
Scatterpixels: Ad Hoc Reconfigurable Physical Pixel Displays
Antony Albert Raj Irudayaraj* Jeremy Hartmann† Omid Abari‡ Daniel Vogel §

Cheriton School of Computer Science, University of Waterloo

(a) (b) (c) (d)

Figure 1: Scatterpixel system: (a) each 4cm spherical “pixel” is an independently addressable unit with a rechargeable battery,
microprocessor, and radio to control a red LED; (b) one example usage where pixels create an ad hoc floor display; (c) the relative
spatial locations of the pixels are registered through computer vision using a smartphone application; (d) once registered, rendering
algorithms display patterns or symbols at optimal positions using a communication protocol capable of 20 FPS animation.

ABSTRACT

Computer displays are a matrix of small, precisely aligned pixels to
maximize fidelity within a standardized, defined area. We explore
an alternative concept where pixels are individual physical entities
that can be physically positioned and combined to create temporary
ad hoc displays with arbitrary shapes, sizes, and functions. The
fabrication and hardware design for a spherical single LED pixel is
described that is inexpensive, wireless, and rechargeable with more
than 70 pixels assembled. Smartphone-based computer vision meth-
ods are developed to register the positions of addressable pixels in
arbitrary arrangements, and interactively guide fine-tuning of pixel
positions when display content is known. Once registered, algo-
rithms are presented to optimally render content on the pixels, and a
communication protocol enables frame rates suitable for animation.
Example pixel display configurations are described for applications
like audience participation, way-finding, dynamic event signage,
time-keeping, scoreboards, and ambient displays.

Index Terms:
Human-centered computing—Human Computer Interaction

(HCI)—Interaction devices—Displays and Images

1 INTRODUCTION

Traditional computer displays are a matrix of small, precisely aligned
pixels that maximize fidelity within a standardized, defined area. We
explore an alternative visual display concept called ad hoc recon-
figurable displays where pixels are individual physical entities that
can be positioned and combined to create re-usable displays with
arbitrary shapes, sizes, and functions. The goal is to create a portable
and easy-to-use system that trades the fidelity of conventional dis-
plays for a high level of flexibility in display configuration, enabling
new kinds of ubiquitous display use cases and novel aesthetic dis-
play experiences. For example, the same physical pixels can be
reconfigured to form a long corridor display to nudge people to a
meeting room in the morning, attached to a wall to show the score

*e-mail: aariruda@uwaterloo.ca
†e-mail:jhartmann@uwaterloo.ca
‡e-mail: omid.abari@uwaterloo.ca
§e-mail:dvogel@uwaterloo.ca

of a game of basketball in the afternoon, and scattered on a lawn to
create a fun welcome sign for a party in the evening.

Previous work has explored different approaches to enabling re-
lated types of reconfigurable displays. For example, using many
mobile phones or tablets held by people in a crowd where each
device acts as a pixel in a large temporary display [37, 41, 47]. A
compelling concept, but tailored to a specific setting and use case.
Miniature robots or drones have been created to arrange themselves
as pixels in dynamic displays (e.g. [8, 19, 43]), but they are complex,
expensive, have high power requirements, and require an instru-
mented environment for continuous tracking. They are well suited
to applications that benefit from the capabilities of a realtime dy-
namically reconfigurable display.

We focus on a different problem space for temporary manually
reconfigurable displays, and target use cases and applications that
are impractical or undesirable to create with a swarm of robots. For
example, a one-dimensional way-finding display created along a
long corridor during an afternoon of meetings, or a sign for a party
placed on a grassy lawn for an evening. The most related approaches
to our work are systems that use addressable LEDs as pixels [4, 6,
12, 13, 36, 37, 42]. But these systems remain incomplete: some use
approaches that rely on hard wiring for either communication or
power; some use communication protocols not capable of real-time
animations; and many are limited in the method and versatility for
how pixels are spatially registered. No previous work has holistically
examined all technical aspects necessary to realize the potential of
using individual LED pixels for reconfigurable displays.

This paper describes Scatterpixels, a comprehensive, and flexible,
and usable reconfigurable ubiquitous display system. The core of
the system is a 4 cm spherical “physical pixel” using a single red
LED (Figure 1a) that is inexpensive, wireless, rechargeable, and
can be produced at scale. Many of these pixels can temporarily
be distributed along a corridor, attached to a ferromagnetic surface,
fastened to a wall or window, or spread out on the floor or ground
(Figure 1b). Smartphone-based computer vision methods register
the positions of addressable pixels in arbitrary arrangements (Figure
1c), including providing interactive augmented reality guidance so
the operator can fine-tune pixel positions. Once registered, algo-
rithms optimally render content on the available pixel layout (Figure
1d,e). A compact and fast communication protocol enables anima-
tion frame rates on the 70 pixels we fabricated, and will scale to
hundreds of pixels. Using our system, we demonstrate different
display configurations and applications, ranging from individual vi-
sual indicators, to one-dimensional way-finding, to two-dimensional



dynamic event signage.
In summary, we contribute a complete end-to-end reconfigurable

display system using faster, smaller, more self-contained hardware,
more comprehensive registration methods enabling a greater variety
of display configurations, new methods to fine tune pixel layouts
for specific content, and integrated techniques that optimize content
for a given layout. Our methods are packaged in a way to make the
complete system usable: simple deployment requiring only a base
station, phone, and remote server; a convenient charging method;
and a phone-based app to control all functions. Our open source
schematics, design files, and code are all available1.

2 RELATED WORK

Before providing details of our system, we discuss how it relates to
previous ad hoc reconfigurable display approaches. We recognize
that definitions of a reconfigurable display could include systems that
actuate or combine conventional display units. For example, using
actuated projectors to form displays on different surfaces [10,32,46],
creating a modular set of back-projection display “bricks” [26, 39],
combining multiple device screens together to create large high
resolution displays, [23, 28, 34, 40], robotic large display panels
that “shape shift” [44], even using drones with projectors to create
flying high resolution displays [18, 31, 38]. However, our focus is
on previous work that explicitly, or conceptually, considers each
display pixel as an independent and distinct element that can be
re-positioned to create different displays.

2.1 Using many phones or tablets as pixels
One possible approach in some settings, is to create a large ad hoc
display using many phone or tablet screens as individual pixels.
Schwarz et al. [21, 41] and Chungkuk Yoo et al. [47] investigate
variations of this general idea, where many people in a crowd run
a special application which communicates a unique code (such as
flashing different colour transitions) to a centrally positioned camera,
so the relative location of all phones can be determined. Once
registered, and assuming everyone maintains a similar pose, imagery
and patterns can be presented on the display created by a collection
of phones, each acting as a single pixel. This type of display is truly
ad hoc, meaning there is little a priori control of its shape or how it
might change over time. However, the usage setting and possible
configurations are not general, and using one phone per pixel may
not be practical due to size and cost.

2.2 Using drones or robots as pixels
If dynamic deployment and realtime control of the display shape is
important, independent physical actuation of pixel elements is possi-
ble. Bitdrones [8] is an actuated 3D display using nano-quadcopter
drones, demonstrations used up to 12 drones each acting as a single
RGB pixel. The system highlights methods for real time tracking and
absolute position control when faced with challenging conditions
resulting from many small drones flying close together. Bitdrones
can only create sparse displays since drones can not fly too close to
each other due to turbulence and downdraft. The system requires a
high quality Vicon motion tracking setup in the environment, and
each drone can only run for about 7 minutes requiring frequent
recharging. Commercial groups have used many drones to create
dynamic outdoor displays [1]. These are intended for large public
events since significant planning and setup with a team of people
is required, and there are still limitations for run time and display
density. However, the outdoor setting enables the use of a new
generation of error-corrected GPS positioning.

Tangentially related to our work are systems that use small robots,
each acting as a single pixel that can be actuated to form dynamic
two-dimensional displays. Morphogenesis [43] uses circular robots

1https://github.com/exii-uw/scatterpixels

called kilobots [35] that contain a battery, vibrating motors, multi-
color LED, and an IR LED to communicate with neighbouring
pixels. Communication is line-of-sight with an operating range of
10cm. The system does not centralize the control of robot positions
to form specific shapes for a conventional information display. In-
stead, the robots self-arrange in periodic patterns or shapes to mimic
phenomena like cell behaviour in tissue growth.

Other systems centrally control and track individual wheeled
robots. For example, PixelBots [3] use an overhead camera, Hiraki
et al.’s robots [11] decode invisible projected light patterns [15]
from a specialized projector, and Zooids [19] use a related method
of detecting projected grey-code patterns. These robots can be
compact, for example Zooids [19] are 2.6cm diameter cylinders. Our
system uses the same radio transceiver module, voltage regulator,
and battery charging chip as in Zooids.

A reconfigurable display composed of self-actuated robot pixels
is well suited for applications like physical animations or dynamic
optimization of layouts. Indeed, a central focus of these works are
algorithms to optimally re-arrange robots to convey a given image
or display dynamic animations [2]. However, self-actuation has
a significant trade-off with cost, complexity, and flexibility. An
instrumented environment is required for accurate registration and
continuous tracking (dead reckoning remains a difficult problem and
self-localization is limited by physical constraints like line-of-site).
In some cases, the increased time to perform actuated movements
may detract from the display. In many cases, miniature robots will
not work diverse surfaces without specific customization, for exam-
ple, on a carpet or grass. A manually reconfigurable display trades
self-actuation capability for a system that is simpler, less expensive,
and useful for a different set of applications across different display
form factors. In our system, pixels are positioned by hand, possibly
with the aid of a smartphone app, and the same app is used to register
their static location.

2.3 Using individual stationary LEDs as pixels
There are several examples of art displays composed of physically
separate pixels. LED Throwies [45] are individual powered LEDs
that can be attached to ferromagnetic surfaces to create sparse, ab-
stract displays by manually positioning them. They are always
on until the battery drains. Six-forty by four-eighty [5] is an art
installation with 220 individual pixel “blocks.” Each has a small
screen to display animations and colours when touched. Display-
Blocks [33] are cube-shaped pixels with small OLED screens one
each side. Each cube displays images or videos independently, from
data pre-loaded onto an internal SD card. None of these examples
use pixels that are spatially registered and none feature communi-
cation between pixels, so creating coordinated, dynamic displays is
not possible.

2.3.1 Physically connected with fixed layouts
Other examples connect individual pixels by wires to enable commu-
nication, but use fixed or manual spatial configurations. Lightset [12]
hangs chains of wired LEDs on exterior building walls to prototype
and explore ideas for urban displays. LED positions are known on
each chain, and the demonstrated layouts are regular 2D grids created
by multiple chains, both of remove the need for custom registration.
The distance between pixels can only be adjusted between 5 to 30
cm because of wiring, making this approach unsuitable to create
diverse display layouts. Sato et al. [37] create large displays for an
airport ceiling by arranging individual LEDs to display imagery like
stars and simple animations. This semi-permanent, purpose-built
installation places each LED at a pre-computed position according
to the specific ceiling site.

https://github.com/exii-uw/scatterpixels


2.3.2 Physically connected and reconfigurable
More related are systems which form larger images using individual
display modules as a “pixel”. Siftables [29] are 36mm square “tiles”
each containing a 128 by 128 px colour LCD display, IR transceiver
to communicate with nearby tiles within a 1 cm range, and RF
modules to communicate with a central base station. These can be
arranged to form larger displays in rows or grids with each tile ren-
dering a section of the combined image or application. Pickcells [7]
is a similar system composed of small modular colour LCD screen
tiles created from commercial smartwatches that can be physically
connected to form different shapes. Both projects demonstrate using
each tile to render an image, or a piece of a larger image. In theory, a
large number of tiles could be connected to form a very large display
with each LCD tile forming single RGB pixels, but this was not the
focus and was not tested or demonstrated.

2.3.3 Wired and reconfigurable
Yet other examples use physically connected or wired “pixel” mod-
ules and support some limited forms of registration. Pushpin [24,25]
is a modular system for designing table-top wireless sensor networks
composed of nodes built by stacking individual 18×18mm modules
for power, communication, processing, and application-specific func-
tions like an LED or light sensor. Nodes are centrally programmed
by an IR spotlight with communication among nodes using capaci-
tive coupling or IR LEDs. Each node is powered from a common
“power plane” of layered aluminum foil and polyurethane foam,
which reduces reconfigurability to the area of the plane. Blinky [16]
are 40mm cube-shaped physical blocks each containing multiple
RGB LEDs to produce the same colour in all directions, an orien-
tation sensor, and contact connectors to communicate with neigh-
bouring blocks. Multiple blocks can be reconfigured into rectilinear
shapes by connecting them in lines and stacks. The kind of displays
demonstrated are limited since the focus is on using the system to
teach programming concepts.

Twinkly [13] is a commercial product for creating light decora-
tions. It uses a string of LEDs or lamps wired together in configura-
tions suitable for different scenarios, like seasonal decorations for
a building exterior or enhanced Christmas tree lighting. Multiple
strings are interfaced with a controller, which communicates with
a phone. Calibration uses the phone camera, but the method is not
specified. Firefly [4] is a semi-permanent display formed using hun-
dreds of individually addressable lighting elements. Each lighting
element contains a microcontroller and an LED, which connects to a
common rail to obtain power and control signals. A sample display
installation was formed by attaching 2940 lighting elements to a
building exterior spread over 40m2 area. The spacing between the
lighting elements can be adjusted to form arbitrary display configu-
rations and accommodate for existing building infrastructure. The
physical location of the pixels is obtained by decoding the flashing
sequence of pixels using a centrally positioned high-quality camera.
We use a similar method to register the spatial location of our pix-
els but support a combination of multiple captures for flexibility in
deployment, camera requirements, and display shape. Wiring con-
straints between the pixels reduce the flexibility to create different
display layouts and usage in different applications.

2.3.4 Wireless and reconfigurable
A more flexible approach is to design each LED pixel with on-board
power and wireless communication. Bloxels [20] are translucent
cube-shaped pixels which are stacked to form arbitrary-shaped vol-
umetric displays. Each cube contains two RGB LEDs, 9 IR LEDs
for communication, and a battery. Invisible light patterns are pro-
jected from under the table to communicate with the bottom Blox-
els, with information passed to upper Bloxels using the IR LEDs.
SteganoScan Orbs [17] are transparent spherical balls that can be
rolled inside a large parabolic dish. Each ball contains 6 LEDs and

18 photo sensors, and they are tracked in real-time and the LED
state updated by decoding invisible projected light patterns. The
parabolic dish causes the orbs to pack close together when at rest to
form a regular display grid. Urban Pixels [42] is an art installation
to “paint building surfaces” with LED pixels. The battery-powered
LED pixels are 4-inch acrylic balls, and they support wireless com-
munication from a base station to display coordinated images and
animations. The spatial location of the pixels are hard-coded, no
spatial registration method is described. NetworkedPixels [6] create
abstract light patterns across a large open garden area. The system
is a network of 923 wireless LED nodes controlled asynchronously
by a base station. Given the outdoor application and large distance
between each nodes, onboard GPS is used for a simple spatial regis-
tration based on distance from the base station. Using the system as
a single display to show coordinated imagery is discussed but not
implemented. ParticleDisplay [36] uses 100 individually powered
LED nodes(S-Node RFID module), each over 3cm square and 1cm
thick, that can be controlled wirelessly from a base station. The
base station communicates with the LED nodes at 4800 bps using a
303MHz radio module, which is unsuitable for displaying content
in real-time or animations. The spatial location of the pixels is ob-
tained using a simple method: a camera captures the entire display
to record a video as each LED illuminates one-by-one in a known
sequence. The LED node also contains an acceleration sensor to
sense input and directly control it.

Our spherical pixel form factor and battery-powered wireless ap-
proach is most similar to Urban Pixels, but we reduce the size by
more than a factor of 2, and we developed spatial registration meth-
ods that significantly advances the simple and constrained methods
used by NetworkedPixels and Particle Display.

3 HARDWARE AND SYSTEM DESIGN

This section provides the hardware details for a “physical pixel,” as
well as associated parts of the Scatterpixels system for pixel charging
and communication.

3.1 Physical Pixel
Each pixel (Figure 2b) is a 4cm diameter plastic sphere, which can
opened into two hemispheres. The bottom half contains all compo-
nents: a 25 by 20 mm 150mAh Lithium-ion rechargeable battery;
a 23 by 24 mm custom PCB with an microcontroller (Atmega328),
3.3v voltage regulator (ADP122ACPZ), and other small components;
a 2.4 GHz wireless transceiver board with a PCB trace antenna
(NRF24L01+); and a 15 by 15 mm custom PCB board to mount a
LED. The red LED is a 2.8 × 3 mm SMD (VLMS334AABB-GS08),
with 1600 mcd luminous intensity and ±60 angle of half intensity).
Two metal bulletin board thumb tacks, with flattened heads, are
mounted through the bottom and side of the lower hemisphere to
create battery charging contact pins.

The LED board is white to maximize reflection and designed to
position the LED in the lower centre of the top hemisphere when the
pixel is assembled. The top hemisphere is left empty and the inside
is coated with a thin film of white spray paint to evenly diffuse the
LED light. The outside of both hemispheres are coated with super
matte transparent spray paint to eliminate specular reflections that
would otherwise cause issues when computer vision methods are
used for registration. The spherical shape of the pixel allows it to
roll on surfaces and encourages more creative, less precise display
layouts. A standard 1/4 inch hardware nut is placed inside the lower
hemisphere at the very bottom to act as a ballast to further lower the
centre of mass of the pixel. Each pixel weights approximately 17 g.
This weight distribution, and slightly flat bottom profile created by
the bottom charging pin, means when the pixel is placed or rolled on
the floor, it eventually rights itself so that the LED diffuser half is up.
The hardware nut can be replaced with a neodymium ring magnet



(a) (b)

Figure 2: Hardware setup: (a) Bluetooth base station; (b) pixel disas-
sembled into two halves showing primary components.

of similar size, which provides enough attractive force through the
bottom charging pin to attach the pixel to ferromagnetic surfaces.

3.2 Charging
A custom charging station (Figure 3a), resembling a large egg tray,
charges 25 pixels at once. It is a custom 40 by 31 cm PCB board
suspended above a wooden base. Each pixel rests in a 39 mm
circular hole which has an exposed conductive rim connected to
charging circuitry. When in the hole, the pin on the side of the
pixel makes contact with the rim, and the pin at the bottom of the
pixel contacts a ground plane. The ground plane is fabricated from
copper tape bonded to thin plastic film, which is attached to the
charging station wooden base in a way that sections of the strip form
very light springs (Figure 3b). Wood spacers suspend the charging
board 16mm above the base. The charging circuitry for each hole
is a MCP73831T-2ACI Lipo charge controller chip with an LED to
monitor charging status.

A pixel begins charging as soon as it is inserted into the circular
opening, and it takes approximately 90 minutes to charge. After
charging, a pixel will run continuously for 5 to 8 hours, depending
primarily on LED illumination time. Note that pixels have no “on
and off” switch: as soon as the firmware has power, the radio runs in
receive mode and processes data from the base station. This makes
the system simple to deploy, but further optimizations like a “sleep
mode” could drastically increase stand-by time for charged pixels.
We created four of these charging stations, so in practice, all pixels
can be left charging until needed.

3.3 Base Station
The system uses a single base station (Figure 2a), which
is an ArduinoMega microcontroller,bluetooth module HC-05
and a 2.4 GHz NRF24L01+ wireless transceiver board from
(https://www.sparkfun.com/products/705) operating as a transmitter
with a SMA connector. An external LCW Dipole high-gain anten-
nae is connected to the SMA port. The base station connects to
a standard smartphone through the HC-05 Bluetooth radio. The
typical workflow in sending data to the pixels involves creating
the data packet on the phone app, which is sent to the base station
through bluetooth. The Arduino Mega decodes the received pack-
ets and sends appropriate signals to all physical pixels using the
NRF24L01+ radio. The base station is programmed with calibration
routines used for pixel registration. In informal tests, we found the
base station could communicate with pixels more than 7 m away
without major obstructions like walls.

3.4 Firmware and Communication Protocol
During assembly, custom firmware is loaded into each pixel micro-
controller using an USB-UART programmer through a 5-pin header
on the pixel PCB. The program assigns a unique id, operates the
radio in receive mode to continuously listen for data packets from

(a) (b)

Figure 3: Pixel charging station: (a) 25 pixel charging board; (b) detail
showing pixel contact with ground plane through bottom push pin and
with charging circuit through conductive rim and side push pin.

the base station, and when data is received, decodes the data and
performs the required action. The firmware also sets the radio power
amplifier to LOW level (to reduce power consumption), sets the
radio channel, and sets the air data rate to 250 Kbps. For a display to
show meaningful content, all the pixels of the display should update
synchronously. We did not use a standard mesh network protocol
because it introduces a dependency on certain pixels and increases
latency as data traverses through the network. Instead, our method
is multicast, where all pixels receive the same data packet from the
base station at the same time. This means all pixels can be updated
simultaneously, which avoids latency during registration or when
displaying content across many pixels forming a single display. In
addition, there is no dependency on any pixel for communication,
so the system is robust if a pixel battery drains before others.

The communication protocol uses a single 26-byte data packet.
The first byte encodes one of three commands, and the remaining
25 bytes encodes which pixels must execute the command. The
commands are: activate, to signal a pixel to illuminate the LED;
register, to run a pre-determined registration routine of flashing the
LEDs at 33Hz for two cycles; and flash, to flash the LED in a binary
sequence representing the pixel’s unique ID. Since the same data
packet is broadcast to all pixels, multiple pixels can execute the same
command and which pixels should execute is determined by a bit
mask. Our current implementation supports 100 pixels, where the
position of each bit in a 100-bit binary string indicates whether the
corresponding pixel id should execute the command (‘1’) or not (‘0’).
For convenience when decoding the packet on the microcontroller,
the 100-bit binary string is encoded in a 25 byte hexadecimal string.

Consider a simple example. If a pixel with id ‘7’ receives a
packet with first byte indicating activate and decodes the remaining
bytes to determine the 7th bit is ‘1’, then it will illuminate its LED.
Correspondingly, if a pixel with id ‘11’ receives the exact same
packet with activate in the first byte, but decodes the remaining
bytes to find the 11th bit is ‘0’, it will turn off.

Our system can update up to 100 pixels at 20 Hz from the phone,
the limiting factor for the refresh rate is Bluetooth communication
between the phone and base station. Using our simple broadcast
protocol, the base station and pixel hardware is capable of 100Hz
updates. For applications that do not require interactive phone input,
a one-time configuration packet could be sent to the base station to
to control a sequence of pixel updates at 100 Hz.

4 SPATIAL LOCATION REGISTRATION

The physical pixels can be arranged in different configurations, like
small and large 2D displays, and long 1D displays. Once arranged,
the relative location of each pixel and its ID are required to display
content appropriately. In a basic form, registration may be accom-
plished by holding the phone camera to capture all pixels at once,
then recording a video while the pixels to execute a flashing registra-
tion sequence. A more generalized form of registration, suitable for
large, disconnected, or dispersed displays, is to repeat this capture



sequence multiple times by moving the phone camera over the dis-
play, pausing when one or more pixels become visible in the frame,
and capturing a video of the flashing registration sequence each
time. This method reconstructs a single spatial representation of the
display in 3D. In essence, the interaction and goal is similar to taking
a panorama photo: separate or overlapping portions of the display
are captured from different view perspectives, and then “stitched”
together to create a single spatial registration for all physical pixels.

In both registration forms, an Android application uses computer
vision code to extract the image coordinates and IDs for each pixel,
which are combined and stored as a single spatial frame. In the
generalized form, this is repeated for each capture sequence, with
the relative position and orientation of multiple spatial frames deter-
mined using the Android ARCore smartphone pose. Combined, a
single spatial frame is composed of all the IDs and image coordi-
nates for each physical pixel location captured within the frustum
of the smartphone camera along with supplementary pose data ob-
tained from ARCore. For the generalized form of registration, all
data is sent to a separate Unity server using GRPC2 to combine all
spatial frames capturing portions of the display into a final spatial
registration of the complete display.

4.1 Basic registration using single capture pose
This form of registration is sufficient for a display that can fit within
the frustum of the smartphone’s camera from a medium distance.
The register and flash commands allow for two types of pixel iden-
tification techniques: one-shot and sequential.

4.1.1 One-Shot Identification
The approach to extract the image coordinates and IDs for each
physical pixel is inspired by Firefly [4]. All visible pixels within the
camera frustum are located at once by decoding this pattern, which
is encoded as a series of LED flashes.

During video processing, we detect the video frame in which all
physical pixels are illuminated as the starting point of the binary se-
quence. This is converted into a binary image from which brightness
and circular contours are used to find a region of interest (ROI) for
each physical pixel. A single flash of an LED lasts for exactly 100
ms (approximately 12 video frames). A complete binary sequence
can then be reconstructed by analyzing each ROI over time. Finally,
the decoded ID and centre of the ROI is saved as a JSON string
for further processing and visualization. For a 54 pixel display, the
capture time is approximately 2.5 seconds and video processing is
less than 1 minute. Capture time remains constant and processing
time is linear to the total number of pixels. Our calculations suggest
that a 1,000 pixel display would require the same capture time of
2.5 seconds and processing time of about 15 minutes without opti-
mization. Video processing time could be further optimized using
GPU acceleration and SIMD instructions on the phone.

4.1.2 Sequential Identification
In challenging lighting conditions and display configurations, the
one-shot method can fail, so we provide an alternative more robust
method with the trade-off of more time to capture pixel flashes. This
is a similar approach to what is used in Particle Display System [36].
When the user initiates capture, the base station broadcasts packets
to create an initialization time marker sequence, where all pixels are
illuminated for 200 ms, then off for another 200 ms. Then, the base
station broadcasts packets to request each pixel, one at a time in
ascending order, to execute the register routine of their assigned ID.
The time window for each pixel to flash is 200ms. When the capture
is finished, the video is processed similar to above to locate each
pixel, with the advantage that the problem is more constrained. Only
one pixel will be flashing at a time, and the temporal order provides

2www.grpc.io/

a degree of error checking. Video processing is similar to one-shot,
were binary thresholding and frame subtraction is used on the video
frames. As an example of performance, it takes approximately 38
seconds to process the recorded video to obtain all image coordinates
and IDs for a 54 pixel display. To get the best performance, the phone
should be held stationary.

4.2 Generalized registration with multiple capture poses
The single pose registration is sufficient when the physical pixels can
be framed within a single camera view that is held roughly parallel
to the plane spanning them. However, if they are distributed over
a wider area or have non-planar shapes, multiple captures need to
be utilized to reconstruct their spatial relationships. The sequence
of captures, along with pose information from ARCore, allow us to
build a 3D representation of the physical pixels using an incremental
optimization technique over the parameter space of each pose and
image coordinate for each captured frame. The time to register a
large display is proportional to the number of single frame captures
needed for reconstruction, where each capture uses the method
described in Section 4.1.

As a starting point, we frame this as a variation on a structure
from motion (SfM) [30] problem found in large scale computer
vision tasks, with two added assumptions: 1) the correspondences
between physical pixels are known and 2) the poses for each capture
is approximately known with noise. This brings the total parameter
space for each capture with N detected physical pixels to be equal
to Φ = 6+N +2N parameters: 6 parameters representing pose, N
parameters representing the distance z for where each physical pixel
lies on the ray projected from the camera, and 2N parameters that
represent the image coordinates for each captured physical pixel.
To limit the scope of the parameters space into manageable chunks,
we formulated an incremental optimization routine that iterates over
each pair of captured frames in three separate phases, where each
phases is responsible for updating only a subset of the parameters.

Phase 1: Image coordinate projection. This initial phases
utilizes assumption 1 and 2, that we know correspondences between
physical pixels and we know the approximate pose for the captured
frame. For each pair of captured frames, we project the recorded
image coordinates out into a shared world coordinate space to find
the optimal value z for each physical pixel that minimizes the dis-
tance between the projected 3D world points from one frame to the
other. This results in an initial guess on where each physical pixel is
located in the world.

Phase 2: Pose adjustments. Based on the results of Phase 1,
we have an initial guess of were the physical pixels are located in
a world coordinate frame of reference. In Phase 2, we refine the 6
parameters that represent the pose of each captured frame. For each
pair of captured frames, we find the optimal pose that minimizes the
distances between each pair of corresponding 3D points representing
the physical pixel. This results in further refinement of the captured
frames’ poses and 3D points of the physical pixels.

Phase 3: Image coordinate refinement. In the final phase,
we again project the captured image coordinates into a world frame
of reference utilizing the recovered z values from Phase 1. We
then iterate over each pair of captured frames and directly refine
the image coordinates by minimizing the distances between each
corresponding 3D point.

All three phases are applied to each pair of captured frames,
where K captured frames give K2/2 iterations. Each phase uses
a non-linear least square Levenberg-Marquardt [22, 27] algorithm
to minimize their cost function. Further refinement can be accom-
plished through multiple iterative applications of our optimization
routine that utilize parameter regularization to further constrain the
dimensionality of the overall parameter space. The final result gives
the 3D points for each physical pixel, with accurate sense of scale



and space. We use these final 3D points to create an accurate 2D
image of the physical pixels by projecting them back into image
space using an orthographic projection that encapsulates the entire
physical display.

5 MAPPING AND RENDERING IMAGERY

Mapping images onto an ad hoc reconfigurable display is not always
straightforward since the pixels can be arranged in an arbitrary
fashion. In this section, we describe different methods to display
content on the ad hoc display which includes directly controlling the
physical pixels from the phone to create animations and mapping
existing binary images to it. We also describe our interactive layout
assistant that guides the user to optimally place the pixels when
content is known beforehand.

Interactive Display and Animation — This mode allows the user
to directly control the display pixels using the phone. A phone app
shows the spatial map of the display on which the user can directly
draw and create animations. As the user draws an image, the input
events can be saved and played back as animations. The user can
also create individual frames that can be saved and played back at
a specified frame rate. The pixels update in real-time to reflect the
drawings and animation frames.

Image Rendering — Rendering a given bitmap image onto regis-
tered positions of physical pixels, uses a simple proximity mapping.
First, the image is downsampled and binarized. Then, given an
image position and scale in the physical display, the closest physical
pixel to each image pixel is determined. For manual control, the
phone app enables the user to position and scale each image in a set
with a live preview on the display. These adjustments are saved, and
used to display each of images at the configured locations and scales
to create the dynamic display.

Optimal Image Mapping — Rather than manual positioning,
an optimal location can be found. Given an image, a stochastic
algorithm iteratively places the image at different positions within
the display until it finds an optimal position. Optimal corresponds to
minimal error computed as the sum of Euclidean distances between
the image pixels and its corresponding nearest display pixel.

5.1 Interactive Layout Assistant
We also created an interactive layout assistant guides a user in plac-
ing the pixels at optimal locations, when the set of images to be
shown on the display is known beforehand. The pixels are initially
spread out in some arbitrary configuration and a quick pixel regis-
tration is performed to obtain the initial layout of the pixels. The
user chooses a set of images from an image gallery and sent to the
python server, which generates an layout for the display. A python
server binarizes all the received images, and a resultant binary image
is obtained by performing a boolean OR with all the binary images.
The resultant high resolution binary image is down-sampled using
k-means clustering, by setting the cluster size equal to the number
of physical pixels present in the initial layout. The output cluster
centres gives the optimal location to place pixels.The suggested pixel
location values are scaled to the camera preview frame size and sent
to the phone.

The pixel locations obtained from the server are overlaid on the
camera preview as circular guides to assist the user in arranging
the pixels according to the suggested display layout. The layout
assistant automatically turns on four pixels acting as anchor pixels,
which should be placed within the red circular guide overlaid (Figure
4 b). Once the anchor pixels have been placed in the appropriate
locations, the remaining pixels are placed within the white circular
guides (Figure 4 c). The white circular guides are always displayed
with respect to the anchor pixels, such that even if the phone moves
around, they are re-positioned with respect to the anchor pixels.
This is achieved by continuously tracking the anchors pixels in

real-time and computing the homography with respect to its initial
position. The new position of the white circular guides are obtained
by warping it with the computed homography. The user can add or
reduce the number of pixels to the display, and the layout assistant
generates a new layout for it. Once the pixel locations are fine-tuned
by placing them within the white circular guides (Figure 4 c), a quick
pixel registration is performed to obtain a spatial map. Now, the
display can cycle through the dictionary of images (Figure 4 d,e).

6 APPLICATIONS USING DIFFERENT CONFIGURATIONS

This section describes a broad collection of possible real world
applications for the Scatterpixels system using different display
geometries and environment locations. The emphasis is on non-
permanent temporary installations that might be typically created
on a smaller scale by non-professionals. The display applications
are typically designed to exist for a short time withing the 5 to 8
hour battery life of the pixels, such as an hour up to an afternoon or
evening.

Our goal in presenting many different applications is to demon-
strate the versatility of the system, and show it can easily be re-
configured into different display configurations with minimal setup
time. Note the same set of pixels are reconfigured to form all ap-
plications, so these demonstrations serve as a simple validation of
system reconfigurability in terms of pixel density, shapes, sizes, and
locations. We note that the Scatterpixels system was designed with
a vision of enabling display applications using hundreds of pixels.
As a research proof-of-concept system, we have a limited number
of physical pixels to implement and illustrate the examples below.
However, the system and application concept can be expanded to
much larger scales. An accompanying video shows a large subset
of these demonstrations, including how the implemented display
changes over time or animates.

6.1 Individual Pixel Displays
The simplest configuration is using each pixel as single bit visual
indicator to convey a state or status which changes over time. Each
pixel can be individually controlled by ID, and could optionally be
associated with a specific person or object.

Facilitating Games with Large Groups — Pixels could be dis-
tributed to people attending a party, banquet, film showing, or other
event. Without knowing which pixel ID is held by each person, the
activation status of a pixel could still be used to form random teams
to compete in a game, or enable ice breaker activities, like random
groups of an audience singing parts of a song. This can be achieved
by selecting a random subset among all pixels IDs that were dis-
tributed, and flashing those pixels together with instructions by the
organizer to form a team, or as a cue to sing during the performance.
The pattern of flashes could even be used to indicate a team leader
among the subset, or divide the subset into different musical parts.

Personal Notification — Pixels can be used to generate visual
notifications to track the progress of an activity or convey basic
information like navigation instructions while walking. The flashing
frequency of the pixel can indicate the progress of a microwave
timer or a reminder for an upcoming appointment. Custom flashing
patterns can be used to provide simple navigation instructions, like
slow flashing for a right turn, fast flashing for a left turn, and solid
red to indicate that the destination is reached.

6.2 One-Dimensional Displays
Pixels can be arranged along a path or in lines to form one-
dimensional displays. Once registered, animated patterns can convey
information like direction, activity, and time along the display.

Meeting Location Display — Pixels can be arranged in line along
floors through corridors, and show animations to help attendees
locate a meeting room and remind them about the time remaining



(a) (c)(b) (e)(d)

Figure 4: Interactive layout assistant: (a) initial layout with pixel arranged in random configuration; (b) guide overlay with red circles showing where
to place illuminated anchor pixels; (c) all the pixels are arranged within the white guidelines; (d,e) examples of imagery;

(a) (b) (c) (d) (e)

Figure 5: Applications: (a) 1D guidance display (b) 2D floor display showing ’HI’ (c) 2D floor queue displays ; (d) 2D White board timer display; and
(e) 2D Ceiling displays

before the meeting starts. For example, each pixel can light up at
time along the path to indicate the path direction(Figure5a). This
animation can speed up to indicate the meeting is starting soon, all
illuminate when the meeting has started, and then flash together for
a few minutes to hurry people to the meeting. Once its too late to
join the meeting, then can all turn off.

Wait Queue Indicator — At an event, the pixels can be arranged
in multiple lines beside different queues to indicate the waiting time
or type of queue using different patterns and animations. This
would allow people to choose the correct or optimal queue.

6.3 Two-Dimensional Sparse Displays
Multiple pixels can be distributed throughout a space, and then
spatial registration methods can enable individual pixels to commu-
nicate information about their location.

Targeted Class Participation — At the start of a large lecture, each
student can be provided with a pixel with a known ID. This could
allow the teacher to call on specific students based on records of past
participation, to award prizes, or to split students strategically who
are sitting near each other for a classroom activity. The association
between pixel ID and student could be done using a variation of our
registration method using a very high resolution camera in the lecture
hall to capture the pixel ID flashes and an enhanced algorithm to
associate the pixel location with the recognized face of the student.

Location Indicators — Pixels could be placed throughout a tempo-
rary setting like a banquet hall, weekend craft workshop, or farmer’s
market, and the illuminated pixels used to indicate an area or item.
For example, to guide a guest to an open table, assist a workshop
participant in locating a specific material, or highlighting sales items
to a shopper. More than one pixel could be used at each location
to convey more information based on illumination pattern, such as
stock level or urgency.

6.4 Two-Dimensional Dense Displays
Multiple pixels can be placed together on the floor, or attached to
a metal wall structure like a whiteboard or architectural panels, or

even to metal fixtures and elements in a ceiling. The pixels can be
placed randomly or formed into specific shapes, and they can be
separated into different clusters.

Floor Sign for an Event — The pixels can be arranged on the
floor or ground to create an ad hoc display. Once calibrated, the
display could show a welcome note during a party as an example
(Figure5b). The people in the party could also use their phones to
create drawings, which could provide additional amusement for the
people.

Exam Timer or Sport Scoreboard — During an exam in a large
lecture hall, pixels can be arranged on a whiteboard to indicate the
time remaining(Figure5d). This could be conveyed using numerals,
shown at optimized positions on a randomly assembled cluster of
pixels, or on a more intentionally laid out display using the layout
assistant. Alternatively, the time left could be communicated through
more abstract patterns. A similar, but equally compelling application
is creating a scoreboard at an ad hoc location for an amateur or
informal sports event.

Queuing Signs — As an extension of the event queue example
above, multiple clusters of 2D pixel displays could be placed at the
beginning of different queues. Each cluster could show symbols
or patterns to indicate which queue is open or slow, and suggest
alternate queues. For example, displaying shapes like an up arrow
for open, flashing for slow, or left and right arrows to suggest the
direction of other queues(Figure5c). This could be useful to di-
rect crowds at large festivals, open markets, or even in emergency
response situations.

Hanging Displays — Some pixels have a tab with a hole extending
from the case, which can be attached to strings or hooks to create
different types of hanging displays. With many pixels, this could be
an alternate form of vertical 2D display, like a sign. Or it could be
used for decorative, ambient effects, such as outside in a garden like
the NetworkedPixels [6] project.

Ambient Effects — Pixels arranged on the ceiling or
walls(Figure5e) can be used for ambient effects, like calming pat-



terns at yoga retreat, or accentuating dance music at a festival. They
could be attached arbitrarily to any available ferromagnetic elements,
like light fixtures or steel structural beams.

7 DISCUSSION

We discuss current limitations in our system and future enhance-
ments to further expand the capabilities and possibilities for this
type of ad hoc display.

Pixel Size and Display Resolution — The 40mm physical size
of each pixel means that the effective display resolution is limited
unless viewed from a great distance. Moving to a higher frequency
communication would reduce the antenna size and effectively reduce
the pixel size.

Display Colour — For simplicity, we use a red LED to create
monochrome displays. Each pixel can be easily extended to support
a RGB LED to create a colour display, in fact our LED daughter
board is designed to support the pins for an RGB LED. The challenge
is the impact on power requirements to drive an RGB LED, and a
significantly expanded communication protocol that increases from
1-bit to activate an LED to many bits per pixel to specify the colour
as well. Another related way to expand the fidelity of the display is
to add more bits to select an intensity level of a single colour LED
though PWM. A useful range may be as little as 2 or 3 bits for 3 to
7 intensity levels. Enabling reduced intensities would also reduce
amortized LED power consumption.

Run Time — The run time of a pixel could be extended with
more efficient hardware and software. For example, adding a “sleep
mode” that only checks for base station packets every minute before
waking up could drastically increase stand-by time for charged pixels.
However, the battery-to-weight ratio will always impose some limits
on maximum run time. Other approaches like battery-free pixels that
harvest power from ambient energy sources [9] could eliminate this
run time ceiling. We initially experimented with an RFID-based
approach using a “Rocky 100” [14] chip to control an LED and
harvest power from RF signals sent from the RFID reader antenna.
However, the power harvesting capabilities and communication link
to be very unreliable, and the large antenna limited how closely
pixels could be packed.

Scalability in Terms of Number of Pixels — Using the current
base station setup and communication protocol, we can control up
to 124 pixels. This number can be increased using the same radio by
partitioning hundreds of pixels into sets of 124, sending commands
to each set of pixels in batches, and using an offset update signal
sent synchronously to all the pixels to make it appear like all pixels
update at the same time. This method will reduce the frame rate of
the display. Another approach is to modify the base station to support
more transmitters. All transmitters can work in parallel, controlling
all sets of 124 pixels simultaneously, without compromising the
frame rate. However, this requires a fixed association between pixel
and transmitter which increases complexity and cost.

Pixel Tracking for Registration — The optical tracking of the
pixels using a RGB camera does not work reliably in all lighting
conditions. Using non-visible light methods for registration, such
as the phone NFC reader to scan NFC tags attached to each pixels,
or the phone IR receiver to decode a pixel ID flashing sequence
transmitted from an IR led in the pixel.

Interactive Pixels — Our system works as an output device by
controlling a LED based on the signal received from the base sta-
tion. But,the pixels can be instrumented with additional sensors
to sense touch, motion,light, sound and other sensors. The sensed
information can be used to directly manipulate the pixels state or
the information shown by the display. Instead of instrumenting all
the pixels with sensors, we could design specialized “super” pixels,
which are instrumented with sensors. For example, a microphone
embedded into the pixel can listen to the user’s question and show

an appropriate response on the display, or like Particle Display [36]
pixels instrumented with an accelerometer allows to interact directly
with it through motion.

3D Displays — In principle, these pixels could also be used to
create 3D displays. For example, pixels wrapped around a cylinder,
or even pixels hanging in a cluster. Our registration method supports
the basics of finding pixel locations in 3D, but we would need to re-
lax and refine optimization assumptions, and possibly require more
images and more guidance to perform a full 3D registration. Dis-
playing images on a clustered 3D configuration would will require a
significant extension to our image fitting algorithms.

Automatic Layout — The process of physically laying out pixels
to create a display can be made more convenient by using some time
of “paint roller” loaded with pixels. Pixels can also be loaded onto a
cylindrical metal stack which can spit out the pixels, when a button
is triggered. This process can be completely automated by using a
robot programmed with the layout configuration to place the pixels
at appropriate locations.

8 CONCLUSION

We presented Scatterpixels, a system using custom-built wireless
LED pixels that can be arranged in multiple ways to form differ-
ent kinds of ad hoc displays. Unlike previous work, we describe
a full end-to-end solution including hardware, software, and user
interfaces for setup. Our individual pixels are simple to set up in
many different layouts, and can be conveniently controlled from
a smartphone. We developed a comprehensive set of spatial regis-
tration methods to accommodate different display configurations,
and we provide methods to map content to the displays, including
an interactive layout assistant to guide the optimal placement of
pixels when expected display content is known. We show how these
pixels enable flexible display configurations ranging from one-bit
indicators, to 1D lines, to different 2D shapes, clusters, and surface
orientations. Our work is a step towards a grander vision, in which
individual display pixels are even smaller, powered wirelessly, and
inexpensive enough to be “painted” on surfaces, scattered across
floors, and embedded in building materials — creating a future
where pixels, and displays of all shapes and sizes, can literally be
everywhere.

ACKNOWLEDGMENTS

This work made possible by NSERC Discovery Grant 2018-05187,
Canada Foundation for Innovation Infrastructure Fund 33151 “Facil-
ity for Fully Interactive Physio-digital Spaces,” and Ontario Early
Researcher Award ER16-12-184.

REFERENCES

[1] Intel drone light shows.
[2] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beard-

sley. Multi-robot system for artistic pattern formation. In 2011 IEEE
International Conference on Robotics and Automation, pp. 4512–4517,
2011. doi: 10.1109/ICRA.2011.5980269

[3] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beard-
sley. Image and animation display with multiple mobile robots. The
International Journal of Robotics Research, 31(6):753–773, 2012. doi:
10.1177/0278364912442095

[4] A. Chandler, J. Finney, C. Lewis, and A. Dix. Toward emergent
technology for blended public displays. In Proceedings of the 11th
International Conference on Ubiquitous Computing, UbiComp ’09, p.
101–104. Association for Computing Machinery, New York, NY, USA,
2009. doi: 10.1145/1620545.1620562

[5] M. Coelho, J. Zigelbaum, and J. Kopin. Six-forty by four-eighty:
The post-industrial design of computational materials. In Proceedings
of the Fifth International Conference on Tangible, Embedded, and
Embodied Interaction, TEI ’11, p. 253–256. Association for Comput-
ing Machinery, New York, NY, USA, 2010. doi: 10.1145/1935701.
1935752



[6] S. Ferguson, A. Rowe, O. Bown, L. Birtles, and C. Bennewith. Net-
worked pixels: Strategies for building visual and auditory images
with distributed independent devices. In Proceedings of the 2017 ACM
SIGCHI Conference on Creativity and Cognition, C&C ’17, p. 299–308.
Association for Computing Machinery, New York, NY, USA, 2017.
doi: 10.1145/3059454.3059480

[7] A. Goguey, C. Steer, A. Lucero, L. Nigay, D. R. Sahoo, C. Coutrix,
A. Roudaut, S. Subramanian, Y. Tokuda, T. Neate, J. Pearson, S. Robin-
son, and M. Jones. Pickcells: A physically reconfigurable cell-
composed touchscreen. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ’19, p. 1–14. Associa-
tion for Computing Machinery, New York, NY, USA, 2019. doi: 10.
1145/3290605.3300503

[8] A. Gomes, C. Rubens, S. Braley, and R. Vertegaal. Bitdrones: To-
wards using 3d nanocopter displays as interactive self-levitating pro-
grammable matter. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, CHI ’16, pp. 770–780. ACM,
New York, NY, USA, 2016. doi: 10.1145/2858036.2858519

[9] T. Grosse-Puppendahl, S. Hodges, N. Chen, J. Helmes, S. Taylor,
J. Scott, J. Fromm, and D. Sweeney. Exploring the design space for
energy-harvesting situated displays. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, UIST ’16, p.
41–48. Association for Computing Machinery, New York, NY, USA,
2016. doi: 10.1145/2984511.2984513

[10] J. Hartmann, Y.-t. Yeh, and D. Vogel. AAR: Augmenting a Wearable
Augmented Reality Display with an Actuated Head-Mounted Projector.
In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology, UIST ’20, pp. 1–14. ACM Press, New York,
New York, USA, 2020. doi: 10.1145/3379337.3415849

[11] T. Hiraki, S. Fukushima, and T. Naemura. Phygital field: An integrated
field with a swarm of physical robots and digital images. In SIGGRAPH
ASIA 2016 Emerging Technologies, SA ’16. Association for Comput-
ing Machinery, New York, NY, USA, 2016. doi: 10.1145/2988240.
2988242

[12] M. Hoggenmüller and A. Wiethoff. Lightset: Enabling urban pro-
totyping of interactive media façades. In Proceedings of the 2014
Conference on Designing Interactive Systems, DIS ’14, p. 925–934.
Association for Computing Machinery, New York, NY, USA, 2014.
doi: 10.1145/2598510.2598551

[13] https://twinkly.com/. Twinkly.
[14] http://www.farsens.com/en/products/rocky100/.
[15] S. Kimura, R. Oguchi, H. Tanida, Y. Kakehi, K. Takahashi, and T. Nae-

mura. Pvlc projector: image projection with imperceptible pixel-level
metadata. p. 135, 01 2008. doi: 10.1145/1400885.1401030

[16] B. T. Kirby, M. Ashley-Rollman, and S. C. Goldstein. Blinky blocks:
A physical ensemble programming platform. In CHI ’11 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’11, p.
1111–1116. Association for Computing Machinery, New York, NY,
USA, 2011. doi: 10.1145/1979742.1979712

[17] R. Kishi. http://ryokishi.org/works/orbs/orbs.html.
[18] P. Knierim, S. Maurer, K. Wolf, and M. Funk. Quadcopter-Projected

In-Situ Navigation Cues for Improved Location Awareness. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems - CHI ’18, pp. 1–6. ACM Press, New York, New York, USA,
2018. doi: 10.1145/3173574.3174007

[19] M. Le Goc, L. H. Kim, A. Parsaei, J.-D. Fekete, P. Dragicevic, and
S. Follmer. Zooids: Building blocks for swarm user interfaces. In
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16, p. 97–109. Association for Computing Ma-
chinery, New York, NY, USA, 2016. doi: 10.1145/2984511.2984547

[20] J. Lee, Y. Kakehi, and T. Naemura. Bloxels: Glowing blocks as
volumetric pixels. In ACM SIGGRAPH 2009 Emerging Technologies,
SIGGRAPH ’09. Association for Computing Machinery, New York,
NY, USA, 2009. doi: 10.1145/1597956.1597961

[21] Lee-Delisle. Pixelphones: http://sebleedelisle.com/2011/09/
pixelphones-a-huge-display-made-with-smart-phones/.

[22] K. Levenberg. A method for the solution of certain non-linear problems
in least squares. Quarterly of Applied Mathematics, 2(2):164–168, jul
1944. doi: 10.1090/qam/10666

[23] M. Li and L. Kobbelt. Dynamic tiling display: Building an interactive

display surface using multiple mobile devices. In Proceedings of the
11th International Conference on Mobile and Ubiquitous Multimedia,
MUM ’12. Association for Computing Machinery, New York, NY,
USA, 2012. doi: 10.1145/2406367.2406397

[24] J. Lifton, M. Broxton, and J. Paradiso. Experiences and directions
in pushpin computing. vol. 2005, pp. 416 – 421, 05 2005. doi: 10.
1109/IPSN.2005.1440959

[25] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso. Pushpin comput-
ing system overview: A platform for distributed, embedded, ubiquitous
sensor networks. vol. 2414, pp. 605–614, 08 2002. doi: 10.1007/3-540
-45866-2 12

[26] C.-Y. Lu, H.-W. Hsieh, R.-H. Liang, C.-J. Lee, L.-C. Yang, M. Xue,
J.-L. Guo, M.-J. Hsieh, and B.-Y. Chen. Combining Touchscreens with
Passive Rich-ID Building Blocks to Support Context Construction in
Touchscreen Interactions. Association for Computing Machinery, New
York, NY, USA, 2021.

[27] D. W. Marquardt. An Algorithm for Least-Squares Estimation of
Nonlinear Parameters. Journal of the Society for Industrial and Applied
Mathematics, 11(2):431–441, jun 1963. doi: 10.1137/0111030

[28] N. Marquardt, F. Brudy, C. Liu, B. Bengler, and C. Holz. Surfacecon-
stellations: A modular hardware platform for ad-hoc reconfigurable
cross-device workspaces. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI ’18. Association for
Computing Machinery, New York, NY, USA, 2018. doi: 10.1145/
3173574.3173928

[29] D. Merrill, J. Kalanithi, and P. Maes. Siftables: Towards sensor network
user interfaces. In Proceedings of the 1st International Conference on
Tangible and Embedded Interaction, TEI ’07, p. 75–78. Association
for Computing Machinery, New York, NY, USA, 2007. doi: 10.1145/
1226969.1226984

[30] P. Moulon, P. Monasse, and R. Marlet. Adaptive Structure from Motion
with a Contrario Model Estimation. In Proceedings of the Asian Com-
puter Vision Conference (ACCV 2012), pp. 257–270. Springer Berlin
Heidelberg, 2012. doi: 10.1007/978-3-642-37447-0 20

[31] H. Nozaki. Flying display: A movable display pairing projector and
screen in the air. In CHI ’14 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’14, pp. 909–914. ACM, New York, NY,
USA, 2014. doi: 10.1145/2559206.2579410

[32] C. S. Pinhanez. The everywhere displays projector: A device to create
ubiquitous graphical interfaces. In Proceedings of the 3rd International
Conference on Ubiquitous Computing, UbiComp ’01, p. 315–331.
Springer-Verlag, Berlin, Heidelberg, 2001.

[33] P. Pla and P. Maes. Display blocks: A set of cubic displays for tangible,
multi-perspective data exploration. In Proceedings of the 7th Interna-
tional Conference on Tangible, Embedded and Embodied Interaction,
TEI ’13, pp. 307–314. ACM, New York, NY, USA, 2013. doi: 10.
1145/2460625.2460677

[34] R. Rädle, H.-C. Jetter, N. Marquardt, H. Reiterer, and Y. Rogers. Hud-
dlelamp: Spatially-aware mobile displays for ad-hoc around-the-table
collaboration. In Proceedings of the Ninth ACM International Con-
ference on Interactive Tabletops and Surfaces, ITS ’14, p. 45–54.
Association for Computing Machinery, New York, NY, USA, 2014.
doi: 10.1145/2669485.2669500

[35] M. Rubenstein, C. Ahler, and R. Nagpal. Kilobot: A low cost scalable
robot system for collective behaviors. In 2012 IEEE International
Conference on Robotics and Automation, pp. 3293–3298, 2012. doi:
10.1109/ICRA.2012.6224638

[36] M. Sato, A. Hiyama, T. Tanikawa, and M. Hirose. Particle display
system: Virtually perceivable pixels with randomly distributed physical
pixels. Journal of Information Processing, 17:280–291, 2009. doi: 10.
2197/ipsjjip.17.280

[37] M. Sato, Y. Suzuki, S. Nishizaka, Y. Torigoe, A. Izumihara, A. Hiyama,
K. Nishimura, T. Tanikawa, and M. Hirose. Large-scale displays for
public spaces—constellation of departure: Presenting the impression
of airplanes taking off above an airport departure lounge. Comput.
Entertain., 9(1), Apr. 2011. doi: 10.1145/1953005.1953009

[38] J. Scheible and M. Funk. In-situ-displaydrone: Facilitating co-located
interactive experiences via a flying screen. In Proceedings of the 5th
ACM International Symposium on Pervasive Displays, PerDis ’16, pp.
251–252. ACM, New York, NY, USA, 2016. doi: 10.1145/2914920.



2940334
[39] R. Schmidt, E. Penner, and S. Carpendale. Reconfigurable displays. In

Workshop on Ubiquitous Display Environments. Citeseer, 2004.
[40] A. Schmitz, M. Li, V. Schönefeld, and L. Kobbelt. Ad-hoc multi-

displays for mobile interactive applications. In Eurographics, 2010.
[41] J. Schwarz, D. Klionsky, C. Harrison, P. Dietz, and A. Wilson. Phone

as a pixel: Enabling ad-hoc, large-scale displays using mobile devices.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’12, pp. 2235–2238. ACM, New York, NY, USA,
2012. doi: 10.1145/2207676.2208378

[42] S. Seitinger, D. S. Perry, and W. J. Mitchell. Urban pixels: Painting the
city with light. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, p. 839–848. Association for
Computing Machinery, New York, NY, USA, 2009. doi: 10.1145/
1518701.1518829

[43] I. Slavkov, D. Carrillo-Zapata, N. Carranza, X. Diego, F. Jansson,
J. Kaandorp, S. Hauert, and J. Sharpe. Morphogenesis in robot swarms.
Science Robotics, 3(25), 2018. doi: 10.1126/scirobotics.aau9178

[44] K. Takashima, S. Greenberg, E. Sharlin, and Y. Kitamura. A shape-
shifting wall display that supports individual and group activities. Tech-
nical report, U. Calgary, 2015. doi: 10.11575/PRISM/30644

[45] L. Throwies. http://www.graffitiresearchlab.com/blog/projects/led-
throwies/.

[46] A. Wilson, H. Benko, S. Izadi, and O. Hilliges. Steerable augmented
reality with the beamatron. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology, UIST ’12, p.
413–422. Association for Computing Machinery, New York, NY, USA,
2012. doi: 10.1145/2380116.2380169

[47] C. Yoo, I. Hwang, S. Kang, M.-C. Kim, S. Kim, D. Won, Y. Gu, and
J. Song. Card-stunt as a service: Empowering a massively packed
crowd for instant collective expressiveness. In Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’17, p. 121–135. Association for Computing Ma-
chinery, New York, NY, USA, 2017. doi: 10.1145/3081333.3081357


	Introduction
	Related Work
	Using many phones or tablets as pixels
	Using drones or robots as pixels
	Using individual stationary LEDs as pixels
	Physically connected with fixed layouts
	Physically connected and reconfigurable
	Wired and reconfigurable 
	Wireless and reconfigurable


	Hardware and System Design
	Physical Pixel
	Charging
	Base Station
	Firmware and Communication Protocol

	Spatial Location Registration
	Basic registration using single capture pose 
	One-Shot Identification
	Sequential Identification

	Generalized registration with multiple capture poses

	Mapping and Rendering Imagery
	Interactive Layout Assistant

	Applications using Different Configurations
	Individual Pixel Displays
	One-Dimensional Displays
	Two-Dimensional Sparse Displays
	Two-Dimensional Dense Displays

	Discussion
	Conclusion

