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ABSTRACT

This paper focuses on semi-supervised crowd counting, where only a small por- 1

tion of the training data are labeled. We formulate the pixel-wise density value 2

to regress as a probability distribution, instead of a single deterministic value. 3

On this basis, we propose a semi-supervised crowd counting model. Firstly, we 4

design a pixel-wise distribution matching loss to measure the differences in the 5

pixel-wise density distributions between the prediction and the ground-truth; Sec- 6

ondly, we enhance the transformer decoder by using density tokens to specialize 7

the forward propagations of decoders w.r.t. different density intervals; Thirdly, we 8

design the interleaving consistency self-supervised learning mechanism to learn 9

from unlabeled data efficiently. Extensive experiments on four datasets are per- 10

formed to show that our method clearly outperforms the competitors by a large 11

margin under various labeled ratio settings. Code will be released. 12

1 INTRODUCTION 13

Crowd counting (Zhang et al., 2016; Cao et al., 2018; Ma et al., 2019) is becoming increasingly 14

important in computer vision. It has wide applications such as congestion estimation and crowd 15

management. A lot of fully-supervised crowd counting models have been proposed, which require 16

a large number of labeled data to train an accurate and stable model. However, considering the 17

density of the crowd, it is laborious and time-consuming to annotate the center of each person’s 18

head in a dataset of all dense crowd images. To alleviate the requirement for large amounts of 19

labeled data, this paper focuses on semi-supervised counting where only a small portion of training 20

data are labeled (Liu et al., 2018b). 21

Traditional semi-supervised counting methods target density regression and then leverage self- 22

supervised criteria (Liu et al., 2018b; 2019b) or pseudo-label generation (Sindagi et al., 2020b; 23

Meng et al., 2021) to exploit supervision signals under unlabeled data. These methods are designed 24

to directly generate density maps, where each pixel is associated with a definite value. However, it 25

is still extremely difficult to learn a good model due to the uncertainty of pixel labels. Firstly, there 26

are commonly erroneous head locations in the annotations (Wan & Chan, 2020; Bai et al., 2020); 27

Secondly, the pseudo labels for unlabeled training data assigned by the models are pervasively noisy. 28

To address these challenges, we propose a new semi-supervised counting model, termed by the 29

Pixel-by-Pixel Probability distribution modelling Network (P3Net). Unlike traditional methods 30

which generate a deterministic pixel density value, we model the targeted density value of a pixel as 31

a probability distribution. On this premise, we contribute to semi-supervised counting in four ways. 32

• We propose a Pixel-wise probabilistic Distribution (PDM) loss to match the distributions of the 33

predicted density values and the targeted ones pixel by pixel. The PDM loss, designed in line 34

with the discrete form of the 1D Wasserstein distance, measures the cumulative gap between 35

the predicted distribution and the ground-truth one along the density (interval) dimension. By 36

modeling the density intervals probabilistically, our method responds well to the uncertainty in 37

the labels. It thus surpasses traditional methods that regards the density values deterministic. 38

• We incorporate the transformer decoder structure with a density-token scheme to modulate the 39

features and generate high-quality density maps. A density token encodes the semantic infor- 40

mation of a specific density interval. In prediction, these density-specific tokens specialize the 41

forward propagations of the decoder with respect to the corresponding density intervals. 42
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• We create two discrete representations of the pixel-wise density probability function and shift43

one to be interleaved, which are modelled by a dual-branch network structure. Then we propose44

an inter-branch Expectation Consistency Regularization term to reconcile the expectation of the45

predictions made by the two branches.46

• We set up new state-of-the-art performance for semi-supervised crowd counting on four chal-47

lenging crowd counting datasets, i.e. UCF-QNRF (Idrees et al., 2018), JHU-Crowd++ (Sindagi48

et al., 2020a), ShanghaiTech A and B (Zhang et al., 2016). Our method outperforms previous49

state-of-the-art methods by a wide margin under all three settings of labeled ratio. Especially, on50

the QNRF dataset, our method achieves remarkable error reduction by over 44 in mean absolute51

error and 79 in mean square error under the challenging 5% label setting.52

2 RELATED WORKS53

Fully-supervised Crowd Counting. Early methods tackle the crowd counting problem by exhaus-54

tively detecting every individual in the image (Liu et al., 2019c) (Liu et al., 2018a). However, these55

methods are sensitive to occlusion and require additional annotations like bounding boxes. With56

the introduction of density map (Lempitsky & Zisserman, 2010), numerous CNN-based approaches57

are proposed to treat crowd counting as a regression problem. MCNN (Zhang et al., 2016) em-58

ploys multi-column network with adaptive Gaussian kernels to extract multi-scale features. Switch-59

CNN (Babu Sam et al., 2017) handles the variation of crowd density by training a switch classifier60

to relay a patch to a particular regressor. SANet (Cao et al., 2018) proposes a local pattern consis-61

tency loss with scale aggregation modules and transposed convolutions. CSRnet (Li et al., 2018)62

uses dilated kernels to enlarge receptive fields and perform accurate count estimation of highly con-63

gested scenes. BL (Ma et al., 2019) introduces the loss under Bayesian assumption to calculate64

the expected count of pixels. Furthermore, methods based on multi-scale mechanisms (Zeng et al.,65

2017; Sindagi & Patel, 2019b; Ma et al., 2020), perspective estimation (Shi et al., 2019; Yan et al.,66

2019) and optimal transport (Wang et al., 2020a; Ma et al., 2021; Lin et al., 2021) are proposed to67

overcome the problem caused by large scale variations in crowd images.68

Recently, to alleviate the problem of inaccurate annotations in crowd counting, a few studies begin69

to find solutions from quantizing the count values within each local patch into a set of intervals and70

learning to classify. S-DCNet proposes a classifier and a division decider to decide which sub-region71

should be divided and transform the open-set counting into a closed-set problem (Xiong et al., 2019).72

A block-wise count level classification framework is introduced to address the problems of inaccu-73

rately generated regression targets and serious sample imbalances (Liu et al., 2019a). The work (Liu74

et al., 2020a) proposes an adaptive mixture regression framework and leverages on local counting75

map to reduce the inconsistency between training targets and evaluation criteria. UEPNet (Wang76

et al., 2021a) uses two criteria to minimize the prediction risk and discretization errors of classifica-77

tion model. Our method is distinct to most existing approaches. We revisit the paradigm of density78

classification from the perspective of semi-supervised learning and reveal that the interleaving quan-79

tization interval has a natural consistency self-supervision mechanism.80

Semi and Weakly-Supervised Crowd Counting. As labeling crowd images is expensive, recent81

studies gradually focus on semi- and weakly-supervised crowd counting. For semi-supervised count-82

ing, L2R (Liu et al., 2018b) introduces an auxiliary sorting task by learning containment relation-83

ships to exploit unlabeled images. A learning mechanism based on Gaussian Process-based is pro-84

posed to generate pseudo-labels for unlabeled data in (Sindagi et al., 2020b). Zhao et al. (2020)85

propose an active learning framework to minimize the expensive label work. IRAST (Liu et al.,86

2020b) leverages a set of surrogate binary segmentation tasks to exploit the underlying constraints87

of unlabeled data. (Meng et al., 2021) proposes a spatial uncertainty aware teacher-student frame-88

work to alleviate uncertainty from labels. (Lin et al., 2022a) proposes a density agency to construct89

correlations among unlabeled images. In constrast, we consider semi-supervised crowd counting as90

a quantitative density-interval distribution matching problem and provide a self-supervised scheme91

via a consistency-constrained dual-branch structure. Moreover, there are also relevant studies about92

weakly supervised counting (Yang et al., 2020; Lei et al., 2021; Sindagi & Patel, 2019a), which pay93

more attention to learning from coarse annotation such as image-level labels or total counts.94

Vision Transformer. Vision Transformer (ViT) (Dosovitskiy et al., 2020) introduces the Trans-95

former networks (Vaswani et al., 2017) to image recognition. Transformers further advances various96

tasks, such as object detection (Carion et al., 2020; Zhu et al., 2020; Zheng et al., 2020; Sun et al.,97
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Figure 1: The structure of P3Net. (a) The interleaving dual-branch structure with density tokens to
predict density category. Different token colors represent the specified different density intervals.
The softmax operation targets on the category while each predicted distribution map represents the
segmentation map learned by this specific token and the corresponding density category.
(b) The structure of the decoder. (c) The inter-branch Expectation Consistency Regularization for
self-supervised learning. (d) The horizontal axis stands for the density values, with the attached
squares for the discrete density intervals corresponding to the tokens. The vertical axis is the nor-
malized distribution value of each category for that pixel.

2021), instance or semantic segmentation (Zheng et al., 2021; Wang et al., 2021c; Strudel et al., 98

2021; Cheng et al., 2021), and object tracking (Chen et al., 2021; Wang et al., 2021b; Sun et al., 99

2020). Lately, the works (Lin et al., 2022b; Wei et al., 2021; Liang et al., 2021) use the trans- 100

former encoder with self-attention to refine the image feature for crowd counting, whilst our method 101

leverages the decoder with cross-attention to learn the density classification tokens. 102

3 COUNTING VIA PIXEL-BY-PIXEL PROBABILISTIC DISTRIBUTION 103

MODELLING 104

In this section, we first describe the setting of semi-supervised crowd counting and then explain the 105

rationale for adopting the probability distribution to represent the crowd density. 106

Formally, we have a labeled dataset X consisting of images with point annotated ground truth and 107

an unlabeled dataset U consisting of only crowd images. In semi-supervised crowd counting, the 108

training set includes both X and U . Usually, U contains much more images than X for training a 109

counting model, i.e., |U| ≫ |X |. For crowd counting, the popular proportion settings are that the 110

labeled dataset occupies 5%, 10% and 40% of the total training set respectively. 111

Previous methods have utilized self-supervised criteria (Liu et al., 2018b; 2019b) or pseudo-label 112

generation (Sindagi et al., 2020b; Meng et al., 2021) to exploit supervision signals under unlabeled 113

data. These methods rely on the density prediction pipeline as the most traditional supervised meth- 114

ods (Zhang et al., 2016; Ma et al., 2019; Lin et al., 2022b). However, when only partial labels 115

are available for training the model, the obtained density maps are likely to be noisy. It becomes 116

increasingly challenging to predict a deterministic, accurate density value for each single pixel or 117

small patches. To solve this problem, we model the targeted density value of a pixel as a probability 118

distribution, instead of a deterministic single value. The predicted density value d is then given by 119

the expectation as follows. 120

d =

∫ +∞

0

p(x)xdx, (1) 121

where x is the probable density value ranged in [0,+∞). The conventional prediction way, which 122

can be represented as the Dirac delta, p(x) = δ(x − d), is a special case of Eq. 1. This approach 123

is fragile when there is uncertainty and noise. Instead, by Eq. 1, we revert to a general distribution 124

function p(x) without introducing any prior about the distribution such as Dirac. 125
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To find a numerical form, to which deep learning models can be applied, we further discretize Eq. 1:126

d =

C∑
j=1

P (xj)xj . (2)127

The set v = {x1, x2, · · · , xC} are the discrete representations of the density intervals, which are128

obtained by quantizing the continuous density range [0,+∞) into C mutually exclusive discretized129

intervals [0, b1), [b1, b2), ..., [bC−1,+∞), where b1, ..., bC−1 are the ascending interval borders.130

P (x) is the discrete distribution function, which can be easily implemented through a softmax func-131

tion and is consistent with the convolutional neural network. As a result, in this work, we transform132

the regression problem into a density interval classification problem, i.e. from predicting an exact133

count to choosing a pre-defined density interval, in order to build more reliable prediction signals134

for semi-supervised counting.135

On this basis, we propose our Pixel-by-Pixel Probability distribution modelling Network (P3Net)136

for semi-supervised learning. P3Net is composed of three modules to enhance the classification137

paradigm to semi-supervised crowd counting. First, we propose a Pixel-wise Distribution Matching138

(PDM) loss to meet the needs of effectively matching the distributions between the prediction and139

the label. After that, we introduce a transformer decoder with proposed density tokens to learn and140

preserve density information from different density intervals. And finally, we design a dual-branch141

structure and propose a corresponding self-supervision mechanism for semi-supervised learning.142

3.1 PIXEL-WISE DISTRIBUTION MATCHING LOSS143

In this section, we detail the proposed PDM loss and the corresponding supervision between pre-144

dicted distribution and the ground-truth.145

To punish the difference between predicted distributions and ground truth, we first generate the train-146

ing label Y ∈ {0, 1}N×C for the dual-branch from annotated points. We perform a 2-D Gaussian147

smoothing on these points, and then calculate the expected density value of each pixel. Each row in148

the label y ∈ {0, 1}C is in the form of one hot distribution and the category where the value equals149

to 1 represents the specific interval that the density of this certain pixel falls into.150

We match the predicted distribution to the ground-truth distribution by minimizing the divergence151

between them. On this basis, we adopt the Wasserstein distance to act as the measuring function. It152

represents the least cost of pushing one distribution q towards another q̃ and is defined as:153

W (q, q̃) = min
π

∫
u,v

c(qu, q̃v)dπ(u, v). (3)154

π(u, v) is the transport map from qu to q̃v while c is the moving cost function. Typically, we adopt155

the square of Euclidean distance as c. We discretize the calculation of the Wasserstein distance156

and define the Pixel-wise Distribution Matching (PDM) loss. When both distributions are one-157

dimensional distribution vectors, the matching loss will have a closed-form solution (Kolouri et al.,158

2018). Given p and y as the prediction and ground-truth label for a certain pixel respectively, and159

G(y, j) =
∑j

i=1 yi as the cumulative distribution function, the loss can be calculated by160

LP =
∑
y,p

W (y,p)
1
2 =

∑
y,p

(

C∑
j=1

(G(y, j)− G(p, j))2) 1
2 . (4)161

The PDM loss measures the cumulative gap between the predicted distribution and the ground truth162

along the density dimension. It penalizes the distributions that are deviated.163

The Rationale for PDM Loss. We provide an example to illustrate the advantages of our loss164

function. Suppose there are four intervals and we have an instance with the label of [0,1,0,0].165

Given two predicted outputs A: [0.2,0.3,0.5,0] and B: [0.2,0.3,0,0.5], clearly A gets a more compact,166

single-mode output which shall be considered better than B. However, the loss values of A and B167

are the same in terms of the Cross Entropy (0.36) and Mean Square Error (0.78), they can not be168

distinguished. In contrast, in terms of our PDM loss, the cumulative forms to calculate Eq. 4 for A169

and B are [0.2,0.5,1.0,1.0] and [0.2,0.5,0.5,1.0] respectively and the corresponding loss values are170

0.29 and 0.54. As a result, the two can be well differentiated.171

4



Under review as a conference paper at ICLR 2023

Differences from DM-Count. DM-Count (Wang et al., 2020a) is an insightful optimal transport 172

based counting approach to match the probability distributions of occurrence over the spatial do- 173

main. In contrast, the proposed PDM loss matches the pixel-wise probability distributions over the 174

density intervals. Hence, the domains where optimal transport performs by the two methods are 175

distinctly different. 176

3.2 TRANSFORMER SPECIALIZATION 177

Next, we introduce a set of density tokens to specialize the forward propagations of the transformer 178

decoder with respect to the corresponding density intervals. The density tokens are learnable embed- 179

dings with different density information, which are fed to interact with the input extracted feature 180

vectors to instruct the model prediction. Each token is endowed with unique semantic information 181

and acts as an indicator of a density interval. In other words, the density tokens are prototypes cor- 182

responding to different density intervals. Specifically, we set b1 to a small value and treat the token 183

assigned to the first interval [0, b1) as the background token. It is responsible for learning the fea- 184

tures in areas without crowd in the image. We denote T ∈ RC×Z as a matrix capsuling all C tokens 185

where Z is the dimension of both the features and tokens. 186

Then we use the transformer decoder (Vaswani et al., 2017) to break the limitation of local convo- 187

lutional kernels, correlating similar density information from various regions inside an image. The 188

decoder is composed of a stack of mutiple identical layers. In each decoder layer, the tokens are 189

firstly processed by a multi-head self-attention module and a normalization layer. The relationships 190

between tokens and the whole feature map are computed through cross attention: 191

C(T, F ) = S( (TW
Q)(FWK)T√

Z
)(FWV ). (5) 192

F ∈ RN×Z is the matrix of the input features, where N is the pixel or patch number. S is the 193

softmax function, and WQ,WK ,WV ∈ RZ×Z are weight matrices for projections. Afterwards, 194

we get the refined tokens T̃ , after processing further by a layer normalization and a feed-forward 195

network, as illustrated in Figure 1 (c). 196

Note that in Equation 5, through the inner product of the two vectors, the cross attention learns 197

which regions in the feature map that each category token should focus on. Inspired by this idea, in 198

the forward pass, we leverage the density-interval-specialized token through a softmax activation to 199

modulate the input patch features for predicting the final probabilities: 200

O =S(T̃ · FT), (6) 201

where the softmax operation is performed along the category dimension. The predicted matrix O ∈ 202

RC×N denotes the C predicted distribution maps, each of which represents the region distribution 203

of the corresponding density interval in the whole image of N patches. By Eq. 6, we measure the 204

similarity between the region features and refined density tokens, modulate the regional features and 205

output the predicted density-interval distribution. 206

As the idea of proposed density tokens is a natural extension in semantics of that of the query 207

tokens in the transformer, it can be optimized through the training pipeline of transformer using 208

back propagation. Note that, only the original density tokens are restored, while the tokens refined 209

adapted to the input regional features are not retained. As a result, the final density tokens are the 210

hyper-parameters shared by all inputs in the reference stage. 211

The Rationale for Tokens arises from the observation that similar regions with same density inter- 212

vals can be mined within an image. An example is shown in Figure 2, for a specific density interval 213

like (a1), we can easily find similar regions (a2/a3) all over the image. The density tokens (a/b/c) 214

play a role of grouping different regions with the same density levels. During learning, the tokens 215

are connected to the discrete representation of density probability distribution and finally with clear 216

semantic associations. During inference, by using the tokens traversally, we specialize each forward 217

propagation of our decoder module with respect to a particular density interval distribution in turn. 218

Differences from randomly-initialized queries. Transformer decoder usually uses randomly ini- 219

tialized queries as the input in each forward pass. Here, we use DETR (Carion et al., 2020) as an 220

example. In DETR, there is no clear distinction among the representative semantics of different 221
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Figure 2: Similar Regions of the same density levels exists within an image. We use a density token
to specify a density interval and group the regions of that level.

queries. Thus in the training stage, association methods like Hungarian algorithm are required in222

every iteration to match queries with objects. Instead, we explicitly associate an exclusive density223

interval to each query throughout the model’s lifetime. Thus we can generate tailored tokens with224

clear semantics.225

3.3 INTER-BRANCH EXPECTATION CONSISTENCY BASED ON DUAL-BRANCH226

INTERLEAVING STRUCTURE227

Although modelling the predicted density value as a discrete probabilistic distribution leads to more228

credible and less noisy prediction generally, when the value falls near the boundary, noise in the229

output density values can easily lead to incorrect quantization, and further corrupt the classification230

results. Meanwhile, when converting the predicted interval category into density, the pre-defined231

discrete representation x will inevitably have a quantization gap.232

To alleviate these limitations, we use an interleaving dual branch structure, which consists of two233

parallel classification tasks with overlapping count intervals. The density which falls near the inter-234

val border of the first branch is more likely to be classified easily in another branch and meanwhile235

reducing the conversion gap without increasing the number of classification intervals.236

The interleaving dual branch structure has been used to address the inaccurate ground truth (Wang237

et al., 2021a). To further accommodate it with semi-supervised counting, we make a step forward238

in this direction from two perspectives. Firstly, we associate the output of the network with the239

pixel-by-pixel probabilistic distribution and introduce a weighted, soft quantization level assignment240

mechanism. More specifically, during the inference stage, the work (Wang et al., 2021a) selects the241

category with maximum predicted value for each pixel or patch, and directly converts it to the242

corresponding representation value. Instead, we keep the distributions of predicted possibilities and243

leverage on the expectation to alleviate the conversion error. As a result, rather than simply averaging244

the predicted densities of two branches, we give each a certainty weight, which can be represented245

by the maximum classified possibility. When a branch predicts a large possibility for a certain246

category rather than similar values for multi categories, the branch has higher confidence about that247

prediction, thus we increase the proportion of it in the final prediction. Secondly, the interleaving248

two-branch structure provides a natural self-supervising mechanism that allows for imposing the249

consistency constraint between the two branches. On top of this constraint, we design an interleaving250

consistency regularization term which penalizes the deviation between the output expectations of the251

two-branches, to provide rich supervised signals in the absence of labels.252

Specifically, we denote by two C-dimensional vector p,q ∈ RC the predicted classified possibilities253

of the dual branches for a certain pixel or patch. The vectors satisfy that ∥p∥1 = ∥q∥1 = 1 and their254

elements are in the range of [0, 1] . Thus the final density can be expressed by255

d = ω p · vT
1 + (1− ω) q · vT

2 , (7)256

where the weight ω = ∥p∥∞ /(∥p∥∞ + ∥q∥∞) and ∥·∥∞ is the vector maximum norm. v1 and v2257

denote the represented quantized value for each branch. We extend the proposed network to fit the258

dual-branch structure, where two different decoders are adopted and the density tokens are split into259

two interleaved sets, as shown in Figure 1.260

On the basis, a self-supervised learning scheme is designed to leverage the unlabeled data for refining261

the model, where the expectations of classified probability distribution on two branches tend to262
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be consistent. We based on this constraint to construct the inter-branch Expectation Consistency 263

Regularization (ECR) term. Moreover, to prevent the regularization term from being negatively 264

affected by the wrongly predicted probability distribution, we impose a selection mechanism to 265

only consider the patches which are predicted with high certainty. The mechanism is based on a 266

dynamic pixel-wise mask E ∈ RN which elements are in the range of [0, 1] to select or weigh the 267

regions for supervision. Given O1, O2 as the predicted probability matrices by the two branches, the 268

self-supervised ECR is defined as 269

LE = ∥E ◦ R∥22, (8) 270

where R = v1O1 − v2O2 is a vector reflecting the inconsistency between the density expectations 271

by the two branches and ◦ is the element-wise multiplication. 272

Similar with Eq. 7, we regard the maximum possibility ∥p∥∞ in each distribution as the confidence. 273

If the distribution is even, the confidence will be low, indicating that the model cannot predict a 274

certain class for that patch with high certainty. In this case, we shall reduce its importance or exclude 275

this patch in back-propagation dynamically. For efficient computation, we binarize E ∈ {0, 1}N . 276

Only when the both confidences of two branches are sufficiently high, regularization on that pixel 277

is activated. Given the confidence threshold ξ ∈ [0, 1) and the boolean function τ(cond) which 278

outputs 1 when the condition is true and 0 otherwise, the supervision mask is defined as: 279

E = τ(o1 > ξ) & τ(o2 > ξ), (9) 280

where o1 and o2 are N -dimensional vectors takeing the maximum values of O1 and O2 along the 281

interval dimension respectively. Finally, the overall training loss is the combination of density aware 282

loss using in labeled data and consistency regularization with the parameter λ using in unlabeled 283

data. 284

L = LP + λLE . (10) 285

The Rationale for the Regularization. A common issue in self-supervised consistency regulariza- 286

tion is the confirmation bias (Tarvainen & Valpola, 2017), which indicates that the mistakes of the 287

model will probably be accumulated during semi-supervised learning. We utilize the regularization 288

term to alleviate this bias from the following aspects. First, we select the most reliable instances for 289

self-supervision by using the mask in Eq. 8. Second, our network adopts two independent decoders 290

and respective density tokens. As shown by (Ke et al., 2019), learning independent models helps 291

to address the performance bottleneck caused by model coupling. Thus the proposed regularization 292

term is plausible. We also provide a detailed study in the appendix. 293

4 EXPERIMENTS 294

We conduct extensive experiments on five crowd counting benchmarks to verify the effectiveness 295

of proposed P3Net. Experiments and descriptions of NWPU-Crowd (Wang et al., 2020b) can be 296

referred to the appendix. The datasets are described as follows: 297

UCF-QNRF (Idrees et al., 2018) The dataset contains congested crowd images, which are crawled 298

from Flickr, Web Search, and Hajj footage. It includes 1,535 high-resolution images with 1.25 299

million annotated points. There are 1,201 and 334 images in the training and testing sets respectively. 300

301

JHU-Crowd++ (Sindagi et al., 2020a) The dataset includes 4,372 images with 1.51 million anno- 302

tated points. There are 2,272 images used for training, 500 images for validation, and the rest 1,600 303

images used for testing. The crowd images are collected from several sources on the Internet using 304

different keywords and typically chosen under various conditions and geographical locations. 305

ShanghaiTech A (Zhang et al., 2016) The dataset contains 482 crowd images with 244,167 anno- 306

tated points. The images are randomly chosen from the Internet where the number of annotations 307

in an image ranges from 33 to 3,139. The training set has 300 images, and the testing set has the 308

remaining 182 images. 309

ShanghaiTech B (Zhang et al., 2016) The dataset contains 716 crowd images, which are taken in 310

the crowded street of Shanghai. The number of annotations in an image ranges from 9 to 578. The 311

training set has 316 images, and the testing set has the remaining 400 images. 312

The network strucutre and the trianing datails are summarized as follows. 313
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Methods Labeled UCF-QNRF JHU++ ShanghaiTech A ShanghaiTech B
Percentage MAE MSE MAE MSE MAE MSE MAE MSE

MT (Tarvainen & Valpola, 2017) 5% 172.4 284.9 101.5 363.5 104.7 156.9 19.3 33.2
L2R (Liu et al., 2018b) 5% 160.1 272.3 101.4 338.8 103.0 155.4 20.3 27.6

GP (Sindagi et al., 2020b) 5% 160.0 275.0 - - 102.0 172.0 15.7 27.9
P3Net (Ours) 5% 115.3 195.2 80.8 306.1 85.5 131.0 12.0 22.0

MT (Tarvainen & Valpola, 2017) 10% 156.1 145.5 250.3 90.2 319.3 94.5 15.6 24.5
L2R (Liu et al., 2018b) 10% 148.9 249.8 87.5 315.3 90.3 153.5 15.6 24.4

AL-AC (Zhao et al., 2020) 10% - - - - 87.9 139.5 13.9 26.2
IRAST (Liu et al., 2020b) 10% - - - - 86.9 148.9 14.7 22.9

IRAST+SPN (Liu et al., 2020b) 10% - - - - 83.9 140.1 - -
P3Net (Ours) 10% 103.4 179.0 71.8 294.4 72.1 116.4 10.1 18.2

MT (Tarvainen & Valpola, 2017) 40% 147.2 249.6 121.5 388.9 88.2 151.1 15.9 25.7
L2R (Liu et al., 2018b) 40% 145.1 256.1 123.6 376.1 86.5 148.2 16.8 25.1

GP (Sindagi et al., 2020b) 40% 136.0 - - - 89.0 - - -
IRAST (Liu et al., 2020b) 40% 138.9 - - - - - - -
SUA (Meng et al., 2021) 40% 130.3 226.3 80.7 290.8 68.5 121.9 14.1 20.6

P3Net (Ours) 40% 90.0 155.4 58.9 251.9 63.0 100.9 7.1 12.0

Table 1: Comparisons with the state of the arts semi-supervised counting methods on four datasets.
The best performance is shown in bold. The results of other methods under the 40% labeled setting
are referred to (Meng et al., 2021) and all other results are from the original papers.

Network Details. VGG-19, which is pre-trained on ImageNet, is adopted as our CNN backbone314

to extract features. We use Adam algorithm (Kingma & Ba, 2014) to optimize the model with the315

learning rate 10−5. The number of decoder layers is set as 4. We set C = 25 and follow (Wang316

et al., 2021a) to calculate the reasonable density intervals. For the loss parameters, we set λ = 0.01317

and ξ = 0.5.318

Training Details. We adopt horizontal flipping and random scaling of [0.7, 1.3] for each training319

image. The random crop with a size of 512 × 512 is implemented, and as some images in Shang-320

haiTech A contain smaller resolution, the crop size for this dataset reduces to 256 × 256. We limit321

the shorter side of each image within 2048 pixels in all datasets. The experiments are held on one322

GPU of RTX3080.323

4.1 RESULTS AND DISCUSSIONS324

Comparisons to the State of the Arts. We evaluate P3Net on these datasets and compare it with325

state-of-the-art semi-supervised methods, as shown in Table 1. Since in the 50% labeled setting of326

paper (Meng et al., 2021), 10% of the labeled data will be used as the validation set, we consider327

it as the 40% labeled setting. P3Net outperforms other methods by a large margin. Compared to328

the second best methods on the most challenging setting of 5%, our method reduces the MAE by329

44.7, 20.6, 16.5 and 3.7 points on QNRF, JHU++, ShanghaiTech A and B. Specifically, on QNRF330

dataset, P3Net achieves significant reductions which are over about 27.9% in mean absolute error331

and 28.3% in mean square error under three different settings of labeled ratio. The excellent results332

demonstrate the effectiveness of our method in semi-supervised crowd counting.333

The impact of PDM and ECR loss. We conduct experiments to study the impact of two proposed334

loss functions. Specifically, LP represents the PDM loss without ECR, and the combination of LP335

and LE forms the proposed P3Net. The comparison result is shown in Table 2. With the help of336

unlabeled data and the corresponding ECR, P3Net improves the counting accuracy of ‘supervisions337

from only labeled data’ over 7.8 and 12.2 in terms of MAE and MSE respectively. The experimental338

results validate that through the self-supervision of ECR from unlabeled data, the prediction capa-339

bility and accuracy of the model is enhanced. The improvement is the sense of semi-supervised340

learning.341

The impact of Pixel-wise Distribution Matching loss. We study the proposed PDM loss by342

comparing it with the Cross Entropy (CE) loss and MSE loss, and more noteworthy, the counting343

loss including the Bayesian loss (Ma et al., 2019) and DM loss (Wang et al., 2020a) which achieve344

best results in the fully-supervised domain. The experimental result is shown in Table 3, which is345

held on UCF-QNRF dataset with a labeled ratio of 5%. Our loss outperforms all four losses by large346
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Labeled Percentage Loss MAE MSE Loss MAE MSE

5% LP 129.5 212.8 LP + λLE 115.3 195.2
10% LP 117.4 211.8 LP + λLE 103.4 179.0
40% LP 97.8 167.6 LP + λLE 90.0 155.4

100% LP 78.5 135.8 - - -

Table 2: The impact of ECR loss. Experiments are conducted on UCF-QNRF. With the help of ECR
to exploit supervisions from unlabeled data, we get a further improvement on counting accuracy.

margins. The result suggests that the awareness of the semantic information is helpful in matching 347

the distribution between prediction and ground truth. Moreover and surprisingly, the CE loss and 348

MSE loss, which are more specialized for classification originally, surpass the counting loss in this 349

case. The reason probably lies in that when only a small number of ground-truth labels is available, 350

regarding the single-value density as a probability distribution provides a better way for improving 351

the robustness and accuracy of the counting model. 352

CE MSE PDM

MAE 125.4 132.8 115.3
MSE 211.6 223.2 195.2

BL DM PDM

MAE 136.5 133.4 115.3
MSE 234.7 225.3 195.2

Table 3: Comparisons of using different
losses to get supervisions from ground-
truth. Experiments are held on UCF-
QNRF with 5% labeled ratio.

L−
P MAE MSE

5% 134.5 240.6
100% 85.8 142.7

LP MAE MSE

5% 129.5 212.8
100% 78.5 135.8

Table 4: The influence of probabilistic distribution mod-
elling. L−

P denotes the conventional prediction way,
which selects the value of maximum predicted category
and then a simple average is made between dual branch.

The influence of probabilistic distribution modelling. Table 4 reports the influence of modelling 353

each pixel by probability distribution. For comparison, we denote the conventional prediction way as 354

L−
P , which first selects the category with maximum predicted score for each pixel in each branch and 355

converts it to the corresponding predefined representation value. Then we make a simple average 356

instead of using Eq. 7 between dual branch. We study its performance on UCF-QNRF with the 357

settings of 5% and 100% labeled ratios. Compared with the proposed model, the counting accuracy 358

of L−
P has an obvious decrease. This indicates that probabilistic distribution modelling and the use 359

of expectation of different branches effectively improves the performance. 360

5 DISCUSSION AND CONCLUSION 361

We propose a dual-branch semi-supervised counting approach based on interleaved modelling of 362

pixel-wise density probability distributions. The PDM loss matches the pixel-by-pixel density prob- 363

ability distribution to the ground truth. It shows good generalization capability, even when only a 364

small amount of labeled data is available. Moreover, a set of tokens with clear semantic associations 365

to the density intervals customizes the transformer decoder for the counting task. Furthermore, the 366

inter-branch ECR term reconciles the expectations of two predicted distributions, which provides 367

rich supervised signals for learning from unlabeled data. Our method compasses other methods by 368

an average relative MAE reduction of over 22.0%, 23.5%, and 28.9% with the label ratios of 5%, 369

10%, and 40% respectively. As a result, a new strong state of the art for semi-supervised crowd 370

counting is set up. 371

We also evaluate our approach under the fully-supervised setting. The detailed experimental results 372

are reported in the appendix. Our approach achieves 78.5 MAE on QNRF and thus works remark- 373

ably well under the fully supervised setting. This consistent performance boost implies that optimal 374

semi-supervised counting is built on both the ability to learn from labeled data and unlabeled data. 375

Compared with those methods focusing more on learning from unlabeled data, P3Net reaches a bet- 376

ter balance of learning from both labeled and unlabeled data. The limitation of our method is that 377

ECR can alleviate, but cannot eliminate the bias in self-supervision. When the image background is 378

too complex or the image is too crowded, it may lead to poor results. Nonetheless, this study still 379

brings much inspiration for future studies about semi-supervised learning. 380
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