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Abstract: Problems which require both long-horizon planning and continuous
control capabilities pose significant challenges to existing reinforcement learning
agents. In this paper we introduce a novel hierarchical reinforcement learning
agent which links temporally extended skills for continuous control with a forward
model in a symbolic discrete abstraction of the environment’s state for planning.
We term our agent SEADS for Symbolic Effect-Aware Diverse Skills. We formulate
an objective and corresponding algorithm which leads to unsupervised learning of
a diverse set of skills through intrinsic motivation given a known state abstraction.
The skills are jointly learned with the symbolic forward model which captures the
effect of skill execution in the state abstraction. After training, we can leverage
the skills as symbolic actions using the forward model for long-horizon planning
and subsequently execute the plan using the learned continuous-action control
skills. The proposed algorithm learns skills and forward models that can be used
to solve complex tasks which require both continuous control and long-horizon
planning capabilities with high success rate. It compares favorably with other
flat and hierarchical reinforcement learning baseline agents and is successfully
demonstrated with a real robot. Project page: https://seads.is.tue.mpg.de

Keywords: temporally extended skill learning, hierarchical reinforcement learning,
diverse skill learning

1 Introduction

Reinforcement learning (RL) agents have been applied to difficult continuous control and discrete
planning problems such as the DeepMind Control Suite [1], StarCraft II [2], or Go [3] in recent
years. Despite this tremendous success, tasks which require both continuous control capabilities and
long-horizon discrete planning are classically approached with task and motion planning [4]. These
problems still pose significant challenges to RL agents [5]. An exemplary class of environments
which require both continuous-action control and long-horizon planning are physically embedded
games as introduced by [5]. In these environments, a board game is embedded into a physical
manipulation setting. A move in the board game can only be executed indirectly through controlling
a physical manipulator such as a robotic arm. We simplify the setting of [5] and introduce physically
embedded single-player board games which do not require to model the effect of an opponent. Our
experiments support the findings of [5] that these environments are challenging to solve for existing
flat and hierarchical RL agents. In this paper, we propose a novel hierarchical RL agent for such
environments which learns skills and their effects in a known symbolic abstraction of the environment.

As a concrete example for a proposed embedded single-player board game we refer to the Lights-
OutJaco environment (see Fig. 1). Pushing a field on the LightsOut board toggles the illumination
state (on or off ) of the field and its non-diagonal neighboring fields. A field on the board can only be
pushed by the end effector of the Jaco robotic arm. The goal is to reach a board state in which all
fields are off. The above example also showcases the two concepts of state and action abstraction in
decision making [6]. A state abstraction function Φ(st) only retains information in state st which
is relevant for a particular decision making task. In the LightsOut example, to decide which move
to perform next (i.e., which field to push), only the illumination state of the board is relevant. A
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Figure 1: LightsOut (with on (red) and off (gray) fields) and TileSwap (fields in a rhombus are
swapped if pushed inside) board games embedded into physical manipulation settings. A move in the
board game can only indirectly be executed through controlling a manipulator.

move can be considered an action abstraction: A skill, i.e. high-level action (e.g., push top-left field),
comprises a sequence of low-level actions required to control the robotic manipulator.

We introduce a two-layer hierarchical agent which assumes a discrete state abstraction zt = Φ(st) ∈
Z to be known and observable in the environment, which we in the following refer to as symbolic
observation. In our approach, we assume that state abstractions can be defined manually for the
environment. For LightsOut, the symbolic observation corresponds to the state of each field (on/off).
We provide the state abstraction as prior knowledge about the environment and assume that skills
induce changes of the abstract state. Our approach then learns a diverse set of skills for the given
state abstraction as action abstractions and a corresponding forward model which predicts the effects
of skills on abstract states. In board games, these abstract actions relate to moves. We jointly
learn the predictive forward model qθ and skill policies π(a | st, k) for low-level control through an
objective which maximizes the number of symbolic states reachable from any state of the environment
(diversity) and the predictability of the effect of skill execution. Please see Fig. 2 for an illustration of
the introduced temporal and symbolic hierarchy. The forward model qθ can be leveraged to plan a
sequence of skills to reach a particular state of the board (e.g., all fields off), i.e. to solve tasks. We
evaluate our approach using two single-player board games in environments with varying complexity
in continuous control. We demonstrate that our agent learns skill policies and forward models suitable
for solving the associated tasks with high success rate and compares favorably with other flat and
hierarchical RL baseline agents. We also demonstrate our agent playing LightsOut with a real robot.

In summary, we contribute the following: (1) We formulate a novel RL algorithm which, based on a
state abstraction of the environment and an information-theoretic objective, jointly learns a diverse
set of continuous-action skills and a forward model capturing the temporally abstracted effect of skill
execution in symbolic states. (2) We demonstrate the superiority of our approach compared to other
flat and hierarchical baseline agents in solving complex physically-embedded single-player games,
requiring high-level planning and continuous control capabilities. We provide additional materials,
including video and code, at https://seads.is.tue.mpg.de.

2 Related work

Diverse skill learning and skill discovery. Discovering general skills to control the environment
through exploration without task-specific supervision is a fundamental challenge in RL research.
DIAYN [7] formulates skill discovery using an information-theoretic objective as reward. The
agent learns a skill-conditioned policy for which it receives reward if the target states can be well
predicted from the skill. VALOR [8] proposes to condition the skill prediction model on the complete
trajectory of visited states. Warde-Farley et al. [9] train a goal-conditioned policy to reach diverse
states in the environment. Variational Intrinsic Control [10] proposes to use an information-theoretic
objective to learn a set of skills which can be identified from their initial and target states. Relative
Variational Intrinsic Control [11] seeks to learn skills relative to their start state, aiming to avoid
skill representations that merely tile the state space into goal state regions. Both approaches do not
learn a forward model on the effect of skill execution like our approach. Sharma et al. [12] propose a
model-based RL approach (DADS) which learns a set of diverse skills and their dynamics models
using mutual-information-based exploration. While DADS learns skill dynamics as immediate
behavior q(st+1|st, k), we learn a transition model on the effect of skills q(zT |z0, k) in a symbolic
abstraction, thereby featuring temporal abstraction.
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(a) Temporal abstraction induced by skills π(· | ·, k) with associ-
ated forward forward model qθ on symbolic observations z(n).
Executing a skill until termination can be interpreted as a single
action k transforming the symbolic observation z(n) → z(n+1)

denoted by the bracketed (·) time indices. Here, two skills
(k1, k2) are executed subsequently on the environment until ter-
mination, taking (T1, T2) steps, respectively. The temporally
abstract effect of skill execution on the symbolic observation z
is captured by the forward model qθ .

(b) Symbolic abstraction Φ and tempo-
ral skill abstraction demonstrated on the
LightsOutJaco environment. The sym-
bolic observation z represents the discrete
state of the board while s contains both the
board state and the state of the Jaco manipu-
lator. Executing skill k by applying the skill
policy π(·|·, k) until termination leads to a
change of the state of the board, which is
modeled by qθ with a single action k.

Figure 2: We aim to learn skills with associated policies π(at|st, k) which lead to diverse and
predictable (by the forward model qθ) transitions in a symbolic abstraction z = Φ(s) of the state s.

Hierarchical RL. Hierarchical RL can overcome sparse reward settings and time extended tasks by
breaking the task down into subtasks. Some approaches such as methods based on MAXQ [13, 14]
assume prior knowledge on the task-subtask decomposition. In SAC-X [15], auxiliary tasks assist
the agent in learning sparse reward tasks and hierarchical learning involves choosing between tasks.
Florensa et al. [16] propose to learn a span of skills using stochastic neural networks for representing
policies. The policies are trained in a task-agnostic way using a measure of skill diversity based on
mutual information. Specific tasks are then tackled by training an RL agent based on the discovered
skills. Feudal approaches [17] such as HIRO [18] and HAC [19] train a high-level policy to provide
subgoals for a low-level policy. In our method, we impose that a discrete state-action representation
exists in which learned skills are discrete actions, and train the discrete forward model and the
continuous skill policies jointly. Several approaches to hierarchical RL are based on the options
framework [20] which learns policies for temporally extended actions in a two-layer hierarchy.
Learning in the options framework is usually driven by task rewards. Recent works extend the
framework to continuous spaces and discovery of options (e.g. [21, 22]). HiPPO [23] develop an
approximate policy gradient method for hierarchies of actions. HIDIO [24] learns task-agnostic
options using a measure of diversity of the skills. In our approach, we also learn task-agnostic (for the
given state abstraction) hierarchical representations using a measure of intrinsic motivation. However,
an important difference is that we do not learn high-level policies over options using task rewards, but
learn a skill-conditional forward model suitable for planning to reach a symbolic goal state. Jointly,
continuous policies are learned which implement the skills. Several approaches combine symbolic
planning in a given domain description (state and action abstractions) with RL to execute the symbolic
actions [25, 26, 27, 28, 29]. Similar to our approach, the work in Guan et al. [29] learns low-level
skill policies using an information-theoretic diversity measure which implement known symbolic
actions. Differently, we learn the action abstraction and low-level skills given the state abstraction.

Representation learning for symbolic planning. Some research has been devoted to learning
representations for symbolic planning. Konidaris et al. [30] propose a method for acquiring a
symbolic planning domain from a set of low-level options which implement abstract symbolic actions.
In [31] the approach is extended to learning symbolic representations for families of SMDPs which
describe options in a variety of tasks. Our approach learns action abstractions as a set of diverse skills
given a known state abstraction and a termination condition which requires abstract actions to change
abstract states. Toro Icarte et al. [32] learn structure and transition models of finite state machines
through RL. Ugur and Piater [33] acquire symbolic forward models for a predefined low-level action
repertoire in a robotic manipulation context. Chitnis et al. [34] concurrently learn transition models
on the symbolic and low levels from demonstrations provided in the form of hand-designed policies,
and use the learned models for bilevel task and motion planning. The approach also assumes the
state abstraction function to be known. In [35] a different setting is considered in which the symbolic
transition model is additionally assumed known and skill policies that execute symbolic actions
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are learned from demonstrations. Other approaches such as DeepSym [36] or LatPlan [37] learn
mappings of images to symbolic states and learn action-conditional forward models. In [37] symbolic
state-action representations are learned from image observations of discrete abstract actions (e.g.
moving puzzle tiles to discrete locations) which already encode the planning problem. Our approach
concurrently learns a diverse set of skills (discrete actions) based on an information-theoretic intrinsic
reward and the symbolic forward model. Differently, in our approach low-level actions are continuous.

3 Method

Our goal is to learn a hierarchical RL agent which (i) enables high-level, temporally abstract planning
to reach a particular goal configuration of the environment (as given by a symbolic observation) and
(ii) features continuous control policies to execute the high-level plan. Let S,A denote the state and
action space of an environment, respectively. In general, by Z = {0, 1}D we denote the space of
discrete symbolic environment observations z ∈ Z and assume the existence of a state abstraction
Φ : S → Z . The dimensionality of the symbolic observation D is environment-dependent. For
the LightsOutJaco environment, the state s = [q, q̇, z] ∈ S contains the robot arms’ joint positions
and velocities (q, q̇) and a binary representation of the board z ∈ {0, 1}5×5. The action space A is
equivalent to the action space of the robotic manipulator. In the LightsOutJaco example, it contains
the target velocity of all actuable joints. The discrete variable k ∈ K = {1, ...,K} refers to a
particular skill, which we will detail in the following. The number of skills K needs to be set in
advance, but can be chosen larger than the number of actual skills.

We equip our agent with symbolic planning and plan execution capabilities through two components:
First, a forward model ẑ = f(z, k) = argmaxz′ qθ(z

′ | z, k) allows to enumerate all possible
symbolic successor states ẑ of the current symbolic state z by iterating over the discrete variable
k. This allows for node expansion in symbolic planners. Second, a family of discretely indexed
policies π : A × S × K → R, at ∼ π(at | st, k) aims to steer the environment into a target
state sT for which it holds that Φ(sT ) = ẑ, given that Φ(s0) = z and ẑ = argmaxz′ qθ(z

′ | z, k)
(see Fig. 2). We can relate this discretely indexed family of policies to a set of K options [20].
An option is formally defined as a triple ok = (Ik, βk, πk) where Ik ⊆ S is the set of states in
which option k is applicable, βk : S × S → [0, 1], βk(s0, st) parametrizes a Bernoulli probability
of termination in state st when starting in s0 (f.e. when detecting an abstract state change) and
πk(a | st) : S → ∆(A) is the option policy on the action space A. We will refer to the option policy
as skill policy in the following. We assume that all options are applicable in all states, i.e., Ik = S.
An option terminates if the symbolic state has changed between s0 and st or a timeout is reached, i.e.,
βk(s0, st) = 1[Φ(s0) 6= Φ(st) ∨ t = tmax]. To this end, we append a normalized counter t/tmax

to the state st. We define the operator apply as sT = apply(E, π, s0, k) which applies the skill
policy π(at | st, k) until termination on environment E starting from initial state s0 and returns the
terminal state sT . We also introduce a bracketed time notation which abstracts the effect of skill
execution from the number of steps T taken until termination s(n) = apply(E, π, s(n−1), k) with
n ∈ N0 (see Fig. 2a). The apply operator can thus be rewritten as s(1) = apply(E, π, s(0), k) with
s(0) = s0, s(1) = sT . The symbolic forward model qθ(zT | z0, k) aims to capture the relation of
z0, k and zT for sT = apply(E, π, s0, k) with z0 = Φ(s0), zT = Φ(sT ). The model factorizes
over the symbolic observation as qθ(zT | k, z0) =

∏D
d=1 qθ([zT ]d | k, z0) =

∏D
d=1 Bernoulli([αT ]d).

The Bernoulli probabilities αT : Z ×K → (0, 1)D are predicted by a neural component. We use a
multilayer perceptron (MLP) fθ which predicts the probability pflip of binary variables in z0 to toggle
pflip = fθ(z0, k). The index operator [x]d returns the dth element of vector x.

Objective For any state s0 ∈ S with associated symbolic state z0 = Φ(s0) we aim to learn
K skills π(a | st, k) which maximize the diversity in the set of reachable successor states {zkT =
Φ(apply(E, π, s0, k))|k ∈ K}. Jointly, we aim to model the effect of skill execution with the forward
model qθ(zT | z0, k). Inspired by Variational Intrinsic Control [10] we take an information-theoretic
perspective and maximize the mutual information I(zT , k | z0) between the skill index k and the
symbolic observation zT at skill termination given the symbolic observation z0 at skill initiation, i.e.,
max I(zT , k | z0) = maxH(zT | z0)−H(zT | z0, k). The intuition behind this objective function
is that we encourage the agent to (i) reach a diverse set of terminal observations zT from an initial
observation z0 (by maximizing the conditional entropy H(zT | z0)) and (ii) behave predictably such
that the terminal observation zT is ideally fully determined by the initial observation z0 and skill
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index k (by minimizing H(zT | z0, k)). We reformulate the objective as an expectation over tuples
(s0, k, sT ) by employing the mapping function Φ as I(zT , k | z0) = E(s0,k,sT )∼P

[
log p(zT | z0,k)

p(zT | z0)

]
with zT := Φ(sT ), z0 := Φ(s0) and replay buffer P . Similar to [12] we derive a lower bound on
the mutual information, which is maximized through the interplay of a RL problem and maximum
likelihood estimation. To this end, we first introduce a variational approximation qθ(zT | z0, k) to the
transition probability p(zT | z0, k), which we model by a neural component. We decompose

I(zT , k | z0) = E(s0,k,sT )∼P

[
log

qθ(zT | z0, k)

p(zT | z0)

]
+ E(s0,k,sT )∼P

[
log

p(zT | z0, k)

qθ(zT | z0, k))

]
︸ ︷︷ ︸
≈DKL(p(zT | z0,k) || qθ(zT | z0,k))

giving rise to the lower bound I(zT , k | z0) ≥ E(s0,k,sT )∼P

[
log qθ(zT | z0,k)

p(zT | z0)

]
whose maximization

can be interpreted as a sparse-reward RL problem with reward R̂T (k) = log qθ(zT | z0,k)
p(zT | z0) . We

approximate p(zT | z0) as p(zT | z0) ≈
∑
k′ qθ(zT | z0, k

′)p(k′ | z0) and assume k uniformly
distributed and independent of z0, i.e. p(k′ | z0) = 1

K . This yields a tractable reward

RT (k) = log
qθ(zT | z0, k)∑
k′ qθ(zT | z0, k′)

+ logK. (1)

In Sec. 3 we describe modifications we apply to the intrinsic reward RT which improve the perfor-
mance of our proposed algorithm. To tighten the lower bound, the KL divergence term in eq. (1) has
to be minimized. Minimizing the KL divergence term corresponds to “training” the symbolic forward
model qθ by maximum likelihood estimation of the parameters θ.

Training procedure In each epoch of training, we first collect skill trajectories on the environment
using the skill policy π. For each episode i ∈ {1, ..., N}we reset the environment and obtain an initial
state si0. Next, we uniformly sample skills ki ∼ Uniform{1, ...,K}. By iteratively applying the skill
policy π(·|·, ki) we obtain resulting states si0...s

i
Ti

and actions ai0...a
i
Ti−1. A skill rollout terminates

either if an environment-dependent step-limit is reached or when a change in the symbolic observation
zt 6= z0 is observed. We append the rollouts to a limited-size buffer B. In each training epoch we
sample two sets of episodes SRL,SFM from the buffer for training the policy π and symbolic forward
model qθ. Both episode sets are relabelled as described in Sec. 3. Let i ∈ {1, ...,M} now refer to the
episode index in the set SRL. From SRL we sample transition tuples ([sit, k

i], [sit+1, k
i], ait, r

i
t+1(ki))

which are used to update the policy π using the soft actor-critic (SAC) algorithm [38]. To condition
the policy on skill k we concatenate k to the state s as denoted by [·, ·]. We set the intrinsic reward to
zero rit+1 = 0 except for the last transition in an episode (t+ 1 = Ti) in which rit+1(ki) = R(ki).
From the episodes in SFM we form tuples (zi0 = Φ(si0), ki, ziTi = Φ(siTi)) which are used to train
the symbolic forward model using gradient descent.

Relabelling Early in training, the symbolic transitions caused by skill executions mismatch the
predictions of the symbolic forward model. We can in hindsight increase the match between skill
transitions and forward model by replacing the actual ki which was used to collect the episode i by
a different ki∗ in all transition tuples ([sit, k

i
∗], [s

i
t+1, k

i
∗], a

i
t, r

i
t+1(ki∗)) and (zi0, k

i
∗, z

i
Ti

) of episode i.
In particular, we aim to replace ki by ki∗ which has highest probability ki∗ = maxk qθ(k | zT , z0).
However, this may lead to an unbalanced distribution over ki∗ after relabelling which is no longer
uniform. To this end, we introduce a constrained relabelling scheme as follows. We consider a set
of episodes indexed by i ∈ {1, ..., N} and compute skill log-probabilities for each episode which

we denote by Qik = log qθ(k | zi0, ziTi) where qθ(k | zi0, ziTi) =
qθ(ziTi

| zi0,k)∑
k′ qθ(ziTi

| zi0,k′)
. We find a relabeled

skill for each episode (k1
∗, ..., k

N
∗ ) which maximizes the scoring max(k1∗,...,k

N
∗ )

∑
iQ

i
ki∗

under the
constraint that the counts of re-assigned skills (k1

∗, ..., k
N
∗ ) and original skills (k1, ..., kN ) match, i.e.

#N
i=1[ki∗ = k] = #N

i=1[ki = k] ∀k ∈ {1, ...,K} which is to ensure that after relabelling no skill is
over- or underrepresented. The count operator #[·] counts the number of positive (true) evaluations
of its argument in square brackets. This problem can be formulated as a linear sum assignment
problem which we solve using the Hungarian method [39, 40]. While we pass all episodes in SFM

to the relabelling module, only a subset (50%) of episodes in SRL can potentially be relabeled to
retain negative examples for the SAC agent. Relabelling experience in hindsight to improve sample
efficiency is a common approach in goal-conditioned [41] and hierarchical [19] RL.
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Figure 3: Top row: Number of learned unique game moves for ablations of SEADS. Bottom row:
Success rate of the proposed SEADS agent and baseline methods on LightsOut, TileSwap games
embedded in Cursor, Reacher, Jaco environments. SEADS performs comparably or outperforms the
baselines on all tasks. The solid line depicts the mean, shaded area min. and max. of 10 (SEADS,
SAC on Cursor) / 5 (HAC, SAC on Reacher, Jaco) independently trained agents.

Reward improvements The reward in eq. (1) can be denoted asR(k) = log qθ(k |z0, zT )+logK.
For numerical stability, we define a lower bounded term Q̄k = clip(log qθ(k | z0, zT ),min =
−2 log(K)) and write R0(k) = Q̄k + logK. In our experiments, we observed that occasionally the
agent is stuck in a local minimum in which (i) the learned skills are not unique, i.e., two or more skills
k ∈ K cause the same symbolic transition z0 → zT . In addition, (ii), occasionally, not all possible
symbolic transitions are discovered by the agent. To tackle (i) we reinforce the policy π with a positive
reward if and only if no other skill k′ better fits the symbolic transition (z0 → zT ) generated by
apply(E, π, s0, k), i.e., Rnorm(k) = Q̄k − top2k′Q̄k′ . which we call second-best normalization.
The operator top2k′ selects the second-highest value of its argument for k′ ∈ K. We define
Rbase(k) = Rnorm(k) except for the “No second-best norm.” ablation where Rbase(k) = R0(k).
To improve (ii) the agent obtains a novelty bonus for transitions (z0 → zT ) which are not modeled
by the symbolic forward model for any k′ by R(k) = Rbase(k)−maxk′ log qθ(zT | z0, k

′). If the
symbolic state does not change (zT = z0), we set R(k) = −2 log(K) (minimal attainable reward).

Planning and skill execution A task is presented to our agent as an initial state of the environ-
ment s0 with associated symbolic observation z0 and a symbolic goal z∗. First, we leverage our
learned symbolic forward model qθ to plan a sequence of skills k1, ..., kN from z0 to z∗ using
breadth-first search (BFS). We use the mode of the distribution over z′ for node expansion in BFS:
successorqθ (z, k) = argmaxz′∈Z qθ(z

′ | z, k). After planning, the sequence of skills [k1, ..., kN ] is
iteratively applied to the environment through s(n) = apply(E, π, s(n−1), kn). Inaccuracies of skill
execution (leading to different symbolic observations than predicted) can be coped with by replanning
after each skill execution. Both single-outcome (mode) determinisation and replanning are common
approaches to probabilistic planning [42]. We provide further details in the supplementary material.

4 Experiments

We evaluate our proposed agent on a set of physically-embedded game environments. We follow
ideas from [5] but consider single-player games which in principle enable full control over the
environment without the existence of an opponent. We chose LightsOut and TileSwap as board games
which are embedded in a physical manipulation scenario with Cursor, Reacher or Jaco manipulators
(see Fig. 1). The LightsOut game (see Figure 1) consists of a 5× 5 board of fields. Each field has
a binary illumination state of on or off. By pushing a field, its illumination state and the state of
the (non-diagonally) adjacent fields toggles. At the beginning of the game, the player is presented
a board where some fields are on and the others are off. The task of the player is to determine
a set of fields to push to obtain a board where all fields are off. The symbolic observation in all
LightsOut environments represents the illumination state of all 25 fields on the board Z = {0, 1}5×5.
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In TileSwap (see Fig. 1) a 3× 3 board is covered by chips numbered from 0 to 8 (each field contains
exactly one chip). Initially, the chips are randomly assigned to fields. Two chips can be swapped
if they are placed on (non-diagonally) adjacent fields. The game is successfully finished after a
number of swap operations if the chips are placed on the board in ascending order. In all TileSwap
environments the symbolic observation represents whether the i-th chip is located on the j-th field
Z = {0, 1}9×9. To ensure feasibility, we apply a number of random moves (pushes/swaps) to the
goal board configuration of the respective game. We quantify the difficulty of a particular board
configuration by the number of moves required to solve the game. We ensure disjointness of board
configurations used for training and testing through a hashing algorithm (see supp. material). A board
game move (“push” in LightsOut, “swap” in TileSwap) is triggered by the manipulator’s end effector
touching a particular position on the board. We use three manipulators of different complexity (see
Fig. 1). The Cursor manipulator can be navigated on the 2D game board by commanding x and y
displacements. The board coordinates are x, y ∈ [0, 1], the maximum displacement per timestep is
∆x,∆y = 0.2. A third action triggers a push (LightsOut) or swap (TileSwap) at the current position
of the cursor. The Reacher [1] manipulator consists of a two-link arm with two rotary joints. The
position of the end effector in the 2D plane can be controlled by external torques applied to the
two rotary joints. As for the Cursor manipulator an additional action triggers a game move at the
current end effector coordinates. The Jaco manipulator [43] is a 9-DoF robotic arm whose joints
are velocity-controlled at 10Hz. It has an end-effector with three “fingers” which can touch the
underlying board to trigger game moves. The arm is reset to a random configuration above the board
around the board’s center after a game move (details in supplementary material). By combining the
games of LightsOut and TileSwap with the Cursor, Reacher and Jaco manipulators we obtain six
environments. For the step limit for skill execution we set 10 steps on Cursor and 50 steps in Reacher
and Jaco environments. With our experiments we aim at answering the following research questions:
R1: How many distinct skills are learned by SEADS? Does SEADS learn all 25 (12) possible moves
in LightsOut (TileSwap) reliably? R2: How do our design choices contribute to the performance of
SEADS? R3: How well does SEADS perform in solving the posed tasks in comparison to other flat
and hierarchical RL approaches? R4: Can our SEADS also be trained and applied on a real robot?

Skill learning evaluation To address R1 we investigate how many distinct skills are learned by
SEADS. If not all possible moves within the board games are learned as skills (25 for LightsOut, 12
for TileSwap), some initial configurations can become unsolvable for the agent, negatively impacting
task performance. To count the number of learned skills we apply each skill k ∈ {1, ...,K} on
a fixed initial state s0 of the environment E until termination (i.e., apply(E, s0, π, k)). Among
these K skill executions we count the number of unique game moves being triggered. We report
the average number of unique game moves for N = 100 distinct initial states s0. On the Cursor
environments SEADS detects nearly all possible game moves (avg. approx. 24.9 of 25 possible
in LightsOutCursor, 12 of 12 in TileSwapCursor). For Reacher almost all moves are found
(24.3/11.8). In the Jaco environments some moves are missing occasionally (23.6/11.5). We
demonstrate superior performance compared to a baseline skill discovery method (Variational Intrinsic
Control, Gregor et al. [10]) in the supplementary material. We substantiate our agent design decisions
through an ablation study (R2) in which we compare the number of unique skills (game moves)
detected for several variants of SEADS (see Fig. 3). In a first study, we remove single parts from our
agent to quantify their impact on performance. This includes training SEADS without the proposed
relabelling, second-best normalization and novelty bonus. We found all of these innovations to be
important for the performance of SEADS, with the difference to the full SEADS agent being most
prominent in the LightsOutJaco environment. Learning with more skills (15 for TileSwap, 30 for
LightsOut) than actually needed does not harm performance.

Task performance evaluation To evaluate the task performance of our agent and baseline agents
(R3) we initialize the environments such that the underlying board game requires at maximum 5 moves
(pushes in LightsOut, swaps in TileSwap, limited due to branching factor and BFS) to be solved. We
evaluate each agent on 20 examples for each number of moves in {1, ..., 5} required to solve the game.
We consider a task to be successfully solved if the target board configuration was reached (all fields off
in LightsOut, ordered field in TileSwap). For SEADS we additionally count tasks as “failed” if planning
exceeds a wall time limit of 60 seconds. We evaluate both planning variants with and without replan-
ning. As an instance of a flat (non-hierarchical) agent we evaluate the performance of Soft Actor-Critic
(SAC [38]). The SAC agent receives the full environment state s ∈ S which includes the symbolic
observation (board state). It obtains a reward of 1 if it successfully solved the game and 0 otherwise.
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Figure 4: Robot setup.

In contrast to the Soft Actor-Critic agent the SEADS agent leverages the
decomposition of state s ∈ S and symbolic observation z ∈ Z . For a fair
comparison to a hierarchical agent, we consider Hierarchical Actor-Critic
(HAC, Levy et al. [19]), which, similar to SEADS, can also leverage the
decomposition of s and z. We employ a two-level hierarchy in which the
high-level policy sets symbolic subgoals z ∈ Z to the low-level policy,
thereby leveraging the access to the symbolic observation. We refer
to the supplementary material for implementation and training details
of SAC and HAC. Fig. 3 visualizes the performance of SEADS and the
baselines. On all environments SEADS performs similar or outperforms
the baselines, with the performance difference being most pronounced on the Jaco environments
on which SAC and HAC do not make any progress. On the Cursor environments SEADS achieves a
success rate of 100% after 5 · 105 environment steps. On the remaining environments, the average
success rate (with replanning) is 95.8% (LightsOutReacher), 95.5% (TileSwapReacher), 94.9%
(LightsOutJaco), 98.8% (TileSwapJaco) after 107 steps.

Robot experiment To evaluate the applicability of our approach on a real-world robotic system
(R4) we set up a testbed with a uArm Swift Pro robotic arm which interacts with a tablet using a
capacitive pen (see Fig. 4). The SEADS agent commands a displacement |∆x|, |∆y| ≤ 0.2 and an
optional pushing command as in the Cursor environments. The board state is communicated to the
agent through the tablet’s USB interface. We manually reset the board once at the beginning of
training, and do not interfere in the further process. After training for ≈ 160k interactions (≈ 43.5
hours) the agent successfully solves all boards in a test set of 25 board configurations (5 per solution
depth in {1, ..., 5}). We refer to the supplementary material for details and a video.

5 Assumptions and Limitations

Our approach assumes that the state abstraction is known, the symbolic observation z is provided by
the environment, and that the continuous state is fully observable. Learning the state abstraction too
is an interesting direction for future research. The breadth-first search planner we use for planning on
the symbolic level exhibits scaling issues for large solution depths; e.g., for LightsOut it exceeds a
5-minute threshold for solution depths (number of initial board perturbations) ≥ 9. In future work,
more efficient heuristic or probabilistic planners could be explored. Currently, our BFS planner
produces plans which are optimal with respect to the number of skills executed. Means for predicting
and taking the skill execution cost into account for planning could be pursued in future work. In the
more complex environments (Reacher, Jaco) we observe our agent to not learn all possible skills
reliably, in particular for skills for which no transitions exist in the replay buffer. In future work one
could integrate additional exploration objectives which incentivize to visit unseen regions of the state
space. Also, the approach is currently limited to settings such as in board games, where all symbolic
state transitions should be mapped to skills. It is an open research question how our skill exploration
objective could be combined with demonstrations or task-specific objectives to guide the search for
symbolic actions and limit the search space in more complex environments.

6 Conclusion

We present an agent which, in an unsupervised way, learns diverse skills in complex physically
embedded board game environments which relate to moves in the particular games. We assume a
state abstraction from continuous states to symbolic states known and observable to the agent as
prior information, and that skills lead to changes in the symbolic state. The jointly learned forward
model captures the temporally extended effects of skill execution. We leverage this forward model
to plan over a sequence of skills (moves) to solve a particular task, i.e., bring the game board to a
desired state. We demonstrate that with this formulation we can solve complex physically embedded
games with high success rate, that our approach compares favorably with other flat and hierarchical
RL algorithms, and also transfers to a real robot. Our approach provides an unsupervised learning
alternative to prescribing the action abstraction and pretraining each skill individually before learning
a forward model from skill executions. In future research, our approach could be combined with state
abstraction learning to leverage its full potential.
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