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ABSTRACT

How to effectively represent molecules is a long-standing challenge for molec-
ular property prediction and drug discovery. Recently, accumulative unlabelled
molecule data have spurred the rapid development of pre-training methods for
molecular representation learning. However, these works mainly focus on devis-
ing self-supervised learning tasks and/or introducing 3D geometric information
based on molecular structures with little chemical domain knowledge involved. To
address this issue, we propose a novel method (MolKD) by Distilling pre-trained
Knowledge in chemical reactions to assist Molecular property prediction. Specifi-
cally, MolKD first learns effective representations by incorporating reaction yields
to measure transformation efficiency of the reactant-product pair when pre-training
on reactions. Next, MolKD introduces the reaction-to-molecule distillation to
transfer cross-modal knowledge between pre-training chemical reaction data and
the downstream molecular property prediction tasks. Extensive experiments show
that our method can learn effective molecular representations, achieving superior
performance compared with state-of-the-art baselines, e.g., 2.8% absolute Hit@1
gain on USPTO in chemical reaction prediction and 1.6% absolute AUC-ROC gain
on Tox21 with 1/3 pre-training data size in molecular property prediction. Fur-
ther investigations on pre-trained molecular representations indicate that MolKD
learns to distinguish chemically meaningful molecular similarities, which enables
molecular property prediction with high robustness and interpretability.

1 INTRODUCTION
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Figure 1: ROC-AUC score v.s. the number of model’s
parameters on Tox21. Each datapoint is visualized as a
circle whose radius is proportional to

√
p, where p is the

size of pre-training data. The color of the circle denotes
the category of pre-training methods as introduced in
Sec. 2. We find that MolKD achieves the best perfor-
mance with a small number of model’s parameters and
pre-training data.

Effective molecular representations plays
an important role in AI-aided drug de-
sign and discovery, such as chemical re-
action prediction (Lu & Zhang, 2022; Bi
et al., 2021), molecular property predic-
tion (Shen et al., 2021; Liu et al., 2022a),
and molecule generation (Xu et al., 2022;
Luo & Ji, 2021). In computational chem-
istry, researchers have proposed many
methods of conventional molecular repre-
sentations, such as SMILES (Weininger,
1988), SELFIES (Krenn et al., 2020), and
ECFP (Rogers & Hahn, 2010) 1.

However, such string-based representations
are hard to directly encode the important
topology and structural information of a
molecule. Because molecules can be natu-
rally represented as graphs by taking atoms
as nodes and chemical bonds as edges. In order to preserve rich structural information, many recent
works exploit graph neural networks (GNNs) to extract and propagate messages of each atom within

1For example, the molecular formula and the SMILES string (Simplified Molecular-Input Line-Entry System)
of methyl acetate are C3H6O2 and CC(=O)OC, respectively.
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its neighbors, and have shown promising results in molecular property prediction (Vamathevan et al.,
2019; Stärk et al., 2022). However, acquiring labeled molecule data usually requires time-consuming
laborious and costly wet-lab experiments (Atz et al., 2021; Hao et al., 2020), which hinders the
successful application of GNN-based methods in molecule property prediction.

To mitigate the scarcity of labeled molecule data, recent progress has been made by pre-training
molecular representations on unlabelled molecule data. Typically, the main idea behind pre-training
strategies is to leverage enormous unlabeled data to learn molecular representations fit for the
downstream prediction tasks. Wang et al. (2022b); Liu et al. (2022a) design several self-supervised
learning tasks to model molecular structures. Fang et al. (2022a); Stärk et al. (2022) further introduce
the 3D molecular information and align the 2D graph with the 3D conformation representation of a
molecule. More discussions can be found in Sec. 2. However, these methods may suffer from low
data efficiency and generalization ability without the help of chemical domain knowledge.

To effectively leverage the benefits of chemical domain knowledge, we propose a novel
method (MolKD) by Distilling pre-trained Knowledge in chemical reactions to assist Molecular
property prediction. Specifically, yield plays a critical role in a chemical reaction by measuring
the transformation efficiency of the reactant-product pair. MolKD can incorporate this important
factor and learn powerful molecular representations by our proposed yield-guided chemical reac-
tion pre-training method. Moreover, to narrow the gap in data modality between reactions and
molecules, we introduce the reaction-to-molecule distillation to transfer cross-modal knowledge
between pre-training chemical reaction data and the downstream molecular property prediction tasks.

To validate the high quality of molecular representations, we compare our yield-guided chemical
reaction pre-training method with competitive baselines, and achieve 2.8% absolute Hit@1 gain on
USPTO in chemical reaction prediction. We also visualize the selected molecules to show that the
learned molecular representations are chemically meaningful by encoding structural and synthetic
semantics in the representation domain (See Fig 4). To verify the effectiveness of our proposed
MolKD, we compare it with several state-of-the-art baselines on 9 molecular property prediction
benchmarks, among which MolKD achieves superior performance on 8 challenging tasks, e.g., 1.6%
absolute AUC-ROC gain on Tox21 with only 1/3 pre-training data size (See Fig. 1). We further
investigate MolKD on PhysProp (Li et al., 2022a) to demonstrate its robustness and interpretability.

2 RELATED WORK

Pre-training for Molecular Representations. In general, the pre-training methods for molecular
representations fall into three categories. (1) Wang et al. (2022b); Liu et al. (2022a); Fang et al.
(2022b); Hu et al. (2020); Rong et al. (2020); Li et al. (2020) design dedicated self-supervised
learning tasks based on string-level (1D) and graph-level (2D) structures of molecule data. Hu
et al. (2020) propose the node- (attribute masking) and graph-level (context prediction) pre-training
strategies to make accurate and robust predictions on a variety of downstream tasks. GROVER (Rong
et al., 2020) adopts the Transformer structure to the designed self-supervised task (i.e., contextual
property prediction and graph-level motif prediction). (2) Fang et al. (2022a); Stärk et al. (2022);
Liu et al. (2022b); Li et al. (2022a) further introduce 3D conformations of a molecule and align its
2D and 3D representation. GEM (Fang et al., 2022a) incorporates 3D geometric information into
several dedicated geometry-level self-supervised learning strategies. GraphMVP (Liu et al., 2022b)
introduces a multi-view pre-training framework to preserve consistency between 2D topological
structures and 3D geometric views. (3) Wang et al. (2022a); Fang et al. (2022b) introduce chemical
domain knowledge to molecule representations from extra data sources. MolR (Wang et al., 2022a)
adopt the composable TransE methods in NLP to preserve the equivalence of molecules with respect
to chemical reactions in the embedding space. KCL (Fang et al., 2022b) constructs a chemical
element knowledge graph to incorporate prior knowledge into molecular graph semantics. Note that
on top of MolR, we incorporate the important factor of chemical reactions—yields—as a measure
to adaptively scale the margin of the TrasE loss in the pre-training phase to increase the sample
efficiency and obtain more informative molecular representations.

Knowledge Distillation. Knowledge distillation is a generic training paradigm where a student
model is trained under the supervision of a teacher model to achieve (implicit) knowledge trans-
fer (Gou et al., 2021). According to Tian et al. (2019), there mainly exist three distillation paradigms:
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(1) model compressing (Sanh et al., 2019), (2) cross-modal knowledge transfer (Romero et al., 2014),
(3) ensemble distillation (Buciluǎ et al., 2006). We can also classify distillation techniques from
the perspective of knowledge categories (Gou et al., 2021): logit-based (Hinton et al., 2015) and
feature-based (Tian et al., 2019) distillation method. In this paper, we focus on the cross-modal (from
chemical reaction data to molecule data) and feature-based (since it was reported to achieve superior
performance than logits-based methods) distillation method. To our best knowledge, this is the first
work to consider reaction-to-molecule distillation for molecular property prediction.

3 BACKGROUND

Molecular graphs. Molecules can be naturally represented as graphs by taking atoms as nodes
and chemical bonds as edges. Formally, let G = (V, E ,X) denote a molecular graph, where
V = {vi}Ni=1 is a set of N atoms, and E ⊆ V × V is a set of chemical bonds between atoms. X =

[x1,x2, · · · ,xN ]
T ∈ RN×d represents the atom feature matrix, where d is the feature dimension.

Each atom i has the an initial feature vector xi ∈ Rd, such as molecule fingerprints.

Chemical reactions. In this paper, a chemical reaction can be described as a pair of molecular
graphs with a reaction yield (GR,GP , y), where GR = {Gr1 ,Gr2 , · · · } and GP = {Gp1

,Gp2
, · · · } are

the set of reactants and products respectively, and y is the yield of this reaction. Note that reactants
and products of the same reaction always share the same set of nodes because the chemical reaction
preserves atom number and types. In organic chemical synthesis processes, the reaction yield is
a primary factor, which measures the amount of a specific set of products formed per mole of the
reactants consumed (Fogler & Fogler, 1999). Yields are usually expressed as a percentage (ratio of
actual yield to theoretical yield) and fall into the range [0, 1]. According to Furniss (1989), yields
above 70% are relatively good due to side and incomplete reactions that generate other products.
In general, the higher yield indicates that the reaction is more efficient and important for organic
chemical synthesis in practice.

Uncertainty knowledge graphs (KG). An uncertainty KG consists of a set of weighted triples
{(l, sl)} (Chen et al., 2021). For each pair (l, sl), l = (h, r, t) is a triple representing a relation fact
where h is the head entity, t is the tail entity, and r is the associated relation. sl ∈ [0, 1] denotes
the confidence score for this relation fact to be true. Some examples of weighted triples are as
follows (Chen et al., 2019): ((university, synonym, institute), 0.86) and ((fork, atlocation, kitchen),
0.4). Overall, given the uncertainty KG, we aim to learn an embedding model to encode each entity
and relation into a low-dimensional space where confidence scores of relation facts are preserved.

Graph neural networks (GNNs). GNNs have become increasingly popular in various graph
mining and molecular modeling tasks (Wu et al., 2020). Typically, the training process of modern
GNNs follows the message-passing mechanism (Hamilton, 2020). During each message-passing
iteration, a hidden embedding h

(k)
u corresponding to each node u ∈ V can be expressed as follows:

h(k)
u = UPDATE (k)

(
h(k−1)
u , AGGREGATE (k)

({
h(k−1)
v , v ∈ N (u)

}))
= UPDATE (k)

(
h(k−1)
u ,m

(k)
N (u)

)
,

(1)

where UPDATE and AGGREGATE are arbitrary differentiable functions (i.e., neural networks),
and mN (u) denotes the “message” that is aggregated from u’s neighborhood N (u). The initial
embedding at k = 0 is set to the input features, i.e., h(0)

u = xu,∀u ∈ V . After running k iterations of
the GNN message-passing, we can obtain information from k-hops neighborhood nodes. Different
GNNs can be obtained by choosing different UPDATE and AGGREGATE functions. For graph
classification tasks, a graph-level representation hG is obtained by integrating all the node embeddings
h
(K)
u among the graph G after K iterations:

hG = READOUT
({

h(K)
u , u ∈ V

})
, (2)

where the READOUT(·) is a permutation invariant function such as summation and maximization
operators or more complex pooling methods (Ying et al., 2018; Gao & Ji, 2019).
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Figure 2: An overview of our MolKD framework. MolKD consists of two-stage training phases: the
yield-guided chemical reaction pre-training and the reaction-to-molecule distillation.

Problem setup. For molecular property prediction, given a training set of molecular graphs
{G1,G2, · · · ,GNl

} ⊆ G and their labels {l1, l2, · · · , lNl
} ⊆ L, e.g., quantum mechanics prop-

erty, our goal is to learn a function f : G → L and predict the labels of other molecular graphs in
the testing set. In this paper, the student encoder fS of the learned function f is supervised by our
proposed pre-trained teacher model fT , which transfers knowledge from chemical reaction data.

4 MOLKD: THE PROPOSED METHOD

In this section, we present our MolKD method according to its two-stage training phases. We first
introduce how to preserve equivalence of chemical reactions and incorporate information of yields
in the pre-training phase (Sec. 4.1). After that, we propose the reaction-to-molecule distillation to
transfer cross-modal knowledge between pre-training reaction data and the downstream molecule
data (Sec. 4.2). The schematic illustration of our proposed method is shown in Fig. 2.

4.1 YIELD-GUIDED CHEMICAL REACTION PRE-TRAINING

Given the chemical reaction dataset, we design the self-supervised learning task for pre-training to
obtain informative molecular representations. For the sake of intuitive representation, we use the con-
densation reaction of methyl acetate (CH3COOH+C2H5OH −−→ CH3COOCH3 +H2O, 0.9) 2

as the representative chemical reaction for illustration in what follows.

Encoding molecular embeddings. In order to encode rich structure information of the given
molecule, we first convert molecular SMILES (Weininger, 1988) strings to molecular graphs. We
utilize GNNs to encode molecular graphs as numeric vectors. Zhang et al. (2021) argued that
hydrogen atoms can help determine the number of the chemical bonds for atoms. Therefore we regard
hydrogen atoms as independent nodes in molecular graphs. We then utilize PySmiles (Landrum,
2013) library to produce six types of atom properties: element type, (anti)-aromaticness, mass, the
number of implicit hydrogens, charge, and class. Each type of atomic property is represented as a
one-hot vector. The initial node feature of each atom in the molecular graph is the concatenation of six
one-hot vectors. Following Wang et al. (2022a), we do not explicitly encode edge attributes because
they can be implicitly inferred by the node features of their own corresponding atoms. Intuitively, we
take ethanol C2H5OH as input, we can get its representation vector hC2H5OH after this step.

2Chemical reactions usually occurs under some specific conditions, such as catalysts. The complete equa-
tion of this chemical reaction is

(
CH3COOH+C2H5OH

H2SO4−−−−→
∆

CH3COOCH3 +H2O, 0.9
)

. Following
previous work Wang et al. (2022a), we omit the chemical conditions for clarity because they do not affect the
conservation law (e.g., atom number and types) between reactants and products.
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Preserving chemical reaction equivalence. A chemical reaction defines a transformation relation
“→” between the reactant set R = {r1, r2, · · · , rn} and the product set P = {p1, p2, · · · , pm}:

r1 + r2 + · · ·+ rn −→ p1 + p2 + · · ·+ pm. (3)

A chemical reaction represents a particular relation of equivalence between its reactants and products
in terms of the conservation of mass and charge. We adopt the idea of preserving the equivalence of
chemical reactions in molecular embedding space (Wang et al., 2022a). This equivalence property is
reminiscent of the translation-based model in KG that learns embeddings by narrowing the distance
between the head and tail entity transformed by the relation to preserve its composable property.
If we take reactants of a reaction as the head entity and products as the tail entity, we can impose
constraints on molecular embeddings to preserve the equivalence property 3:∑

r∈R

hr =
∑
p∈P

hp. (4)

For a minibatch data B1 = {(R1, P1, y1), (R2, P2, y2), · · · }, we compute a score function to measure
the fitness of the reactant-product pair in a reaction. We adopt the L-2 norm introduced in TransE (Bor-
des et al., 2013) to compute the score function with f(R,P ) =

∥∥∥∑r∈R hr −
∑

p∈P hp

∥∥∥
2
. To prevent

the TransE model from learning a trivial solution where all molecular representations are equal to
zero, we use the contrastive learning strategy (Jaiswal et al., 2020) by drawing unpaired reactants and
products as negative samples. The margin-loss function to be minimized is denoted as

LB =
1

|B1|(|B1| − 1)

∑
i

∑
i̸=j

max

∥∥∥∥∥∥
∑
r∈Ri

hr −
∑
p∈Pi

hp

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
∑
r∈Ri

hr −
∑
p∈Pj

hp

∥∥∥∥∥∥
2

+ γ, 0

 ,

(5)
where γ > 0 is a margin hyper-parameter. See Fig. 2 for an illustration. Intuitively, in the molecular
embedding space, we obtain hCH3COOH + hC2H5OH ≈ hCH3COOCH3

+ hH2O for the reaction
CH3COOH+C2H5OH −−→ CH3COOCH3 +H2O after this step.

Larger yields; larger margins

Push away 

Figure 3: The illustration of
the embedding space with
different margins according
to reaction yields. Circles
and rectangles denote posi-
tive and negative samples.

Modeling transformation efficiency with reaction yields. The
yield is a crucial measure of transformation efficiency of the reactant-
product pair in a reaction. Intuitively, the higher yield of a reac-
tion suggests that given its reactants, it’s more likely to generate
the corresponding products than others, i.e., there is higher proba-
bility that the relation between the reactants and products is true.
This draws a conceptual analogy to the confidence score on an un-
certainty KG. Accordingly, we adopt the idea of GTransE (Kertkei-
dkachorn et al., 2019) to capture the confidence of reaction triples
in an uncertainty KG, by adaptively modifying the margin with the
reaction yield in pre-training. Intuitively, the higher the yield, the
larger margin should be set to pay more attention to this reaction.
Thus, the margin γ should be increased when the reaction yield y gets
higher. In Fig. 3, we maximize the margin between the positive sample
f+(Ri, Pi) =

∥∥∥∑r∈Ri
hr −

∑
p∈Pi

hp

∥∥∥
2

and the negative sample

f−(Ri, Pj) =
∥∥∥∑r∈Ri

hr −
∑

p∈Pj
hp

∥∥∥
2

of the higher yield (the red rectangle) rather than the

lower yield one (the green rectangle). Formally, if we have (R1, P1, y1), (R2, P2, y2), and y1 > y2,
then f+(R1, P1)− f−(R1, P2) > f+(R2, P2)− f−(R2, P1). Therefore, the margin-loss function
of yield-guided chemical reaction pre-training can be further derived as 4

LB =
1

|B1|(|B1| − 1)

∑
i

∑
i ̸=j

max

∥∥∥∥∥∥
∑
r∈Ri

hr −
∑
p∈Pi

hp

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
∑
r∈Ri

hr −
∑
p∈Pj

hp

∥∥∥∥∥∥
2

+ yαi γ, 0

 ,

(6)
3We omit the modeling of relations because there exists only one transformation relation “→” in a chemical

reaction. We leave the modeling of different chemical reaction types and conditions as future work.
4Here we only replace the corrupted products P in negative samples because yields reflect the transformation

efficiency of the main product in a reaction.

5



Under review as a conference paper at ICLR 2023

where α ≥ 0 is a hyper-parameter to control the influence of reaction yields. As α becomes larger, the
effect of yields on model transformation efficiency is amplified. When α equals zero, the influence of
uncertainty is eliminated, and Eq. 6 becomes Eq. 5. Intuitively, in the molecule embedding space,
we obtain hCH3COOH + hC2H5OH ≈ hCH3COOCH3

+ hH2O for (CH3COOH + C2H5OH
H2SO4−−−−→

∆

CH3COOCH3 +H2O, 0.9) considering its reaction yield 0.9 after this step.

4.2 REACTION-TO-MOLECULE DISTILLATION

Given molecule data with property labels, we train a predictor supervised by the pre-trained model.
Here we introduce the feature-based knowledge distillation method to transfer knowledge in chemical
reaction data for molecular property prediction tasks. The workflow of MolKD is illustrated in Fig. 2.
Again, we use the toxicity of ethanol C2H5OH as the representative molecular property prediction
task for illustration in what follows.

We adopt the feature-based distillation method, i.e., contrastive representation distillation (Tian et al.,
2019) and formulate representation distillation as a contrastive learning task on pairwise relationships
between the teacher and student representations. Intuitively, we want to maximize the consistency
of representations for the teacher and student model. Given data of molecular property prediction
B2 = {(G1, l1), (G2, l2), · · · }, we maximize the similarity among pairs of student and teacher repre-
sentations corresponding to the same molecular graph, i.e., fS(Gi), f

T (Gi) (positive samples), while
pushing away the representations of pairs of unmatched molecules, i.e., fS(Gi), f

T (Gj) (negative
samples). We utilize the InfoNCE loss (Oord et al., 2018) in reaction-to-molecule distillation. Given
two molecular encoders fS and fT with the same output feature dimension, we denote representation
distillation as the task of classifying positive pairs among a set of negative pairs as

LKD(f
S , fT ) = − 1

|B2|
∑
i

log
exp

(
s
(
fS(Gi), f

T (Gi)
)
/τ

)
exp (s (fS(Gi), fT (Gi)) /τ) +

∑
j ̸=i exp (s (f

S(Gi), fT (Gj)) /τ)
,

(7)
where τ represents the temperature hyper-parameter and s(·) indicates the similarity between molec-
ular representations. Here we use the cosine similarity function. Intuitively, we fine-tune the student
model fS to predict the toxicity of C2H5OH supervised by the teacher model fT pre-trained on
reaction (hCH3COOH + hC2H5OH ≈ hCH3COOCH3

+ hH2O, 0.9).

Training objective. In MolKD, we use TAG (Du et al., 2017) as our backbone GNN model. As
shown in Fig. 2, we need to optimize two components of the loss function. First, we have an auxiliary
reaction-to-molecule distillation loss to obtain a powerful GNN encoder for effective molecular
representations (Eq. 6). Second, given the training set of molecular data (G, l) ∈ G× L, the GNN
model f parameterized by θ is further optimized with a supervised loss Lsup as follows:

Lsup = E(G,l)∈G×L[L (fθ (G) , l)] . (8)

Overall, the final training objective of MolKD is

L = β · Lsup + (1− β) · LKD
(
fS ,Φ(fT )

)
, (9)

where β is a scaling factor to balance the supervised loss and the representation distillation loss, and
Φ is an MLP layer to transform the feature maps of the teacher and student models in the same shape.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following questions: (1) Can our
proposed yield-guided chemical reaction pre-training method MolKD provide effective molecular
representations? (Sec. 5.1) (2) How does MolKD compare to state-of-the-art methods on molecular
property prediction tasks? (Sec. 5.2) (3) Can MolKD serve as a reliable method with high robustness
and interpretability? (Sec. 5.3) Each result in this section is obtained by running over 10 runs, and
we show the results of mean and standard deviation on the testing set. Due to space limitations, the
descriptions and statistics of the datasets we use are provided in Appendix A. Additional empirical
studies such as ablations of the backbone GNN models and knowledge distillation methods, as well
as the results of regression tasks on molecular property prediction tasks, can be found in Appendix B.
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Table 1: Results of chemical reaction prediction on USPTO-500-MT. We use the pre-trained models
of Mol2Vec and MolBERT from their respective papers. MolR and MolKD variants are pre-trained
on the training set of USPTO-500-MT. Arrows indicate the direction of better performance. Bold /
underline denote the best / second-best result for each column.

MRR ↑ MR ↓ Hit@1 ↑ Hit@3 ↑ Hit@5 ↑ Hit@10 ↑
Mol2Vec 0.758 93.748 0.696 0.799 0.830 0.864
MolBERT 0.796 18.781 0.720 0.853 0.888 0.923

MolR 0.853±0.005 2.351±0.108 0.783±0.006 0.911±0.005 0.941±0.004 0.968±0.002

MolKD-random 0.725±0.017 174.740±49.859 0.669±0.021 0.762±0.015 0.790±0.013 0.822±0.011

MolKD-confidence 0.858±0.005 2.271±0.106 0.789±0.007 0.915±0.005 0.945±0.004 0.970±0.002

MolKD-CKRL 0.857±0.005 2.260±0.099 0.787±0.007 0.913±0.005 0.944±0.003 0.970±0.002

MolKD 0.875±0.003 2.058±0.054 0.811±0.003 0.929±0.002 0.955±0.002 0.977±0.002

5.1 PRE-TRAINING ON CHEMICAL REACTIONS

Datasets. We use USPTO-500-MT collected by Lu & Zhang (2022), a public large-scale reaction
dataset including reaction SMILES and yields, to validate the effectiveness of the yield-guided chem-
ical reaction pre-training method. This dataset consists of 143,535 reactions: 116,360/12,937/14,238
for training/validation/testing. Each reaction has at most 5 reactants and only 1 main product.

Baselines. We compare MolKD with various pre-training methods for molecular representations:
Mol2vec (Jaeger et al., 2018), MolBERT (Fabian et al., 2020), and MolR (Wang et al., 2022a).
Moreover, we carry out the following ablations: (1) we replace reaction yields with random numbers
falling into [0, 1] (MolKD-random), and confidence scores (Ghiandoni et al., 2019) that measure the
quality of reaction classes (MolKD-confidence). These two ablations are designed to highlight the
importance of yields when pre-training on reactions. (2) we adopt another uncertainty KG method,
i.e., CKRL (Xie et al., 2018)) to validate the versatility of our model (MolKD-CKRL).

Setups. Inspired by the equivalence property between reactants and products that hR ≈ hP , we
treat the chemical reaction prediction as a ranking problem following Wang et al. (2022a). In the
testing phase, given the reactants of a reaction, we predict its main product and rank all candidate
products (there are 14,123 in total) according to l-2 distances in the representation space ||hR −hp||2.
We conduct three measures as our evaluation metrics. (1) MRR: mean reciprocal rank (2) MR: mean
rank of correct entities (3) Hit@K: the proportion of correct answers ranked in top K.

Table 1 shows the results of chemical reaction predictions, from which we can observe that: (1)
Our MolKD model achieves the best performance compared with other baselines and ablations over
6 evaluation metrics. For example, MolKD achieves 2.2% absolute MRR gain and 2.8% absolute
Hit@1 gain compared with the best-performed MolR model, which confirms the capability of our
yield-guided pre-training method. (2) Compared with MolR (without considering yields), MolKD-
random (replacing yields with meaningless numbers), and MolKD-confidence (replacing yields with
reaction confidence scores (Ghiandoni et al., 2019)), MolKD achieves 2.2%/12.0%/1.7% absolute
MRR improvement on MRR, highlighting the effectiveness of introducing the important chemical
reaction factor–yields when pre-training molecular representations. (3) MolKD achieves slightly
better performance compared with MolKD-CKRL, which suggests that MolKD does not rely on the
specific uncertainty KG method to achieve strong performance.

Investigation of pre-training representations. To examine the effectiveness of the representations
learned by our pre-trained MolKD, we visualize a representative molecule with its eight closest
molecules in the representation domain. Specifically, given the query molecule (PubChem ID
17842486), we obtain its representations via the yield-guided pre-training method in MolKD and
calculate cosine distances with all reference molecules in our pre-training dataset. The cosine distance
between two molecular representations (u,v) is defined as 1− u·v

||u||||v|| . Then, all reference molecules
are ranked by cosine distances. In Fig. 4, we show the eight closest molecules compared to the
query molecule. We also calculate molecular similarities through Tanimoto coefficient (Bajusz et al.,
2015) between the query and the selected molecule, and SA scores (Ertl & Schuffenhauer, 2009) to
assess the associated molecule’s synthetic complexity. We find that these molecules are structurally
similar to the query molecule with the same functional groups (e.g., aromatics). They have high
Tanimoto similarities larger than 0.5. The learned representations via MolKD are in line with our
expectation that molecules with similar structures tend to be close in the representation domain.
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Query molecule
SA score: 2.058

Tanimoto: 0.652

SA score: 2.197

Tanimoto: 0.625

SA score: 2.231

Tanimoto: 0.634

SA score: 2.467

Tanimoto: 0.539

SA score: 2.149

Tanimoto: 0.531

SA score: 2.727

Tanimoto: 0.502

SA score: 2.138

Tanimoto: 0.526

SA score: 2.041

Tanimoto: 0.551

SA score: 2.552

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 4: Comparisons of the query molecule (PubChem ID 17842486) and eight closest molecules
in MolKD representation domain with Tanimoto similarities and SA score labeled.

Moreover, these molecules have similar SA scores, which further suggests that selected molecules
share similar synthetic complexities in absence of the activity cliff issue (Hu & Bajorath, 2012).

5.2 MOLECULAR PROPERTY PREDICTION

Datasets. We benchmark the performance of MolKD on multiple challenging classification and
regression tasks from MoleculeNet (Wu et al., 2018). Following Wang et al. (2022a), all datasets are
randomly split into training, validation, and testing by 8:1:1. We use BACE, BBBP, ClinTox, HIV,
SIDER, and Tox21 for classification tasks and adopt AUC-ROC as the evaluation metric for these
binary prediction tasks, for which higher is better. We use ESOL, FreeSolv, and QM8 for regression
tasks and adopt the root mean square error (RMSE) for ESOL and FreeSolv, whereas we use mean
average error (MAE) for QM8, for which lower is better.

Baselines. We compare MolKD with multiple competitive baselines. AttentiveFP (Xiong et al.,
2019), GCN (Kipf & Welling, 2016), D-MPNN (Yang et al., 2019), SchNet (Schütt et al., 2018) are the
GNN-based methods without pre-training. As introduced in Sec. 2, the following pre-training methods
are divided into three categories. (1) Mol2vec (Jaeger et al., 2018), ChemBERTa (Chithrananda et al.,
2020), MolBert (Fabian et al., 2020), PretrainGNN (Hu et al., 2020), GROVER-base (Rong et al.,
2020), and MolCLR (Wang et al., 2022b) with carefully designed self-supervised learning tasks.
(2) GEM (Fang et al., 2022a) and GraphMVP (Liu et al., 2022a) with 2D-3D geometric alignment.
(3) KCL (Fang et al., 2022b) and MolR (Wang et al., 2022b) with auxiliary chemical data sources.
MolKD− means we directly use the pre-trained GNN model followed by a logistic regression layer
to make predictions, which does not use the reaction-to-molecule distillation method.

The overall performance of MolKD along with other baselines on classification tasks are summarized
in Table 2. We have the following observations: (1) MolKD achieves the state-of-the-art performance
over 5 out of 6 classification tasks, which demonstrates the effectiveness of two main components in
MolKD: the yield-guided pre-training and the reaction-to-molecule distillation. For example, MolKD
achieves [8.0%, 1.6%] absolute AUC-ROC gain on Tox21 compared with the best-performed method
[AttentiveFP, KCL] ([w, w/o pre-training]). (2) Methods with pre-training on large-scale unlabeled
molecules consistently outperform methods without pre-training. Notably, MolKD− achieves the on
par performance compared with MolR over all datasets. However, the size of pre-training data in
MolKD is almost 1/3 of that in MolR. These results highlight the importance of introducing yields to
increase data efficiency when pre-training on reactions. (3) MolKD achieves the best performance
with a minimal number of model parameters, which further corroborates its effectiveness.

5.3 EXPERIMENTAL ANALYSIS

Table 3: Effect score of molecular struc-
ture perturbation test.

Method Effect scorestd [lower is better]

Level1 Level2 Level3

GCN 0.385±0.161 0.712±0.169 0.997±0.183

GAT 0.388±0.055 0.615±0.087 0.943±0.145

GIN 0.312±0.017 0.526±0.039 0.764±0.015

MPNN 0.315±0.014 0.518±0.054 0.750±0.048

GLAM 0.290±0.010 0.493±0.074 0.656±0.118

MolKD 0.251±0.021 0.491±0.036 0.710±0.035

Robustness against molecular structure perturbation.
To evaluate the robustness of our proposed method, we
follow the principle of property-slightly-affected structure
perturbation (PASP) introduced by Li et al. (2022b) and
utilize the PhysProp dataset to perform a robustness exper-
iment. The aim is to investigate that the model does not
significantly affect the predictions (molecular properties)
when the input perturbed molecule set suffers small pertur-
bations. More details of the evaluation metric (i.e., effect
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Table 2: Results of molecular property prediction on classification tasks (metric: AUC-ROC). The
first block is the conventional methods without pre-training thus we omit their #Pre-training data. We
split the pre-training methods in the second to the fourth block according to three method categories
introduced in Sec. 2. The results in the first four blocks are taken from their original papers and “-”
means they do not report the corresponding results. “Z”, “C”, “P”, “Gu”, “Ge”, ‘U-4”, and “U-1”
in the #Pre-training data column denote the used pre-training data, which are the abbreviation of
ZINC15 (Sterling & Irwin, 2015), ChEMBL (Gaulton et al., 2012), PubChem (Kim et al., 2019),
GuacaMol (Brown et al., 2019), GEOM (Axelrod & Gomez-Bombarelli, 2022), USPTO-479k (Wang
et al., 2022a), and USPTO-500-MT (140k) (Lu & Zhang, 2022) respectively.

BACE BBBP ClinTox HIV SIDER Tox21 #Params (M) #Pre-training
data (M)

AttentiveFP 0.784 0.643 0.847 0.771 0.606 0.761 -
GCN 0.716 0.718 0.625 0.740 0.536 0.709 1.04

D-MPNN - 0.708 0.906 0.752 0.632 0.688 1.41
SchNet 0.766±0.011 0.848±0.022 0.715±0.037 0.702±0.034 0.539±0.037 0.727±0.023 2.20

*

Mol2vec 0.862±0.027 0.872±0.021 0.841±0.062 0.769±0.021 - 0.803±0.041 4.87 19.90 (Z+C)
ChemBERTa - 0.643 0.733 0.622 - 0.728 56.44 77.00 (P)

MolBert 0.866 0.762 - 0.783 - 0.806 64.42 1.60 (Gu)
PretrainGNN 0.845±0.007 0.687±0.013 0.726±0.015 0.799±0.007 0.627±0.008 0.781±0.006 4.36 2.00 (Z)

GROVER-base 0.878±0.016 0.936±0.008 0.925±0.013 - 0.656±0.006 0.819±0.020 48.39 11.00 (Z+C)
MolCLR-GCN 0.788±0.005 0.738±0.002 0.867±0.010 0.778±0.005 0.669±0.012 0.747±0.008 1.04 10.00 (P)
MolCLR-GIN 0.890±0.003 0.736±0.005 0.932±0.017 0.806±0.011 0.680±0.011 0.798±0.007 2.40 10.00 (P)

GEM 0.856±0.011 0.724±0.004 0.901±0.013 0.806±0.009 0.672±0.004 0.781±0.001 1.66 20.00 (Z)
GraphMVP 0.768±0.011 0.685±0.002 0.790±0.025 0.748±0.014 0.623±0.016 0.745±0.004 3.22 0.05 (GE)

KCL 0.860 0.927 0.898 - 0.659 0.825 1.16 0.25 (Z)
MolR-GCN 0.882±0.019 0.890±0.032 0.916±0.0394 0.802±0.024 - 0.818±0.023 1.98 0.48 (U-4)
MolR-TAG 0.875±0.023 0.895±0.031 0.913±0.043 0.801±0.023 - 0.820±0.028 3.26 0.48 (U-4)

MolKD− 0.876±0.031 0.902±0.028 0.917±0.039 0.811±0.021 0.660±0.048 0.818±0.059 3.26 0.14 (U-1)
MolKD (ours) 0.872±0.022 0.942±0.021 0.933±0.041 0.816±0.011 0.706±0.020 0.841±0.032 0.84 0.14 (U-1)

score) are provided in Appendix A. Table 3 shows that MolKD achieves the best performance with
high robustness on the level 1&2 perturbations and is less affected by molecular structure pertur-
bations. We postulate the reason is that pre-training on reactions could incorporate comprehensive
chemical domain knowledge to increase the robustness of the predictor.

Hydrophilic

Lipophilic

-1

0

1

True: 1.39     Pred: 1.38 True: 1.54     Pred: 1.52

True: 2.92     Pred: 2.79True: 1.62     Pred: 1.70

Figure 5: Case studies of atom-level
interpretation with true and predicted
solubility labeled.

Interpretability. To better understand the predictors gener-
ated by MolKD, we investigated its decision-making process
and interpreted its learned knowledge on PhysProp (Li et al.,
2022b). As shown in Fig. 5, we visualize some case studies
of the solubility prediction and explain the model from the
hidden states of the last layer by averaging scaling. In gen-
eral, hydroxyl and amino groups are considered to be more
hydrophilic, and alkyl and halogen groups are considered to
be more lipophilic. In Fig. 5, the atoms in the hydrophilic
group (e.g., -OH, and -COOH) tend to be bluer and their
weights are closer to 1 in our visualization. Meanwhile, the
atoms in the lipophilic group (e.g., benzene ring) tend to
be redder and their weights are closer to −1. These results
are in line with the chemical intuition, which suggests that
MolKD captures interpretable knowledge and patterns in
chemistry. More case studies of interpretability can be found in Appendix B.

6 CONCLUSION

In this work, we study how to distill knowledge in chemical reactions to assist molecular property
prediction. We propose a novel method named MolKD to obtain effective molecular representations,
which consists of two main components: the yield-guided chemical reaction pre-training method and
the reaction-to-molecule distillation. Through extensive experiments on chemical reaction prediction
and molecular property prediction, we show that MolKD achieves significantly superior performance
with high robustness and interpretability. We hope our work could stimulate more ideas to squeeze
the potential of chemical domain knowledge for molecular property prediction.
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Reproducibility statement. The source code along with a README file with instructions on how
to run these experiments is attached in the supplementary material. In addition, more discussions
about dataset descriptions and statistics, hyper-parameters for our proposed model, and experimental
settings are detailed in Appendix A.

Ethics statement. In this work, our studies are not related to human subjects, practices to data set
releases, potentially harmful insights, discrimination/bias/fairness concerns, and also do not have legal
compliance or research integrity issues. All datasets we used are curated from public data sources,
and are released under a license that allowed for public access. The datasets are all anonymized.
We develop a novel and practical method to incorporate chemical domain knowledge for popular
molecular property prediction problems. Therefore, we do not foresee any particular concerns related
to its ethical aspects or future societal consequences. However, advanced computational chemistry
tools may pose the risk of misuse, e.g., for the development of chemical weapons. Our studies, to the
best of our knowledge, do not promote misuse any more than computational chemistry research.
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A EXPERIMENTAL DETAILS

In this section, we first provide the detailed descriptions and statistics of all datasets used in Sec. 5.
We then list hyper-parameters of our proposed MolKD method followed by the experimental settings.

A.1 DATASET DESCRIPTIONS AND STATISTICS

To benchmark the performance of our MolKD model, we use 9 benchmark datasets curated from
MoleculeNet Wu et al. (2018) including both classification and regression tasks. These datasets cover
a wide range of categories of molecular tasks, i.e., quantum mechanics, physical chemistry, biophysics,
and physiology. All datasets are randomly split into training, validation, and testing subsets following
an 80/10/10 ratio. Furthermore, in order to investigate the robustness of the proposed model, we
adopt the perturbed PhysProp dataset to estimate the PASP (property-slightly-affected structure
perturbation) property Li et al. (2022b). Following Wu et al. (2018); Li et al. (2022b), different
classification and regression metrics are used to fairly compare different methods: ROC-AUC (Area
Under Curve of Receiver Operating Characteristics) for classification tasks, RMSE (Root-Mean-
Square Error) for regression tasks except the QM8 dataset, MAE (Mean Absolute Error) for the
QM8 dataset, and Effect score for the perturbed PhysProp dataset. The statistics of datasets we
used in experiments are summarized in Table 4. We also provide a brief description of datasets as
follows Huang et al. (2021); Li et al. (2022b):

• QM8: 21, 786 small molecules whose regression labels are electronic spectra and excited state
energy calculated by multiple quantum mechanic methods.

• ESOL: 1, 128 common organic small molecules whose labels are water solubility (log solubility
in mols per litre).

• FreeSolv: 642 small molecules whose regression labels are experimental and calculated hydration
free energy in water.

• Lipophilicity: 4, 200 molecules whose regression labels are experimental results of octanol/water
distribution coefficient (logD at pH 7.4).

• HIV: 41, 127 molecules whose classification labels are experimentally measured abilities to inhibit
HIV replication.

• BACE: 1, 513 molecules whose classification labels are binary binding results for a set of inhibitors
of human β-secretase 1 (BACE-1).

• BBBP: 2, 039 molecules with binary labels of blood-brain barrier penetration (permeability).

• Tox21: 7, 831 molecules with qualitative toxicity measurements on the biological target.

• SIDER: 1, 427 molecules which are collected from marketed drugs and adverse drug reac-
tions (ADR) dataset.

• ClinTox: Qualitative data of 1, 478 drugs approved by the FDA and those that have failed clinical
trials for toxicity reasons.

• Perturbed PhysProp: 14, 176 molecules structures and their corresponding lipophilicity proper-
ties (logP), whose principle is to determine an ideal perturbed molecule set with small perturbations
that do not significantly affect the properties. In order to obtain the perturbed data, Li et al. (2022b)
compare all possible molecule pairs in PhysProp (Tetko et al., 2001), calculate the fingerprint
similarity of all molecules and their difference in logP, and pick out molecule pairs that meet the
following two conditions: (1) the difference in the logP of the molecule pairs should be less than
0.2; (2) the molecular fingerprint similarity should be in the range of 0.3–1.0. These molecule
pairs are then divided into three levels (range 0.8–1.0, 0.5–0.8, and 0.3–0.5 marked as levels 1,
2, and 3). Finally, those molecules that exist in all three levels constitute the perturbed PhysProp
dataset. According to Li et al. (2022b), the evaluation metric of effect score is defined as follows:
given a molecule set M with ground-truth properties Q and a trained predictor f , we predict the
property set P by

P = f(M) (10)

Similarly, Given the perturbed set M ′ with properties Q′, we predict the property set P ′ by

P ′ = f(M ′) (11)
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Table 4: Statistics of the used datasets.

Category Dataset Data Type Task Type #Molecules Avg. #Atoms Avg. #Edges Metric

Quantum
Mechanics QM8 SMILES,

3D coordinates Regression 21,786 15.9 24.2 MAE

Physical
Chemistry

ESOL SMILES Regression 1,128 13.3 13.7 RMSE
FreeSolv SMILES Regression 642 8.7 8.4 RMSE
Lipophilicity SMILES Regression 4,200 27.0 29.5 RMSE

Biophysics HIV SMILES Classification 41,127 25.5 27.5 ROC-AUC
BACE SMILES Classification 1,513 34.1 36.9 ROC-AUC

Physiology

BBBP SMILES Classification 2,039 24.1 26.0 ROC-AUC
Tox21 SMILES Classification 7,831 18.6 19.3 ROC-AUC
SIDER SMILES Classification 1,427 33.6 35.4 ROC-AUC
ClinTox SMILES Classification 1,478 26.2 27.9 ROC-AUC

Robustness Perturbed
PhysProp SMILES Regression 12,607 16.9 26.0 Effect score

Finally, the perturbation effect score ∆ of method f is calculated by

∆ = L(P, P ′)− L(Q,Q′), (12)

where we use r.m.s.e as our distance function L.

A.2 HYPER-PARAMETERS

In the pre-training process on chemical reaction data, we use the following three commonly-used
GNNs as the implementation of our molecular encoder: TAG (Du et al., 2017), GCN (Kipf &
Welling, 2016), and GIN (Xu et al., 2019). We use the default hyper-parameters as introduced in the
PyTorch-Geometric library for each GNN model. The number of propagation layers for all GNN
models is 2, and the output dimension of GNNs is 2,048. The margin γ and α in Eq. 6 is set to 6 and 2
respectively. We train the model for 20 epochs with a batch size of 4, 094. We use the Adam (Kingma
& Ba, 2014) optimizer with a learning rate of 1× 10−4, β1 of 0.9, and β2 of 0.999.

In the fine-tuning process on molecular property prediction data, the hidden dimension of the student
GNN backbone model is 512, which is followed by two fully-connected layers to output the prediction.
We carry out a grid search on the validation dataset to find the optimal temperature hyper-parameter
τ in Eq. 7 and β in Eq. 9. We tune τ = {0.05, 0.075, 0.1} and α = {0.2, 0.5, 0.8}. For example, we
set τ = 0.05 and α = 0.5 on the QM8 dataset. We train the model for 400 epochs with a batch size
of 1, 024. The optimization is conducted using Adam (Kingma & Ba, 2014) with a learning rate of
2× 10−4.

A.3 EXPERIMENTAL SETTINGS

All experiments are conducted with the following settings:

• Operating system: Linux Red Hat 4.8.2-16
• CPU: Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz
• GPU: NVIDIA Tesla V100 SXM2 32GB
• Software versions: Python 3.8.10; Pytorch 1.9.0+cu102; Numpy 1.20.3; SciPy 1.7.1; Pandas 1.3.4;

Scikit-learn 1.0.1; PyTorch-geometric 2.0.2; DGL 0.7.2; Open Graph Benchmark 1.3.2

B MORE EXPERIMENTAL RESULTS

In this section, we first present the experimental results of molecular property prediction on regression
tasks. Then, we investigate the choice of GNN backbone models and knowledge distillation methods
as ablation studies. Finally, We provide full cases on USPTO-500-MT and PhysProp to illustrate that
the proposed method can serve as an effective predictor with high robustness and interpretability.
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Table 5: Results of molecular property prediction on regression tasks (metric: RMSE for ESOL and
FreeSolv; MAE for QM8).

ESOL FreeSolv QM8

AttentiveFP 0.88±0.03 2.07±0.18 0.0179±0.0001

GCN 1.43±0.05 2.87±0.14 0.0366±0.0011

D-MPNN 0.98±0.26 2.18±0.91 0.0143±0.0022

SchNet 1.05±0.06 3.22±0.76 0.0204±0.0021

PretrainGNN 1.10±0.01 2.76±0.02 0.0200±0.0001

GROVER-base 0.98±0.09 2.18±0.05 0.0218±0.0004

MolCLR-GCN 1.16±0.00 2.39±0.14 0.0181±0.0002

MolCLR-GIN 1.11±0.01 2.20±0.20 0.0174±0.0013

GEM 0.80±0.03 1.88±0.09 0.0171±0.0001

GraphMVP 1.09 - -

MolKD− 0.93±0.06 1.64±0.12 0.0206±0.0028

MolKD (ours) 0.75±0.03 1.56±0.16 0.0133±0.0008

Table 6: Performance on Tox21 among different student GNN models and knowledge distillation
methods. The first and the second block in the Distillation rows are the logit-based and feature-based
knowledge distillation methods, respectively.

TAG TAG TAG GCN GIN

Hidden dim. 512 256 1024 512 512
#Params (M) 0.84 0.49 2.24 0.81 1.34

Su
p. Supervised

student 0.792±0.054 0.764±0.083 0.780±0.049 0.782±0.052 0.797±0.047

D
is

til
la

tio
n KD 0.817±0.042 0.782±0.042 0.815±0.063 0.835±0.055 0.797±0.040

FitNet 0.830±0.030 0.792±0.058 0.794±0.036 0.815±0.064 0.801±0.050

OFD 0.813±0.023 0.793±0.037 0.826±0.026 0.811±0.024 0.824±0.029

MolKD 0.841±0.032 0.802±0.023 0.848±0.049 0.837±0.038 0.831±0.033

B.1 MOLECULAR PROPERTY PREDICTION ON REGRESSION TASKS

We further represent the results of molecular property prediction on regression tasks. As shown in
Fig. 5, MolKD consistently outperforms other competitive baseline models on three regression tasks
in molecular property prediction. For example, MolKD achieves [0.51, 0.32] absolute RMSE gain on
FreeSolv compared with the best-performed method [AttentiveFP (w/o pre-training), GEM (with
pre-training)] and [7.52%, 28.57%] MAE gain on QM8 compared with the best-performed method [D-
MPNN (w/o pre-training), GEM (with pre-training)]. These results further highlight the effectiveness
of our proposed model.

B.2 ABLATION STUDY

In MolKD, we adopt the commonly-used TAG (Du et al., 2017) as the GNN backbone models and
contrastive representation distillation (Tian et al., 2019) as the knowledge distillation method. In order
to show the extensibility of MolKD, we compare MolKD with other student GNN models (GCN (Kipf
& Welling, 2016) and GIN (Xu et al., 2019)) and knowledge distillation methods(KD (Hinton et al.,
2015), FitNet (Romero et al., 2014), and OFD (Heo et al., 2019)). For a fair comparison, we fix the
pre-trained teacher GNN model, which achieves an AUC-ROC of 0.818. In Table 6, we find that
the performance of MolKD is relatively stable across different student GNN models and knowledge
distillation methods. The performance becomes saturated when the hidden dimension is larger than
512. We assume the cause might be that the size of molecule data is much smaller than that of reaction
data, thus the number of parameters in GNN backbone models tends to be small correspondingly.
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B.3 FULL CASE STUDY ON USPTO-500-MT

We select representative reactions in the test data of USPTO-500-MT as a case study in Fig. 6.
We obtain the predicted product by calculating the closest molecule with respect to the sum of
molecular representations of reactants learned by the corresponding algorithm. We find that the
predicted product by MolKD is the same as the ground-truth in most cases (8 out of 10 cases), while
Mol2vec and MolBERT fail to predict the exact product of each reaction. These results highlight the
effectiveness of yield-guided chemical reaction pre-training models in MolKD. In the last two cases
of Fig. 6, we can find that these two reactions are indeed very hard to predict and all three methods
predict wrongly on some small atomic functional groups, such as -OH, and -COOH.

B.4 FULL INTERPRETATION CASES ON PHYSPROP

Fig. 7 presents a case study of solubility prediction with atom-level interpretation. These results
are in with the intuition of chemists that the hydrophilic group (e.g., -OH, and -COOH) tends to be
bluer in our visualization, while the lipophilic group (e.g., benzene ring) tends to be redder in our
visualization. These observations indicate that our proposed MolKD model can distinguish essential
atomic groups with clear interpretability of their solubility.
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Reactant(s) Ground-truth
product

Predicted product
by MolKD

Predicted product
by Mol2vec

Predicted product
by MolBERT

✓

✓

✓

✓

✓

✓

✓

✓ ✓

Figure 6: Case study on the USPTO-500-MT dataset. Atoms and bonds that do not match the
ground-truth molecule are highlighted in red.
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True: 1.93     Pred: 1.81

True: 2.63     Pred: 2.14
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Hydrophilic Lipophilic
-1 0 1

Figure 7: Case study of atom-level interpretation with true and predicted solubility labeled.
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