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Abstract
Aligning image and text encoders from001
scratch using contrastive learning requires002
large amounts of paired image-text data. We003
alleviate this need by aligning individually004
pre-trained language and vision representation005
models using a much smaller amount of paired006
data with a curriculum learning algorithm to007
learn fine-grained vision-language alignments.008
TOnICS (Training with Ontology-Informed009
Contrastive Sampling) initially samples mini-010
batches whose image-text pairs contain a wide011
variety of objects to learn object-level align-012
ment, and progressively samples minibatches013
where all image-text pairs contain the same014
object to learn finer-grained contextual align-015
ment. Aligning pre-trained BERT and VinVL016
models to each other using TOnICS outper-017
forms CLIP on downstream zero-shot image018
retrieval using <1% as much training data.019

1 Introduction020

Aligned representations for language and vision—021

which encode texts and images in a common latent022

space—are necessary to perform effective cross-023

modal retrieval. CLIP (Radford et al., 2021) and024

ALIGN (Jia et al., 2021) train individual text and025

image encoders from scratch to produce aligned026

image-text representations. They demonstrate ac-027

curate zero-shot retrieval due to strong cross-modal028

alignment. However, these models were trained on029

proprietary datasets of 400M and 1B image-text030

pairs on hundreds of GPUs and TPUs , which is031

infeasible for non-industry practitioners.032

CLIP and ALIGN align their encoders using the033

contrastive InfoNCE objective (Oord et al., 2018),034

which seeks to maximize the mutual information035

between image and text representations. In the In-036

foNCE objective, the model must correctly identify037

the positive image-text pair from among a set of038

negatives formed by the other minibatch pairs.039

Since samples within a minibatch act as negative040

samples for each other in the InfoNCE objective,041
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Figure 1: TOnICS is a contrastive, curriculum learning
algorithm for aligning language and vision encoders.

the minibatch determines the granularity of align- 042

ment that is learned. Minibatches constructed by 043

random sampling contain a large variety of objects 044

in the images and texts. To correctly match a dog- 045

related caption to its image, it is sufficient to iden- 046

tify that the retrieved image must contain a dog, 047

since most randomly sampled negative images will 048

not contain a dog. Random minibatch sampling re- 049

duces the contrastive task to just object-matching. 050

When minibatches are sampled such that the 051

images contain the same objects, object-level align- 052

ments no longer suffice (Figure 1). The contrastive 053

task can no longer be solved by identifying that the 054

retrieved image must contain a dog, since all the 055

negative images will also have a dog. The model 056

must produce language and vision representations 057

that encode shared context-level information, re- 058

sulting in a finer-grained alignment. 059

In this work, we leverage rich single-modality 060

pre-trained models—BERT (Devlin et al., 2019) 061

for language, VinVL (Zhang et al., 2021)1 for 062

vision—and align them to each other using the In- 063

1We use VinVL to refer to their pre-trained object detector.
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foNCE contrastive objective. We propose TOnICS,064

a curriculum learning algorithm which initiates065

training with an easy contrastive task by sampling066

minibatches randomly and progressively makes067

the contrastive task harder by constructing mini-068

batches containing the same object class in the im-069

age and text inputs. We show that our learned rep-070

resentations have strong cross-modal alignment—071

outperforming CLIP on zero-shot Flickr30K image072

retrieval—while using less than 1% as much paired073

image-text training data.074

2 Contrastive Vision-Language075

Alignment076

We align language representations from BERT (De-077

vlin et al., 2019) and visual representations from078

a VinVL object detector (Zhang et al., 2021).079

Our BERT-VinVL Aligner model is similar to the080

phrase grounding model from Gupta et al. (2020).081

During training, the input to the model is a mini-082

batch of NB triplets, where each triplet Xi =083

{ti, vi, w} represents an image-text pair. Image084

caption ti is encoded using BERT, and contains085

a noun w with word representation hi. A set of086

region features vi are extracted from a frozen pre-087

trained VinVL object detector.2 We add a learnable088

linear projection atop these region features.089

In the cross-modal interaction, we employ a090

single Transformer (Vaswani et al., 2017) layer091

that uses i-th noun representation hi as the query092

and j-th image features vj as the keys and values.093

This layer outputs a visual representation vatt(i, j),094

which is an attended representation of the j-th im-095

age, conditioned on the noun from the i-th caption.096

We then compute a dot product between the i-th097

noun representation hi and the attended represen-098

tation of j-th image vatt(i, j) to get an image-text099

score s(i, j) = φ(hi, vatt(i, j)) (Figure 2).100

To align the noun representation hi to its image101

vi, we use the InfoNCE loss (Oord et al., 2018) to102

maximize the lower bound of the mutual informa-103

tion between hi and vatt(i, i). InfoNCE minimizes104

the cross-entropy of correctly retrieving an image105

vi from the set of all minibatch images given the106

query noun representation hi.We refer to the objec-107

tive in this setup as the image retrieval loss, LIR:108

LIR(i) = − log
exp(s(i, i))∑NB
j=1 exp(s(i, j))

109

2Region features provided at https://github.com/
pzzhang/VinVL/blob/main/DOWNLOAD.md
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Figure 2: Our BERT-VinVL Aligner model scores ev-
ery image-text combination (ti, vj) in the minibatch.

The training loss LIR is the mean loss LIR(i) over 110

all minibatch instances i = {1...NB}. We define a 111

text retrieval loss, LTR, where the image vi is used 112

to retrieve the correct noun representation hi: 113

LTR(i) = − log
exp(s(i, i))∑NB
j=1 exp(s(j, i))

114

We experiment with training our model using 115

just the image retrieval loss LIR, as well as the 116

sum of the two losses LIR + LTR. 117

3 TOnICS: Training with Ontology 118

Informed Contrastive Sampling 119

Negative samples for the contrastive learning ob- 120

jective come from other pairs in the minibatch. 121

Therefore, the minibatch sampling itself influences 122

the alignment learned by the model. We hypoth- 123

esize that sampling minibatches randomly gives 124

object-level alignments, while sampling harder 125

minibatches containing the same object in the im- 126

age gives fine-grained contextual alignments. 127

We introduce TOnICS, Training with Ontology- 128

Informed Contrastive Sampling (Figure 3), a cur- 129

riculum learning algorithm that first performs ob- 130

ject level alignment via random minibatches, and 131

later learns contextual alignments through mini- 132

batches with shared objects. 133

Ontology Construction We begin by extracting 134

object detections from our training images using 135

the pre-trained VinVL model. We next map each 136

noun in the training data to an object class, wher- 137

ever possible, resulting in a set of object classes Θ. 138

Every object class o ∈ Θ has a corresponding set 139

of nouns w(o). For instance, the object class dog’s 140

noun set w(o) = {dog, dogs, puppy}. 141

We construct the ontology (Figure 3, left), which 142

contains an entity root node and its children object 143

nodes ηo, each corresponding to an object class o. 144
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Figure 3: TOnICS selects image-text pairs for the minibatch by first sampling a node η from an ontology, according
to a distribution PS(η). Sampling the root entity node yields easy minibatches containing pairs with a variety of
objects, whereas sampling one of its children object nodes yields harder minibatches containing pairs sharing a
common object, such as apple or dog, in a variety of contexts (left). TOnICS performs curriculum learning by
moving node sampling mass away from the root entity node to the object nodes as training progresses (right).

Every object node ηo has a corresponding set of145

triplet instances X(ηo), a subset of the full training146

dataset whose triplet instances all contain the same147

object class o in the image, and all containing a148

noun from the noun set w(o) in the caption.149

TOnICS Minibatch Sampling At every train-150

ing step, TOnICS proceeds in two stages. First,151

a node η is sampled from the ontology, according152

to a sampling probability distribution PS(η). Sec-153

ond, we sample a minibatch according to the node154

that was just sampled. If we sample the entity node155

ηe, we sample the minibatch by sampling NB in-156

stances from the full training data at random. If we157

sample an object node ηo, we sample NB instances158

from the corresponding set X(ηo), ensuring the159

minibatch contains images with the same object.160

TOnICS Curriculum Refresh The curriculum161

is formed by varying the nodes’ sampling probabil-162

ity distribution throughout training. We initialize163

training by setting PS(ηe) = 1 and PS(ηo) = 0164

for all object nodes. After every fixed number of165

training steps, we evaluate the model’s image re-166

trieval performance on a set of held-out instances.167

If the held-out retrieval accuracy is greater than a168

certain threshold, we start introducing harder mini-169

batches in the training by refreshing the curriculum.170

The refresh step is performed by multiplying the171

entity node’s current sampling probability PS(ηe)172

by a factor α;α < 1. The remaining probability173

mass (1 − α) × PS(ηe) is distributed among the174

object nodes. For each object node ηo, we update175

its sampling probability:176

PS(ηo) = PS(ηo) + (1− α)PS(ηe)×
|X(ηo)|∑
|X(ηo)|

.177

Object classes that are more common in the train-178

ing data have more sampling probability mass dis-179

tributed to their object node ηo, by weighting mass 180

according to the size of the node’s instance set, 181

|X(ηo)|. With each curriculum refresh, sampling 182

mass is pushed down from the entity node to the ob- 183

ject nodes, as long as PS(ηe) does not fall below a 184

fixed threshold β. Thresholding PS(ηe) ensures the 185

model still sees random minibatches and does not 186

forget the initially learned object-level alignments. 187

4 Experiment Details 188

We train our BERT-VinVL model on MS-COCO 189

and Conceptual Captions. We compare our model 190

against CLIP on downstream retrieval tasks. 191

4.1 Training Data and Ontology 192

We train our model on image-text pairs from a 193

combination of MS-COCO (Chen et al., 2015) and 194

Conceptual Captions (Sharma et al., 2018). Our 195

triplet instances only contain nouns which we wish 196

to explicitly align with the visual modality. We 197

select a set of 406 nouns, each noun corresponding 198

to one of the 244 object categories Θ (more details 199

in Appendix A.1). Our final training data consists 200

of 5.8M triplet instances corresponding to 2.84M 201

image-text pairs from 2.4M unique images. The 202

ontology for TOnICS is constructed by creating an 203

object node for each of the 244 object categories, 204

which are children of the root entity node. 205

4.2 Implementation Details 206

We use pre-trained BERT-base as a text encoder 207

and frozen VinVL, a pre-trained object detector 208

returns pooled CNN features for all regions-of- 209

interest (ROIs), as an image encoder. We use pre- 210

extracted ROI features, as we cannot backpropagate 211

through the object detector. Further details can be 212

found in Appendix A.2. 213
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Minibatch
Sampling
Method

Zero-Shot Flickr30K MS-COCO
# Image-
Text Pairs

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
Model LTR R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

CLIP-ViT-B/32 400M Random - 58.66 83.38 79.2 95 30.45 56.02 50.12 75.02

BERT-VinVL
Aligner

2.84M Random 7 58.18 84.24 22.2 47.9 42.67 74.43 15.5 37.7
2.84M TOnICS 7 60.04 84.72 18.8 43.1 47.68 77.14 11.48 27.3
2.84M Random 3 58.9 84.6 76.1 93.3 42.74 74.37 59.84 86.46
2.84M TOnICS 3 59.68 84.84 77.4 94 47.15 76.85 63.7 88.5

Table 1: Results of our BERT-VinVL Aligner model on image and text retrieval, compared to a CLIP model.
Numbers in bold represent the best results among our model and CLIP.

4.3 Baselines and Evaluation214

We compare our aligned model against CLIP (Rad-215

ford et al., 2021). CLIP trains the image and text216

encoders from scratch and uses significantly more217

paired image-text data—400M pairs, compared to218

our 2.84M pairs. We use the base variant of BERT,219

and so compare against CLIP-ViT-B/32.3,4220

To evaluate the utility of our TOnICS algorithm,221

we also train our BERT-VinVL Aligner using a222

Random minibatch sampling baseline, where the223

minibatch instances are always randomly sampled224

throughout the training process.225

We directly evaluate our Aligner models and pre-226

trained CLIP on image and text retrieval, using the227

Recall@1 and Recall@5 metrics. Specifically, we228

evaluate zero-shot retrieval on the Flickr30K (Plum-229

mer et al., 2015) test set, which contains 1,000 im-230

ages. We also perform retrieval evaluation on the231

MS-COCO test set, which contains 5,000 images.232

This evaluation is not zero-shot since our training233

data contains MS-COCO training images.234

5 Results and Discussion235

We directly transfer both our trained BERT-VinVL236

Aligner model and pre-trained CLIP to the down-237

stream task of image and text retrieval (Table 1)238

using the same task formulation from training time.239

The Flickr30K evaluation is zero-shot for both240

CLIP and our BERT-VinVL Aligner model since241

neither model’s training data contains images from242

the Flickr30K train set. We see that even with243

the Random minibatch sampling and only the im-244

age retrieval loss, LIR, our BERT-VinVL Aligner245

achieves approximately the same image retrieval246

performance as CLIP. When the Aligner is trained247

with our TOnICS curriculum learning algorithm,248

we get a 1.5% improvement on R@1 over CLIP.249

3https://huggingface.co/openai
4We do not compare against ALIGN because the authors

have not released their base model checkpoint.

However, this model fails to do well at the text 250

retrieval task. Adding the text retrieval loss LTR 251

leads to substantial improvements in downstream 252

text retrieval, with the Random baseline performing 253

only 3% worse than CLIP. We further see that train- 254

ing with TOnICS leads to a 1% improvement in 255

Flickr30K text retrieval. Adding the text retrieval 256

loss slightly hurts image retrieval performance, but 257

still does better than CLIP by 1%. 258

Since our model includes MS-COCO training 259

images in the training data, it significantly outper- 260

forms CLIP on the MS-COCO retrieval evaluation. 261

Hence, we compare our TOnICS algorithm to the 262

Random baseline on the MS-COCO evaluation. We 263

see that TOnICS leads to significant improvements 264

in image retrieval (≈ 5%), both when the text con- 265

trastive loss is and isn’t used. We once again see 266

that the text retrieval performance is very poor with- 267

out the text retrieval objective during training, but 268

improves significantly with it. TOnICS results in 269

a 4% improvement over the Random baseline in 270

text retrieval as well. 271

Minibatch sampling with TOnICS results in 272

large gains in in-distribution retrieval evaluation 273

(MS-COCO) as well as small improvements in 274

zero-shot retrieval (Flickr30K). Training BERT- 275

VinVL with TOnICS yields better zero-shot im- 276

age retrieval performance than CLIP, even with 277

substantially less training data. 278

6 Conclusions 279

In this work, we align individually pre-trained lan- 280

guage and vision encoders—BERT and VinVL— 281

using the proposed curriculum learning algorithm, 282

TOnICS. Our aligned model is able to achieve 283

better downstream zero-shot image retrieval perfor- 284

mance than CLIP, despite being trained with less 285

than 1% as many image-text training pairs. We also 286

show that our TOnICS algorithm leads to gains in 287

both in-domain and zero-shot retrieval tasks. 288
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7 Ethical Limitations289

We use pre-trained language models that can only290

consume English text, eliding the challenges of291

multi-lingual language-vision alignment. Further,292

images in our training data (MS-COCO and Con-293

ceptual Captions) are sourced from social media,294

movie clips and web searches, thus excluding cer-295

tain image domains, including those taken for ac-296

cessibility needs such as descriptions for people297

with blindness (Gurari et al., 2018). Such biases298

in our aligned model, inherited from the datasets299

and pre-trained models selected, serve the needs of300

English-speaking, able-bodied folks as a “default.”301

Further, pre-trained language models such as BERT302

have been known to express gender and race biases.303

These biases have been shown to compound when304

multiple modalities are represented (Srinivasan and305

Bisk, 2021). Our work does not contain analysis of306

how biases in our aligned BERT model differ from307

pre-trained BERT.308
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A Implementation Details374

A.1 Which Nouns do we Align?375

The triplet instances in our training data only con-376

tain nouns which we wish to explicitly align with377

the visual modality. We decide this set of nouns in378

the following procedure. Each noun in the training379

data is initially mapped to the object class with380

maximum noun-object PMI, calculated over train-381

ing pairs with object detections, and then adjusted382

by hand to correct erroneous mappings. Object383

classes containing fewer than 5000 instances in the384

training dataset are filtered out. This finally results385

in a set of 406 nouns, each noun corresponding386

to one of the 244 object categories Θ. For every387

image-text pair in the original training dataset, we388

create one triplet for each noun in our set of 406389

nouns that the text contains.390

A.2 Training Hyperparameters391

All our models are trained for 500K iterations with392

a batch size of NB = 256, yielding 255 negative393

pairs for every positive pair. We select the model394

checkpoint which has maximum Recall@1 on the395

Flickr30K validation set, evaluated after every 5K396

iterations.397

After every 5K iterations, we also evaluate re-398

trieval over a set of 100 held-out instances and399

perform a curriculum refresh step if the held-out400

accuracy is at least 90%. When performing a re-401

fresh step, we retain α = 90% of entity’s sampling402

probability, so long as the probability does not fall403

below β = 0.2.404

Each model was trained on a single V100 GPU405

for 6 days, compared to CLIP which used 256 V100406

GPUs for 12 days.407

B Analysis of Aligned Language408

Representations409

We hypothesize that by aligning pre-trained BERT410

to visual representations from a pre-trained VinVL411

model, our aligned BERT’s representations of412

visually-groundable objects will contain more vi-413

sual context information. Similar to (Yun et al.,414

2021), we investigate whether noun representations415

extracted from our Aligned-BERT contain infor-416

mation about their visual attributes that are also417

described in the caption. Specifically, we look at418

representations of the word shirt in Flickr30K cap-419

tions where the color of the shirt is also mentioned.420

We extract 275 such captions where the shirt is de-421

scribed as being one of ten colors, and extract the422

Figure 4: TSNE projections of contextual representa-
tions of the word shirt occuring in different color con-
texts. Each dot corresponds to a contextual represen-
tations of the word shirt, where the color of the dot
corresponds to the color of the shirt described in the
caption (grey dots represent representations of white
shirts). We compare the TSNE visualizations of pre-
trained BERT and the Aligned-BERT from our BERT-
VinVL Aligner model.

Model Homogeneity Completeness V-Score

BERT 9.79 ± 1.48 9.13 ± 1.39 9.45 ± 1.43
Aligned-BERT 42.64 ± 5.51 40.59 ± 5.24 41.58 ± 5.37
CLIP 98.39 ± 0.00 98.28 ± 0.00 98.33 ± 0.00

Table 2: K-Means Clustering metrics (K=10) for shirt
representations, across five different initializations. We
present mean and standard deviation of all metrics,
across the different templates.

word shirt’s contextual representaitons from both 423

pre-trained BERT and our BERT-VinVL Aligner’s 424

text encoder, which we refer to as Aligned-BERT. 425

Figure 4 compares the TSNE visualizations of 426

representations extracted from BERT and Aligned- 427

BERT. We see clear clusters formed by representa- 428

tions of the same colored shirt in Aligned-BERT’s 429

visualization, whereas no such clusters exist in the 430

BERT representations. 431

We also provide a quantitative analysis of the 432

clustering in the representations, by performing 433

K-Means clustering with K = 10. We evalu- 434

ate the Homogeneity and Completeness of these 435

clusters, which are equivalent to Set-Precision and 436

Set-Recall respectively, as well as V-Score which 437

is their harmonic mean. In Table 2, we see that 438

Aligned-BERT’s clusters are much more homoge- 439

nous and complete than pre-trained BERT, but pre- 440

trained CLIP’s clusters are much better than both. 441
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