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Abstract

Deep networks have been known to have extraordinary generalization abilities, via mech-
anisms that aren’t yet well understood. It is also known that upon shuffling labels in the
training data to varying degrees, deep networks, trained with standard methods, can still
achieve perfect or high accuracy on this corrupted training data. This phenomenon is called
memorization, and typically comes at the cost of poorer generalization to true labels. Recent
work has demonstrated, surprisingly, that the internal representations of such models retain
significantly better latent generalization abilities than is directly apparent from the model.
In particular, it has been shown that such latent generalization can be recovered via simple
probes (called MASC probes) on the layer-wise representations of the model. However, the
origin and dynamics over training of this latent generalization during memorization is not
well understood. Here, we track the training dynamics, empirically, and find that latent
generalization abilities largely peak early in training, with model generalization. Next, we
investigate whether the specific nature of the MASC probe is critical for our ability to ex-
tract latent generalization from the model’s layerwise outputs. To this end, we first examine
the mathematical structure of the MASC probe and show that it is a quadratic classifier,
i.e. is non-linear. This brings up the possibility that this latent generalization is not linearly
decodable, and that the model is fundamentally incapable of generalizing as well as the
MASC probe, given corrupted training data. To investigate this, we designed a new linear
probe for this setting, and find, surprisingly, that it has superior generalization performance
in comparison to the quadratic probe, in most, but not all cases. Given that latent general-
ization is linearly decodable in most cases, we ask if there exists a way to leverage probes on
layerwise representations, to directly edit model weights to immediately manifest the latent
generalization to model generalization. To this end, we devise a way to transfer the latent
generalization present in last-layer representations to the model using the new linear probe.
This immediately endows such models with improved generalization in most cases, i.e. with-
out additional training. We also explore training dynamics, when the aforementioned weight
editing is done midway during training. Our findings provide a more detailed account of the
rich dynamics of latent generalization during memorization, provide clarifying explication
on the specific role of the probe in latent generalization, as well as demonstrate the means
to leverage this understanding to directly transfer this generalization to the model.

1 Introduction

Overparameterized deep neural networks have seen widespread deployment in many fields, due to their
remarkable generalization abilities. However, we still don’t have a clear understanding of the mechanisms
underlying their ability to generalize so well to unseen data. It has also been shown (Zhang et al., 2017; 2021)
that overparameterized deep networks are capable of achieving high or even perfect training accuracy on
datasets, wherein a subset of training data have their labels randomly shuffled. Such models typically have
poor generalization performance, i.e. poorer accuracy on test data with correct labels – a phenomenon that
has been called memorization. It is known (Arpit et al., 2017) that during training, models trained with such
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corrupted datasets exhibit better generalization during the initial phases of training; however generalization
progressively deteriorates as training accuracy improves subsequently.

Label noise is also a practical issue in Deep Learning. The success of Deep Learning has depended on large,
carefully annotated datasets, which are costly to obtain. To reduce labeling effort, non-expert sources such
as Amazon Mechanical Turk and web-derived annotations are often used, but they frequently introduce
unreliable labels (Paolacci et al., 2010; Cothey, 2004; Mason & Suri, 2012; Scott et al., 2013). Labeling can
also be difficult even for domain experts (Frénay & Verleysen, 2013; RV, 2004), and may be intentionally
corrupted through adversarial attacks (Xiao et al., 2012). Such corrupted annotations, referred to as noisy
labels, constitute 8.0%–38.5% of real-world datasets (Xiao et al., 2015; Li et al., 2017; Lee et al., 2018;
Song et al., 2019) and are known to degrade performance more severely than other noise types, such as
input noise (Zhu & Wu, 2004). Consequently, a better understanding of learning under label noise and
the representations that drive it, not only has foundational relevance, but could also have downstream
implications for our ability to design more effective techniques for learning in the presence of label noise.

A recent study (Ketha & Ramaswamy, 2026) has shown that while deep networks trained on datasets
having corrupted labels tend to exhibit poor generalization, their intermediate-layer representations retain a
surprising degree of latent generalization ability. This ability can be recovered from such trained networks by
using a simple probe – the Minimum Angle Subspace Classifier (MASC) – that utilizes the subspace geometry
of the corrupted training dataset representations, to this end. Their findings suggest that generalizable
features are present in the layer-wise representations of such networks, even when the model fails to utilize
them sufficiently. However, the origin and evolution of this latent generalization ability during training are
not well understood. In particular, it is unclear whether model generalization and latent generalization arise
from the same underlying mechanisms, and whether the specific nature of the probe (MASC) is critical for
extracting latent generalization from layer-wise representations. Moreover, it is not even clear whether this
latent generalization can be directly transferred to the model. That is, whether it is, in principle, possible
to directly modify model weights, so it overtly acquires this latent generalization performance, is not known.
Here, we address these questions.

Our main contributions are listed below.

• We empirically characterize the evolution of latent generalization1, as manifested by MASC, over
epochs of training, in comparison to model generalization over training.

• We observe that MASC is a non-linear classifier. This brings up the possibility that the improved
generalization performance of the probe (i.e. MASC) is attributable to the effectiveness of the
non-linear nature of the probe itself and may not easily be decodable, e.g. by a linear probe. To
address this point, we introduce a simple linear alternative – Vector Linear Probe Intermediate-
layer Classifier (VeLPIC). Surprisingly, we find that VeLPIC in many cases achieves superior latent
generalization performance in comparison to MASC, especially for higher corruption degrees. This
establishes that latent generalization during memorization is, in many cases, linearly decodable from
layerwise representations.

• As a baseline, we analyze latent generalization during training using a linear probe (logistic regres-
sion) trained by minimizing a crossentropy loss & compare its performance with MASC & VeLPIC.

• By leveraging the linear probe (VeLPIC), we devise a way to directly edit the pre-softmax weights of
such deep networks, that immediately transfers to the model, the latent generalization performance
of VeLPIC (as applied to the last layer).

• We study the dynamics of model generalization and linear probe behavior (VeLPIC) during training
by introducing a targeted weight intervention at specific training epoch.

1We provide precise operational definitions of latent generalization in Subsection 3.1
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2 Related work

In influential work, (Zhang et al., 2017; 2021) showed that deep networks can achieve perfect training accuracy
even with randomly shuffled labels, accompanied by poor generalization. In follow-up work, (Arpit et al.,
2017) find that in the memorization regime, networks learn simple patterns first during training. Their work
provides a detailed account of the early dynamics of training. More recently, (Ketha & Ramaswamy, 2026)
in fact show that in spite of the fall in model generalization later on in training, the layerwise representations
of the model retain significant latent generalization ability. (Ketha et al.) used probes from (Ketha &
Ramaswamy, 2026) to investigate the role of internal representations in adversarial setting.

Analyzing intermediate representations in deep networks has been previously explored using kernel-PCA
(Montavon et al., 2011) and linear classifier probes (Alain & Bengio, 2018). Notably, (Alain & Bengio, 2018)
state that they deliberately did not probe deep networks in the memorization setting since they thought
that such probes would inevitably overfit. On the contrary, (Ketha & Ramaswamy, 2026) demonstrate that
probes on deep networks in the memorization setting, can have enhanced generalization. (Stephenson et al.,
2021) show evidence suggesting that memorization occurs in the later layers. Li et al. (2020) show that in
the memorization regime, gradient descent with early stopping is provably robust to label noise and that
there is substantial deviation from initial weights after the early stopping point, which drives overfitting.

Several training paradigms have been proposed to enhance generalization performance when learning from
corrupted datasets. For example, MentorNet (Jiang et al., 2018) introduces a framework wherein a mentor
network guides the learning process of a student network by guiding the student model to focus on likely
clean labels. Likewise, Co-Teaching (Han et al., 2018) trained two peer networks simultaneously, each
selecting small-loss examples to update its counterpart. Early-Learning Regularization (ELR) (Liu et al.,
2020) augmented the training objective with a regularization term, which implicitly prevents learning of
incorrect labels.

Gradient descent on separable data has been shown to exhibit an implicit bias toward specific solutions,
even in the absence of explicit regularization, helping to explain generalization in overparameterized models
(Soudry et al., 2018). This view was further refined by characterizing implicit bias through optimization
geometry, linking solution selection to the structure of the loss landscape (Gunasekar et al., 2018).

Saxe et al. (2013) offer theoretical explanations on generalization for deep linear networks and Lampinen &
Ganguli (2018) offer theoretical explanations in the memorization regime. Methodologies such as Canonical
Correlation Analysis (Raghu et al., 2017; Morcos et al., 2018) and Centered Kernel Alignment (Kornblith
et al., 2019) have been used to characterize training dynamics and network similarity. Representational
geometry and structural metrics provide further insights into learned representation properties (Chung et al.,
2016; Cohen et al., 2020; Sussillo & Abbott, 2009; Farrell et al., 2019; Bakry et al., 2015; Cayco-Gajic &
Silver, 2019; Yosinski et al., 2014). The Neural Tangent Kernel (NTK) framework provides a kernel-based
perspective on learning dynamics in infinitely wide networks, connecting neural network training to kernel
regression and offering insights into generalization(Jacot et al., 2018).

Recent advances have highlighted limitations of classical generalization theory. In particular, the double
descent phenomenon challenges the traditional bias–variance trade-off by showing that model test risk can
decrease even after achieving zero training error as model capacity grows, thereby extending the classical
U-shaped risk curve (Belkin et al., 2019). This insight has important implications for understanding gen-
eralization in high-capacity models that are often trained on large, imperfect datasets. In parallel, robust
learning in the presence of label noise has emerged as a critical research direction, since mislabeled data can
significantly impair generalization performance and is pervasive in real-world applications. The survey in
(Song et al., 2022) systematically reviews existing approaches for learning under noisy labels and highlights
the remaining challenges in achieving robustness to label corruption.
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3 Preliminaries & experimental setup

3.1 Preliminaries

We study a C-class classification problem defined over an unknown data distribution D on X × Y, where
X ∈ Rn and Y ∈ {1, . . . , C}.

Let fθ : X → RC denote a model, i.e. a neural network. The corresponding classifier is defined as

hθ(x) = arg max
c∈Y

fθ(x)c

We assume that the network admits a decomposition

fθ = gθ ◦ ϕθ

where ϕθ : X → Rd denotes the map from the input to the latent representation at a chosen hidden layer,
and gθ : Rd → RC denotes the mapping performed by the remainder of the network.

To study generalization properties inherent to the representation from ϕθ, we consider a probe f lat : Rd → Y
that operates solely on latent representations and the corresponding latent classifier is

hlat(x) = arg max
c∈Y

f lat(x)c

In practice, let Ttest = {(xi, yi)}m
i=1 denote a test dataset of m samples, where yi ∈ Y are the corresponding

true labels. For each test input xi ∈ X , we define its latent representation as

zi = ϕθ(xi) ∈ Rd.

The empirical latent generalization of the chosen hidden layer is the test accuracy of hlat evaluated on the
latent representations zi with respect to their true labels yi.

Âlat(θ) = 1
m

m∑
i=1

1{hlat(zi) = yi}.

The empirical model generalization is the test accuracy of fθ evaluated on xi with respect to their true labels
yi.

Â(θ) = 1
m

m∑
i=1

1{hθ(xi) = yi}.

Let T = {(xi, yi)}t
i=1 ∼ Dt be an i.i.d. training dataset drawn from D. For a corruption degree p, we

construct a modified training dataset T̂p by changing the labels uniformly at random with probability p. T̂p

is used to train fθ; we call such models memorized models2. The corresponding zi’s and labels are used to
construct probes on the layer in question. In this paper, we study the latent generalization of specific classes
of probes during model training, and examine their empirical latent generalization relative to the empirical
model generalization of the models at the corresponding epoch of model training.

3.2 Experimental setup

We demonstrate results for the same set of models and datasets as presented in (Ketha & Ramaswamy, 2026).
Specifically, we use Multi-Layer Perceptrons (MLPs) trained on the MNIST (Deng, 2012) and CIFAR-10

2Following convention of prior work. The phenomenon of such models having poor empirical model generalization has been
called memorization — a convention we continue to follow here.
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(Krizhevsky, 2009) datasets; Convolutional Neural Networks (CNNs) trained on MNIST, Fashion-MNIST
(Xiao et al., 2017), and CIFAR-10; AlexNet (Krizhevsky et al., 2012) trained on Tiny ImageNet dataset
(Moustafa, 2017) and ResNet-18 (He et al., 2016) trained on CIFAR-10. Additional details on the model
architectures and training are available in Section A.

Each model was trained under two distinct schemes: (i) using training data with true labels, referred to as
“generalized models,” and (ii) using training data with labels randomly shuffled to varying degrees (referred
to as “memorized models” Zhang et al. (2021). Similar to Ketha & Ramaswamy (2026), we train the
aforementioned models using corruption degrees of 0%, 20% , 40%, 60%, 80%, and 100%. Training with
a corruption degree c implies that, with probability c, the label of a training datapoint is changed with
a randomly selected label drawn uniformly from the set of possible classes. This may result in the label
remaining the same after the change as well. All models were trained either until achieving high training
accuracy (99% or 100%) or for a maximum of 500 epochs, whichever occurred first.

To study the dynamics of the training process, we conducted the experiments on model checkpoints saved
at various stages of training. Specifically, we began with the randomly initialized model (corresponding to
epoch 0), followed by checkpoints saved at every second epoch up to the 20th epoch. Beyond epoch 20,
results are shown at intervals of five epochs for the MLP, CNN and ResNet-18 models, and at intervals of
ten epochs for the AlexNet model. The reported results are averaged over three independent training runs,
with shaded regions in the plots indicating the range across instances.

Ketha & Ramaswamy (2026) investigate the organization of class-conditional subspaces using the training
data at various layers of deep networks. These subspaces are estimated via Principal Components Analysis
(PCA), specifically, ensuring that they pass through the origin. To probe the layerwise geometry without
relying on subsequent layers, they propose a new probe – the Minimum Angle Subspace Classifier (MASC).
For a given test input, MASC projects the layer output onto each class-specific subspace, and computes
the angles between the original and projected vectors, for each subspace. The label predicted by MASC
corresponds to the class whose subspace yields the projected vector with the smallest such angle. We
provide a detailed summary of the working of MASC in Section B. We have used 99% as the percentage
of variance explained by the principal components that form the class-specific subspaces used by MASC,
similar to experiments conducted in Ketha & Ramaswamy (2026).

4 Training dynamics of latent generalization using MASC

As shown in Ketha & Ramaswamy (2026), for most models trained with corrupted labels, there exists at
least one layer where MASC exhibits better generalization than the corresponding trained model. However,
the origin & evolution of this latent generalization across training isn’t well understood.

Here, we empirically study the behavior of latent generalization, as manifested by MASC, during training.
MASC testing accuracy during training for MLP trained on MNIST, MLP trained on CIFAR-10, CNN
trained on MNIST, CNN trained on Fashion-MNIST, CNN trained on CIFAR-10, AlexNet trained on Tiny
ImageNet and ResNet-18 trained on CIFAR-10 are shown in Figure 1. Results with 0% and 100% corruption
degrees are shown in Figure 10 in Section C.

It is known (Arpit et al., 2017) that for models trained with label noise for corruption degrees less than
100%, there is an early rise in model test accuracy that culminates in a peak, subsequent to which the
model test accuracy falls. For various non-zero degrees of corruption, in most cases (except those with 100%
degrees of corruption), the MASC test accuracy largely follows the rise in the model’s test accuracy up to its
peak. However, beyond the peak, while the model’s test accuracy declines significantly, the drop in MASC
accuracy for the best-performing layers is usually less steep and plateaus at a higher level3 over the epochs.
A notable exception to these observations occurs in the early layers of ResNet-18 trained on CIFAR-10,
which we discuss next.

3Indeed, as reported in (Ketha & Ramaswamy, 2026), there are layers whose MASC performance is worse than the model
performance.
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Figure 1: Minimum Angle Subspace Classifier (MASC) test accuracy over epochs of training for multiple
models/datasets, where test data is projected onto class-specific subspaces constructed at each epoch from
corrupted training data with the indicated label corruption degree. The plots display MASC accuracy across
different layers of the network. For reference, the evolution of test accuracy of the corresponding model (blue
dotted line) over epochs of training is also shown. FC denotes fully connected layers with ReLU activation,
and Flat refers to the flatten layer without ReLU .

An interesting point about the training dynamics is indeed what occurs prior to the start of training, i.e. just
at the random initialization, which we plot as Epoch 0 in Figures 1 and 10. At Epoch 0, the model always
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has roughly chance-level test accuracy. However, MASC demonstrates4 test accuracies that are significantly
above chance; there is variation in the values depending on the layer in question for each model. However,
for most models (except ResNet-18 trained on CIFAR-10), the rise of test accuracies over the initial epochs
happens at rates comparable to that of MASC. For this reason, in those models, the model test accuracy
as well as the MASC test accuracies appear to be largely overlaid on each other early in training, prior to
the peak in test accuracy. For ResNet-18 trained on CIFAR-10 however, MASC test accuracies seem to
improve somewhat slower over early epochs. Furthermore, in case of some early layers (i.e. L0, L1), for
higher corruption degrees, MASC in fact beats the best early stopping accuracy of the model at Epoch 0,
and the MASC test accuracies end up being at levels markedly above model test accuracies all through
training. This may have to do with the significantly higher ambient dimensionality (16,384) of those layers.
Also, L0 MASC test accuracy appears largely flat5 over training, whereas L1 MASC test accuracy shows a
slight rise early in training before being largely flat.

One question that arises is about why there is a marked difference in MASC test accuracies across layers
of the network. A definitive answer likely requires a deeper understanding of the principles used by deep
networks to organize layerwise representations and their evolution across layers – an understanding that we
don’t yet have, as a field. That said, one observes that MASC layer performance appears to be correlated
with the ambient dimensionality of the layer, in most cases. That is, the best-performing layers tend to
be those with the highest dimensionality. A notable exception is with CNN-CIFAR-10 for lower corruption
degrees, where there exist layers that outperform the CNN-Flat (1024) layer. In many models (MLPs,
AlexNet, ResNet-18), multiple layers have the highest dimensionality. Here, layer performance differs, albeit
not significantly. Furthermore, it does not seem to be determined by their relative position of those layers
in the deep network.

Our results represent progress in clarifying the origin & evolution of latent generalization by MASC, during
training. In particular, given that model generalization & latent generalization often show a concurrent
initial rise, it suggests the possibility of common mechanisms that drive both in the early phases of training,
for those models. The subsequent divergence between model generalization & latent generalization is an
intriguing phenomenon, whose mechanisms merit future investigation.

5 Non-linearity of MASC

Classically (Alain & Bengio, 2018), linear probes have been used to probe layers of deep networks. However,
(Ketha & Ramaswamy, 2026) do not not use the standard linear probe from (Alain & Bengio, 2018). Linear
probes are simple and interpretable, due to which they have been widely deployed. Furthermore, a linear
probe demonstrating good performance indicates that the representations of the layer that the probe operates
on, contain information that is linearly decodable. This implies that such information is, in principle easily
decodable by downstream layers. While MASC is a elegant probe with a nice geometric interpretation,
(Ketha & Ramaswamy, 2026) do not consider the question of whether it is a linear probe. Below, we prove
that MASC (Ketha & Ramaswamy, 2026) is in fact a non-linear classifier. In particular, it is quadratic in
the layerwise output of the layer that it is applied to. This means that it uses a quadratic decision surface.

Proposition 1. MASC is a quadratic classifier.

Proof. Let xl denote the output of the layer l of the deep network when it is given input x. Let pc
1, pc

2, . . . , pc
k

be an orthonormal basis6 of the subspace Sc corresponding to class c. Let xc
l be the projection of xl on Sc.

We have

xc
l = (xl · pc

1) pc
1 + . . . + (xl · pc

k) pc
k (1)

4Indeed, the performance of MASC at Epoch 0 for a subset of models has also been reported in (Ketha & Ramaswamy,
2026).

5We note that L0 does not have residual connections, unlike subsequent layers, although it is unclear if this contributes to
this phenomenon.

6which is typically estimated via PCA, where k is the number of principal components.
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Now, MASC on layer l predicts7 the label of x as

arg max
c

(xl · xc
l ) = arg max

c
((xl · pc

1)2 + . . . + (xl · pc
k)2) (2)

which is quadratic in xl. This establishes that MASC is a quadratic classifier.

6 Vector Linear Probe Intermediate-layer Classifier (VeLPIC): A new linear probe

Given that MASC is inherently a non-linear classifier as proved above, a natural question is if its remarkable
ability to decode generalization from hidden representations of memorized networks is a consequence of its
non-linearity. In other words, if the quadratic nature of MASC is indeed responsible for its effectiveness,
then a corresponding linear probe would be expected to perform substantially worse. It raises the question
of whether the latent generalization reported in (Ketha & Ramaswamy, 2026) is linearly decodable – with
comparable performance – from the layerwise representations of the network.

To investigate this, we build a linear probe analogous to MASC. We sought to retain the same broad idea,
namely determine an instance of a mathematical object per class and measure closeness of the layerwise
output of an incoming datapoint to these objects with the prediction corresponding to the class whose object
was closest in this sense. In contrast to (Alain & Bengio, 2018), where parameters of their linear probe are
learned iteratively by minimizing a cross-entropy loss, we seek to determine the linear probe parameters
directly via the geometry of the class-conditional training data. We choose to simply use a vector8 as this
mathematical object and measure closeness in the angle sense. We call this probe the Vector Linear Probe
Intermediate-layer Classifier (VeLPIC). As we discuss subsequently, we find, surprisingly, that this choice is
significantly more effective than MASC, in most cases. Secondly, we show that we can use the parameters of
the probe as applied to the last layer, to modify the model weights to immediately confer the corresponding
generalization to the model.

We now discuss how the vector corresponding to each class in VeLPIC is constructed. Each class vector is
determined using only the top principal component from PCA run on augmented9 class-conditional corrupted
training data. However, the first principal component can manifest in two opposite directions (i.e. the vector
or its negative). This is important here10 because incoming data vectors can be “close" to this class vector,
even though their angles are obtuse and closer to 180◦. VeLPIC resolves this directional issue by aligning
the class vector based on the sign of the projection of the training data mean; if the mean of the training
data projected on this principal component is negative, the direction of the principal component is flipped
to obtain the class vector; otherwise, it is retained as is.

Formally, for a given test data point x, let xl denote its activation at layer l obtained in the forward pass
of x through the deep network until the output of layer l. For layer l, let {Pm}M

m=1 be the top principal
component vectors, one each per class, of the class-conditional corrupted training data and {Tm}M

m=1 be
its corresponding11 projection means, where M is the number of classes. Let {Vm}M

m=1 be unit vectors
representing VeLPIC class vectors. VeLPIC uses {Vm}M

m=1 to predict the label of xl based on its maximum
projection among these class vectors12, as outlined in Algorithm 1.

6.1 Training dynamics of the linear probe

Here, we examine if a linear probe (i.e. VeLPIC) can decode latent generalization with performance compa-
rable to MASC. To this end, we tracked the performance of VeLPIC, during training.

7This is equivalent to the formulation of MASC in (Ketha & Ramaswamy, 2026), where they maximize a cosine similarity.
See Section B.1 for a proof of equivalence.

8We note that previous work (Das et al., 2007) has used the idea of using classwise-PCA for classification in the setting of
EEG data, although they use a Bayes classifier to perform the classification.

9We augment class training data points with their negative, so as to obtain a 1-D subspace, rather than a 1-D affine space,
along the lines of the subspace construction procedure for MASC.

10Observe that this isn’t an issue with MASC, since it is a quadratic classifier.
11i.e. Ti is the mean of projecting training data points on Pi.
12This is equivalent to minimum angle to the VeLPIC class vectors.
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Figure 2: Vector Linear Probe Intermediate-layer Classifier (VeLPIC) test accuracy during training of the
network, where test data is projected onto class vectors constructed at each epoch from training data with
the indicated label corruption degrees. The plots display VeLPIC accuracy across different layers of the
network for various model–dataset combinations. For reference, the test accuracy of the models (blue dotted
line) over epochs of training is also shown. FC denotes fully connected layers with ReLU activation, and
Flat refers to the flatten layer without ReLU .

VeLPIC test accuracy during training for MLP-MNIST, MLP-CIFAR-10, CNN-MNIST, CNN-Fashion-
MNIST, CNN-CIFAR-10, AlexNet-Tiny ImageNet and ResNet-18-CIFAR-10 are shown in Figure 2. The
results with 0% and 100% corruption degrees are shown in Figure 11 in Section D.
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Algorithm 1 Vector Linear Probe Intermediate-layer Classifier (VeLPIC)
Input: Principal component vectors {Pm}M

m=1, projection training means {Tm}M
m=1, layer l output xl, class

labels {Cm}M
m=1.

Output: Predicted label y(xl).
1: for each class m = 1, . . . , M do
2: if Tm < 0 then
3: Vm ← −Pm

4: else
5: Vm ← Pm

6: end if
7: end for
8: for each class m = 1, . . . , M do
9: xlm ← Projection of xl onto Vm

10: end for
11: y(xl)← Cj where j = arg maxm xlm

12: Return: y(xl)

Unexpectedly, the performance of VeLPIC is often, but not always, better than that of MASC. For represen-
tations from many layers, VeLPIC is able to extract significantly better latent generalization performance
than MASC and our results show that, for these layers, VeLPIC’s performance plateaus at significantly higher
levels than MASC. A notable exception is in ResNet-18 trained on CIFAR-10, where MASC substantially
outperforms VeLPIC’s test accuracy in layers L0 and L1, which were the best performing layers for MASC
in this model. This suggests the possibility that indeed in these layers, MASC utilizes its nonlinearity in
ways that VeLPIC is not able to. There is also the possibility of other13 linear probes that may be able to
do better for this model.

Interestingly, with some CNN models (e.g. CNN-Fashion-MNIST), MASC decodes good generalization in
early layers but not later layers; however, VeLPIC is able to extract comparable generalization from later
layers as well. The difference between VeLPIC test accuracy and MASC test accuracy are shown in Figure 3.
Results for 0% and 100% corruption degrees are available in Section D.1.

We compare the test accuracy of the model, MASC, and VeLPIC for both randomly initialized and trained
models across varying corruption degrees in Section H. Furthermore, we study the impact of dropout as a
regularizer in latent generalization (MASC & VeLPIC) during memorization in Section I.

These results indicate that the quadratic nature of MASC is not essential in extracting latent generalization
from most models, where latent generalization is linearly decodable, although there exist models which
manifest significantly better latent generalization with MASC, but not VeLPIC.

7 Comparing MASC & VeLPIC with a baseline linear probe

While VeLPIC is indeed a linear probe, it differs from standard linear probes (Alain & Bengio, 2018) which
are trained by iteratively minimizing a suitable loss function, unlike VeLPIC whose parameters are directly
derived from the class-conditional geometry of internal representations. In order to compare the relative
performance of MASC and VeLPIC with a classic linear probe, here, we study the evolution of latent
generalization during training using a logistic regression probe (LR probe).

For a given model and network layer, we train a logistic regression probe on the outputs of the layer for 20
epochs using cross-entropy loss with the Adam optimizer (for learning rate 1× 10−3). The test accuracy of
the logistic regression probe during training of the memorized models, for all models and corruption degrees
ranging from 20% to 80%, is shown in Figure 4. Corresponding results for 0% corruption degree is presented
in Figure 13. For the non-zero corruption degrees, we find interestingly that in most cases, there is at least a

13As we show in the next section, the only other baseline linear probe tested, in fact shows worse performance than VeLPIC
for these two layers, for higher corruption degrees.
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Figure 3: Difference in test accuracy (VeLPIC Accuracy - MASC Accuracy) during training of the network,
where test data is projected onto class vectors constructed at each epoch from training data with the indicated
label corruption degrees. The plots display difference in accuracy across different layers of the network for
various model–dataset combinations. For reference, the test accuracy of the models (blue dotted line) over
epochs of training is also shown, which would be 0.

layer or two, whose LR probe tends to largely follow the dynamics of the model’s test accuracy over training,
including after the early peak, with ResNet-18 being a notable exception. Secondly, in many cases where the
test accuracy of the LR probe does not follow that of the model (e.g. CNN-CIFAR-10 for higher corruption
degrees), the test accuracies of the LR probe after the early peak tend to plateau at a lower level than is
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the case with MASC and VeLPIC probes. Thirdly, for many layers, the accuracy of the LR probe tends to
underperform14 both MASC and VeLPIC.
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Figure 4: Logistic regression probe’s test accuracy over epochs of training for multiple models/datasets. The
plots display logistic regression probe’s accuracy across different layers of the network. For reference, the
evolution of test accuracy of the corresponding model (blue dotted line) over epochs of training is also shown.

We compare the performance of the logistic regression probe with that of the MASC probe in Figures 5
and 14. We find that MASC outperforms LR for many layers in multiple models; however, there are several
layers where the opposite effect is true. There is also some regularity in the identity of layers where this
happens. For some models (MLPs, CNN-CIFAR-10 and AlexNet-Tiny ImageNet) the LR probe outperforms

14the corresponding differences are plotted in Figures 5 and 6.
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Figure 5: Difference in test accuracy (MASC Accuracy - Logistic regression probe Accuracy) during training
of the network, where for MASC test data is projected onto class vectors constructed at each epoch from
training data with the indicated label corruption degrees. The plots display difference in accuracy across
different layers of the network for various model–dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown, which would be 0.
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Figure 6: Difference in test accuracy (VELPIC Accuracy - Logistic regression probe Accuracy) during training
of the network, where for VELPIC test data is projected onto class vectors constructed at each epoch from
training data with the indicated label corruption degrees. The plots display difference in accuracy across
different layers of the network for various model–dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown, which would be 0.
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MASC in the early layers and vice versa in the later layers. For other models (CNN-MNIST, CNN-Fashion-
MNIST, ResNet-18-CIFAR-10) one sees the opposite effect.

We further compare the logistic regression probe results with the VeLPIC probe in Figures 6 and 15. Here,
we find that especially for higher corruption degrees and later during model training, VeLPIC almost always
outperforms the LR probe. Even for low corruption degrees, in most layers (with ResNet-18-CIFAR-10 on
20% corruption degree being a notable exception), VeLPIC outperforms the LR probe.

A natural question that arises here is about why the logistic regression probe underperforms VeLPIC with
respect to generalization to true labels, even though both of them are linear classifiers. We speculate that
this might have to do with the fact that classic linear probes seek to minimize a loss which corresponds to
doing well on the corrupted training set, which can be anthithetical to doing well on the test set which has
true labels. However, techniques such as MASC and VeLPIC have an unsupervised flavor to them that does
not seek to optimize training set performance explicitly, even though they operate on the same corrupted
training set. This view requires careful future investigation.

8 Transferring latent generalization to model generalization

Given that latent generalization often exceeds the models’ generalization ability, a natural question is whether
this hidden latent generalization can be transferred directly to the model by appropriately modifying its
weights. An affirmative answer to this question has implications that the phenomenon of latent generalization
is not mainly driven by the remarkable effectiveness of the probe (MASC) used in prior work (Ketha &
Ramaswamy, 2026). Conceptually, this question is significant because it demonstrates that the probe’s
latent generalization is inherently accessible to the model using only the corrupted data it was trained on.
Yet, the model during the act of standard training does not end up generalizing to the same extent, for
reasons that we don’t understand well. Practically, it raises the possibility of repairing memorized model
using the latent representations, without the cost of retraining from scratch.

Here, we ask if the latent generalization in models that memorize, can be directly transferred to the model,
in order to immediately improve its generalization. To this end, it turns out that the class vectors of VeLPIC
applied to the last layer can be directly substituted in the pre-softmax layer of the model as an intervention
that transfers VeLPIC’s generalization performance to the model, without further training. We elaborate
below on how this is so.

Consider a model whose last layer (i.e. the layer preceding the pre-softmax layer) consists of d units. Let
vj ∈ Rd be the VeLPIC class vector for class j. The new pre-softmax weight matrix Wpre-softmax ∈ RM×d

is constructed as:
Wpre-softmax =

([
v1 v2 · · · vM

])⊤ (3)

This weight matrix Wpre-softmax replaces the original pre-softmax weights, and all biases are set to zero. It
is straightforward to see that this substitution results in the model making the same predictions as VeLPIC
applied to the last layer. While this substitution is fairly straightforward, it needs the linear probe, i.e.
VeLPIC, for it to work. In particular, we note that it is unclear if transferability can happen with MASC
alone and therefore the development of VeLPIC was an enabling factor in helping us answer this question.

During model training, we replace the pre-softmax weights with VeLPIC vectors, as indicated above and
evaluate the model’s performance on the test dataset at each epoch. Figure 7 presents these results for MLP-
MNIST, MLP-CIFAR-10, CNN-MNIST, CNN-Fashion-MNIST, CNN-CIFAR-10, AlexNet-Tiny ImageNet
and ResNet-18-CIFAR-10. Results for models with 0% and 100% corruption levels, for all model-dataset
pairs are presented in Figure 16 in Section F.

We observe that, in most cases, the weight intervention that replaces pre-softmax weights with the VeLPIC
vectors leads to an immediate & significant improvement in generalization performance in every epoch of
the latter phase of training, matching that of the linear probe, & in particular, without any further training.
A notable exception is for ResNet-18, where, especially for lower corruption degrees the edited model has
worse generalization performance. For this model, for none of the probes tested, is it the case that later
layers manifest better latent generalization than the model, due to which this weight editing technique does
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Figure 7: Model test accuracy when the weight intervention is applied to the epoch in question during
training. The test accuracy of the model with standard training without weight intervention (blue dotted
line) is overlaid for comparison.

not lead to better model generalization either. An interesting question is if one could develop weight editing
techniques that can transfer exactly or approximately probe performance on early layers as well, to the
model. In closing, we establish in this section that the latent generalization in memorized models can be
directly harnessed in many cases to enhance their test performance, even in the presence of label noise.
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9 Weight intervention during training using VeLPIC

Having shown that latent generalization can be directly transferred into the model by editing its weights,
a natural question arises: What happens if we inject/transfer this latent generalization to the model at a
specific epoch and continue standard training thereafter?

We ask whether intervening during training – by updating the model weights at a specific epoch using
information derived from its latent generalization – can enhance model generalization. Additionally, we
investigate how latent generalization (VeLPIC) evolves across different layers throughout training, when we
do so.

To address these questions, the model is trained with corrupted data for the first 40 epochs using standard
training. The intervention is performed at the 40th epoch by replacing the pre-softmax weights with VeLPIC
vectors (last layer), as done in the previous section. Standard training is performed for the next 60 epochs
using corrupted training data. Model test accuracy on true labels is shown in Figure 8, overlaid with the case
of no intervention, for comparison. VeLPIC test accuracy during training when this intervention is applied
at the 40th epoch for different corruption degrees in Figure 9 and specifically for 0% corruption degree in
Figure 19.
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Figure 8: Model test accuracy with true labels during training when a weight intervention that involves
replacing pre-softmax weights with the VeLPIC vector, is performed at the 40th epoch and standard training
is performed thereafter for 60 epochs. The corresponding test accuracies for the model with standard training
(dotted) without intervention is overlaid for comparison. The results correspond to a single run in each case.

As expected from results in Section 6.1, upon applying the intervention at the 40th epoch, there is typically
a rise in model generalization (i.e. test accuracy of the model). In many cases, this model generalization
degrades subsequently over training, albeit not typically to the degree that model generalization would
have degraded without the intervention; there are exceptions. One exception to this is MLP-CIFAR-10 at
80% corruption degree, wherein the model generalization is ultimately worse post-intervention than in the
no-intervention case. On the contrary, CNN-MNIST and CNN-Fashion-MNIST, show little degradation post-
intervention for low and modest corruption degrees. Also, e.g. with CNN-CIFAR-10, barring the transient
rise in model generalization immediately after the intervention, the model generalization with or without the
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Figure 9: Vector Linear Probe Intermediate layer Classifier (VeLPIC) test accuracy during training on
models when intervention is performed at 40th epoch and standard training is performed thereafter for 60
epochs. The VeLPIC test accuracy on models trained with standard training (dotted) without intervention
is overlaid for comparison. Model test accuracy for models trained with and without intervention is overlaid
for comparison. The results correspond to a single run in each case.

intervention seem to follow largely similar trajectories. We also plotted accuracies when VeLPIC was applied
at each epoch over training for models during the same interventions. Here again results are mixed and
largely follow trends of the dynamics of model generalization, post-intervention. However, by-and-large, it
appears that applying VeLPIC with standard training, and without intervention, on a suitably chosen layer,
usually yields the best generalization at any epoch over training, in comparison to alternatives considered
here.

10 Discussion

The notion of memorization, where deep networks are able to perfectly learn noisy training data at the ex-
pense of generalization has posed a challenge to traditional notions of generalization from Statistical Learning
Theory (Zhang et al., 2017; 2021). Recent work (Ketha & Ramaswamy, 2026) demonstrating improved latent
generalization in such models is an interesting new development in our understanding of memorization and
the nature of representations that drive it. Our goal here was to take a deeper dive into this phenomenon, to
investigate the origin and dynamics of latent generalization and examine the possibility of directly transfer-
ring it to the model. We showed that early-on in training, latent generalization and the model’s generalization
closely follow each other in many cases, suggesting the possibility of common mechanisms that contribute
to both. However, later in training, there is a divergence, with the model often retaining significant latent
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generalization ability in one or more layers, while sacrificing overt model generalization to a greater degree.
After showing that MASC (Ketha & Ramaswamy, 2026) is a quadratic classifier, we built a new linear probe
(VeLPIC) and found, unexpectedly, that it has better latent generalization performance in comparison to
MASC, in many cases. We also did find exceptions, in particular, with ResNet-18, where MASC appears
to be able to extract significantly more latent generalization from early layers than VeLPIC. Indeed, while
(Ketha & Ramaswamy, 2026) show that MASC applied to at least one layer, in most cases, outperforms the
model at the end of training, with respect to generalization, with VeLPIC, we find that, in many models,
all layers’ latent generalization outperform model generalization. This implies that the latent generalization
effect during memorization is more pronounced, in many cases, and more widely present among layer repre-
sentations than previously reported in (Ketha & Ramaswamy, 2026). We also ran comparisons of MASC and
VeLPIC to a baseline linear logistic regression (LR) probe trained using standard techniques and find that
MASC and VeLPIC outperform the LR probe in many layers. We were also interested in examining if the
latent generalization could readily be translated to model generalization by directly editing model weights.
We utilized the VeLPIC probe to derive a new set of model pre-softmax weights to make this so. We also
briefly examined the effect of further training upon so editing the weights in the 40th epoch, and find that
this yields mixed results.

There are multiple limitations in this work. While we have carried out extensive experiments on a number of
models and datasets, how the phenomenon of latent generalization and its dynamics over training depends
on model architecture and nature of the dataset isn’t yet clear. Secondly, we have explored in detail the
dynamics of MASC, when the class-conditioned subspaces explain 99% variance of training data. MASC
performance for other class-conditioned subspaces remains to be explored. Thirdly, an advantage of MASC
lies in its ability to capture generalization when it occurs within a subspace of dimension greater than one.
This behavior is particularly evident in the early layers of ResNet-18, where MASC generalizes significantly
better than both VeLPIC and the model. In contrast, VeLPIC provides a practical technique that its
generalization performance at the final layer can be directly transferred to the model, an extension that
is not yet available for MASC. Finally, we haven’t explored the phenomenon of latent generalization in
transformer models. Memorization has been reported Zhang et al. (2017) in cases where input is corrupted
instead of class labels. This is a memorization setting that we have not studied here.

This work brings up multiple new directions for investigation. While we have made some progress, the
detailed mechanisms governing latent generalization during memorization remain to be investigated. It is
also an open question, whether there exist other probes that can extract better latent generalization from
layerwise representations, in comparison to MASC and VeLPIC. Next, it is unclear if latent generalization
from representations of layers other than the last layer can be transferred towards model generalization.
This can be useful to do, in cases where early or middle layers exhibit better latent generalization than
the last layer. More generally, in light of these results, whether an understanding of generalization in the
memorization regime can inform a better understanding of generalization for models trained with uncorrupted
labels is a worthwhile direction for future investigation.

In closing, our results highlight the rich role of representations in driving generalization during memorization
and how their understanding can be utilized, in many cases, to directly improve model generalization.
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A Model architectures and training details

MLP Model. The MLP architecture consists of four hidden layers with 128, 512, 2048, and 2048 units,
respectively. Each layer is followed by a ReLU activation, and a softmax layer is used for classification.
Models were trained SGD Qian (1999) with a learning rate of 1× 10−3 and momentum 0.9. A batch size of
32 was used across all experiments. Input dataset was normalized by dividing pixel values by 255.

CNN Model. The CNN model15 is composed of three convolutional blocks, each containing two convolu-
tional layers followed by a max pooling layer. The convolutional layers use 16, 32, and 64 filters, respectively,
with kernel size 3 × 3 and stride 1. The max pooling layers have a kernel size of 2 × 2 and stride 1. These
blocks are followed by three fully connected layers with 250 units each. ReLU activation is used after all
layers except pooling, and softmax is used at the output for classification. The CNN was trained using Adam
optimizer Kingma (2014) with a learning rate of 0.0002. For MNIST and Fashion-MNIST, a batch size of
32 was used, while for CIFAR-10, a batch size of 128 was used. Input data was normalized by subtracting
the mean and dividing by the standard deviation of each channel.

ResNet-18 was slightly adapted for CIFAR-10 dataset and trained using SGD (learning rate=0.001, momen-
tum=0.9) with a batch size of 32. Inputs were normalized using channel-wise mean and standard deviation.
We analyze six layers: L0–L4, and the average-pooling (avg_pool) layer. L0 denotes the activation immedi-
ately before the first residual block, while L1–L4 correspond to the outputs of successive residual blocks.

The experiments were conducted on servers and workstations equipped with NVIDIA GeForce RTX 3080,
RTX 3090, Tesla V100, and Tesla A100 GPUs. The server runs on Rocky Linux 8.10 (Green Obsidian),
while the workstation uses Ubuntu 20.04.3 LTS. Memory requirements varied depending on the specific
experiments and models. All model implementations were developed in Python using the PyTorch library,
with torch.manual_seed set to 42 to ensure reproducibility. Accuracy served as the primary evaluation
metric throughout this work.

B Minimum Angle Subspace Classifier (MASC)

We summarize below the Minimum Angle Subspace Classifier (MASC) from (Ketha & Ramaswamy, 2026),
in order to keep the exposition here largely self-contained.

For a given deep network, MASC leverages the class-specific geometric structure of network’s latent repre-
sentations. For an input data point x, let its activation vector at layer l be denoted by xl. The objective is
to classify xl by leveraging a set of class-conditional subspaces, {Sk}K

k=1, estimated from a training dataset
D = {(xi, yi)}m

i=1. To predict the class label y(xl), MASC Algorithm 2 (reproduced verbatim from (Ketha
& Ramaswamy, 2026)), assigns xl to the class whose training subspace forms the smallest angle with it.

The class-conditional subspaces {Sk}K
k=1 are estimated from the training dataset D = {(xi, yi)}m

i=1, where
each xi ∈ Rd is paired with a label yi ∈ {Ck}K

k=1. For a given layer l, these subspaces are constructed
following Algorithms 3 and 4 (reproduced verbatim from (Ketha & Ramaswamy, 2026)). In practice, each
subspace Sk is represented by its principal components, which provide a compact basis for capturing the
underlying class-conditional structure.

15The convolution network were implemented following the design principals outlined in (Tran et al., 2022).
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Algorithm 2 Minimum Angle Subspace Classifier (MASC) (reproduced verbatim from (Ketha &
Ramaswamy, 2026))

1: Input: Training subspaces {Sk}K
k=1, layer output data point xl from layer l when input x is passed

through the network and classes {Ck}K
k=1.

2: Output: MASC prediction class label y(xl) according to layer l .
3: for each class Ck do
4: xlk ←− compute the projection of xl onto subspace Sk.
5: Compute the angle θ(xl, xlk) between xl and xlk

6: end for
7: Assign the label y(xl) = Ck where k = arg mink θ(xl, xlk)

Algorithm 3 Subspaces Estimator for MASC
(reproduced verbatim from (Ketha & Ramaswamy, 2026))

1: Input: Training dataset D{(xi, yi)}m
i=1 ∈ Rd×R, where each xi ∈ Rd and yi ∈ {Ck}K

k=1 are input-label
pairs, neural network, and layer l.

2: Output: Subspaces {Sk}K
k=1 for classes K and given layer l.

3: Dl = ϕ
4: for each input pair (xi, yi) in D do
5: Pass xi through the network layers to obtain the output of layer l, denoted as xl ∈ Rld.
6: Dl= Dl ∪ {xl}
7: end for
8: Estimated subspaces {Sk}K

k=1 ←− PCA-Based Subspace Estimation(Dl)
9: Return: Subspaces {Sk}K

k=1

Algorithm 4 PCA-Based Subspace Estimation
(reproduced verbatim from (Ketha & Ramaswamy, 2026))

1: Input: Layer output Dl = {(xi, yi)}m
i=1, where xl ∈ Rld and yi ∈ {Ck}K

k=1.
2: Output: Subspaces {Sk}K

k=1 for classes K.
3: Dnew ← Dl

4: for each data point xl in Dl do
5: Dnew ← Dnew ∪ {−xl}
6: end for
7: for each class Ck in CK do
8: Extract the subset of data Dnew,k = {xl | yi = k}
9: Apply PCA to Dnew,k to calculate the PCA components

10: The span of the PCA components defines the subspace Sk

11: end for
12: Return: Subspaces {Sk}K

k=1
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B.1 Proof of equivalence of MASC and classifier used in Proposition 1 of Section 5

In Proposition 1 of Section 5, we show that MASC is a quadratic classifier. However, we used a slightly
different formulation of MASC in Proposition 1. Here, we show that, that formulation is equivalent to the
formulation of MASC from (Ketha & Ramaswamy, 2026).

Let xl denote the output of the layer l of the deep network when it is given input x. Let pc
1, pc

2, . . . , pc
k be

an orthonormal basis16 of the subspace Sc corresponding to class c. Let xc
l be the projection of xl on Sc.

We have
xc

l = (xl · pc
1) pc

1 + . . . + (xl · pc
k) pc

k (4)

x̂c
l =

xc
l

|xc
l | (5)

MASC(Ketha & Ramaswamy, 2026) on layer l predicts the label of x as

arg max
c

(
x̂l.x̂c

l

)
(6)

The formulation in Proposition 1 of Section 5 predicts the label of x as

arg max
c

(xl.x
c
l ) (7)

Proposition 2. arg maxc

(
x̂l.x̂c

l

)
= arg maxc (xl.x

c
l )

Proof. As pc
1, . . . , ·pc

k are orthonormal, therefore

|xc
l | =

√
(xl · pc

1)2 + . . . + (xl · pc
k)2 (8)

After expanding the dot product and noting that |pc
1|, . . . , |pc

k| = 1, we have

|xc
l | = |xl|

√
cos2 θ c

1 + · · ·+ cos2 θ c
k (9)

where θ c
i is the angle between xl and pc

i .

MASC(Ketha & Ramaswamy, 2026) on layer l predicts the label of x as

arg max
c

(
x̂l.x̂c

l

)
= arg max

c

(
(xl · pc

1)2 + . . . + (xl · pc
k)2)

|xl||xc
l |

)
(10)

We now substitute 9 in 10

arg max
c

(
(xl · pc

1)2 + . . . + (xl · pc
k)2)

|xl||xl|
√

cos2 θ c
1 + · · ·+ cos2 θ c

k

)
(11)

After expanding the numerator and noting that |pc
1|, . . . , |pc

k| = 1, we have

arg max
c

(
|xl|2 cos2 θ c

1 + · · ·+ |xl|2 cos2 θ c
k

|xl|2
√

cos2 θ c
1 + · · ·+ cos2 θ c

k

)
(12)

16which is typically estimated via PCA, where k is the number of principal components.
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Simplifying, we now have

arg max
c

(
x̂l.x̂c

l

)
= arg max

c

(√
cos2 θ c

1 + · · ·+ cos2 θ c
k

)
(13)

Now,

arg max
c

(xl.x
c
l ) = arg max

c

(
(xl · pc

1)2 + . . . + (xl · pc
k)2)

)
(14)

After expanding and noting that |pc
1|, . . . , |pc

k| = 1, we have

arg max
c

(
|xl|2 cos2 θ c

1 + · · ·+ |xl|2 cos2 θ c
k

)
(15)

|xl|2 is taken common and is not dependent on c, due to which, equivalently, we have

arg max
c

(xl.x
c
l ) = arg max

c

((
cos2 θ c

1 + · · ·+ cos2 θ c
k

))
(16)

From 13 and 16, it follows that

arg max
c

(
x̂l.x̂c

l

)
= arg max

c
(xl.x

c
l ) (17)

C Training dynamics of latent generalization using MASC

MASC testing accuracy during training with 0% and 100% corruption degrees are shown in Figure 10.

D Training dynamics of the linear probe: VeLPIC

A linear probe – VeLPIC – test accuracy during training for all models with 0% and 100% corruption degrees
are shown in Figure 11.

D.1 Difference between VeLPIC and MASC

Here, we present the difference between test accuracy of VeLPIC and MASC during training and for differ-
ent layer of the networks. For MLP-MNIST,MLP-CIFAR-10, CNN-MNIST, CNN-Fashion-MNIST, CNN-
CIFAR-10, AlexNet-Tiny ImageNet and ResNet-18-CIFAR-10, these results for 0% and 100% corruption
degrees are shown in Figure 12.

E Additional results with linear probe (logistic regression)

For all models with 0% corruption degree, the test accuracy of the logistic regression probe during training of
the memorized models, are shown in Figure 13. The results comparing the performance of logistic regression
probe with MASC probe is shown in Figures 14 and with VeLPIC probe is shown in Figures 15.

F Transferring latent generalization to model generalization

For all models with 0% and 100% corruption degrees, model test accuracy during training when we replace
the pre-softmax weights with VeLPIC vectors are shown in Figure 16. Model corrupted training accuracy
for a few models-dataset-corruption are plotted in Figure 17 and Figure 18.
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Figure 10: Minimum Angle Subspace Classifier (MASC) Test accuracy for 0% and 100% corruption degrees
during training of the network, where test data is projected onto class-specific subspaces constructed from
training data with the indicated label corruption degrees. The plots display MASC accuracy across different
layers of the network for various model–dataset combinations. For reference, the test accuracy of the models
(dotted line) is also shown. Each row corresponds to a specific corruption degree, while columns represent
different models, as labeled. FC denotes fully connected layers with ReLU activation, and Flat refers to the
flatten layer without ReLU .

G Experiment results with weight intervention

Here, we present results of the latent generalization of VeLPIC evolves across different layers during training
for models trained with 0% corruption degree. The results for intervention performed at the 40th epoch is
shown in Figure 19.
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Figure 11: Vector Linear Probe Intermediate-layer Classifier (VeLPIC) test accuracy for 0% and 100%
corruption degrees during training of the network, where test data is projected onto class vectors constructed
at each epoch from training data with the indicated label corruption degrees. The plots display VeLPIC
accuracy across different layers of the network for various model–dataset combinations. For reference, the
test accuracy of the models (blue dotted line) over epochs of training is also shown. FC denotes fully
connected layers with ReLU activation, and Flat refers to the flatten layer without ReLU .

H Comparison between randomly initialized and trained model

We compare the test accuracy of the model, MASC, and VeLPIC for both randomly initialized and trained
models across varying corruption degrees. Results for all model–dataset pairs are presented in Figure 20.
For MASC and VeLPIC, we report accuracies corresponding to the best-performing layer, defined as the
layer achieving the highest MASC or VeLPIC test accuracy for each model–dataset pair.
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Figure 12: Difference in test accuracy (VeLPIC Accuracy - MASC Accuracy) during training of the network,
where test data is projected onto class vectors constructed at each epoch from training data with the indicated
label corruption degrees. The plots display difference in accuracy across different layers of the network for
various model–dataset combinations. For reference, the test accuracy of the models (blue dotted line) over
epochs of training is also shown, which would be 0.

At lower corruption degrees, we observe a consistent trend across all model–dataset combinations: MASC
and VeLPIC evaluated on trained models outperform their counterparts evaluated on randomly initialized
models when measured at the respective best layers.

At higher corruption degrees, however, a small number of exceptions emerge. Specifically, for MASC,
performance on randomly initialized models exceeds that on trained models in the following cases: AlexNet-
Tiny ImageNet at 60% corruption, and MLP-MNIST, MLP-CIFAR-10, and AlexNet-Tiny ImageNet at 80%
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Figure 13: Logistic regression probe’s test accuracy over epochs of training for multiple models/datasets.
The plots display logistic regression probe’s accuracy across different layers of the network. For reference,
the evolution of test accuracy of the corresponding model (blue dotted line) over epochs of training is also
shown.

corruption. In contrast, VeLPIC exhibits a single exception. At 80% corruption on AlexNet-Tiny ImageNet,
VeLPIC evaluated on the randomly initialized model outperforms the trained model.

30



Under review as submission to TMLR

0 40
0.125
0.100
0.075
0.050
0.025
0.000

M
LP

-M
NI

ST

0% corruption degree

0 40 80
0.20
0.15
0.10
0.05
0.00

M
LP

-C
IF

AR
-1

0

0 10 20 30

0.0

0.2

0.4

0.6

CN
N-

M
NI

ST

0 40 80 120 160

0.0

0.2

0.4

CN
N-

Fa
sh

io
n-

M
NI

ST

0 80 160 240 320 400 480

0.2
0.1
0.0
0.1

CN
N-

CI
FA

R-
10

0 40 80 120 160
0.075
0.050
0.025
0.000
0.025

Al
ex

Ne
t-T

in
y 

Im
ag

eN
et

0 10

0.2

0.1

0.0

0.1

Re
sN

et
-1

8-
CI

FA
R-

10

Epoch

Di
ffe

re
nc

e 
in

 T
es

t A
cc

ur
ac

y 
(M

AS
C 

Ac
c.

 - 
Lo

gi
st

ic 
re

gr
es

sio
n 

Ac
c.

)
Model test accuracy
MLP-FC1 (128)/ CNN-Flat (576/1024)/ AlexNet-Flat (256)/ ResNet-18-L0
MLP-FC2 (512)/ CNN-FC1 (250)/ AlexNet-FC1 (4096)/ ResNet-18-L1
MLP-FC3 (2048)/ CNN-FC2 (250)/ AlexNet-FC2 (4096)/ ResNet-18-L2

MLP-FC4 (2048)/ CNN-FC3 (250)/ ResNet-18-L3
ResNet-18-L4
ResNet-18-Avg_pool

Figure 14: Difference in test accuracy (MASC Accuracy - Logistic regression probe Accuracy) during training
of the network, where for MASC test data is projected onto class vectors constructed at each epoch from
training data with the indicated label corruption degrees. The plots display difference in accuracy across
different layers of the network for various model–dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown, which would be 0.

I Impact of Dropout as a Regularizer

We conducted some preliminary experiments to study the effect of dropout (Srivastava et al., 2014) as a
regularization technique on latent generalization during memorization. Both the CNN and ResNet-18 models
were slightly modified to incorporate dropout layers. For dropout version of CNN models, a dropout layer
(p=0.2) was used after every fully connected layer. The CNN models were trained on MNIST, Fashion-
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Figure 15: Difference in test accuracy (VELPIC Accuracy - Logistic regression probe Accuracy) during
training of the network, where for VELPIC test data is projected onto class vectors constructed at each epoch
from training data with the indicated label corruption degrees. The plots display difference in accuracy across
different layers of the network for various model–dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown, which would be 0.

MNIST, and CIFAR-10. For dropout version of ResNet-18, dropout layer (p=0.2) was added before the final
classification layer.

MASC test accuracy on models trained with and without dropout layers are shown in Figure 21 and 22. For
models trained with dropout (WD), we plot the results after the dropout layer. For models trained with
dropout, the MASC dynamics remain largely similar to those of models trained without dropout. However,
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Model: Standard Model: Weight transfer using VeLPIC

Figure 16: Comparing model test accuracy with VeLPIC transferred accuracy when the weight intervention
is applied to the model at the epoch in question during training for corruption degrees 0% and 100%. The
test accuracy of the model with standard training without weight intervention (blue dotted line) is overlaid
for comparison.

in the later layers of CNN-WD-Fashion-MNIST and CNN-WD-MNIST, we observe a noticeable deviation,
where the layer-wise behavior no longer aligns with the model’s test accuracy in the early epochs of training;
interestingly the corresponding VeLPIC plots in Figure 23 do not show this deviation. In most cases, MASC
performance shows an initial decline followed by a rise toward a peak. In contrast, for ResNet-18 models,
no significant differences are observed between the dropout and non-dropout models.
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Model: Standard Model: Weight transfer using VeLPIC

Figure 17: Model train accuracy on corrupted dataset when the VeLPIC weight intervention is applied to
pre-softmax weights at the epoch in question during training. The training accuracy on corrupted dataset of
the model with standard training without weight intervention (blue dotted line) is overlaid for comparison.
Observe that, except for 100% corruption degree, the transferred training accuracy tends to saturate at a
level largely consistent with the fraction of true training labels in the corrupted dataset.

VeLPIC test accuracy on models trained with and without dropout layers are shown in Figure 23 and 24.
There is no significant difference in the dynamics of VeLPIC performance between models trained with
dropout and those trained without dropout.
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Model: Standard Model: Weight transfer using VeLPIC

Figure 18: Model train accuracy on corrupted dataset when the VeLPIC weight intervention is applied to
pre-softmax weights at the epoch in question during training. The training accuracy on corrupted dataset of
the model with standard training without weight intervention (blue dotted line) is overlaid for comparison.
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Figure 19: Vector Linear Probe Intermediate layer Classifier (VeLPIC) test accuracy during training on
models when intervention is performed at 40th epoch and standard training is performed thereafter for
60 epochs for 0.0 corruption degree. The VeLPIC test accuracy on models trained with standard training
(dotted) without intervention is overlaid for comparison. The results correspond to a single run in each case.
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Figure 20: Model, MASC and VeLPIC test accuracy for randomly initialized and trained models across
different corruption degrees and model–dataset pairs. For MASC and VeLPIC, results are reported for
the best performing layer, defined as the layer achieving the highest MASC/VeLPIC test accuracy for the
corresponding model–dataset pair. The test accuracies are averaged over three runs.
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Figure 21: Minimum Angle Subspace Classifier (MASC) test accuracy over epochs of training for ResNet-
18 and CNN models having trained with and with dropout, where test data is projected onto class-specific
subspaces constructed at each epoch from corrupted training data with the indicated label corruption degree.
The plots display MASC accuracy across different layers of the network. For reference, the evolution of
test accuracy of the corresponding model (blue dotted line) over epochs of training is also shown. WD
corresponding to models trained with dropout.
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Figure 22: Minimum Angle Subspace Classifier (MASC) test accuracy for 0% corruption degrees over epochs
of training for ResNet-18 and CNN models having with and with dropout, where test data is projected
onto class-specific subspaces constructed at each epoch from corrupted training data. The plots display
MASC accuracy across different layers of the network. For reference, the evolution of test accuracy of the
corresponding model (blue dotted line) over epochs of training is also shown. WD corresponding to models
trained with dropout.
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Figure 23: Vector Linear Probe Intermediate-layer Classifier (VeLPIC) test accuracy during training of
ResNet-18 and CNN models with and with dropout, where test data is projected onto class vectors con-
structed at each epoch from training data with the indicated label corruption degrees. The plots display
VeLPIC accuracy across different layers of the network for various model–dataset combinations. For ref-
erence, the test accuracy of the models (blue dotted line) over epochs of training is also shown. WD
corresponding to models trained with dropout.
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Figure 24: Vector Linear Probe Intermediate-layer Classifier (VeLPIC) test accuracy for 0% corruption
degrees during training of ResNet-18 and CNN models with and with dropout, where test data is projected
onto class vectors constructed at each epoch from training data. The plots display VeLPIC accuracy across
different layers of the network for various model–dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown. WD corresponding to models trained
with dropout.
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