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Abstract

Aligning image and text encoders from
scratch using contrastive learning requires
large amounts of paired image-text data. We
alleviate this need by aligning individually
pre-trained language and vision representation
models using a much smaller amount of paired
data with a curriculum learning algorithm to
learn fine-grained vision-language alignments.
TOnICS (Training with Ontology-Informed
Contrastive Sampling) initially samples mini-
batches whose image-text pairs contain a wide
variety of objects to learn object-level align-
ment, and progressively samples minibatches
where all image-text pairs contain the same
object to learn finer-grained contextual align-
ment. Aligning pre-trained BERT and VinVL
models to each other using TOnICS outper-
forms CLIP on downstream zero-shot image
retrieval using <1% as much training data.

1 Introduction

Aligned representations for language and vision—
which encode texts and images in a common latent
space—are necessary to perform effective cross-
modal retrieval. CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) train individual text and
image encoders from scratch to produce aligned
image-text representations. They demonstrate ac-
curate zero-shot retrieval due to strong cross-modal
alignment. However, these models were trained on
proprietary datasets of 400M and 1B image-text
pairs on hundreds of GPUs and TPUs , which is
infeasible for non-industry practitioners.

CLIP and ALIGN align their encoders using the
contrastive InfoNCE objective (Oord et al., 2018),
which seeks to maximize the mutual information
between image and text representations. In the In-
foNCE objective, the model must correctly identify
the positive image-text pair from among a set of
negatives formed by the other minibatch pairs.

Since samples within a minibatch act as negative
samples for each other in the InfoNCE objective,
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Figure 1: TOnICS is a contrastive, curriculum learning
algorithm for aligning language and vision encoders.

the minibatch determines the granularity of align-
ment that is learned. Minibatches constructed by
random sampling contain a large variety of objects
in the images and texts. To correctly match a dog-
related caption to its image, it is sufficient to iden-
tify that the retrieved image must contain a dog,
since most randomly sampled negative images will
not contain a dog. Random minibatch sampling re-
duces the contrastive task to just object-matching.

When minibatches are sampled such that the
images contain the same objects, object-level align-
ments no longer suffice (Figure 1). The contrastive
task can no longer be solved by identifying that the
retrieved image must contain a dog, since all the
negative images will also have a dog. The model
must produce language and vision representations
that encode shared context-level information, re-
sulting in a finer-grained alignment.

In this work, we leverage rich single-modality
pre-trained models—BERT (Devlin et al., 2019)
for language, VinVL (Zhang et al., 2021)! for
vision—and align them to each other using the In-

"'We use VinVL to refer to their pre-trained object detector.



foNCE contrastive objective. We propose TOnICS,
a curriculum learning algorithm which initiates
training with an easy contrastive task by sampling
minibatches randomly and progressively makes
the contrastive task harder by constructing mini-
batches containing the same object class in the im-
age and text inputs. We show that our learned rep-
resentations have strong cross-modal alignment—
outperforming CLIP on zero-shot Flickr30K image
retrieval—while using less than 1% as much paired
image-text training data.

2 Contrastive Vision-Language
Alignment

We align language representations from BERT (De-
vlin et al., 2019) and visual representations from
a VinVL object detector (Zhang et al., 2021).
Our BERT-VinVL Aligner model is similar to the
phrase grounding model from Gupta et al. (2020).

During training, the input to the model is a mini-
batch of Np triplets, where each triplet X; =
{t!, v, w} represents an image-text pair. Image
caption t' is encoded using BERT, and contains
a noun w with word representation h’. A set of
region features v’ are extracted from a frozen pre-
trained VinVL object detector.> We add a learnable
linear projection atop these region features.

In the cross-modal interaction, we employ a
single Transformer (Vaswani et al., 2017) layer
that uses i-th noun representation A’ as the query
and j-th image features v/ as the keys and values.
This layer outputs a visual representation v (7, j),
which is an attended representation of the j-th im-
age, conditioned on the noun from the i-th caption.
We then compute a dot product between the i-th
noun representation h° and the attended represen-
tation of j-th image v, (i, j) to get an image-text
score 5(i,7) = ¢(h*, vae (i, 7)) (Figure 2).

To align the noun representation A’ to its image
v', we use the InfoNCE loss (Oord et al., 2018) to
maximize the lower bound of the mutual informa-
tion between h? and vqy (4, 7). InfoNCE minimizes
the cross-entropy of correctly retrieving an image
v' from the set of all minibatch images given the
query noun representation h‘.We refer to the objec-
tive in this setup as the image retrieval loss, Lrg:

log exp(s(i,1))
Z] 1 eXp( (Z7]))

Region features provided at https://github.com/
pzzhang/VinVL/blob/main/DOWNLOAD .md
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Figure 2: Our BERT-VinVL Aligner model scores ev-
ery image-text combination (¢*,v7) in the minibatch.

The training loss L1 is the mean loss L1(4) over
all minibatch instances i = {1...Np}. We define a
text retrieval loss, L7, where the image v' is used
to retrieve the correct noun representation h’:

Lo (i) = o exp(s(i,i))
) ® S exp(s(j,)

We experiment with training our model using
just the image retrieval loss L;g, as well as the
sum of the two losses L1r + LTR.

3 TOnICS: Training with Ontology
Informed Contrastive Sampling

Negative samples for the contrastive learning ob-
jective come from other pairs in the minibatch.
Therefore, the minibatch sampling itself influences
the alignment learned by the model. We hypoth-
esize that sampling minibatches randomly gives
object-level alignments, while sampling harder
minibatches containing the same object in the im-
age gives fine-grained contextual alignments.

We introduce TOnICS, Training with Ontology-
Informed Contrastive Sampling (Figure 3), a cur-
riculum learning algorithm that first performs ob-
ject level alignment via random minibatches, and
later learns contextual alignments through mini-
batches with shared objects.

Ontology Construction We begin by extracting
object detections from our training images using
the pre-trained VinVL model. We next map each
noun in the training data to an object class, wher-
ever possible, resulting in a set of object classes O.
Every object class o € © has a corresponding set
of nouns w(o). For instance, the object class dog’s
noun set w(o) = {dog, dogs, puppy}.

We construct the ontology (Figure 3, left), which
contains an entity root node and its children object
nodes n,, each corresponding to an object class o.
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Figure 3: TOnICS selects image-text pairs for the minibatch by first sampling a node 7 from an ontology, according
to a distribution Ps(7n). Sampling the root entity node yields easy minibatches containing pairs with a variety of
objects, whereas sampling one of its children object nodes yields harder minibatches containing pairs sharing a
common object, such as apple or dog, in a variety of contexts (left). TOnICS performs curriculum learning by
moving node sampling mass away from the root entity node to the object nodes as training progresses (right).

Every object node 7, has a corresponding set of
triplet instances X (7, ), a subset of the full training
dataset whose triplet instances all contain the same
object class o in the image, and all containing a
noun from the noun set w(o) in the caption.

TOnICS Minibatch Sampling At every train-
ing step, TOnICS proceeds in two stages. First,
a node 7 is sampled from the ontology, according
to a sampling probability distribution Pg (7). Sec-
ond, we sample a minibatch according to the node
that was just sampled. If we sample the entity node
Ne, we sample the minibatch by sampling Np in-
stances from the full training data at random. If we
sample an object node 7,, we sample Np instances
from the corresponding set X (7,), ensuring the
minibatch contains images with the same object.

TOnICS Curriculum Refresh The curriculum
is formed by varying the nodes’ sampling probabil-
ity distribution throughout training. We initialize
training by setting Ps(n.) = 1 and Ps(1,) = 0
for all object nodes. After every fixed number of
training steps, we evaluate the model’s image re-
trieval performance on a set of held-out instances.
If the held-out retrieval accuracy is greater than a
certain threshold, we start introducing harder mini-
batches in the training by refreshing the curriculum.
The refresh step is performed by multiplying the
entity node’s current sampling probability Pg(7.)
by a factor o; @ < 1. The remaining probability
mass (1 — a) x Pg(n,) is distributed among the
object nodes. For each object node 7),, we update
its sampling probability:

[ X (110)]

Ps(no) = Ps(no) + (1 — a)Ps(ne) x

Object classes that are more common in the train-
ing data have more sampling probability mass dis-

221X (o)l

tributed to their object node 7,, by weighting mass
according to the size of the node’s instance set,
| X ()] With each curriculum refresh, sampling
mass is pushed down from the entity node to the ob-
ject nodes, as long as Pg(n.) does not fall below a
fixed threshold 3. Thresholding Ps(7.) ensures the
model still sees random minibatches and does not
forget the initially learned object-level alignments.

4 Experiment Details

We train our BERT-VinVL model on MS-COCO
and Conceptual Captions. We compare our model
against CLIP on downstream retrieval tasks.

4.1 Training Data and Ontology

We train our model on image-text pairs from a
combination of MS-COCO (Chen et al., 2015) and
Conceptual Captions (Sharma et al., 2018). Our
triplet instances only contain nouns which we wish
to explicitly align with the visual modality. We
select a set of 406 nouns, each noun corresponding
to one of the 244 object categories © (more details
in Appendix A.1). Our final training data consists
of 5.8M triplet instances corresponding to 2.84M
image-text pairs from 2.4M unique images. The
ontology for TONICS is constructed by creating an
object node for each of the 244 object categories,
which are children of the root entity node.

4.2 Implementation Details

We use pre-trained BERT-base as a text encoder
and frozen VinVL, a pre-trained object detector
returns pooled CNN features for all regions-of-
interest (ROIs), as an image encoder. We use pre-
extracted ROI features, as we cannot backpropagate
through the object detector. Further details can be
found in Appendix A.2.



Minibatch Zero-Shot Flickr30K MS-COCO

#Image-  Sampling Image Retrieval ~ Text Retrieval Image Retrieval ~ Text Retrieval
Model Text Pairs  Method Lrr R@l R@5 R@] R@5 R@l R@5 R@1 R@5
CLIP-ViT-B/32  400M Random - 58.66  83.38  79.2 95 3045 56.02 50.12 75.02

2.84M Random X 58.18 8424 222 479 4267 7443 15.5 37.7
BERT-VinVL 2.84M TOnICS X 60.04 84.72 188 431 47.68 7714 1148 273
Aligner 2.84M Random v 58.9 84.6 76.1 933 4274 7437 59.84 86.46

2.84M TOnICS v 59.68 84.84 774 94 47.15  76.85 63.7 885

Table 1: Results of our BERT-VinVL Aligner model on image and text retrieval, compared to a CLIP model.
Numbers in bold represent the best results among our model and CLIP.

4.3 Baselines and Evaluation

We compare our aligned model against CLIP (Rad-
ford et al., 2021). CLIP trains the image and text
encoders from scratch and uses significantly more
paired image-text data—400M pairs, compared to
our 2.84M pairs. We use the base variant of BERT,
and so compare against CLIP-ViT-B/32.3:4

To evaluate the utility of our TOnICS algorithm,
we also train our BERT-VinVL Aligner using a
Random minibatch sampling baseline, where the
minibatch instances are always randomly sampled
throughout the training process.

We directly evaluate our Aligner models and pre-
trained CLIP on image and text retrieval, using the
Recall@1 and Recall@5 metrics. Specifically, we
evaluate zero-shot retrieval on the Flickr30K (Plum-
mer et al., 2015) test set, which contains 1,000 im-
ages. We also perform retrieval evaluation on the
MS-COCO test set, which contains 5,000 images.
This evaluation is not zero-shot since our training
data contains MS-COCO training images.

5 Results and Discussion

We directly transfer both our trained BERT-VinVL
Aligner model and pre-trained CLIP to the down-
stream task of image and text retrieval (Table 1)
using the same task formulation from training time.
The Flickr30K evaluation is zero-shot for both
CLIP and our BERT-VinVL Aligner model since
neither model’s training data contains images from
the Flickr30K train set. We see that even with
the Random minibatch sampling and only the im-
age retrieval loss, Lr, our BERT-VinVL Aligner
achieves approximately the same image retrieval
performance as CLIP. When the Aligner is trained
with our TOnICS curriculum learning algorithm,
we get a 1.5% improvement on R@1 over CLIP.
*https://huggingface.co/openai

*We do not compare against ALIGN because the authors
have not released their base model checkpoint.

However, this model fails to do well at the text
retrieval task. Adding the text retrieval loss L1
leads to substantial improvements in downstream
text retrieval, with the Random baseline performing
only 3% worse than CLIP. We further see that train-
ing with TOnICS leads to a 1% improvement in
Flickr30K text retrieval. Adding the text retrieval
loss slightly hurts image retrieval performance, but
still does better than CLIP by 1%.

Since our model includes MS-COCO training
images in the training data, it significantly outper-
forms CLIP on the MS-COCO retrieval evaluation.
Hence, we compare our TOnICS algorithm to the
Random baseline on the MS-COCO evaluation. We
see that TOnICS leads to significant improvements
in image retrieval (= 5%), both when the text con-
trastive loss is and isn’t used. We once again see
that the text retrieval performance is very poor with-
out the text retrieval objective during training, but
improves significantly with it. TOnICS results in
a 4% improvement over the Random baseline in
text retrieval as well.

Minibatch sampling with TOnICS results in
large gains in in-distribution retrieval evaluation
(MS-COCO) as well as small improvements in
zero-shot retrieval (Flickr30K). Training BERT-
VinVL with TOnICS yields better zero-shot im-
age retrieval performance than CLIP, even with
substantially less training data.

6 Conclusions

In this work, we align individually pre-trained lan-
guage and vision encoders—BERT and VinVL—
using the proposed curriculum learning algorithm,
TOnICS. Our aligned model is able to achieve
better downstream zero-shot image retrieval perfor-
mance than CLIP, despite being trained with less
than 1% as many image-text training pairs. We also
show that our TOnICS algorithm leads to gains in
both in-domain and zero-shot retrieval tasks.


https://huggingface.co/openai

7 Ethical Limitations

We use pre-trained language models that can only
consume English text, eliding the challenges of
multi-lingual language-vision alignment. Further,
images in our training data (MS-COCO and Con-
ceptual Captions) are sourced from social media,
movie clips and web searches, thus excluding cer-
tain image domains, including those taken for ac-
cessibility needs such as descriptions for people
with blindness (Gurari et al., 2018). Such biases
in our aligned model, inherited from the datasets
and pre-trained models selected, serve the needs of
English-speaking, able-bodied folks as a “default.”
Further, pre-trained language models such as BERT
have been known to express gender and race biases.
These biases have been shown to compound when
multiple modalities are represented (Srinivasan and
Bisk, 2021). Our work does not contain analysis of
how biases in our aligned BERT model differ from
pre-trained BERT.
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A Implementation Details

Representations of 'shirt’

BERT Aligned-BERT
A.1  Which Nouns do we Align? RIS .. :
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the following procedure. Each noun in the training BEER . v
data is initially mapped to the object class with i :

maximum noun-object PMI, calculated over train-
ing pairs with object detections, and then adjusted
by hand to correct erroneous mappings. Object
classes containing fewer than 5000 instances in the
training dataset are filtered out. This finally results
in a set of 406 nouns, each noun corresponding
to one of the 244 object categories ©. For every
image-text pair in the original training dataset, we
create one triplet for each noun in our set of 406
nouns that the text contains.

Figure 4: TSNE projections of contextual representa-
tions of the word shirt occuring in different color con-
texts. Each dot corresponds to a contextual represen-
tations of the word shirt, where the color of the dot
corresponds to the color of the shirt described in the
caption (grey dots represent representations of white
shirts). We compare the TSNE visualizations of pre-
trained BERT and the Aligned-BERT from our BERT-
VinVL Aligner model.

.. Model Homogeneity = Completeness V-Score
A.2 Training Hyperparameters
. . ) . BERT 9.79 + 1.48 9.13 +1.39 9.45 + 143
All our models are trained for 500K iterations with Aligned-BERT ~ 42.64 + 551  40.59 =524 41.58 +5.37
CLIP 98.39 £0.00 9828 £0.00 98.33 £ 0.00

a batch size of Np = 256, yielding 255 negative
pairs for every positive pair. We select the model
checkpoint which has maximum Recall@1 on the
Flickr30K validation set, evaluated after every SK
iterations.

After every 5K iterations, we also evaluate re-
trieval over a set of 100 held-out instances and
perform a curriculum refresh step if the held-out
accuracy is at least 90%. When performing a re-
fresh step, we retain a = 90% of entity’s sampling
probability, so long as the probability does not fall
below 5 = 0.2.

Each model was trained on a single V100 GPU
for 6 days, compared to CLIP which used 256 V100
GPUs for 12 days.

B Analysis of Aligned Language
Representations

We hypothesize that by aligning pre-trained BERT
to visual representations from a pre-trained VinVL
model, our aligned BERT’s representations of
visually-groundable objects will contain more vi-
sual context information. Similar to (Yun et al.,
2021), we investigate whether noun representations
extracted from our Aligned-BERT contain infor-
mation about their visual attributes that are also
described in the caption. Specifically, we look at
representations of the word shirt in Flickr30K cap-
tions where the color of the shirt is also mentioned.
We extract 275 such captions where the shirt is de-
scribed as being one of ten colors, and extract the

Table 2: K-Means Clustering metrics (K=10) for shirt
representations, across five different initializations. We
present mean and standard deviation of all metrics,
across the different templates.

word shirt’s contextual representaitons from both
pre-trained BERT and our BERT-VinVL Aligner’s
text encoder, which we refer to as Aligned-BERT.

Figure 4 compares the TSNE visualizations of
representations extracted from BERT and Aligned-
BERT. We see clear clusters formed by representa-
tions of the same colored shirt in Aligned-BERT’s
visualization, whereas no such clusters exist in the
BERT representations.

We also provide a quantitative analysis of the
clustering in the representations, by performing
K-Means clustering with K = 10. We evalu-
ate the Homogeneity and Completeness of these
clusters, which are equivalent to Set-Precision and
Set-Recall respectively, as well as V-Score which
is their harmonic mean. In Table 2, we see that
Aligned-BERT’s clusters are much more homoge-
nous and complete than pre-trained BERT, but pre-
trained CLIP’s clusters are much better than both.



