
Learning in Non-Cooperative
Configurable Markov Decision Processes

Giorgia Ramponi⇤
ETH AI Center

Zurich, Switzerland

gramponi@ethz.ch

Alberto Maria Metelli
Politecnico di Milano

Milan, Italy

albertomaria.metelli@polimi.it

Alessandro Concetti
Politecnico di Milano

Milan, Italy

alessandro.concetti@mail.polimi.it

Marcello Restelli
Politecnico di Milano

Milan, Italy

marcello.restelli@polimi.it

Abstract

The Configurable Markov Decision Process framework includes two entities: a

Reinforcement Learning agent and a configurator that can modify some environ-

mental parameters to improve the agent’s performance. This presupposes that

the two actors have identical reward functions. What if the configurator does not

have the same intentions as the agent? This paper introduces the Non-Cooperative

Configurable Markov Decision Process, a framework that allows modeling two

(possibly different) reward functions for the configurator and the agent. Then,

we consider an online learning problem, where the configurator has to find the

best among a finite set of possible configurations. We propose two learning algo-

rithms to minimize the configurator’s expected regret, which exploit the problem’s

structure, depending on the agent’s feedback. While a naïve application of the

UCB algorithm yields a regret that grows indefinitely over time, we show that our

approach suffers only bounded regret. Furthermore, we empirically validate the

performance of our algorithm in simulated domains.

1 Introduction

The standard Reinforcement Learning [RL, 40] framework involves an agent whose objective is to

maximize the reward collected during its interaction with the environment. However, there exist

real-world scenarios in which the agent itself or an external supervisor (configurator) can partially
modify the environment. In a car racing problem, for example, it is possible to modify the car setup

to better suit the driver’s needs. Recently, the Configurable Markov Decision Processes [Conf-MDPs,

29] were introduced to model these scenarios and exploit the configuration opportunities. Solving a

Conf-MDP consists of simultaneously optimizing a set of environmental parameters and the agent’s

policy to reach the maximum expected return. In many scenarios, however, the configurator does

not know the agent’s reward, and their intentions are different, leading to new forms of interaction

between the two actors. For instance, imagine we are the owner of a supermarket, and we have to

arrange the products on the shelves. Our objective is to increase the company’s final profit; on the

other hand, a customer aims to spend the shortest time possible inside the supermarket and buy the

indispensable products only. Since we do not know the customer reward function, the only possibility

is to try different dispositions and observe the customers’ reactions. What if we knew what buyers

⇤
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are most interested in? In this case, we can strategically decide how to position other products close

to the popular ones to induce the customer in a more profitable behavior for the supermarket owner.

In this paper, we model these scenarios introducing the Non-Cooperative Markov Decision Processes

(NConf-MDP). This novel framework handles the possibility of having different reward functions for

the agent and the configurator. While Conf-MDP assumes that the configurator acts to help the agent

to optimize its expected reward, an NConf-MDP, instead, allows modeling a wider set of situations,

including the cases in which agent and configurator display a non-cooperative behavior. Obviously,

this setting cannot be addressed with straightforward application of the algorithms designed for

cooperative Conf-MDP. In fact, if the configurator and the agent optimize separately different

objectives, they might not converge to an equilibrium strategy [52, 12, 51, 13]. In this novel setting,

we consider an online learning problem, where the configurator has to select a configuration, within a

finite set of possible configurations, in order to maximize its own return. This framework can be seen

as a leader-follower game, in which the follower (the agent) is selfish and optimizes its own reward

function, and the leader (the configurator) has to decide the best configuration, based on its reward.

Clearly, to adapt its decisions, the configurator has to receive some form of feedback related to the

agent’s behavior. We analyze two settings based on whether the configurator observes just the agent’s

actions or, in addition, a noisy version of the agent’s reward.

Contributions In this paper, we extend the Configurable Markov Decision Process setting to deal

with situations where the configurator and the agent have different reward functions. We call this

new framework the Non-Cooperative Markov Decision Process (NConf-MDP, Section 3). Then, we

formalize the problem of finding the best environment configuration, according to the configurator’s

reward, as a leader-follower game, in which the agent (follower) reacts to each presented configuration

with its best response policy (Section 4). We provide a first algorithm, Action-feedback Optimistic

Configuration Learning (AfOCL), to tackle this problem under the assumption that the configurator

observes the agent’s actions only (Section 5.1). We show AfOCL achieves finite expected regret,

scaling linearly with the number of admissible configurations. As far as we know, this represents

the first problem-dependent regret analysis in a Multi-Agent RL setting. Then, we introduce a

second algorithm, Reward-feedback Optimistic Configuration Learning (RfOCL), that assumes the

availability of a noisy version of the agent’s reward, in addition to the agent’s actions (Section 5.2).

We prove that, under suitable conditions, RfOCL further exploits the structure underlying the decision

process, removing the dependence on the number of configurations. The analysis use novel ideas,

combining the suboptimality gaps of the configurator with those of the agent. Finally, we provide an

experimental evaluation on benchmark domains, inspired by scenarios that motivate the NConf-MDPs

framework (Section 7). The proofs of the results presented in the paper are reported in Appendix B. A

preliminary version of this work was presented at “AAAI-21 Workshop on Reinforcement Learning

in Games” [36].

2 Preliminaries

A finite-horizon Markov Decision Process [MDP, 35] is a tuple M = (S,A, p, µ, r,H) where S
is a finite state space (S = |S|), A is a finite action space (A = |A|), p : S ⇥A⇥ S ! [0, 1]
is the transition model, which defines the density p(s0|s, a) of state s0 2 S when taking action

a 2 A in state s 2 S, µ : S ! [0, 1] is the initial state distribution, r : S ! [0, 1] is the reward

function, and H 2 N�1

is the horizon. A stochastic decision rule ⇡h : S ⇥A ! [0, 1] with h 2 [H]

prescribes the probability ⇡h(a|s) of playing action a 2 A in state s 2 S. A stochastic policy

⇡ = (⇡
1

, · · · ,⇡H) 2 ⇧

H
is a sequence of decision rules, where ⇧

H
is the set of stochastic policies

over the horizon H .

A finite-horizon Configurable Markov Decision Process [Conf-MDP, 29] is defined as CM =

(S,A,P, µ, r,H) and extends the MDP considering a configuration space P instead a single transition

model p. The Q-value of a policy ⇡ 2 ⇧

H
and configuration p 2 P is the expected sum of the

rewards starting from (s, a) 2 S ⇥A at step h 2 [H]:

Q⇡,p
h (s, a) = r(s) + E

sh0⇠p,⇡

"
HX

h0
=h+1

r(sh0
)|sh = s, ah = a

#
,

denoting with Esh0⇠p,⇡ the expectation w.r.t. the state distribution induced by ⇡ and p at step

h0
. The value function is given by V ⇡,p

h (s) = Ea⇠⇡h(·|s)[Q
⇡,p
h (s, a)] and the expected return
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is defined as V ⇡,p
= Es⇠µ[V

⇡,p
1

(s)]. In a Conf-MDP the goal consists in finding a policy ⇡⇤

together with an environment configuration p⇤ so as to maximize the expected return, i.e., (⇡⇤, p⇤) 2
argmax⇡2⇧

H ,p2P V ⇡,p
.

3 Non-Cooperative Conf-MDPs

The definition of Conf-MDP allows modeling scenarios in which agent and configurator share the

same objective, encoded in a single reward function r. In this section, we introduce an extension of

this framework to account for the presence of a configurator having interests that might differ from

those of the agent.

Definition 3.1. A Non-Cooperative Configurable Markov Decision Process (NConf-MDP) is defined
by a tuple NCM = (S,A,P, µ, rc, ro, H), where (S,A,P, µ,H) is a Conf-MDP without reward
and rc, ro : S ! [0, 1] are the configurator and agent (opponent) reward functions, respectively.

Given a policy ⇡ 2 ⇧

H
and a configuration p 2 P , for every (s, a) 2 S ⇥A and h 2 [H] we define

the configurator and agent Q-values as:

Q⇡,p
c,h (s, a) = rc(s) + E

sh0⇠p,⇡

"
HX

h0
=h+1

rc(sh0
)|sh = s, ah = a

#
,

Q⇡,p
o,h(s, a) = ro(s) + E

sh0⇠p,⇡

"
HX

h0
=h+1

ro(sh0
)|sh = s, ah = a

#
.

We denote with V ⇡,p
c,h (s) = Ea⇠⇡h(s)[Q

⇡,p
c,h (s, a)] and V ⇡,p

o,h = Ea⇠⇡h(s)[Q
⇡,p
o,h(s, a)] the value func-

tions and with V ⇡,p
c = Es⇠µ[V

⇡,p
c,1 (s)] and V ⇡,p

o = Es⇠µ[V
⇡,p
o,1 (s)] the expected returns for the

configurator and the agent respectively.

4 Problem Formulation

While for classical Conf-MDPs [29, 27] a notion of optimality is straightforward as agent and config-

urator share the same objective, in an NConf-MDP, they can display possibly conflicting interests.

We assume a sequential interaction between the configurator and the agent that resembles the leader-

follower protocol [10, 6, 34, 38]. First, the configurator (leader) selects an environment configuration

p 2 P , where P is a finite set made of M stochastic transition models P = {p
1

, . . . , pM}. Then

the agent (follower) plays a policy chosen by a best response function f : P ! ⇧

H
, such that:

f(p) 2 argmax⇡2⇧

H V ⇡,p
o . The solution concept that we use is the well-known Stackelberg equi-

librium [43, 15, 30, 32, 19]. It captures the outcome in which the configurator’s transition model

is optimal, under the assumption that the agent will always respond optimally [26]. However, this

definition includes the possibility of ties, i.e., situations in which multiple agent optimal policies

exist, with possibly different performance for the configurator. Therefore, it is necessary to employ

a tie-breaking rule, i.e., a criterion to select one agent best response. Different tie-breaking rules

lead to different Stackelberg equilibria, and the two prevailing solution concepts in the literature

are the Strong Stackelberg Equilibrium (SSE) and the Weak Stackelberg Equilibrium (WSE). A

policy-transition model pair (⇡⇤, p⇤) forms an SSE if ties are broken in favor of the configurator:

p⇤ 2 argmax

p2P
V fS

(p),p
c and ⇡⇤

:= fS
(p) 2 argmax

⇡2f(p)

V ⇡,p
o .

The WSE can be constructed by breaking the ties against the configurator. In the rest of the paper, we

employ the concept of SSE; however, every result can be applied to any deterministic tie-breaking

rule. We call ⇡⇤
p the application of the best response function fS

to a transition model p. Notice

that the goal of the configurator is well-defined, whenever deciding the function fS
. From an online

learning perspective, this goal is to minimize the expected regret:

E[Regret(K)] = E
 X

k2[K]

max

p2P
V ⇡p,p
c � V

⇡pk
,pk

c

�
. (1)

To lighten the notation, in the following, we will denote with ⇡i the agent’s best response policy to the

configuration pi, i.e., ⇡⇤
pi

and with V i
the configurator expected returned attained with configuration

pi and policy ⇡i, i.e., V ⇡i,pi
c . Finally, we denote with V ⇤

= maxi2[M ]

V i
.
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Agent’s Feedback The configurator knows its reward rc, but it does not know the agent reward ro.

At each episode k 2 [K], the configurator selects a configuration pIk 2 P and observes a trajectory

of H steps generated by the agent’s best response policy ⇡Ik . We study two types of feedback:

• Action-feedback (Af). The configurator observes the states and the actions played by the agent

(s
1

, a
1

, . . . , sH�1

, aH�1

, sH), where ah ⇠ ⇡Ik,h(sh).
• Reward-feedback (Rf). The configurator observes the states, the actions played by the agent, and a

noisy feedback of the agent reward function (s
1

, er
1

, a
1

, . . . , sH�1

, erH�1

, aH�1

, sH , erH), where

ah ⇠ ⇡Ik,h(sh) and erh is sampled from a distribution with mean ro(s) and support [0, 1].2

The Rf models situations in which the agent’s reward is known under uncertainty, or it is obtained in

an approximate way through Inverse Reinforcement Learning [33].

Connections with Bandit Algorithms The online problem that we are facing can be seen as a

stochastic multi-armed bandit [25], in which the arms are configurations, and the configurator receives

a random realization of its expected return at every episode. Thus, in principle, it can be solved by

standard algorithms for bandit problems, such as UCB1 [1]. These algorithms are computationally

less demanding than those we will present in the next sections. On the other hand, they suffer regret

that grows logarithmically, i.e., indefinitely, with the number of episodes. Indeed, they do not exploit

either the information regarding the agent’s policy or the structure induced by the agent’s reward

function. We will prove that, instead, the proposed algorithms, which use the problem structure,

suffer bounded regret. Furthermore, our algorithms are combined with UCB1 confidence intervals,

so their regret, at finite time, is never worse than the one of UCB1.

5 Optimistic Configuration Learning

In this section, we present two algorithms for the online learning problem introduced in Section 4. The

first algorithm uses only the collected agent decisions to optimistically learn the best configuration

(Section 5.1). In the second algorithm, we also use the noisy reward feedback to construct an

algorithm that leverages the structure that links together all the transition probability models: the

agent’s reward function ro (Section 5.2). In Appendix C, we provide some hints about the adversarial

case to illustrate the additional complexities that arise. In the adversarial setting, the agent can play a

different policy at each step, inside the set of possible policies that satisfy the SSE.

5.1 Action-feedback Optimistic Configuration Learning

We start with the action-feedback (Af) setting, in which the configurator observes the agent’s actions

only. The idea at the basis of the algorithm we propose, Action-feedback Optimistic Configuration
Learning (AfOCL), is to maintain, for each configuration, a set of plausible policies that contains an

agent’s best response policy. The configurator plays the transition model that maximizes an optimistic

approximation of its value function. Specifically, for every i 2 [M ], k 2 [K], and h 2 [H] we denote

with Ai
k,h(s) ✓ A the set of plausible actions in state s at step h for configuration pi at the beginning

of episode k. For every model pi, the first time we visit an (s, h)-pair and observe the agent’s action

a ⇠ ⇡i,h(·|s), we set Ai
k,h(s) = {a}. For the non-visited (s, h)-pairs, we leave Ai

k,h(s) = A. Based

on this, we can compute an optimistic approximation

eV i
k,h of the configurator value function V i

h :

eV i
k,h(s) = rc(s) + max

a2Ai
k,h(s)

X

s02S
pi(s

0|s, a)eV i
k,h+1

(s0), (2)

and

eV i
k,H(s) = rc(s). eV i

k,h can be computed applying a value-iteration-like algorithm [35] that

employs the iterate as in Equation (2).

3

Clearly, if the agent is playing deterministically, it holds that

Ai
k,h(s) = {⇡i,h(s)} for all visited (s, h)-pairs and, consequently,

eV i
k,h(s) � V i

h(s). Instead, if the

agent is playing stochastically, we possibly observe different actions whenever visiting (s, h) and

we record just the first one. The following lemma shows that even for stochastic agents, if the SSE

tie-breaking rule is employed,

eV i
k,h is optimistic.

2

Clearly, the results we present can be directly extended to subgaussian distributions on the reward.

3

Notice that the computational complexity decreases as the number of visited states increases and, in any case,

is bounded by that of value iteration O �

HS2A
�

. Therefore, the time complexity of AfOCL is O �

KMHS2A
�

.
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Algorithm 1 Action-feedback Optimistic Configuration Learning (AfOCL).

1: Input: S, A, H , P = {p
1

, . . . , pM}
2: Initialize Ai

1,h(s) = A for all s 2 S , h 2 [H], and i 2 [M ]

3: for episodes 1, 2, . . . ,K do
4: Compute

eV i,UCB

k for all i 2 [M ]

5: Compute

eV i
k for all i 2 [M ]

6: Play pIk with Ik 2 argmaxi2[M ]

min{eV i
k , eV

UCB

k }
7: Observe (sk,1, ak,1, . . . , sk,H�1

, ak,H�1

, sk,H)

8: Compute the plausible actions for all s 2 S and h 2 [H]:

Ai
k+1,h(s) =

(

{ak,h} if i = Ik and s = sk,h and Nk,h(s) = 0

Ai
k,h(s) otherwise

9: end for

Lemma 5.1. The value function eV i
k,h(s) computed as in Equation (2) is such that eV i

k,h(s) � V i
h(s)

for all s 2 S , h 2 [H], and i 2 [M ].

In addition, we compute the confidence interval for UCB1 looking at the transition models as arms:

eV i,UCB

k =

¯V i
k +H

p
2 log k/Ni,k, where

¯V i
k is the sample mean of the observed return for model pi

and Ni,k is the number of times the algorithm plays model i up to episode k. Thus, at each episode

k 2 [K] the configurator plays the transition model pIk maximizing the optimistic approximation:

Ik 2 argmax

i2[M ]

min{eV i
k , eV

i,UCB

k }.

The pseudocode of AfOCL is reported in Algorithm 1.

Regret Guarantees We now provide an expected regret bound for the AfOCL algorithm. If the

agent’s policy ⇡i is deterministic, it is not hard to get convinced that AfOCL suffers bounded regret

since whenever an (s, h)-pair is visited under a pi, the agent reveals its (deterministic) policy ⇡i.

Thus, either an (s, h)-pair is visited with high probability, or it will impact only marginally on the

performance. The main challenge arises when the agent is playing a stochastic policy ⇡i for some

pi. AfOCL just memorizes the first observed action for each (s, h), pretending the agent’s policy to

be deterministic. Let b⇡i be the policy that plays the action memorized by AfOCL at the end of the

K episodes, filled with the true agent’s policy for the non-visited (s, h)-pairs. By construction, the

support of b⇡i is contained into the support of the true agent’s policy ⇡i. Clearly, if ⇡i is optimal for

the agent reward, b⇡i is too. Furthermore, since the agent and the configurator are playing an SSE,

b⇡i will lead to the same configurator’s performance as ⇡i. Indeed, if this were not the case, there

would exist another deterministic policy optimal for the agent, leading to higher performance for the

configurator, contradicting the definition of SSE. The following result shows that by switching ⇡i

with b⇡i changes the regret just by a multiplicative factor depending on the mismatch between the

visitation distributions induced by the two policies, di,h and

bdi,h respectively.

Theorem 5.1 (Regret of AfOCL). Let NCM = (S,A,P, µ, rc, ro, H) with P = {p
1

, . . . , pM} be
the M configurations. The expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)]  O
 
min

(
H2

X

i2[M ]:�i>0

log(K)

�i

| {z }
UCB1 regret

, MH3S2⇢

| {z }
AfOCL regret

)!
, (3)

where ⇢ is the maxi2[M ]:�i>0

E
h
maxs2S maxh2[H]

bdi,h(s)
di,h(s)

i
.

The result might be surprising as the regret is constant and independent of the suboptimality gaps

between the configurations, i.e., �i = V ⇤ � V i
for every i 2 [M ]. As supported by intuition, we

need to spend more time discarding MDPs that are more similar in performance to the optimal one.

Formally, the maximum number of times a suboptimal configuration pi is played is proportional to

1/�i (and not proportional to 1/�2

i as in standard bandits). This is because we just need one visit to

5



every reachable state. We underline that the term ⇢ , which indicates the expected ratio between the

estimated policy’s induced states distribution and real policy’s induced states distribution, is equal to

1 when the agent plays a deterministic policy and bounded by SH in the worst case (see Lemma B.3).

As far as we know, Theorem 5.1 is the first problem-dependent result for regret minimization for a

multi-entity MDP. More details on the proof are given in the Appendix B.

5.2 Reward-feedback Optimistic Configuration Learning

The main drawback of AfOCL is that every transition model is treated separately, preventing from

employing the underlying structure of the environment, which is represented by the agent reward

function ro. Indeed, if the configurator knew ro, it could find the optimal configuration with no need

for interaction by simply computing an agent’s best response policies for the SSE.

The algorithm we propose in this section, Reward-feedback Optimistic Configuration Learning
(RfOCL), employs the reward feedback (Rf), i.e., at every interaction, the configurator can see also

a noisy version of the agent’s reward function. The crucial point is that ro is the same regardless

of the chosen configuration, and, for this reason, it provides a link between them. Specifically, for

every k 2 [K] and s 2 S, RfOCL maintains a confidence interval for the agent reward function

Rk(s) = [ro,k(s), ro,k(s)] obtained using the samples collected up to episode k � 1 regardless
of the played configuration. We apply Höeffding’s inequality to build the confidence interval:

bro,k(s)±
q

log(2SHk2
)

max{Nk(s),1} , where Nk(s) is the number of visits of state s in the first k � 1 episodes,

and bro,k(s) is the sample mean of the observed rewards for state s up to episode k. Given the

estimated reward, for every configuration i 2 [M ], we can compute a confidence interval for the

agent’s Q-values Qk,h(s, a) = [Qi

o,k,h
(s, a), Q

i

o,k,h(s, a)], by simply applying the Bellman equation:

Qi

o,k,h
(s, a) = ro,k(s) +

X

s02S
pi(s

0|s, a)max

a02A
Qi

o,k,h+1

(s0, a0),

Q
i

o,k,h(s, a) = ro,k(s) +
X

s02S
pi(s

0|s, a)max

a02A
Q

i

o,k,h+1

(s0, a0),

and Qi

o,k,H
(s, a) = ro,k(s) and Q

i

o,k,H(s, a) = ro,k(s). If the true reward function belongs to the

confidence interval, i.e., ro 2 Rk, then the true Q-value belongs to the corresponding confidence

interval, i.e., Qi
h 2 Qk,h. Consequently, we can use Qk,h to restrict the set of plausible actions in

a state without actually observing the agent playing the action in that state. Indeed, the plausible

actions are those that have a Q-value upper bound larger than the maximum Q-value lower bound:

eAi
k,h(s) =

⇢
a 2 A : Q

i

o,k,h(s, a) � max

a02A
Qi

o,k,h
(s, a0)

�
. (4)

In other words, if the upper Q-value of an action is smaller than the largest lower Q-value, it cannot

be the greedy action, and it is discarded. Clearly, if we observe, for the first time, the agent playing

an action in (s, h) at episode k we can reduce the plausible actions to the singleton ak,h, as in the

action-feedback setting (Section 5.1). Based on this refined definition of plausible actions, we can

compute the optimistic estimate

eV i
k,h of the configurator value function V i

h as in Equation (2) and

proceed playing the optimistic configuration.

The pseudocode of RfOCL is reported in Algorithm 2. It is worth noting that we need to keep track

of the states that have been already visited because for those, we know the agent’s action, and there is

no need to apply Equation (4). This is why we introduce the counts Nk,h(s)4

.

Regret Guarantees We now give a regret bound for the RfOCL algorithm. Obviously, the same

arguments for AfOCL can also be applied for this extended version, and then the regret bound of

Theorem 5.1 is valid for RfOCL. Moreover, for this algorithm, we prove that the regret, under the

following assumption, does not depend on the number of configurations.

Assumption 1. There exists ✏ > 0 such that: mini2[M ]

mins2S maxh2[H]

dih(s) � ✏, where dih(s)
is the probability of visiting the state s 2 S at time h 2 [H] in configuration pi under the agent’s
best response policy ⇡i.

4

The value iteration dominates the computational complexity of an individual iteration of RfOCL (steps 5

and 9), leading, as for AfOCL, to O �

KMHS2A
�

.
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Algorithm 2 Reward-feedback Optimistic Configuration Learning (RfOCL)

1: Input: S, A, H , P = {p
1

, . . . , pM}
2: Initialize Ai

1,h(s) = A for all s 2 S , h 2 [H], and i 2 [M ]

3: Initialize ro,1(s) = 1, ro,1(s) = 0, and N
1,h(s) = 0 for all s 2 S and h 2 [H]

4: for episodes 1, 2, . . . ,K do
5: Compute

eV i,UCB

k for all i 2 [M ]

6: Compute

eV i
k for all i 2 [M ]

7: Play pIk with Ik 2 argmaxi2[M ]

min{eV i
k , eV

UCB

k }
8: Observe (sk,1, erk,1, ak,1, . . . , sk,H�1

, erk,H�1

, ak,H�1

, sk,H , erk,H)

9: Compute ro,k+1

(s), ro,k+1

(s), and Nk+1,h(s) for all s 2 S and h 2 [H] using erk,1 · · · erk,H
10: Compute Qi

o,k+1,h
(s, a) and Q

i

o,k+1,h(s, a) for all s 2 S , a 2 A, h 2 [H], and i 2 [M ]

11: Compute the plausible actions for all s 2 S and h 2 [H]:

Ai
k+1,h(s) =

8

>

<

>

:

{ak,h} if i = Ik and s = sk,h and Nk,h(s) = 0

Ai
k,h(s) if Nk,h(s) > 0

eAi
k+1,h(s) otherwise

with

eAi
k+1,h(s) as in Equation (4).

12: end for

This assumption requires that in every model pi 2 P the agent has non-zero probability, in some

step h, to visit every state s. This allows shrinking the confidence intervals for the reward of every

state to estimate the agent’s policy correctly, regardless of the played configuration. Notice that this

assumption is less strict than requiring the well-known ergodicity of the Markov process induced by

any policy, used in many algorithms [9, 21, 44].

5

Under Assumption 1 we prove the following regret

guarantee.

Theorem 5.2 (Regret of RfOCL). Let NCM = (S,A,P, µ, rc, ro, H) with P = {p
1

, . . . , pM} be
the M configurations. Under Assumption 1, the expected regret of RfOCL at every episode K > 0 is
bounded by:

E[Regret(K)]  O
 
min

(
H2

X

i2[M ]:�i>0

log(K)

�i

| {z }
UCB1 regret

, MH3S2⇢

| {z }
AfOCL regret

, K�+

⇡2

3

| {z }
RfOCL regret

)!
,

where ⇢ is defined as in Theorem 5.1, K is the smallest integer solution of the inequality K � 1 +✓
2H2S2

log(2SHK
2
)

2�

2
Q

+

q
K�1

2

log(SHK
2

)

◆
1

✏ , � = maxi2[M ]

�i, i.e., the maximum suboptimality

gap, and �Q is the minimum positive gap of the agent’s Q-values (see Appendix B).

The regret bound removes the dependence on the number of models M , as K is clearly independent

of M , but it introduces, as expected, a dependence on the minimum visitation probability ✏. The

proof of the result is reported in Appendix B. Since RfOCL exploits additional information compared

to AfOCL and the set of plausible actions Ai
k,h of RfOCL are subsets of those of AfOCL, the regret

bound AfOCL (Theorem 5.1) also holds for RfOCL. Thus, we can take as regret bound for RfOCL

the minimum between K�+

⇡2

3

and MH3S2

. We underline that, as far as we know, this is the first

proof that takes into consideration the sub-optimality gap of the uncontrollable entity, the agent, and

the sub-optimality gap of the controllable entity, the configurator. This permits to derive a problem
dependent regret bound. We think that similar techniques can also be of interest for Markov games.

6 Related Works

The idea of altering the environment dynamics to improve the agent’s learning experience has been

exploited before the introduction of Conf-MDPs. Curriculum learning [8] provides the agent with

5

Moreover, the configurator can force this assumption since it has the control over the environmental

transition model.

7



0 1000 2000

0

200

400

600

Round

C
um

ul
at

iv
e

re
gr

et

M = 10

0 2000 4000

0

500

1000

1500

2000

Round

M = 30

UCB1 AfOCL RfOCL

Figure 1: Cumulative regret for the Gridworld experiment.

50 runs, 98% c.i.
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Figure 2: Cumulative regret for the

Gridworld experiment without ergod-

icity. 50 runs, 98% c.i.

a sequence of environments, of increasing difficulty, to shape the learning process with possible

benefits on the learning speed [e.g., 14, 16]. Although the learning process is carried out in a different

environment, the configuration is typically performed in simulation only. The setting more similar

to Non-Conf-MDP is the one presented in [47], where the configurator and the agent have opposite

reward functions (similar to a zero-sum game).

In the Conf-MDP framework, instead, the configuration opportunities are an intrinsic property of

the environment [29]. The initial approaches entitled the agent of the configuration activity and,

consequently, this task was totally auxiliary to its learning experience [29, 39, 27]. More recently, it

has been observed that environment configuration can be actuated even by an external entity, opening

new opportunities for the application of environment configurability, including settings in which the

configurator’s interest conflicts with those of the agent. For instance, in [28] the configurator acts on

the environment to induce the agent to reveal its capabilities in terms of perception and actuation.

Instead, in [17] a threatener entity can change the transition probabilities either in a stochastic or

adversarial manner. More generally, environment configuration carried out by an external entity

has been studied in the field of planning as a form of environment design [48]. Thus, our NConf-

MDP unifies these settings, allowing for arbitrary agent’s and configurator’s reward functions. An

interesting connection is established with the robust control literature [31, 20]. Whenever the two

reward functions are opposite, i.e., the interaction between the agent and the configuration is fully

competitive, the resulting equilibrium corresponds to a robust policy. Indeed, while the agent tries to

maximize its expected return, the configurator places the agent in the worst possible environment.

Configurable environments (cooperative and non-cooperative) share similarities with environment
design [49]. At a high level, the two frameworks share analogous objectives: they both aim at

determining an environment with a certain goal that can differ from that of the agent. However,

there are some notable differences. In particular, the classical environment design formulation [49]

assumes that the configurator (called “interested party”) knows the agent’s best response function,

while in our approach, we learn it by interaction. Nevertheless, the general environment design makes

no assumption about the underlying environment, that might not me an MDP. Instead, [22] limit to

MDPs and considers a form of cooperative environment design in which the goal is to maximize the

agent’s performance. Interestingly, some works [22, 37] also account for a cost function to penalize

expensive environment configurations.

The design of our approaches is based on the OFU principle used for stochastic multi-armed ban-

dits [e.g., 23, 1, 18, 25] and MDPs [e.g., 2, 7, 3]. Moreover, our learning setting with reward feedback

is related to structured bandits or bandits with correlated arms.

6

Interestingly, for certain structures, it

is known that bounded regret is achievable [11, 24], a property that is enjoyed by both our algorithms.

Our setting is also close to the Stochastic Games model, in which two or more agents act in an MDP

to maximize their own reward functions. Recently, the stochastic game’s framework gains growing

interest [5, 4, 50], especially in the offline setting i.e., we can control all the agents. For this reason,

these approaches do not apply to our setting, where we have the control of the configurator only.

6

In our case, playing a single configuration provides information about the opponent’s reward, which, in turn,

provides information about the value of all configurations.

8
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Figure 3: Cumulative regret as a function of the episodes for the Student-Teacher experiment. 50

runs, 98% c.i.

Although some works tackle the online setting [44, 45, 41], where we can control only one agent, all

of these algorithms work in the zero-sum setting only.

7 Experiments

In this section, we provide the experimental evaluation of our algorithms in two different settings:

when the policies are stochastic and when the policies are deterministic. For these experiments, we

provide two novel environments: Configurable Gridworld and the Student-Teacher. We compare the

algorithms with the standard (theoretical) implementation of UCB1 [1]. The environment description

and additional results can be found in Appendix D.

Stochastic policies The Configurable Gridworld is a configurable version of a classic 3⇥ 3 Grid-

world. The agent’s starting state is in the cell (0, 1), and its goal is to minimize the number of steps

required to reach the exit located in the cell (2, 1). The configurator takes reward 1 when the agent

occupies the central cell (1, 1) and 0 otherwise. In a classic Gridworld, the optimal policy would be

trivial, as the agent would proceed straight to the exit. In this Configurable Gridworld, instead, the

configurator can set the “power” p of a stochastic obstacle located in the cell (1, 1). When the agent

is in that cell and performs action “go right” to reach the exit, it will hit the obstacle, and will remain

in the same position with probability p. The configurator’s goal is to tune this probability to keep the

agent in the central cell for the maximum number of steps.

The M configurations differ in the probability p and are obtained by a regular discretization of

[0, 1]. In the first experiment (Figure 1), we considered 10 and 30 configurations with a number

of episodes K = 2000 and K = 4000 and horizon H = 10. For this experiment, the agent plays

optimal stochastic policies. We can see that AfOCL and RfOCL suffer constant regret, whereas

UCB1 displays a logarithmic regret, as expected. Specifically, RfOCL outperforms AfOCL and stops

playing suboptimal configuration in less than 500 episodes in both cases. This can be explained

because, being Assumption 1 fulfilled (in fact, the agent has the probability 0.1 of failing its action),

RfOCL is able to exploit the underlying structure of the problem more effectively.

Non-Ergodicity In Figure 2, we have only three configurations designed to induce an optimal

agent’s policy that generates a non-ergodic Markov chain. In this case, the optimal policies are

deterministic, and we violate Assumption 1. For this reason, we observe that AfOCL and RfOCL

display very similar behavior but still significantly better than UCB1.

Deterministic policies: Student-Teacher The Student-Teacher environment models a simple

interaction between a student and a teacher. There is a set of exercises, with a different level of

teacher hardness and student hardness each. The teacher has to decide the optimal sequence of

exercises in order to make the student acquire as much knowledge as possible. The student’s goal is

to maximize the number of exercises and to reduce the hardness of the proposed exercises. At each

timestep, the student decides whether to answer the exercise or not. If it answers, it receives a reward

equal to the level of “correctness” of the exercise, the teacher receives a reward corresponding to the

level of exercise’s “teacher hardness”, and they end up to the next exercise. If the student does not

9



answer, the student and the teacher will receive �1, and with a probability of 0.7, the next exercise

will be easier to solve. In Figure 3, the results with M 2 {40, 60, 100} and horizon H = 10 are

shown. The configurations represent the distribution over the next exercise, given a positive answer.

In every run, we change the student hardness of the exercises. We observe that both AfOCL and

RfOCL suffer significantly less regret compared to UCB1 and tend to converge to constant regret

as expected. It is interesting to observe that, in line with our analysis, the gap between AfOCL and

RfOCL appears more evident as the number of configurations grows.

8 Conclusions

In this paper, we have introduced an extension of the Conf-MDP framework to account for possible

non-cooperative interaction between the agent and the configurator. We focused on an online learning

problem in this new setting, proposing two regret minimization algorithms for identifying the best

environment configuration within a finite set, based on the principle of optimism in the face of

uncertainty. We proved that even when the agent’s policy is stochastic, and the configurator observes

the agent’s actions, it is possible to achieve finite regret that depends linearly on the admissible number

configurations. Furthermore, we illustrated that we can remove this dependence if the configurator

observes a possibly noisy version of the agent’s reward and under sufficient regularity conditions on

the environment. This paper also gives interesting insights on the importance of properly exploiting

the available feedback to construct efficient algorithms. Moreover, as far as we know, the ones we

have presented are the first problem-dependent regret results for multi-entity MDPs. The experimental

evaluation showed that our algorithms display a convergence speed significantly faster than UCB1,

and RfOCL tends to outperform AfOCL thanks to the exploitation of the additional structure. Future

research directions include a deeper analysis of the adversarial setting, as well as the application to

inverse reinforcement learning.

Limitations and Societal Impact

Methods that incentive the manipulation of users’ behavior can have, generally speaking, a negative

societal impact, when used, for instance, in a marketing campaign. Nevertheless, our work is mainly

theoretical and, at the present level, can hardly be used in a malevolent way. Another relevant aspect

is the cost of environment configuration. We are aware that reconfiguring the environment is an

activity that typically leads to higher costs compared with policy learning. However, we did not

consider this aspect in the formalization of the Non-Cooperative Conf-MDP since it would possibly

make the problem more complex (like, for instance, when considering bandits with switching costs).
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