis of MAE Target
Curvatures. An intuitive drawback of point cloud coordinate reconstruction is that it does not satisfy the roto-translation
equivariance using the prevailing scheme (Pang et al., 2022). To overcome this, we propose to leverage surface geometric
properties such as curvatures as the unsupervised prediction target. For surfaces (and, more generally for higher-dimensional
manifolds) that are embedded in Euclidean space, the concept of curvature depends on the choice of a direction on the
surface or manifold. This leads to the concepts of maximal curvature, minimal curvature, and mean curvature. The maximum
and minimum normal curvatures at a point on a surface are called the principal (normal) curvatures, and the directions in
which these normal curvatures occur are called the principal directions. We recommend interested readers to take a look
at this introduction 1 for more details. Here, we verify that curvatures are invariant to 3D rotation and translations. More
formally, for any translation vector o ∈ R3 and for any orthogonal matrix Q ∈ R3×3, ψ ∈ R3 remains the same. Towards
this end, we want to show that eigenvalues ϵ of the co-variance matrix Σ are invariant to o and Q. Notably, there are several
popular ways to decompose Σ such as the singular value decomposition (SVD) and the eigenvalue decomposition (EVD),
and we begin with EVD for illustration. After the spatial transformations, the co-variance matrix is obtained as:
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(19)

Then we further prove that Σ′ shares the same eigenvalues ϵ with Σ but with transformed eigenvectors. Explicitly, suppose
{Υi}3i=1 are the original eigenvectors of Σ, then we can get:

Σ′ (QΥiQ
⊤) = QΣQ⊤QΥiQ

⊤ = QΣIΥiQ
⊤ = ϵi

(
QΥiQ

⊤) . (20)

In other words, QΥiQ
⊤ becomes the eigenvector of Σ in terms of the corresponding eigenvalue ϵi. As a consequence,

curvatures ψ, which entirely depends on ϵ, will not change regardless of any o and Q. Moreover, due to the relationship
of singular values and eigenvalues, i.e., ξi =

√
ϵi, curvatures that are computed based on SVD are also not affected by

transformations on 3D coordinate systems.

B. Experimental Details
We implement all experiments on 4 A100 GPUs, each with 80G memory. During the pretraining stage, Surface-VQMAE is
trained with an Adam optimizer (Kingma & Ba, 2014) with a weight decay of 5.e− 3 and with β1 = 0.9 and β2 = 0.999.
A ReduceLROnPlateau scheduler is employed to automatically adjust the learning rate with a patience of 5 epochs and a
minimum learning rate of 1.e− 7. The batch size is set to 32 and an initial learning rate is 1.e− 4. The maximum iterations
are 200K with warmingup iterations of 10K and the validation frequency is 1K iterations. The random seed is fixed as 2023.
Moreover, we empirically calculate the overlap ratio of all patches and discover a pretty low score of 5.34%.

Hyperparameter Search Space. At the beginning, we adopt a random search to find the best combination of hyper-
parameters for the backbone architecture (i.e., the point cloud network, and SurfFormer) in three different downstream
tasks with only supervised learning. Then we fix these subsets of hyperparameters to build three backbone architectures

1A quick and dirty introduction to the curvature of surfaces: http://wordpress.discretization.de/
geometryprocessingandapplicationsws19/a-quick-and-dirty-introduction-to-the-curvature-of-surfaces/
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and further explore the hyperparameters for the VQMAE-stype pretraining. The details of the hyperparameter setup of
Surface-VQMAE are listed in Table 4.

Table 4. Hyperparameters setup for Surface-VQMAE

Hyperparameters Search Space Symbol Value

Surface Generation and Partition
Upsampling Ratio η [10, 20]
Surface Radius r [1.05]
FPS Downsampling Ratio ρ [0.01, 0.02, 0.05, 0.1]
Number of Nearest Point in a Patch K [10, 25, 50, 100]
Backbone Achitecture
Dimension of Point Chemical Features in GeoAN ϕh [4, 8, 16]
Dimension of Residue Type Embedding in GeoAN ϕR [16]
Dimension of Patch Chemical Features in SurfFormer ϕp [16, 64, 128]
Number of Nearest Residues in GeoAN ζ [8, 16]
Gaussian Kernel Size σn [9Å, 12Å]
Radius in the Filters σd [9Å, 12Å]
Scaler Coefficient in Radial Basis Function γ [5, 10]
Layer Number of Point Cloud Networks L1 [1, 2, 3]
Layer Number of SurfFormer L2 [1, 3, 6]
Number of Heads in SurfFormer – [4, 8]
Dropout Rate in Point Cloud Network – [0.0, 0.1]
Dropout Rate in SurfFormer – [0.0, 0.1]
VQMAE Setup
Masking Ratio δ [30%, 50%, 60%, 70%, 80%]
Codebook Size NB [100, 1000]
Target Temperature τ [0.0625]
Reconstruction Loss Weight ν1 [1.0]
Curvature Loss Weight ν2 [0.5, 1.0]
KL-divergence Loss Weight ν3 [0.1, 0.5, 1.0]
Training Setup
Batch Size – [16, 32]
Initial Learning Rate – [5e-4, 1e-4, 5e-5, 1e-6]
Number of Warmup Iterations – [5K, 10K]

C. Additional Results
C.1. Performance on Subsets of SKEMPI.v2

We explicitly document the evaluation results of different methods on the multi-mutation and single-mutation subsets of
the SKEMPI.v2 dataset in Table 5 and Table 6. It can be discovered that Surface-VQMAE achieves the best per-structure
metrics on both multi-mutation and single-mutation subsets. This indicates that Surface-VQMAE is a more effective tool to
screen and select mutant proteins for desired properties.

C.2. Ablation Studies

We investigate the contribution of each component of Surface-VQMAE. To be specific, we take the vanilla point cloud
network as the base model (i.e., line 1 in Table 7) and compare it with different settings. As illustrated in Table 7, the
removal of each part leads to a significant decline in metrics for different PPI applications. Specifically, we find the surface
property objective brings more improvements than the point statistics objective, illustrating the importance of high-level
geometric pretext tasks.
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Table 5. Evaluation of mutant effect prediction (∆∆G) on the multi-mutation subset of the SKEMPI.v2 dataset.

Method Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Rosetta 0.1915 0.0836 0.1991 0.2303 2.6581 2.0246 0.6207
FoldX 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478
ESM-1v -0.0599 -0.1284 0.1923 0.1749 2.7586 2.1193 0.5415
PSSM -0.0174 -0.0504 -0.1126 -0.0458 2.7937 2.1499 0.4442
MSA Transf. -0.0097 -0.0400 0.0067 0.0030 2.8115 2.1591 0.4870
Tranception -0.0688 -0.0120 -0.0185 -0.0184 2.9280 2.2359 0.4874
ESM-IF 0.2016 0.1491 0.3260 0.3353 2.6446 1.9555 0.6373
B-factor 0.2078 0.1850 0.2009 0.2445 2.6557 2.0186 0.5876
DDGPred 0.3912 0.3896 0.5938 0.5150 2.1813 1.6699 0.7590
End-to-End 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532
MIF-Net. 0.3968 0.3789 0.6139 0.5370 2.1399 1.6422 0.7735
RDE-Net. 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747 0.7749
PPIFormer 0.3985 0.3925 0.6405 0.5946 2.1407 1.5753 0.7893

Surface-VQMAE 0.4593 0.4444 0.6242 0.5870 2.1295 1.6139 0.7852

Table 6. Evaluation of mutant effect prediction (∆∆G) on the single-mutation subset of the SKEMPI.v2 dataset.

Method Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478
ESM-1v 0.0422 0.0273 0.1914 0.1572 1.7226 1.1917 0.5492
PSSM 0.1215 0.1229 0.1224 0.0997 1.7420 1.2055 0.5659
MSA Transf. 0.1415 0.1293 0.1755 0.1749 1.7294 1.1942 0.5917
Tranception 0.1912 0.1816 0.1871 0.1987 1.7455 1.1708 0.6089
ESM-IF 0.2308 0.2090 0.2957 0.2866 1.6728 1.1372 0.6051
B-factor 0.1884 0.1661 0.1748 0.2054 1.7242 1.1889 0.6100
DDGPred 0.3711 0.3427 0.6515 0.4390 1.3285 0.9618 0.6858
End-to-End 0.3818 0.3426 0.6605 0.4594 1.3148 0.9569 0.7019
MIF-Net. 0.3952 0.3479 0.6667 0.4802 1.3052 0.9411 0.7175
RDE-Net. 0.4687 0.4333 0.6421 0.5271 1.3333 0.9392 0.7367
PPIFormer 0.4192 0.3796 0.6287 0.4772 1.4232 0.9562 0.7213

Refine-PPI 0.4751 0.4410 0.6619 0.5180 1.3326 0.9362 0.7368

C.3. Visualization of Surface Patches

We visualize the downsampled point clouds under different FPS downsampling ratios in Figure 2. It was found that as
the downsampling ratio decreases, the patch center points become more sparse. However, those center points are evenly
allocated and roughly describe the overall shape of the entire protein point cloud. Moreover, we give two specific examples
in Figure 3 to illustrate the overlap and distribution of surface patches.
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Table 7. Ablation study of Surface-VQMAE, where BSS, BAP, and MEP are the abbreviation of binding site scoring, binding affinity
prediction, and mutation effect prediction, respectively.

SurfFormer MAE VQ BSS BAP MEP
Point Stat. Surface Prop. AUROC Pearson Pearson Spearman

1 ✗ ✗ ✗ ✗ 89.71 0.318 0.4175 0.3902
2 ✓ ✗ ✗ ✗ 92.44 0.356 0.4388 0.4026
3 ✓ ✓ ✗ ✗ 92.68 0.361 0.4397 0.4051
4 ✓ ✓ ✓ ✗ 94.15 0.397 0.4504 0.4265

5 ✓ ✓ ✓ ✓ 94.78 0.411 0.4694 0.4324

Figure 2. Plots of protein surfaces with different FPS downsampling ratios.

Figure 3. Plots of surface patches in two example proteins.
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