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Abstract
In silico modeling of transcriptional responses to
perturbations is crucial for advancing our under-
standing of cellular processes and disease mech-
anisms. We present PertEval-scFM, a standard-
ized framework designed to evaluate models for
perturbation effect prediction. We apply PertEval-
scFM to benchmark zero-shot single-cell founda-
tion model (scFM) embeddings against baseline
models to assess whether these contextualized
representations enhance perturbation effect pre-
diction. Our results show that scFM embeddings
offer limited improvement over simple baseline
models in the zero-shot setting, particularly un-
der distribution shift. Overall, this study provides
a systematic evaluation of zero-shot scFM em-
beddings for perturbation effect prediction, high-
lighting the challenges of this task and the limita-
tions of current-generation scFMs. Our findings
underscore the need for specialized models and
high-quality datasets that capture a broader range
of cellular states. Source code and documenta-
tion can be found at: https://github.com/
aaronwtr/PertEval.

1. Introduction
Inspired by the success of foundation models in fields such
as natural language processing (Devlin et al., 2019; Brown
et al., 2020; OpenAI, 2024) and computer vision (Dosovit-
skiy et al., 2021), there has been an increase in the develop-
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ment of biological foundation models. Among these, single-
cell foundation models (scFMs) leverage vast amounts of un-
labeled transcriptomic single-cell RNA sequencing (scRNA-
seq) data to learn contextualized representations through
self-supervised pre-training (Ericsson et al., 2022). Fine-
tuning the resulting model on labeled data enhances the
performance on downstream applications, such as cell-type
classification, gene regulatory network inference, and the
prediction of cellular responses to perturbations (Yang et al.,
2022; Kedzierska et al., 2023; Theodoris et al., 2023; Rosen
et al., 2023; Cui et al., 2024; Wen et al., 2023; Hao et al.,
2023).

A perturbation refers to any intervention or event leading
to the phenotypic alteration of a cell. Perturbation response
prediction can provide invaluable insights into cellular mech-
anisms and disease progression, facilitating the mapping of
genotype to phenotype and the identification of potential
drug targets (Lotfollahi et al., 2019). Numerous models,
here referred to as narrow perturbation prediction models
(NPPMs), have been developed specifically for this task
(Gavriilidis et al., 2024). However, perturbation response
prediction is a challenging task, as demonstrated by the
difficulty of models to improve consistently over simpler
baseline methods (Wu et al., 2024; Branson et al., 2024;
Ahlmann-Eltze et al., 2024).

Recently, there has been a concerted effort to evaluate bio-
logical foundation models. The Therapeutic Data Commons,
an open science initiative, has curated some datasets, models
and benchmarks for single-cell analysis (Velez-Arce et al.,
2024). Additionally, Wu et al. (2024) and Ahlmann-Eltze
et al. (2024) show that simple baseline models perform com-
parably to scFMs in predicting transcriptomic response to
perturbations. However, their analysis does not account for
distribution shift and focuses only on predictions for highly
variable genes, many of which show little to no effect in
response to a perturbation (Nadig et al., 2024).

Yet, distribution shift is a well-documented issue with
scRNA-seq data (Boiarsky et al., 2023; Marklund et al.,
2020), which often hinders the deployment of models that
appear to perform well during evaluation. Distribution shift
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can occur as a consequence of inherent technical and biolog-
ical noise, abundant in scRNA-seq data, and, while scFMs
have been proposed to mitigate such problems, there have
been conflicting reports on their ability to do so (Theodoris
et al., 2023; Cui et al., 2024; Wu et al., 2024). This high-
lights the need for a comprehensive benchmark to evaluate
their limitations and failure modes, specifically for distribu-
tion shift.

1.1. Contributions

Here, we present PertEval-scFM to address these research
gaps by providing:

• A standardized framework for evaluating biologically
meaningful perturbation effect prediction in a zero-shot
setting. The source code and documentation can be
found on our GitHub.

• Integration of a spectral graph theory method – SPEC-
TRA (Ektefaie et al., 2024) – that allows us to assess
model generalizability under distribution shift, a cru-
cial consideration for real-world applications of scFMs.

• A toolbox of comprehensive metrics, providing a de-
tailed analysis of model performance, focusing on as-
sessing robustness and sensitivity to distribution shifts.

2. PertEval-scFM
PertEval-scFM is designed to assess the zero-shot informa-
tion content of scFM embeddings for perturbation effect
prediction. To achieve this goal, we obtain zero-shot embed-
dings from five pre-trained scFMs across four datasets, then
train a multi-layer perceptron (MLP) probe for each scFM.
This method mirrors established probing techniques to as-
sess the semantic content of embeddings (Alain & Bengio,
2018; Jin et al., 2019). This approach enables fair evaluation
of the base information content of embeddings across mod-
els, as it evaluates representation quality while removing
confounding effects introduced by task-specific prediction
heads (Tenney et al., 2019; Radford et al., 2021). In Figure
1 we present an overview of the pipeline, composed of three
parts: data pre-processing, training, and evaluation.

2.1. Data Pre-Processing

To interrogate cellular response to perturbations, we use
high-dimensional Perturb-seq screens, which combine
single-cell RNA sequencing with CRISPR-mediated ge-
netic perturbations, enabling systematic profiling of tran-
scriptional landscapes at single-cell resolution (Dixit et al.,
2016). Perturb-seq data consists of transcriptomic data for
unperturbed control cells C ∈ Rnc×g and perturbed cells
P ∈ Rnp×g, where nc and np correspond to the number
of control and perturbed cells being measured respectively,

and g corresponds to the number of genes in the dataset (see
Appendix A.1).

2.1.1. DATA PREPARATION

Briefly, during our pre-processing we normalize and log-
transform the raw expression count matrix C. We then
select the top 2,000 highly variable genes (HVGs), v, ob-
taining a reduced control matrix C ∈ Rnc×v. Addition-
ally, we identify the top 20 differentially expressed genes
(DEGs) for each perturbation to ensure that our evaluations
capture biologically relevant gene expression changes (see
Appendix A.2).

2.1.2. DATA FEATURIZATION

To generate the input features for our baselines, we randomly
select 500 cells from C to form a pseudo-bulk sample C̃. To
combat noise and sparsity issues, we calculate the average
expression across C̃ and repeat this process np times. The
resulting basal gene expression vectors can then be paired
with perturbed cells, resulting in control expression feature
matrix Xc ∈ Rnp×v (see Appendix C.1).

Single-cell foundation model embeddings. To construct
the control cell embeddings, we then feed our input matrix
Xc into the scFM:

fscFM(Xc) = Zc, Zc ∈ Rnp×e (1)

where e is the embedding dimension. To simulate genetic
perturbations in silico, we adopt a universal strategy of nul-
lifying the expression of a targeted gene. This approach is
motivated by prior work demonstrating that discrete manip-
ulations of rank-order vectors yield biologically meaningful
shifts in cell embeddings (Theodoris et al., 2023) and by our
own experiments showing that alternative representations
– such as modeling a CRISPRa perturbation by expression
doubling – do not improve performance (see Appendix D.1).
Furthermore, these representations ensure consistent test-
ing conditions across all models, given the current lack of
standardized methods for generating comparable in silico
representations of perturbations. Perturbed cell embeddings
Zp ∈ Rnp×e are therefore generated by setting the expres-
sion counts of perturbed genes to zero in cells exposed to
that perturbation. The final input for the MLP probe is
then formed by concatenating the control and perturbation
embeddings (see Appendix C.2):

ZscFM = Zc ⊕ Zp (2)

Raw expression data. To serve as a baseline against
which to compare the performance of the scFM embeddings,
we use our input matrix Xc. Here, we model single-gene
perturbations by calculating the gene co-expression matrix
Gc ∈ Rnp×v between the perturbed genes and the highly
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Figure 1. PertEval-scFM framework (left to right) – data pre-processing, training of MLP probes under different sparsification conditions;
evaluation of trained models with AUSPC, E-distance and contextual alignment metrics.

variable genes in Xc. Similarly, for double-gene pertur-
bations, we calculate the co-expression matrices for the
individual perturbations, and then average them to obtain
Gc. We then concatenate the control and perturbation em-
beddings to form the final input for the MLP probe (see
Appendix C.1).

ZGE = Xc ⊕Gc (3)

2.2. Baseline Models

We establish baseline models against which to compare the
performance of the MLP probes trained with scFM embed-
dings.

MLP baseline. The MLP baseline uses log-normalized
raw gene expression data directly as input. This allows us
to ensure that any performance differences can be traced
back to the semantic information introduced into the embed-
dings by the scFM. The perturbation effect δ̂ is predicted as
follows:

δ̂η(ZGE) = ReLU(ZGEW
⊤
1 + b1)W

⊤
2 + b2, (4)

where dimensions of parameters η correspond to W1 ∈
Rh×2v , W2 ∈ Rv×h, b1 ∈ Rh and b2 ∈ Rv .

GEARS baseline. To benchmark zero-shot scFMs against
existing task-specific models, we implement GEARS, a
state-of-the-art model that integrates raw gene expression
data with known biological priors via a graph-based archi-
tecture (Roohani et al., 2023). We reproduce the original
implementation, modifying only the train–test splits to align

with the SPECTRA framework. All other training config-
urations, hyperparameters, and preprocessing steps remain
at their default values. To ensure consistency across our
benchmark, we train GEARS from scratch without using
pretrained weights. While GEARS is a task-specific model,
it shares the same supervised training setup as the other
methods we evaluate. The key distinction lies in how rep-
resentations are handled: GEARS learns representations
end-to-end, while our probes evaluate the information con-
tent of fixed inputs (transcriptomic counts or zero-shot scFM
embeddings) under controlled conditions.

Mean baseline. The mean baseline assumes that a pertur-
bation has little effect on the perturbed cell’s gene expres-
sion. This reflects the biological reality that most perturba-
tions result in small changes in gene expression, providing
a simple biologically plausible null model highlighting the
challenge inherent in distinguishing meaningful perturba-
tion effects from background variability in single-cell data.
The predicted perturbation effect, δ̂, is then simply com-
puted as the deviation of the cell’s gene expression, Xc,
from the mean gene expression of all cells in the same con-
text, Xc, as defined by δ̂ = Xc −Xc.

2.3. Training

2.3.1. MLP PROBE FOR PERTURBATION EFFECT
PREDICTION

MLP probe design. A 1-hidden layer MLP was selected
as a probe for its flexibility and simplicity in handling var-
ious types of data representations. For each perturbation,
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the MLP learns the log fold change perturbation effect δ,
defined as:

δ := P −Xc (5)

where P ∈ Rnp×v represents the perturbed gene expression
matrix. The MLP probe predicts the perturbation effect,
denoted by δ̂, described by the following equation:

δ̂θ(ZscFM) = ReLU(ZscFMW⊤
1 + b1)W

⊤
2 + b2 (6)

The model parameters θ include the weight matrices W1 ∈
Rh×2e and W2 ∈ Re×h, where h corresponds to the dimen-
sion of the hidden layer, and the bias vectors b1 ∈ Rh and
b2 ∈ Re.

MLP probe parameters. To assess whether parameter
count impacts model performance, we analyze the sensitiv-
ity of MLP probes to varying model capacities. We train
a series of MLP probes with increasing parameter counts
on both raw gene expression data and scFM embeddings.
The results, summarized in Table E2, show no meaningful
relationship between probe capacity and prediction perfor-
mance. Additional details are provided in Appendix E.2.

2.3.2. MODELING DISTRIBUTION SHIFT

To assess the robustness of the MLP probes when using
either gene expression data or scFM embeddings, we im-
plement SPECTRA (Ektefaie et al., 2024), a graph-based
method that partitions data into increasingly challenging
train-test splits while controlling for cross-split overlap be-
tween the train and test data.

In SPECTRA, edges within the graph represent sample-to-
sample similarity. The connectivity of the similarity graph
is controlled by the sparsification probability (s). For each
split, this connectivity is adjusted by stochastically remov-
ing edges with probability s. We introduce the constraint
s < smax, where smax is empirically chosen to ensure a suffi-
cient number of samples in both the train and test sets. After
sparsification, the train and test sets are sampled from dis-
tinct subgraphs. As the sparsification probability increases,
the degree of similarity between the train and test sets de-
creases, making it harder for the model to generalize to
unseen perturbations effectively (see Appendix F).

2.4. Evaluation

Following the empirical findings from Ji et al. (2023), we
adopt Mean Squared Error (MSE) as our primary evalu-
ation metric. In addition, to address the current lack of
standardized evaluation metrics for perturbation effect pre-
diction, we propose using three complementary metrics: (i)
Area Under the SPECTRA Performance Curve (AUSPC)
to quantify model generalization across distribution shifts,
(ii) E-distance to quantitatively measure perturbation effect

magnitude, and (iii) contextual alignment to measure how
the overlap between pre-training and fine-tuning datasets
influences model performance. Together, these metrics pro-
vide a robust basis for comparative scFM evaluation while
capturing distinct aspects of predictive performance in tran-
scriptomic perturbation response modeling.

2.4.1. AUSPC

To evaluate robustness under distribution shift, we adapt the
approach introduced by Ektefaie et al. (2024) and define the
AUSPC as:

AUSPC =

∫ smax

0

ϕ(s) ds (7)

where ϕ(s) is the MSE as a function of the sparsification
probability s used to define each train-test split. Integrating
the MSE across s yields a single performance metric that
reflects a model’s ability to generalize under increasing
distribution shift. The integral is approximated with the
trapezoidal rule (see Appendix F.2).

Motivated by the observation that simple baselines often
perform surprisingly well in perturbation prediction, we in-
troduce the ∆AUSPC metric. This metric anchors a model’s
robustness to the mean baseline. The ∆AUSPC is defined
as:

∆AUSPC =

∫ smax

0

[ϕb(s)− ϕm(s)]ds (8)

Here, ϕb represents the MSE of the mean baseline, and ϕm is
the MSE of the model being evaluated. A positive ∆AUSPC
indicates that the model outperforms the baseline, while a
negative value suggests the opposite. This metric provides
a clear measure of a model’s generalizability improvement
over simply predicting the mean perturbation effect.

2.4.2. E-DISTANCE

We use the E-distance, introduced by Peidli et al. (2024), to
quantify the difference between perturbed and control cell
gene expression profiles (see Appendix G.1). This metric
captures both within-group variability and distributional dif-
ferences, offering a robust measure of perturbation effect
strength. With E-distance, we can better analyze the char-
acteristics of perturbations that models handle well versus
those they struggle with, providing context for model per-
formance—particularly in cases where outlier perturbations
may not be immediately apparent using traditional metrics.

2.4.3. CONTEXTUAL ALIGNMENT

While pre-training dataset size is often linked to improved
downstream model performance, recent research empha-
sizes the critical role of data quality over dataset size (El-
Nouby et al., 2021; Fournier et al., 2024). We therefore sug-
gest the inclusion of a contextual alignment metric, which
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quantifies the similarity between the pre-training and fine-
tuning datasets, and its effect on model performance. We
calculate the cross-split overlap between the pre-train and
fine-tune datasets using cosine similarity to determine how
representative the pre-training data is of the fine-tuning data
(see Appendix H.1).

2.5. Models and Datasets

2.5.1. SINGLE-CELL FOUNDATION MODELS

PertEval-scFM currently evaluates the performance of the
following five scFMs: scBERT (Yang et al., 2022), Gene-
former (Theodoris et al., 2023), scGPT (Cui et al., 2024),
scFoundation (Hao et al., 2023) and UCE (Rosen et al.,
2023). See Appendix B.1 for details on their architecture
and pre-training data.

2.5.2. DATASETS

Norman. PertEval-scFM is applied to the 105 single-gene
and 91 double-gene perturbation datasets derived from a
Perturb-seq screen in K562 cells from Norman et al. (2019).
These datasets contain strong CRISPRa perturbation signals,
as well as baseline expression for unperturbed cells, which
allows for the systematic evaluation of model performance
in predicting the effects of genetic perturbations at single-
cell resolution.

Replogle. Additionally, we apply our framework to the
two single-gene perturbation datasets from Replogle et al.
(2022), which profile transcriptomic responses to CRISPRi-
mediated genetic perturbations in both K562 (2,058 pertur-
bations) and RPE1 (2,394 perturbations) cells. Compared
to the Norman dataset, the overall perturbation effect signal
in Replogle et al. (2022) is less pronounced, despite the con-
siderably larger number of perturbations (Peidli et al., 2024).
For additional details on the datasets, see Appendix A.

3. Results
3.1. Evaluation across 2,000 HVGs

In our initial evaluation, we assess the models’ ability to
predict the effect of perturbations on the top 2,000 HVGs.
We present our evaluation results in Table 1, Table 2 and
Figure 2 and discuss the results for each dataset below.

Norman single-gene. For single-gene perturbations,
GEARS achieved the highest performance with an AUSPC
of 0.00815, significantly outperforming all scFM models.
This is followed by the MLP baseline at 0.0448, which is
slightly better than the scFM models. Performance differ-
ences between the scFMs were minimal, suggesting similar
capabilities in predicting perturbation effects. As the sparsi-
fication probability s increased from 0.1 to 0.7, MSE values

rose across all models. However, scFMs showed a steeper
performance drop at higher sparsification levels compared to
the MLP baseline, suggesting that the zero-shot embeddings
are less robust to distribution shifts.

Norman double-gene. The ranking pattern observed for
single-gene perturbations persisted for double-gene pertur-
bations, with GEARS and the MLP baseline performing
better than the scFMs. Most scFM models displayed similar
performance, with a notable exception of scGPT, which ex-
perienced a significant drop in performance, moving from
rank 3 to rank 8. This increased the performance spread,
with a larger ∆AUSPC difference (∆AUSPC range of
0.00980 for double-gene perturbations compared to 0.00126
for single-gene), highlighting greater variability in model
performance for the more complex perturbations. In line
with our expectations, increasing the sparsification probabil-
ity led to higher MSE across all models.

Replogle K562. For the K562 cell line, GEARS main-
tained its superior performance with an AUSPC of 0.0082,
followed by scGPT and UCE, both with an AUSPC of
0.1384. The MLP baseline only ranked fifth with an AUSPC
of 0.1420. Apart from GEARS, none of these differences
were statistically significant, as indicated by the overlapping
error bars in Figure 2b.

Figure 2. Average AUSPC (↓) across sparsification probabilities
for each model with standard error bars. (a) Norman single-gene
(left) and double-gene (right) perturbation (b) Replogle K562 (left)
and RPE1 (right)

5



PertEval-scFM

Table 1. Perturbation effect prediction evaluation across 2,000 HVGs. Models are listed in the specified order.
↓ MSE (10−2)

Dataset Model S 0.1 S 0.2 S 0.3 S 0.4 S 0.5 S 0.6 S 0.7 ↓ AUSPC (10−2) ↑ ∆AUSPC (10−2) Rank

N
or

m
an

si
ng

le
-g

en
e GEARS 0.887 ± 0.202 0.937 ± 0.177 1.120 ± 0.167 1.693 ± 0.328 1.750 ± 0.401 1.0067 ± 0.427 1.000 ± 0.257 0.815 ± 0.039 3.7968 1

MLP baseline 6.288 ± 0.282 6.410 ± 0.289 6.699 ± 0.705 6.453 ± 0.584 5.984 ± 0.458 6.502 ± 1.277 7.065 ± 1.022 4.484 ± 0.299 0.1280 2
Mean baseline 6.177 ± 0.204 5.980 ± 0.621 6.497 ± 0.513 6.219 ± 0.308 6.659 ± 0.154 7.413 ± 1.038 8.430 ± 0.540 4.612 ± 0.317 - 6
Geneformer 6.257 ± 0.049 6.132 ± 0.622 6.565 ± 0.520 6.395 ± 0.300 6.550 ± 0.140 7.382 ± 1.155 8.525 ± 0.494 4.651 ± 0.309 -0.0396 8

scBERT 6.301 ± 0.316 6.341 ± 0.356 6.761 ± 0.765 6.363 ± 0.544 5.924 ± 0.418 6.451 ± 1.200 8.488 ± 0.558 4.537 ± 0.268 0.0748 4
scFoundation 6.421 ± 0.317 6.366 ± 0.356 6.793 ± 0.764 6.440 ± 0.538 5.919 ± 0.417 6.705 ± 1.183 8.601 ± 0.537 4.594 ± 0.246 0.0179 5

scGPT 6.237 ± 0.218 6.340 ± 0.608 6.765 ± 0.428 6.363 ± 0.345 5.926 ± 0.174 6.400 ± 1.144 8.506 ± 1.020 4.525 ± 0.255 0.0863 3
UCE 6.258 ± 0.311 6.132 ± 0.620 6.565 ± 0.514 6.387 ± 0.307 6.551 ± 0.155 7.370 ± 1.065 8.479 ± 0.601 4.647 ± 0.312 -0.0355 7

N
or

m
an

do
ub

le
-g

en
e GEARS 0.783 ± 0.044 0.960 ± 0.050 1.153 ± 0.049 1.230 ± 0.289 1.467 ± 0.351 1.223 ± 0.147 1.810 ± 0.287 0.808 ± 0.028 4.254 1

MLP baseline 5.261 ± 0.100 5.913 ± 0.255 5.728 ± 0.402 6.635 ± 0.161 7.675 ± 0.953 6.050 ± 0.763 5.198 ± 0.593 4.253 ± 0.073 0.002 2
Mean baseline 5.257 ± 0.102 5.910 ± 0.255 5.722 ± 0.401 6.644 ± 0.167 7.674 ± 0.962 6.071 ± 0.772 5.201 ± 0.594 4.255 ± 0.073 - 3
Geneformer 5.514 ± 0.067 6.145 ± 0.182 6.029 ± 0.458 6.742 ± 0.287 7.937 ± 1.187 7.246 ± 0.707 5.179 ± 0.630 4.503 ± 0.081 -0.248 6

scBERT 5.515 ± 0.067 6.159 ± 0.196 6.022 ± 0.465 6.757 ± 0.281 7.999 ± 1.240 6.493 ± 0.736 7.110 ± 0.579 4.533 ± 0.081 -0.278 7
scFoundation 5.564 ± 0.051 6.173 ± 0.196 6.050 ± 0.462 6.755 ± 0.279 7.944 ± 1.186 6.382 ± 0.876 5.238 ± 0.578 4.432 ± 0.467 -0.177 4

scGPT 5.515 ± 0.067 6.153 ± 0.189 6.023 ± 0.464 6.766 ± 0.287 8.272 ± 1.377 8.826 ± 0.182 14.906 ± 2.154 5.184 ± 0.132 -0.929 8
UCE 5.514 ± 0.066 6.145 ± 0.183 6.029 ± 0.460 6.736 ± 0.289 7.939 ± 1.184 6.352 ± 0.831 5.612 ± 0.665 4.435 ± 0.085 -0.180 5

Table 2. Perturbation effect prediction evaluation across 2,000 HVGs. Models are listed in the specified order.
↓ MSE

Dataset Model S 0.1 S 0.2 S 0.3 S 0.4 S 0.5 S 0.6 S 0.7 ↓ AUSPC ↑ ∆AUSPC (10−2) Rank

R
ep

lo
gl

e
K

56
2

GEARS 0.0096 ± 0.0005 0.0102 ± 0.0006 0.0129 ± 0.0003 0.0133 ± 0.0005 0.0150 ± 0.0003 0.0169 ± 0.0016 0.0175 ± 0.0009 0.0082 ± 0.0001 13.044 1
MLP baseline 0.2125 ± 0.0007 0.2245 ± 0.0011 0.2343 ± 0.0055 0.2269 ± 0.0084 0.2437 ± 0.0151 0.2445 ± 0.0348 0.2799 ± 0.0279 0.1420 ± 0.0077 -0.3385 5
Mean baseline 0.2129 ± 0.0007 0.2272 ± 0.0017 0.2319 ± 0.0093 0.2252 ± 0.0089 0.2356 ± 0.0231 0.2435 ± 0.0267 0.2703 ± 0.0347 0.1386 ± 0.0076 - 4
Geneformer 0.2274 ± 0.0028 0.2374 ± 0.0014 0.2515 ± 0.0008 0.2412 ± 0.0058 0.2506 ± 0.0047 0.2526 ± 0.0202 0.2639 ± 0.0330 0.1475 ± 0.0056 -0.8887 6

scBERT 0.2071 ± 0.0014 0.2073 ± 0.0019 0.2050 ± 0.0041 0.2032 ± 0.0028 0.2064 ± 0.0035 0.2022 ± 0.0055 0.2012 ± 0.0004 0.1228 ± 0.0016 * *
scFoundation 0.2396 ± 0.0033 0.2576 ± 0.0109 0.2682 ± 0.0102 0.2644 ± 0.0153 0.2788 ± 0.0141 0.2506 ± 0.0278 0.2639 ± 0.0331 0.1556 ± 0.0113 -1.6977 7

scGPT 0.2107 ± 0.0 0.2245 ± 0.0016 0.2287 ± 0.0086 0.2223 ± 0.0081 0.2321 ± 0.0213 0.2390 ± 0.0245 0.2635 ± 0.0327 0.1384 ± 0.0080 0.0221 2
UCE 0.2114 ± 0.0007 0.2245 ± 0.0016 0.2287 ± 0.0086 0.2223 ± 0.0081 0.2321 ± 0.0212 0.2391 ± 0.0245 0.2635 ± 0.0326 0.1384 ± 0.0080 0.0220 3

R
ep

lo
gl

e
R

PE
1 GEARS 0.0154 ± 0.0004 0.0183 ± 0.0001 0.0217 ± 0.0006 0.0254 ± 0.0018 0.0285 ± 0.0026 0.0326 ± 0.0048 0.0454 ± 0.0077 0.0157 ± 0.0005 11.838 1

MLP baseline 0.2068 ± 0.0023 0.2057 ± 0.0027 0.2045 ± 0.0011 0.2058 ± 0.0058 0.2101 ± 0.0053 0.2167 ± 0.0073 0.2112 ± 0.0042 0.1252 ± 0.0024 0.8892 3
Mean baseline 0.2167 ± 0.0015 0.2215 ± 0.0027 0.2190 ± 0.0013 0.224 ± 0.0037 0.2203 ± 0.0122 0.2353 ± 0.0106 0.2246 ± 0.0101 0.1341 ± 0.0035 - 7
Geneformer 0.2053 ± 0.0021 0.2056 ± 0.0023 0.2048 ± 0.0019 0.2062 ± 0.0055 0.2113 ± 0.0064 0.2170 ± 0.0066 0.2103 ± 0.0037 0.1251 ± 0.0023 0.8922 2

scBERT 0.2050 ± 0.0029 0.2056 ± 0.0023 0.2047 ± 0.0019 0.2062 ± 0.0054 0.2113 ± 0.0059 0.2185 ± 0.0070 0.2178 ± 0.0068 0.1258 ± 0.0027 * *
scFoundation 0.2054 ± 0.0021 0.2056 ± 0.0024 0.2048 ± 0.0020 0.2063 ± 0.0056 0.2113 ± 0.0064 0.2173 ± 0.0068 0.2101 ± 0.0035 0.1253 ± 0.0023 0.8764 6

scGPT 0.2053 ± 0.0021 0.2056 ± 0.0023 0.2047 ± 0.0019 0.2062 ± 0.0055 0.2112 ± 0.0065 0.2171 ± 0.0067 0.2103 ± 0.0038 0.1253 ± 0.0023 0.8768 5
UCE 0.2053 ± 0.0021 0.2056 ± 0.0023 0.2048 ± 0.0019 0.2062 ± 0.0054 0.2113 ± 0.0064 0.2170 ± 0.0066 0.2104 ± 0.0037 0.1253 ± 0.0024 0.8791 4

Replogle RPE1. In the RPE1 cell line, GEARS again out-
performed all other models with an AUSPC of 0.0157, fol-
lowed by the Mean baseline (0.1251) and the MLP baseline
(0.1252). The scFMs exhibited very similar performance,
with AUSPC values tightly clustered around 0.1255 and no
significant differences observed.

Overall, GEARS outperforms all zero-shot scFMs and base-
line models by an order of magnitude, suggesting that its
architecture and training paradigm allow it to better cap-
ture underlying biological processes and generalize more
effectively across a variety of perturbation types. This under-
scores the potential value of incorporating stronger inductive
biases into the perturbation effect prediction task and sug-
gests that current scFMs, which rely solely on a masked
pre-training objective, may primarily capture average per-
turbation effects in the absence of fine-tuning.

3.2. Additional Experiments

We conduct additional experiments on the Norman single-
and double-gene perturbation datasets, which exhibit
stronger perturbation effects and thus provide a clearer sig-
nal for evaluating more challenging prediction tasks. Specif-
ically, we assess the models’ performance when restricting
the evaluation to the top 20 DEGs, which typically capture
the majority of the transcriptional response to a genetic per-

turbation. Poor performance in this setting would indicate
that the semantic information encoded in zero-shot scFM
embeddings does not meaningfully contribute to predict-
ing perturbation effects. Lastly, we evaluate the impact of
contextual alignment on performance for two of the scFMs.

3.2.1. EVALUATION ACROSS DEGS

We evaluate the models on predicting the effect of pertur-
bations on the top 20 DEGs per perturbation, providing a
more stringent test of model performance than the full set
of 2,000 HVGs. Indeed, genetic perturbations typically al-
ter the expression of a limited subset of genes within the
transcriptome (Figure A4), hence models predicting mean
gene expression can still achieve low MSE values across
2,000 HVGs. The results of the evaluation across DEGs are
displayed in Table 3.

Norman single-gene. For single-gene perturbations,
GEARS achieved the highest performance (AUSPC 0.266),
significantly outperforming all scFMs and baseline models.
The MLP baseline ranked second (0.342), followed closely
by UCE (0.334), which was the best-performing scFM.
As the sparsification probability increased, MSE values
worsened across all models, with Geneformer and scGPT
exhibiting the steepest decline in performance. scBERT
performed best among scFMs across most sparsity levels
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Table 3. Perturbation effect prediction evaluation across the top 20 DEGs per perturbation. Note that for double-gene perturbations split
0.5, there were not enough perturbations that passed our quality control to define multiple replicates.

↓ MSE

Dataset Model S 0.1 S 0.2 S 0.3 S 0.4 S 0.5 S 0.6 S 0.7 ↓ AUSPC ↑ ∆AUSPC (10−2) Rank

N
or

m
an

si
ng

le
-g

en
e GEARS 0.284 ± 0.024 0.215 ± 0.037 0.314 ± 0.071 0.256 ± 0.035 0.341 ± 0.014 0.682 ± 0.194 0.888 ± 0.285 0.266 ± 0.018 7.967 1

MLP gene expression 0.466 ± 0.051 0.468 ± 0.074 0.456 ± 0.039 0.497 ± 0.042 0.521 ± 0.071 0.513 ± 0.123 0.622 ± 0.172 0.342 ± 0.013 0.312 4
Mean baseline 0.479 ± 0.050 0.474 ± 0.078 0.489 ± 0.053 0.492 ± 0.047 0.492 ± 0.047 0.525 ± 0.126 0.604 ± 0.144 0.345 ± 0.011 - 5
Geneformer 0.464 ± 0.048 0.464 ± 0.077 0.481 ± 0.052 0.475 ± 0.042 0.483 ± 0.046 0.488 ± 0.106 0.902 ± 0.220 0.351 ± 0.014 -0.564 8

scBERT 0.469 ± 0.050 0.464 ± 0.077 0.481 ± 0.053 0.475 ± 0.042 0.482 ± 0.045 0.499 ± 0.117 0.608 ± 0.149 0.336 ± 0.011 0.878 3
scFoundation 0.502 ± 0.052 0.466 ± 0.077 0.489 ± 0.056 0.469 ± 0.040 0.486 ± 0.046 0.567 ± 0.090 0.638 ± 0.166 0.350 ± 0.011 -0.486 7

scGPT 0.463 ± 0.048 0.464 ± 0.077 0.482 ± 0.053 0.475 ± 0.042 0.484 ± 0.047 0.485 ± 0.105 0.828 ± 0.249 0.347 ± 0.015 -0.168 6
UCE 0.463 ± 0.048 0.464 ± 0.077 0.482 ± 0.053 0.476 ± 0.042 0.485 ± 0.047 0.484 ± 0.104 0.624 ± 0.162 0.334 ± 0.012 1.078 2

N
or

m
an

do
ub

le
-g

en
e GEARS 0.211 ± 0.032 0.200 ± 0.013 0.296 ± 0.052 0.425 ± 0.041 0.335 ± 0.0* 0.473 ± 0.109 0.422 ± 0.077 0.223 ± 0.010 29.9 1

MLP gene expression 0.484 ± 0.046 0.538 ± 0.082 0.585 ± 0.061 0.618 ± 0.048 0.690 ± 0.0* 0.552 ± 0.049 0.500 ± 0.056 0.371 ± 0.009 15.1 2
Mean baseline 0.549 ± 0.055 0.580 ± 0.075 0.615 ± 0.074 0.653 ± 0.037 0.757 ± 0.0* 0.659 ± 0.047 0.497 ± 0.056 0.522 ± 0.053 - 8
Geneformer 0.527 ± 0.055 0.550 ± 0.069 0.603 ± 0.076 0.661 ± 0.045 0.706 ± 0.0* 0.623 ± 0.054 0.487 ± 0.048 0.409 ± 0.008 11.3 3

scBERT 0.528 ± 0.056 0.550 ± 0.069 0.596 ± 0.071 0.661 ± 0.041 0.740 ± 0.0* 0.622 ± 0.049 0.681 ± 0.086 0.418 ± 0.008 10.4 6
scFoundation 0.534 ± 0.057 0.554 ± 0.070 0.606 ± 0.073 0.656 ± 0.045 0.683 ± 0.0* 0.621 ± 0.060 0.497 ± 0.051 0.410 ± 0.008 11.2 5

scGPT 0.527 ± 0.056 0.550 ± 0.069 0.597 ± 0.072 0.673 ± 0.044 0.724 ± 0.0* 0.724 ± 0.028 1.941 ± 0.329 0.500 ± 0.018 2.2 7
UCE 0.527 ± 0.055 0.550 ± 0.069 0.601 ± 0.072 0.656 ± 0.043 0.726 ± 0.0* 0.624 ± 0.053 0.506 ± 0.048 0.410 ± 0.007 11.2 4

(∆AUSPC 0.00878), while UCE provided the most stable
results throughout (∆AUSPC 0.0108). These results sug-
gest that, while some scFMs exhibit marginal advantages
over the mean baseline, the performance gaps remained
minimal, with UCE (best) only outperforming Geneformer
(worst) by 4.8%.

Norman double-gene. A similar ranking pattern was ob-
served for double-gene perturbations, where models outper-
formed the mean baseline but showed no clear advantage
over the MLP. GEARS again demonstrated superior per-
formance (AUSPC 0.223, ∆AUSPC 0.299), surpassing the
MLP baseline (AUSPC 0.371, ∆AUSPC 0.151) and all
scFMs. The performance gap widened for more complex
perturbations, suggesting that GEARS’ architecture and
training paradigm allow it to better model gene interactions
and their impact on the effect of perturbations.

Overall, this evaluation proves more challenging, evidenced
by the order of magnitude increase in MSE (see Ap-
pendix I.4). However, the results again suggest that zero-
shot scFM embeddings provide limited advantage over sim-
ple baseline approaches in this setting. Consistent with
previous findings, scFM models struggled to generalize to
perturbation-specific expression shifts, further reinforcing
their limitations in predicting biologically relevant perturba-
tion effects.

3.2.2. E-DISTANCE

We analyzed the relationship between perturbation strength
and model performance using E-distance to measure pertur-
bation effect magnitude. The results, shown in Figure 3a,
confirm that models generally perform worse when predict-
ing perturbations with higher E-distance, which corresponds
to stronger perturbation effects. This pattern was consistent
across all models, for both single-gene and double-gene
perturbations, supporting the hypothesis that training data
biased toward moderate perturbation effects limits a model’s

ability to generalize to more extreme cases.

Figure 3b further illustrates how perturbation strength varies
across train-test splits for both single- and double-gene per-
turbations. At higher sparsification probabilities, low E-
distance perturbations become less frequent, while stronger
perturbations appear more often. This aligns with previous
observations that model performance declines as sparsity
increases, as models are increasingly challenged to predict
relatively rare, and strong perturbation effects. Two exam-
ples illustrate this trend: AHR (Figure 4a), a perturbation
with low E-distance, exhibited a narrow effect range (–0.1
to 0.25) and was predicted with relatively high accuracy. In
contrast, CEBPE (Figure 4b), which produced a broader
and more pronounced perturbation effect (–0.5 to 1), was
predicted with significantly lower accuracy.

However, deviations from this trend suggest that the mag-
nitude of the perturbation alone does not fully determine
prediction difficulty. CEBPA (Figure 4d), despite being
a strong perturbation, was predicted with relatively high
accuracy. This could be attributed to its localized effect
on a small subset of genes, with a long tail of mildly or
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Figure 3. (a) MSEs for all test perturbations as a function of the
E-distance. The predictions displayed are the averaged across all
scFMs. (b) The E-distance of all test perturbations stratified per
split as a function of the sparsification probability. The mean of
the E-distance per split is included in red.
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Figure 4. Predictions of models across the top 20 DEGs for 4 per-
turbations from different splits. Subcaptions indicate perturbation
name, sparsification probability. The predictions are included as
colored dots, and the target perturbation effect is displayed as a
dashed line.

non-affected genes. Conversely, IKZF3 (Figure 4c), which
elicited a weaker overall perturbation, was predicted with
lower accuracy—likely due to its atypical effect distribution
(Appendix I.7). These results suggest that a model’s capa-
bility to predict perturbation effects depends not only on the
magnitude of the perturbation, but also on its distribution.

Taken together, these findings highlight the importance of a
more balanced representation of perturbation effects during
training. Ensuring that training data covers a diverse range
of perturbation magnitudes and distributions could improve
model generalization. Zero-shot scFM embeddings alone do
not address this challenge, reinforcing the need for targeted
strategies to enhance model robustness for perturbation ef-
fect prediction.

3.2.3. CONTEXTUAL ALIGNMENT

Previous work by Cui et al. (2024) demonstrated that the
performance of zero-shot scFM models in cell-type annota-
tion tasks is highly dependent on the overlap between their
pre-training datasets and the downstream task data. To inves-
tigate whether this reliance on contextual alignment extends
to perturbation effect prediction, we analyzed the similarity
between pre-training corpus and fine-tuning dataset, as well
as its impact on model performance.

In Figure 5, we compute the contextual alignment between
the pre-training datasets of scGPT and scBERT and the
Norman dataset. scBERT exhibits a higher alignment score
(0.718) compared to scGPT (0.606), indicating that its pre-
training corpus is approximately 19% more similar to the
Norman dataset. Despite both models displaying compara-
ble MSE across splits, scBERT demonstrates greater robust-
ness, suggesting that contextual alignment plays a more
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Figure 5. MSE as a function of the pre-train and fine-tune data
cross-split overlap for scGPT and scBERT.

significant role than dataset scale alone. Notably, scGPT’s
pre-training corpus is an order of magnitude larger than
scBERT’s, reinforcing the idea that increasing dataset size
does not necessarily compensate for a lack of alignment with
the downstream task. For this analysis we focus on scGPT
and scBERT, however assessing this phenomenon across a
broader range of models and perturbation datasets is nec-
essary to fully understand its impact on perturbation effect
prediction. Future studies should explore how curating pre-
training datasets to better reflect perturbation-specific distri-
butions influences model performance, particularly in cases
where strong or rare perturbations are under-represented in
the training corpus.

3.3. Limitations

A key limitation of our study is that perturbations are mod-
eled exclusively as knockouts, regardless of their original
experimental context. This constraint aligns with prior work
and reflects an inherent limitation of current foundation
models, as not all architectures support the modeling of
gene activation. More broadly, the lack of a standardized
approach for representing perturbations in scFMs limits
the interpretability and generalizability of findings across
studies. To advance the field, there is a pressing need for
consensus on how to represent perturbations, ensuring they
can robustly capture a diverse range of modalities.

4. Conclusion
PertEval-scFM addresses the current lack of consensus in
benchmarking models for perturbation effect prediction by
introducing a modular evaluation toolkit with diverse met-
rics, designed to assess and interpret model performance.
Notably, our framework accounts for distribution shift, a
factor often overlooked in previous studies. We applied
PertEval-scFM to evaluate whether zero-shot scFM embed-
dings provide an advantage over raw gene expression data
for perturbation effect prediction. Our results show that
current-generation scFM embeddings, when used zero-shot,
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do not consistently outperform simple baselines when pre-
dicting the effects of perturbations on 2,000 HVGs or the
top 20 DEGs. The E-distance and contextual alignment
metrics allow us to further contextualize our results and
identify the failure modes of our models. We plan to main-
tain PertEval-scFM as an open and extensible benchmarking
suite, designed to support diverse use cases and facilitate
the evaluation of perturbation models.

Future work. Although our results highlight the limita-
tions of using zero-shot scFM embeddings for perturbation
effect prediction, we remain optimistic about the wider po-
tential of scFMs. Key open questions include how to best
represent perturbations in silico and how to fully leverage
large-scale pre-training data to improve prediction accuracy.
Existing cell atlases capture only a small fraction of the hu-
man phenoscape—the full range of states a cell can occupy
(Fleck et al., 2023)—and often exclude perturbation-induced
states. Moreover, specialized models must be designed to
fully leverage large-scale datasets for predicting transcrip-
tomic responses to perturbations. The superior performance
of GEARS, which incorporates inductive biases tailored
to perturbation prediction, exemplifies the importance of
model architectures that explicitly encode relevant biolog-
ical priors. Future work may benefit from exploring how
such priors can be integrated into the scFM architecture to
improve the utility of zero-shot representations of single-cell
RNA-seq data for perturbation effect prediction.

Computational Requirements
A single MLP probe requires 1 NVIDIA A100-PCIE-40GB
GPU (using 12 cores) for training. Runtime depends on
the hidden dimension of the probe, which is around 5 to 30
minutes for the smallest to biggest probes, respectively.
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Appendix

A. Single-Cell Transcriptomics Data
The advent of single-cell RNA sequencing technology (scRNA-seq) has revolutionized our understanding of cellular
heterogeneity and dynamic biological processes (Chen et al., 2019). Unlike traditional bulk sequencing methods, which
average signals across large populations of cells, scRNA-seq technologies enable the study of gene expression at single-cell
resolution. This granularity provides unprecedented insights into complex mechanisms of development, differentiation, and
disease progression (Trapnell, 2015; Svensson et al., 2018; Fleck et al., 2023). The broad-scale application potential of
scRNA-seq technology has led to the generation of large-scale datasets, such as the Human Cell Atlas (Regev et al., 2017)
and the CellxGene Census (Program et al., 2023), which collectively span millions of cells and most sources of primary
tissue.

A.1. Perturb-Seq Data

Perturb-seq integrates scRNA-seq with CRISPR-based perturbations to profile gene expression changes in response to
specific genetic modifications at the single-cell resolution (Dixit et al., 2016). By systematically perturbing genes and
measuring the resulting transcriptomic changes, Perturb-seq data provides a detailed map of cellular responses to specific
genetic modifications. These datasets, such as those generated by Norman et al. (2019) and Replogle et al. (2022), allow
researchers to explore the relationships between gene perturbations and cellular phenotypes in a high-dimensional space,
providing invaluable insights into gene regulatory networks and cellular behavior and allowing the identification of potential
drug targets (Wenteler et al., 2024).

A.1.1. THE NORMAN DATASET

The dataset from Norman et al. (2019) represents one of the most comprehensive Perturb-seq resources available. It profiles
transcriptional responses to 200 single-gene and double-gene perturbations in the human K562 leukemia cell line, using
pooled CRISPRa screening and scRNA-seq. This dataset captures gene expression data from thousands of individual
cells, each subjected to either a control or a perturbation, providing an ideal testing ground for models designed to predict
perturbation effects. The Norman dataset includes both perturbed and unperturbed cells, allowing for systematic evaluation
of model performance in predicting the effects of genetic perturbations at single-cell resolution.

Table A1. Overview of the Norman dataset
Characteristic Description

Cell type K562 (human leukemia cells)

Total number of perturbations 196

Number of single-gene perturbations 105

Number of double-gene perturbations 91

Perturbation method CRISPRa

Number of control cells ∼12,000

Number of cells ∼110,000

Sequencing platform 10x Genomics Chromium

Gene expression data Single-cell RNA-seq

Number of genes measured 20,000+

Reference Norman et al. (2019)

A.1.2. THE REPLOGLE DATASET

The datasets from Replogle et al. (2022) provide another comprehensive Perturb-seq resource, offering a large-scale map of
transcriptional responses to pooled CRISPR-mediated perturbations. This datasets profile over 4000 genetic perturbations
across multiple cell lines, including K562 (human leukemia) and RPE1 (human retinal pigment epithelial) cells, using
scRNA-seq. Its expansive coverage of individual perturbations enables the evaluation of models designed to predict
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transcriptional responses in diverse cellular contexts. The Replogle dataset captures single-cell gene expression data under a
wide range of experimental conditions, providing an excellent benchmark for assessing the robustness and generalizability
of predictive models. Furthermore, its inclusion of both perturbed and control cells facilitates systematic performance
comparisons.

Table A2. Overview of the Replogle dataset
Characteristic Description

Cell types K562 (human leukemia cells),

RPE1 (human retinal pigment epithelial cells)

Total number of perturbations 4,452

Number of single-gene perturbations 2,058 (K562), 2,394 (RPE1)

Perturbation method CRISPRi

Number of cells ∼310,000 (K562), ∼250,000 (RPE1)

Sequencing platform NovaSeq 6000, Ultima Genomics

Gene expression data Single-cell RNA-seq

Number of genes measured 20,000+

Reference Replogle et al. (2022)

A.2. Single-Cell Data Pre-Processing and Quality Control

The datasets were downloaded and pre-processed using ScPerturb (Peidli et al., 2024), PertPy (Heumos et al., 2024),
and ScanPy (Wolf et al., 2018). As scFMs utilize raw gene expression counts, two versions of the datasets are stored
internally: an AnnData object containing raw expression counts, used to generate embeddings with scFMs, and an
AnnData object with pre-processed gene expression values, used to train the baseline models.

Pre-processing involves normalizing the raw gene expression counts by the total number of counts for each gene
to account for differences in sequencing depth and ensure comparability across samples. This was performed us-
ing the scanpy.pp.normalize_total(adata) method with default settings. Next, the normalized counts
were log-transformed with scanpy.pp.log1p(adata) to stabilize variance and make the data more amenable
to downstream analysis. Finally, the top 2,000 highly variable genes were selected for training, using the
scanpy.pp.highly_variable_genes(pert_adata, n_top_genes=2000) function.

A.3. Quality Control Plots

To ensure the robustness and reliability of analyses derived from the Norman and Replogle datasets used in this study,
quality control (QC) steps were applied to evaluate the integrity and consistency of the data. These QC plots provide a visual
assessment of key metrics such as the number of cells per gene and the number of genes detected per cell, both critical
indicators of dataset quality.

The number of cells per gene (Figures A1a, A2a, A3a) reveals how consistently individual genes are captured across cells,
identifying genes widely expressed (potentially housekeeping or essential genes) and filtering out low-quality genes only
detected in a few cells. The number of genes detected per cell (Figures A1b, A2b, A3b) highlights the overall quality of
cell-level data, with higher numbers indicating more comprehensive transcriptome coverage.

These distribution of perturbation effect plots (Figure A4) illustrate the range and variability of transcriptional changes
induced by the perturbations, offering insights into the sensitivity of gene expression to these manipulations in each dataset.
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Figure A1. Quality control plots for the Norman dataset. (a) The number of cells per gene. This indicates how often an individual gene is
measured across cells. Genes that are present in many cells might be housekeeping genes or essential genes. Because many genes were
present in only a few cells, only genes present in minimum 5 cells were considered. (b) The number of genes detected per cell across
all datasets. This offers insights into the distribution of genes among cells and indicates how representative the measurements are of
single-cell transcriptomes.
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Figure A2. Quality control plots for the Replogle K562 dataset. (a) The number of cells per gene. (b) The number of genes detected per
cell across all datasets.
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Figure A3. Quality control plots for the Replogle RPE1 dataset. (a) The number of cells per gene. (b) The number of genes detected per
cell across all datasets.
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Figure A4. Overall distribution of mean expression in control and perturbed cells. The distributions are relatively similar for both
conditions, indicating that most perturbations have a limited effect on the expression of most genes.
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B. Models
B.1. Single-Cell Foundation Models (scFMs)

Single-cell foundation models (scFMs) are trained on broad single-cell data using large-scale self-supervision, allowing
them to be adapted (i.e., fine-tuned) for a wide range of downstream tasks. Most scFMs use variants of the Transformer
(Vaswani et al., 2017) architecture to process embedded representations of input gene expression data. However, they differ
in input data representation, model architecture, and training procedures. Here, we provide a brief overview of the scFMs
included in PertEval-scFM.

Table B1. Overview of the scFMs included in PertEval-scFM..

MODEL NAME ARCHITECTURE PRE-TRAINING OBJECTIVE # OF CELLS ORGANISM EMB. DIM.

SCBERT TRANSFORMER MASKED LANGUAGE MODELING (MLM) ∼5 MILLION HUMAN & MOUSE 200
GENEFORMER TRANSFORMER MASKED LANGUAGE MODELING (MLM) ∼30 MILLION HUMAN 256

SCGPT TRANSFORMER SPECIALIZED ATTENTION-MASKING MECHANISM ∼33 MILLION HUMAN 512
UCE TRANSFORMER MASKED LANGUAGE MODELING (MLM) ∼36 MILLION 8 SPECIES 1,280

SCFOUNDATION TRANSFORMER READ-DEPTH-AWARE (RDA) MODELING ∼50 MILLION HUMAN 3,072

Geneformer. Geneformer (Theodoris et al., 2023) employs six transformer units, each consisting of a self-attention
layer and an MLP layer. The model is pre-trained on Genecorpus-30M, which comprises 29.9 million human single-cell
transcriptomes from a broad range of tissues obtained from publicly available data. Before feeding the data into the model,
gene expression values are converted into rank value encodings. This method provides a non-parametric representation of
each single-cell transcriptome by ranking genes based on their expression levels in each cell and normalizing these ranks
within the entire dataset. Consequently, housekeeping genes, which are ubiquitously highly expressed, are normalized to
lower ranks, reducing their influence. Rank value encodings for each single-cell transcriptome are then tokenized, allowing
genes to be stored as ranked tokens instead of their exact transcript values. Only genes detected within each cell are stored,
thus reducing the sparsity of the data. When input into the model, genes from each single-cell transcriptome are embedded
into a 256-dimensional space. Cell embeddings can also be generated by averaging the embeddings of each detected gene in
the cell, resulting in a 256-dimensional embedding for each cell. The model is pre-trained using a masked learning objective,
masking a portion of the genes and predicting the masked genes, which is intended to allow the model to learn gene network
dynamics.

scBERT. scBERT (Yang et al., 2022) adapts the BERT architecture (Devlin et al., 2019) for single-cell data analysis. A
transformer is used as the model’s backbone. The input data is represented as a sequence of gene expression values for
each cell, where cells are constructed from gene expression value tokens. Gene embeddings are generated from the sum of
two embeddings, where the first represents the gene’s binned log-scale expression level, and the second is generated with
gene2vec (Du et al., 2019) and specifies the gene’s identity. The model is pre-trained via imputation on 5 million cells using
a masked learning objective – masked gene expression values are predicted as a function of the other gene embeddings in
the cell. In the paper, scBERT is fine-tuned for cell type annotation.

scFoundation. scFoundation (Hao et al., 2023) employs xTrimogene as a backbone model, a scalable transformer-based
architecture that includes an embedding module and an asymmetric encoder-decoder. The embedding module converts
continuous gene expression scalars into high-dimensional vectors, allowing the model to fully retain the information from
raw expression values, rather than discretizing them like other methods. The encoder is designed to only process nonzero
and nonmasked gene expression embeddings, reducing computational load and thus enabling the application of “vanilla
transformer blocks to capture gene dependency without any kernel of low-rank approximation”. These encoded embeddings
are then recombined with the zero-expressed gene embeddings at the decoder stage to establish transcriptome-wide
embedded representations. This backbone approach can then be built upon additional architectures which are specialized for
specific tasks - i.e., GEARS (Roohani et al., 2023) for perturbation response prediction. scFoundation is pre-trained using
read-depth-aware (RDA) modeling, an extension of masked language modeling developed to take the high variance in read
depth of the data into account. The raw gene expression values are pre-processed using hierarchical Bayesian downsampling
in order to generate the input vectors, which can either be the unchanged gene expression profile or where downsampling
has resulted in a variant of the data with lower total gene expression counts. After gene expression has been normalized, raw
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and input gene expression count indicators are represented as tokens which are concatenated with the model input, allowing
the model to learn relationships between cells with different read depths. Pre-training used data from over 50 million single
cells sourced from a wide range of organs and tissues originating from both healthy and donors with a variety of diseases
and cancer types.

scGPT. scGPT (Cui et al., 2024) follows a similar architectural and pre-training paradigm to scBERT. However, scGPT
bins genes according to their expression, ensuring an even distribution across each bin. It uses random gene identity
embeddings and incorporates an additional “condition embedding” to store meta-information and differentiate each gene.
Along with gene embeddings, scGPT trains a cell token to summarize each cell. Instead of the long-range Performer
architecture, scGPT processes embeddings via Flash-Attention (Dao et al., 2022) blocks. The model implements a generative
masked pre-training using a causal masking strategy inspired by OpenAI’s GPT series (Radford et al., 2018). scGPT is
pre-trained on 33 million human cells and fine-tuned on a wide suite of downstream tasks, including cell type annotation,
genetic perturbation response prediction, batch correction, and multi-omic integration.

Universal Cell Embeddings (UCE). Universal Cell Embeddings (UCE) (Rosen et al., 2023) is trained on a large
compendium of single-cell RNA-seq datasets from multiple species, including human, mouse, mouse lemur, zebrafish,
pig, rhesus macaque, crab-eating macaque, and western clawed frog, to create a universal embedding space for cells. The
model converts the transcriptome of a single cell into an expression-weighted sample of its corresponding genes and then
represents these genes by their protein products using a large protein language model. This representation is then fed into a
transformer model. UCE is pre-trained in a self-supervised manner with a contrastive learning objective, where similar
cells are mapped to nearby points in the embedding space, and dissimilar cells are mapped to distant points. This training
paradigm enables UCE to provide high-quality embeddings that facilitate various downstream analyses. Benchmarks carried
out by Rosen et al. (2023) in a zero-shot framework shown that UCE outperforms Geneformer (Theodoris et al., 2023) and
scGPT (Cui et al., 2024), as well as cell annotation models such as scVI and scArches, in cell representation tasks.

B.2. scFM Embedding Generation

In this section, we detail the process of generating embeddings for each foundation model in a zero-shot context using
pre-trained models with frozen weights. For some models, pre-trained checkpoints are available and can be directly utilized,
while others require initial pre-training. By freezing model weights, we ensure that the embeddings represent the learned
features from the initial training phase, without further adaptation to the specific perturbation prediction task. This approach
allows us to evaluate the inherent quality and utility of the pre-trained representations for downstream applications in
biological research.

Geneformer. To generate embeddings for Geneformer (Theodoris et al., 2023), we downloaded the repository, including
pre-trained model checkpoints, from Hugging Face. For control cells, we pre-processed the raw expression files to ensure
the correct naming of columns and then fed them into the Geneformer tokenizer (TranscriptomeTokenizer). Once
the dataset had been tokenized, we extracted embeddings using the pre-trained checkpoint (6-layer model) with the
EmbExtractor method. For the perturbation data, we loaded the data and iterated through it in order to remove perturbed
genes, simulating their deletion. The perturbed cells were then tokenized, and embeddings were extracted for each perturbed
cell using the same functions.

scBERT. To generate emeddings for scBERT (Yang et al., 2022), we first downloaded the checkpoint and data shared
in the scBERT GitHub repository. The environment was set up using the scBERT-reusability GitHub repository. For the
raw expression counts, the genes were aligned using Ensembl Homo sapiens gene information. Log-normalization was
performed and cells with less than 200 expressed genes were filtered out. For the perturbation data, the gene expression
value was set to 0 to simulate perturbation, and embeddings were generated using the predict.py script.

scFoundation. To generate scFoundation embeddings (Hao et al., 2023), we initialized the scFoundation class shared
at the official scFoundation GitHub repository. The 01B-resolution pre-trained model checkpoint was loaded and
the embeddings were generated while setting the input_type = singlecell and tgthighres = f1 to indicate
no read depth differences between unperturbed and perturbed cells. The embeddings were then generated using the
get_embeddings function.
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scGPT. To generate embeddings for scGPT (Cui et al., 2024) we installed the scGPT python package. We downloaded
and used the whole-human scGPT model for embedding. For control cells, we used the scGPT embed_data function
to generate the embeddings from the raw expression values. This function tokenises the data before feeding it through
the model. For the perturbation data, we removed the perturbed genes, to simulate their deletion. The embeddings for the
perturbed cells were then generated using the scGPT embed_data function.

Universal Cell Embeddings (UCE). To generate cell embeddings for UCE (Rosen et al., 2023), we ran the
eval_single_anndata.py script provided in the UCE GitHub repository. Model weights for the 33-layer model and
the pre-computed protein embeddings were downloaded separately from figshare. The script takes as input an h5ad raw
expression file with variable names set as gene_symbols. The script was run with default parameters, except for the filter
argument which was set to False, in order to skip an additional gene and cell filtering step. No further pre-processing was
required to generate embeddings for control cells. For in vitro perturbed cells, the raw count value of the perturbed gene was
explicitly set to zero for each condition prior to model inference, and saved as a h5ad file. The output of the script was an
identical h5ad file with the input, except for cell-level embeddings that are stored in the Anndata.obsm[‘X_uce’] slot.
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C. Featurization
C.1. Single-Cell Expression Data Featurization

To generate the input features for raw single-cell expression data, we begin with the control matrix C ∈ Rnc×v , consisting
of nc unperturbed single-cell transcriptomes across v highly variable genes (see Appendix A.2). From this matrix, we form a
pseudo-bulk sample C̃, which aggregates expression values from groups of cells within the same sample, in order to reduce
sparsity and noise. Formally, let C̃ = {ci}500i=1 denote the set of randomly sampled cells from C. The average expression
value Cj for each cell j is then calculated by averaging the expression across the pseudo-bulked cells:

Cj =
1

|C̃|
∑
ci∈C̃

ci,j ∀ j ∈ {1, . . . , np} (C1)

Using this basal expression, we construct the input matrix Xc ∈ Rnp×v, which has the same dimensions of the perturbed
transcriptomic matrix P ∈ Rnp×v (i.e. what we want to predict), where np is the number of perturbed cells. The input
matrix Xc is generated by sub-sampling from Cj , ensuring that the dimensions are consistent between the input and the
target output.

This approach ensures that input-target pairs are consistently defined for all training examples, as the dimensions of
Xc ∈ Rnp×v align with the target matrix P . Representing input expression at pseudo-bulked basal levels helps mitigate
sparsity issues caused by limited gene coverage in individual single-cell measurements from the original dataset. However,
this method introduces a trade-off by reducing the heterogeneity of the input gene expression. As a result, some salient
single-cell signals, such as those related to its initial state, may be diminished. However, inferring cellular states based
solely on gene expression data is inherently challenging, given the many confounding factors and technical noise present
in single-cell datasets (Fleming et al., 2023). Therefore, conventional machine learning models should not be expected to
perform this task with high fidelity to begin with.

C.1.1. MLP BASELINE

To generate the full set of input features for the MLP, we must encode the identity of each perturbation alongside capturing
basal gene expression. Let P = {p1, . . . , pk} denote the set of perturbable genes, and let D = {d1, . . . , dv} represent all
highly variable genes.

To evaluate the models’ ability to generalize to unseen perturbations, it is important to incorporate information about gene
interactions within a specific cell type. This allows the models to learn gene interaction networks, helping to extrapolate
effects from known perturbations to novel ones.

To achieve this, we construct a v-dimensional correlation vector for each perturbable gene by calculating the Pearson
correlation between its basal expression and that of all other genes, including itself. By including the auto-correlation of
the perturbable gene, we explicitly encode the identity of the gene to be perturbed. The resulting feature vector for each
perturbable gene, gc ∈ Rv, captures the correlations between its basal expression and the basal expression of all highly
variable genes. Aggregating these correlation vectors for all perturbable genes produces the matrix Gc ∈ Rnp×v , where the
perturbation in each row corresponds to the transcriptomic state observed in T .

Finally, the control gene expression matrix Xc is concatenated with the perturbation correlation matrix Gc to construct the
complete input feature matrix:

ZGE = Xc ⊕Gc (C2)

Here, ZGE ∈ Rn×2v represents the input feature matrix, where each row gi combines the log-normalized basal expression
values of a cell with the corresponding perturbation correlation features. This procedure is applied to both the training and
testing sets, to generate ZGEtrain and ZGEtest .

C.2. Single-Cell Foundation Model Embedding Featurization

To generate embeddings from a pre-trained single-cell foundation model (scFM) with frozen weights, we begin by mapping
raw gene expression counts to transcriptomic embeddings. Let fscFM : Rl → Rec represent the function that transforms raw
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expression data into an embedding for each cell.

To construct the control cell embedding, we feed the raw expression vector xc
i for each of the nc control cells into the scFM:

fscFM(Xc) = Zc (C3)

The embedding vectors are then subsampled to create Zc ∈ Rnp×ec , where np matches the number of perturbed cells and
the dimension of Zc aligns with the target output matrix.

An in silico perturbation embedding is then generated by nullifying the expression of the perturbed genes across all control
cells in which it is expressed, up to a maximum of 500 cells. The nullification process, denoted by N(xc

i , pi), adjusts the
gene expression vector according to the requirements of the scFM model in use. The nullification function can be defined as
N : Rv ×Nv → Rl, where Rv represents the space of the gene expression vector, and Nv denotes the set of natural numbers
from 1 to v, corresponding to the indices of genes in xc

i . If the scFM requires setting the perturbed gene’s expression to zero,
l = v. However, some scFMs filter out non-expressed genes during tokenization (scGPT), or train on ranked gene token
representations instead of expression values (Geneformer). In these cases, the perturbed gene must be removed from the
control gene expression vector, resulting in l = v− 1. Nonetheless, the perturbation embedding xp

i is constructed as follows:

fscFM(N(xc
i , pi)) = zpi (C4)

The perturbation embeddings for all cells form the matrix Zp ∈ Rnp×ec . It is trivial to extend the above framework to
combinatorial perturbations, where the nullification function accepts multiple perturbations and nullifies the associated gene
expression values.

The final cell embedding is then obtained by concatenating the control embedding Zc with the perturbation embedding Zp:

ZscFM = Zc ⊕ Zp (C5)

This approach differs from raw expression featurization, where co-expression patterns are explicitly encoded to model
perturbations. In the scFM embedding featurization, in silico perturbation simulates the changes caused by gene perturbation.
We hypothesize that the embeddings generated by scFMs inherently encode co-expression relationships, aligning with their
pre-training objective based on masked language modeling.

In this study, zero-shot embeddings are generated using five different scFMs (Table B1). Inference for each scFM is
tailored to the specific idiosyncrasies of the model in question. Detailed information on all the scFMs used can be found in
Appendix B.1.
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D. Perturbation Representation Experiment
D.1. Doubling Gene Expression Perturbation Representation Results

Here we assess whether simulating perturbations via an in silico knockout (scBERT−) versus an upregulation strategy
(scBERT+) leads to appreciable differences in embedding quality on the Norman CRISPRa dataset. By applying each
perturbation scheme for embedding generation using scBERT, and computing the mean squared error (MSE) of the predicted
post-perturbation expression across a range of sparsification probabilities (S = 0.1–0.7), we directly compare knockout
against a gain-of-function representation obtained by doubling the perturbed gene’s expression. As shown in Table D1 and
Figure D1, both approaches yield nearly identical performance, indicating that our knockout-based perturbation protocol
provides a fair and robust benchmark for scFM comparison while avoiding the arbitrary magnitude choices and re-ranking
challenges inherent to upregulation simulations.

Table D1. MSE ± standard deviation for Norman single-gene embeddings generated with scBERT using an in silico knockout (scBERT−)
vs. an upregulation strategy (scBERT+) across sparsification probabilities.

MODEL S 0.1 S 0.2 S 0.3 S 0.4 S 0.5 S 0.6 S 0.7

SCBERT− 0.0630 ± 0.0031 0.0634 ± 0.0062 0.0676 ± 0.0051 0.0636 ± 0.0031 0.0592 ± 0.0015 0.0645 ± 0.0107 0.0849 ± 0.0060
SCBERT+ 0.0640 ± 0.0038 0.0620 ± 0.0038 0.0658 ± 0.0077 0.0610 ± 0.0009 0.0659 ± 0.0046 0.0744 ± 0.0122 0.0853 ± 0.0064
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Figure D1. MSE for Norman single-gene embeddings generated with scBERT using an in silico knockout (scBERT−, purple) vs. an
upregulation strategy (scBERT+, light blue) across sparsification probabilities. Error bars represent standard deviations.
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E. MLP
E.1. MLP Parameter Count

The architectural capacity of neural networks, as reflected by the number of trainable parameters, can significantly impact
their performance. This is particularly relevant when probing embeddings with variable dimensions, such as those derived
from single-cell foundation models (scFMs). To explore the relationship between parameter count and model performance,
we trained MLPs of varying sizes on raw gene expression data. This allowed us to evaluate whether increasing the
expressiveness of the MLP affects its ability to capture biologically relevant patterns. The results, summarized in Table E2,
demonstrate that parameter count has negligible influence on the mean squared error (MSE) for both training and validation
datasets. Similar experiments conducted using scFoundation and scBERT embeddings reinforce these findings. Notably,
despite increasing the parameter count, the scFM embeddings do not provide additional biologically relevant information for
enhanced performance. These results suggest that embedding sizes do not inherently constrain the MLP probes and that the
observed performance differences across models are unlikely to be influenced by disparities in architectural capacity.

Table E2. Train and test set results with MLPs of increasing parameter count
Trainable parameters (million) Training data train/MSE val/MSE

1.6 Raw gene expression 0.057067 0.057642

3.2 Raw gene expression 0.058670 0.057493

6.3 Raw gene expression 0.056748 0.057424

12.7 Raw gene expression 0.056724 0.057428

1.6 scFoundation embeddings 0.060780 0.060260

3.2 scFoundation embeddings 0.060440 0.059910

12.6 scFoundation embeddings 0.059570 0.059050

0.2 scBERT embeddings 0.061040 0.061426

1.0 scBERT embeddings 0.061046 0.061428

8.0 scBERT embeddings 0.061040 0.061421

E.2. Hyperparameter Optimization

To train the MLP probes, we used root mean square error (RMSE) as the objective function and the Adam optimizer (Kingma
& Ba, 2017). Model performance was evaluated on an independent test set comprising unseen perturbations. The objective
function to be minimized is:

L(θ) =

√√√√ 1

nb

nb∑
j=1

(
(T −Xc)j − δ̂θ(X)j

)2

(E1)

where j indexes each cell and nb denotes the batch size.

Hyperparameters were selected using the tree-structured Parzen estimator (TPE) tuning algorithm (Bergstra et al., 2011).
This optimization was performed on the first train-test split, which contains the largest training set. Given the computational
demands of exhaustive parameter sweeps, we focused on optimizing the hyperparameters using the gene expression data as
a reference.

An initial search across different numbers of hidden layers revealed that this parameter had no substantial effect on model
performance. Therefore, a single hidden layer was used throughout the experiments to maintain model simplicity. The
learning rate, however, was found to significantly influence performance and was thus adjusted for the models trained using
the scFM embeddings. Following the manifold hypothesis, we set the hidden dimension to half of the input dimension
(Bengio et al., 2013).
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F. SPECTRA
The SPECTRA framework addresses a critical gap in the evaluation of machine learning models for biological tasks,
particularly in the context of single-cell datasets like Perturb-seq, where distribution shifts are common. Unlike random
splits, which may either overestimate or underestimate model performance due to unquantified train-test similarity, SPECTRA
systematically controls and quantifies train-test dissimilarity. This enables a nuanced assessment of model robustness across
a spectrum of difficulty levels, including challenging scenarios that better simulate real-world variability.

By generating train-test splits based on a defined sparsification probability, SPECTRA not only evaluates models under
diverse conditions but also provides a framework to contextualize performance results and compare robustness across datasets
and tasks. Importantly, SPECTRA’s methodology does not artificially inflate task difficulty; instead, it highlights inherent
redundancies and patterns within the dataset. This approach ensures that performance assessments reflect meaningful
generalization.

Moreover, SPECTRA is not just an evaluation tool but a valuable guide for experimental design. For example, in Perturb-seq,
SPECTRA can reveal if a model generalises well within pathways but struggles across pathways, guiding researchers on
which genes to test next, optimizing experimental efforts. Random splits, by contrast, obscure such insights due to high
train-test similarity.

SPECTRA’s ability to expose weaknesses in generalizability, simulate biologically realistic distribution shifts, and guide
experimental design makes it an high-impact addition to evaluation pipelines. This is particularly crucial for tasks like
perturbation effect prediction, where navigating complex, real-world variability is a fundamental challenge.

F.1. Evaluating Model Robustness under Distribution Shift in Single-Cell Data with SPECTRA

To construct the spectral graph for single-cell data, sample-to-sample similarity between distributions is calculated using the
L2 norm, denoted by ∥ · ∥, of the log 1p-fold change between the mean perturbation expression vector, pi, and the mean
control gene expression vector, c:

S(pi, c) = ∥ log(pi + 1)− log(c+ 1)∥ (F1)

If two samples are sufficiently similar, an edge will be inserted in the spectral graph. A series of train-test splits are then
generated by sparsifying the initial graph. Train and test instances are sampled from distinct subgraphs for each split,
with decreasing mean pairwise similarity between the two sets. The sparsification of the initial graph is attenuated by a
sparsification probability (s), which is the probability that an edge between two samples will be be dropped. Mathematically,
SPECTRA employs a graph sparsification technique similar to what is described in Spielman & Teng (2010). A practical
limitation of the current implementation of SPECTRA lies in its tendency to unevenly distribute perturbations of similar
magnitudes across the training and test splits while minimizing cross-split overlap. This uneven distribution engenders
class imbalances that become increasingly pronounced at higher sparsification probabilities. Consequently, this imposes a
trade-off between induced class imbalance and simulated distribution shift. Empirical observations on our datasets indicate
that the sparsification probability threshold at which the class imbalance remains manageable is approximately 0.7. Beyond
this threshold, the deleterious effects of class imbalance as well as low sample numbers begin to outweigh the benefits of
reduced cross-split overlap.

Indeed, for the Norman dataset, Figure F1a illustrates a rapid decrease in the number of training and testing samples as the
sparsification probability increases. This is expected, as a higher sparsification probability leads to increasingly disconnected
subgraphs to draw samples from. Furthermore, Figure F1b confirms that SPECTRA can simulate distribution shift by
showing a corresponding decrease in similarity between the samples as sparsification probability rises. Subsequently, we
train and test models on each SPECTRA split and plot the MSE as a function of the decreasing cross-split overlap. The area
under this curve is defined as the AUSPC, which serves as a measure of model generalizability under distribution shift.

Similarly to the within-dataset case outlined above, the cross-split overlap can be used to measure the similarity between-
datasets, in this case between the scFM pre-train and our fine-tune datasets for scBERT and scGPT. This approach allows us
to investigate the impact of pre-training data on the quality of scFM embeddings. Further details are provided in Section H.1.
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Figure F1. (a) Number of samples in train and test as a function of the sparsification probability. (b) Cross-split overlap as a function of
the sparsification probability.
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F.2. Implementation Details of the AUSPC

The AUSPC is defined by Equation 7. For numerical evaluation, the integral is approximated using the trapezoidal rule with
sparsification probabilities si ∈ {0.1, 0.2, ..., 0.7}:

AUSPC = f(ϕ) =

∫ smax

0

ϕ(s) ds

≈ d

2

n−1∑
i=0

[ϕ(si) + ϕ(si+1)]

(F2)

where d denotes the step size of the sparsification probability (0.1 in this case) and ϕ represents the metric of interest, (MSE).
The ∆AUSPC is subsequently derived by calculating this value for both the baseline and the model independently, and then
subtracting the AUSPC of the model from that of the baseline. For simplicity, we use the notation ϕi = ϕ(si).

To quantify the uncertainty associated with the AUSPC, uncertainty propagation is utilised, wherein the AUSPC is assumed
to be a non-linear function of the metric of interest, ϕ(s). For uncertainty propagation in this context, the following equation
is employed:

σ2 =

n−1∑
i=1

(
∂f

∂ϕi
σϕi

)2

(F3)

where σ represents the total error associated with the AUSPC and σϕi
denotes the error associated with the MSE for split i.

The partial derivative ∂f
∂ϕi

is calculated using the definition of f given in Equation F2:

∂f

∂ϕi
=

d

2

∑
i

(
∂

∂ϕi
ϕi +

∂

∂ϕi
ϕi+1

)
∂f

∂ϕi
=

d

2

(F4)

Substituting this result into Equation F3 yields:

σ2 =
∑
i

(
d

2
σϕi

)2

σ =

√√√√∑
i

(
d

2
σϕi

)2
(F5)

The algorithmic implementation is given in Algorithm 1.
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Algorithm 1 Calculate AUSPC and its associated error

1: function TRAPEZOIDALAUSPC(ϕ, s)
2: AUSPC← np.trapz(ϕ, s)
3: return AUSPC
4: end function
5: function CALCULATEDELTAAUSPC(ϕb, ϕm, σb, σm, s)
6: AUSPCb ← TRAPEZOIDALAUSPC(ϕb, s)
7: AUSPCm ← TRAPEZOIDALAUSPC(ϕm, s)
8: d← s[1]− s[0] ▷ Assuming uniform step size

9: σb ←
√∑

i(
d
2σϕb,i)

2

10: σm ←
√∑

i(
d
2σϕm,i)2

11: ∆AUSPC← AUSPCb − AUSPCm

12: return ∆AUSPC, σb, σm

13: end function
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G. E-Statistics
G.1. Using E-Distance and Differential Gene Expression Analysis to Evaluate Significant Perturbations

While examining transcriptome-wide, aggregated perturbation effects provides valuable insights, it lacks the granularity
needed to assess a model’s ability to reconstruct perturbation effects at the gene level. To address this limitation, energy
statistics (E-statistics) are employed to evaluate and select significant perturbations in single-cell expression profiles.
Subsequently, differential gene expression analysis is carried out to identify the top 20 differentially expressed genes which
are then used to evaluate individual perturbations.

Perturbation effects are quantified using the E-distance, which compares mean pairwise distances between perturbed and
control cells. Let X ∈ {x1, . . . ,xna

} and Y ∈ {y1, . . . ,ynb
} be two distributions of cells in different conditions with na

and nb cells respectively, where xi, yi ∈ Rm refer to the transcriptomes for cell i. Now the between-distribution distance
δXY and the within-distribution distances σX and σY can be defined as:

δXY =
1

na · nb

na∑
i=1

nb∑
j=1

d(xi,yj)

σX =
1

n2
a

na∑
i=1

na∑
j=1

d(xi,xj)

σY =
1

n2
b

nb∑
i=1

nb∑
j=1

d(yi,yj)

(G1)

where d(·, ·) is the squared Euclidean distance. The E-distance, E, is then defined as:

E(X ,Y) := 2δXY − σX − σY (G2)

The E-test, a Monte Carlo permutation test, is used to assess the statistical significance of observed E-distances. This test
generates a null distribution by randomly permuting perturbation labels 10,000 times, comparing the observed E-distance
against this distribution to yield an adjusted p-value, calculated using the Holm-Sidak method. This p-value can then be
used to select which perturbations result in a perturbation effect that is significantly different from the control.

Before E-statistics are calculated, the data is pre-processed. The number of cells per perturbation is subsampled to 300,
following the 200-500 range proposed by Peidli et al. (2024). Perturbations with fewer than 300 cells are excluded from
downstream analysis. For the Norman dataset, this threshold excludes 20 perturbations, leaving 186 perturbations. One
additional perturbation (BCL2L11) is excluded by the E-test as not significant.

For significant perturbations, the top 20 differentially expressed genes between perturbation and control are selected for
evaluation. This approach is based on the observation that genetic perturbations tend to significantly affect only a fraction of
the full transcriptome, while the remainder remains close to control expression (Nadig et al., 2024). This allows us to evaluate
whether the predicted perturbation effect aligns with the experimental observations specifically for individual perturbations.
The data is pre-processed for differential gene expression testing as described in Appendix A.2. Differential gene expression
calculation is performed using the Wilcoxon rank sum test implemented in scanpy.tl.rank_gene_groups.
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H. Contextual Alignment
H.1. Calculating Contextual Alignment between Pre-Train and Fine-Tune Datasets

To evaluate the influence of pre-training on the efficacy of scFM embeddings, we estimate the contextual alignment between
the datasets used for pre-training and those used for fine-tuning. We expect that enhanced model performance correlates
with a greater overlap between these datasets. Following the instructions outlined on the scGPT GitHub, we obtained the
complete pre-training cell corpus for scGPT from the CellXGene Census. As for scBERT, the pre-training dataset is derived
from PanglaoDB and provided by the authors. The scBERT and scGPT datasets contain 1.4 million and 33 million cells,
and 16,906 and 60,664 features respectively.

To carry out the contextual alignment experiment, we first ensure alignment between the paired datasets based on common
genes. We normalize the fine-tuning dataset to a total read count of 10,000 over all genes and apply log1p-transformation.
Additionally, we filter the data to include the same set of 2,061 highly variable genes that are used in the fine-tuning process
(see Appendix A.2). Following these steps, we obtain two pre-training/fine-tuning common gene sets, 1,408 for scBERT +
Norman and 2,044 for scGPT + Norman.

To quantify the alignment, we compare gene expression profiles between the fine-tuning and pre-training datasets by
computing cosine similarity scores, which are advantageous due to their insensitivity to expression magnitude. This
comparison generates a dense score matrix of dimensions Nfinetune ×Npre-train. For a subset of Npre-train, used in at least one
train-test split, an aggregate cross-split overlap is calculated to evaluate the impact of different pre-training/fine-tuning
dataset configurations on model performance.

Initially, a matrix S ∈ RNfinetune×Npre-train is constructed, where each element sij represents the cosine similarity between the
i-th cell in the fine-tuning dataset and the j-th cell in the pre-training dataset. From this, we derive a binary similarity matrix
B of the same dimensions with entries bij . The matrix is constructed as follows:

bij =

{
1 if sij ≥ µ+ 2σ,

0 otherwise,
(H1)

where µ and σ are the mean and standard deviation of the cosine similarities computed across 100,000 randomly sampled
cell pairs. Based on this established threshold, B represents whether each fine-tuning cell significantly overlaps with each
pre-training cell.

To quantify the alignment for each fine-tuning cell, we aggregate over the pre-training dimension of matrix B for each
fine-tuning cell, resulting in a vector f where each component fi is given by:

fi =
1

Npre-train

Npre-train∑
j=1

Bij (H2)

Here, fi ∈ RNfinetune represents the fraction of the pre-training dataset that is similar to the i-th fine-tuning cell.

To conduct the sensitivity analysis, we define a threshold τ , which represents the minimum fraction of the pre-training
dataset that a fine-tuning cell must be similar to in order to be considered significantly aligned. τ is varied within the range
of 0 to 0.1% of Npre-train. For each value of τ , we calculate the proportion of fine-tuning cells that meet or exceed this
threshold, thus generating a series of values:

p(τ) =
1

Nfinetune

Nfinetune∑
i=1

1{fi>τ} (H3)

where 1 is the indicator function that evaluates to 1 if the condition is true and 0 otherwise.

The sensitivity curve is then plotted as p(τ) versus τ . The area under this curve reflects the overall cross-split overlap of the
fine-tuning dataset relative to the pre-training dataset, as visualized in Figure H1.
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Figure H1. Plot of the probability that a cell from the pre-train dataset is similar to a cell from the fine-tune dataset as a function of τ , the
similarity threshold at which two cells are considered similar based on their cosine similarity.
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I. Supplementary Figures
I.1. Perturbation Effect Prediction Evaluated across 2000 HVGs

I.1.1. NORMAN SINGLE-GENE
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Figure I1. Predictions of single-gene perturbation effect for the Norman dataset evaluated across 2,000 highly variable genes for 8 train-test
splits of increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each model. The heatmap
shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities for each model with standard error bars.

I.1.2. NORMAN DOUBLE-GENE
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Figure I2. Predictions of double-gene perturbation effect for the Norman dataset evaluated across 2,000 highly variable genes for 8
train-test splits of increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each model. The
heatmap shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities for each model with standard error
bars.
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I.1.3. REPLOGLE K562
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Figure I3. Predictions of single-gene perturbation effect for the Replogle K562 dataset evaluated across 2,000 highly variable genes for 8
train-test splits of increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each model. The
heatmap shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities for each model with standard error
bars.
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Figure I4. Predictions of single-gene perturbation effect for the Replogle RPE1 dataset evaluated across 2,000 highly variable genes for 8
train-test splits of increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each model. The
heatmap shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities for each model with standard error
bars
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I.2. SPECTRA Performance Curves

I.2.1. NORMAN SINGLE-GENE
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Figure I5. MSE as a function of the sparsification probability for the different models, tested on Norman single-gene effect perturbation
prediction. These functions are used to calculate to calculate the AUSPC, which is here shaded in blue.
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I.2.2. NORMAN DOUBLE-GENE

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsification Probability

0.05

0.06

0.07

0.08

M
SE

(a) Baseline MLP

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsification Probability

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

M
SE

(b) scBERT

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsification Probability

0.06

0.08

0.10

0.12

0.14

0.16

M
SE

(c) scGPT

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsification Probability

0.05

0.06

0.07

0.08

0.09

M
SE

(d) Geneformer

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsification Probability

0.05

0.06

0.07

0.08

0.09

M
SE

(e) UCE

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsification Probability

0.05

0.06

0.07

0.08

0.09

M
SE

(f) scFoundation

Figure I6. MSE as a function of the sparsification probability for the different models, tested on Norman double-gene perturbation effect
prediction. These functions are used to calculate to calculate the AUSPC, which is here shaded in blue.
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I.2.3. REPLOGLE K562
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Figure I7. MSE as a function of the sparsification probability for the different models, tested on the Replogle K562 dataset. These
functions are used to calculate to calculate the AUSPC, which is here shaded in blue.
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I.2.4. REPLOGLE RPE1
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Figure I8. MSE as a function of the sparsification probability for the different models, tested on the Replogle RPE1 dataset. These
functions are used to calculate to calculate the AUSPC, which is here shaded in blue.
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I.3. MSE for all Models Compared to Mean Baseline across 2000 HVGs

I.3.1. NORMAN SINGLE-GENE
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Figure I9. MSE as a function of the sparsification probability for the different models. This is a depiction of the curves that are used to
calculate the ∆AUSPC.
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I.3.2. NORMAN DOUBLE-GENE
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Figure I10. MSE as a function of the sparsification probability for the different models. This is a depiction of the curves that are used to
calculate the ∆AUSPC.

38



PertEval-scFM

I.3.3. REPLOGLE K562
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Figure I11. MSE as a function of the sparsification probability for the different models. This is a depiction of the curves that are used to
calculate the ∆AUSPC.
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I.3.4. REPLOGLE RPE1
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Figure I12. MSE as a function of the sparsification probability for the different models. This is a depiction of the curves that are used to
calculate the ∆AUSPC.
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I.4. Comparison between Mean Baseline Performance on Predicting Perturbation Effect on the top 2000 HVGs and
the top 20 DEGs

Figure I13. Comparison of the performance of the mean baseline on the highly variable genes (HVGs) vs. differentially expressed genes
(DEGs) task across different sparsification probability train-test splits for Norman single-gene perturbation effect prediction.

Figure I14. Comparison of the performance of the mean baseline on the highly variable genes (HVGs) vs. differentially expressed genes
(DEGs) task across different sparsification probability train-test splits for Norman double-gene perturbation effect prediction.
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I.5. Perturbation Effect Prediction Results across the top 20 DEGs

I.5.1. NORMAN SINGLE-GENE
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Figure I15. Predictions of single-gene perturbation effect for the Norman dataset evaluated across the top 20 differentially expressed genes
for 8 train-test splits of increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each model.
The heatmap shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities for each model with standard
error bars.

I.5.2. NORMAN DOUBLE-GENE
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Figure I16. Predictions of double-gene perturbation effect for the Norman dataset evaluated across the top 20 differentially expressed
genes for 8 train-test splits of increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each
model. The heatmap shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities for each model with
standard error bars.
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I.6. MSE for all Models compared to Mean Baseline across 20 DEGs
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Figure I17. MSE as a function of the sparsification probability for the different models evaluated across the top 20 differentially expressed
genes. This is a depiction of the curves that are used to calculate the ∆AUSPC.
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I.6.2. NORMAN DOUBLE-GENE
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Figure I18. MSE as a function of the sparsification probability for the different models evaluated across the top 20 differentially expressed
genes. This is a depiction of the curves that are used to calculate the ∆AUSPC.
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I.7. Mean Post-Perturbation Expression Profiles for IKZF3 and CEBPA
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Figure I19. Post-perturbation mean expression profiles for IKZF3 and CEBPA. The y-axis has been log-transformed for visual clarity.
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