
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COBISYN: A BIDIRECTIONAL SEARCH FRAMEWORK
FOR CHEMICAL SYNTHESIS PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Artificial Intelligence is increasingly advancing scientific discovery, with chem-
istry being a key application domain. Synthesis planning, which aims to iden-
tify feasible reaction pathways connecting target molecules to available starting
materials, is a fundamental task in organic synthesis and drug discovery. Prior
work typically relies on backward search, iteratively applying single-step ret-
rosynthesis models, which neglects information from the starting materials and
often leads to inefficient exploration and redundant reactions. In this paper, we
propose CoBiSyn (Coordinated Bidirectional Synthesis Planning), a framework
that alternates between “backward decomposition” and “forward construction”,
while coordinating these two directions through shared frontier information. To
support this process, we introduce a conditional embedding projection mecha-
nism and a learned asymmetric synthetic distance, which together provide local
and global cost estimates to steer the search. The experiments on multiple bench-
mark datasets demonstrate that CoBiSyn significantly improves the efficiency and
quality for synthesis planning, compared to existing approaches.

1 INTRODUCTION

Recent advances in Artificial Intelligence have increasingly transformed scientific discovery, of-
fering new paradigms for tackling complex problems in chemistry, biology, and materials sci-
ence (Jumper et al., 2021; Merchant et al., 2023; Lu et al., 2024; Ding et al., 2025). Within this
context, synthesis planning—the task of designing a feasible synthetic route for a given target
molecule—represents a central task in fields such as organic synthesis and drug discovery (Blake-
more et al., 2018). Since most molecules in practice cannot be obtained in a single step, the problem
inherently involves multi-step planning. With the continuous emergence of novel molecular struc-
tures, traditional empirical knowledge provides limited guidance, and the exponentially expanding
search space poses a significant challenge even for expert chemists (Zhong et al., 2024). A striking
example is the “pupukeanane derivatives” (an important marine natural products with unique anti-
malarial properties): their intricate tricyclic scaffold and multiple stereocenters long defied manual
retrosynthetic analysis by experienced chemists, yet plausible multi-step routes have only recently
been proposed by computer-aided synthesis planning systems (Hardy et al., 2022). Such cases high-
light the potential of AI to address targets beyond human intuition. In response, recent research has
increasingly turned to machine learning methods for synthesis planning.

First, it is important to clarify the intended role of AI based synthesis planning tools. They are not
meant to replace expert chemists, but rather to serve as assistants that generate more structured and
optimized candidate hypotheses for chemists to review, refine, and validate. In practice, the model
outputs should be regarded as starting points rather than fully executable solutions. As the rapid
developing of AI techniques, such human-in-the-loop paradigms are widely adopted in scientific
domains and have been demonstrated to improve efficiency and solution quality (M. Bran et al.,
2024; Sundin et al., 2022; Watson et al., 2023) Currently, the predominant approach for synthesis
planning follows a retrosynthetic reasoning paradigm, where candidate precursors are recursively
predicted for the target molecule until all starting materials are drawn from the available building
blocks (Segler et al., 2018; Kishimoto et al., 2019; Chen et al., 2020; Xie et al., 2022).

Although the predictive capability of single-step retrosynthesis models has been steadily im-
proved (Chen & Jung, 2021; Zhong et al., 2023; Liu et al., 2023; Han et al., 2024), the overall

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The overview of CoBiSyn. Circular nodes represent molecules, while square nodes de-
note reactions. For each internal molecule m, CoBiSyn maintains both intrinsic and conditional
costs (denoted as Csyn(m) and Csyn(m

∗|m), which are formally defined in Sec. 1.1). The search
iterates through three phases: (1) Selection: pick boundary molecules minimizing the conditional
cost of m∗ from both frontiers (the sets of nodes inside the dotted circles), denoting mr from the
backward frontier and mf = N(mr) as its downstream counterpart along the optimal pathway in
the forward direction; (2) Expansion: apply the single-step inference model to expand the selected
molecule, guided by its paired node from the opposite direction; (3) Update: propagate and revise
both Csyn(m) and Csyn(m

∗|m) to reflect the new search states.

search frameworks for multi-step synthesis planning have seen relatively little advancement. The
widely used algorithms such as MCTS (Segler et al., 2018) and Retro* (Chen et al., 2020) still adopt
a “unidirectional” reasoning process that starts solely from the target product, making it difficult to
leverage information from the building block library or to obtain global guidance from the overall
synthesis pathway. Consequently, the resulting routes are often unnecessarily long and may deviate
from the optimal solutions. Intuitively, reasoning about synthesis pathways resembles proving
a mathematical theorem: starting from given conditions (the starting materials), one applies a
series of deductive steps (reactions) to arrive at the theorem to be proved (the target product). In
practice, it is very natural to reason from both ends simultaneously—decomposing the theorem into
simpler lemmas while also building complex structures from known results—until the two chains of
reasoning converge. Motivated by this analogy, we ask:

Can synthesis planning similarly benefit from a coordinated bidirectional strategy—one that
explores the product and reactant sides in parallel, with each direction guided by the frontier states
of the other to enable more efficient search?

Our main contributions. Inspired by the above question, we aim to design a suitable bidirectional
searching strategy. Nevertheless, this is goal is challenging to achieve mainly due to two reasons:
first, it is unclear how to effectively integrate the forward and backward searches, as conducting
them in isolation or without coordination may hinder convergence; second, most existing single-
step retrosynthesis models are tailored for unidirectional expansion, making it difficult to incorporate
supervisory signals from bidirectional search unless seeking for significant architectural changes.

To tackle these obstacles, we propose CoBiSyn (Coordinated Bidirectional Synthesis Planning),
an effective search framework for chemical synthesis planning (Fig.1). Our approach alternates be-
tween retro decomposition from the product side and forward construction from the reactant side,
while leveraging frontier states from both directions to guide the expansion. At each step, the frame-
work identifies a potential counterpart molecule from the opposite side that is likely to appear on the
future pathway, and leverages it as guidance to steer expansion, thereby enabling effective coordi-
nation between the two directions. To support this process, we introduce a novel design for guided
expansion and cost estimation, which involves a condition-guided embedding projection mecha-
nism that operates without altering the structure of single-step models, together with a dual embed-
ding synthetic distance model for intrinsic and conditional cost estimation to steer the search.

The experiments on multiple benchmark datasets demonstrates that CoBiSyn achieves higher effi-
ciency and better pathway quality than existing methods, yielding routes that are on average about

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

one reaction step shorter (approximately a 25% reduction). For instance, for a test molecule whose
expert-designed synthesis pathway has a length of 10, Retro* discovers a pathway of length 7,
whereas CoBiSyn achieves a pathway of just 4 steps (see Appendix F for the complete pathway).
Moreover, through grouping benchmark molecules by synthesis difficulty, we find that CoBiSyn is
particularly effective for challenging targets in which the competing methods frequently fail.

1.1 PROBLEM STATEMENT

Figure 2: Molecular space (the grey clouds) and
reaction templates define the search domain, with
building blocks (the blue dot points) serving as
feasible starting points. The bottom illustrates an
exmaplar template of an N-alkylation reaction.

Let M = {m1,m2, . . . } denote the molec-
ular space, where each mi represents a spe-
cific molecule. Further, we let B ⊂ M de-
note the building blocks, i.e., a set of avail-
able or purchasable starting materials. In this
work, we adopt the concept reaction template:
such a template defines a feasible transforma-
tion based on existing domain knowledge or
chemical rules, which maps a set of molecular
subgraphs of reactants to a certain product in
a chemical reaction. During inference, a tem-
plate serves as a candidate operator: in the ret-
rosynthetic direction they decompose the tar-
get molecule into candidate precursors, while
in the forward direction they combine suitable
molecules to yield potential products. We as-
sume T = {t1, . . . , tM} is the given template
set. Each specific chemical reaction contains
three components, that is, it is represented by a
triplet R = (S,mp, t), where S ⊂ M, mp ∈
M, and t ∈ T, denoting the set of reactants, the product, and the reaction template, respectively.
Fig. 2 provides an illustration for these concepts.

Given a target product m∗, a feasible synthesis pathway corresponds to a set of chemical reac-
tions P = {(Si, pi, ti)} such that they can form a directed acyclic graph with two constraints: (1)
∃ i, s.t. pi = m∗ (2) ∀ i, if m ∈ Si and m /∈ B, then ∃ j, s.t. pj = m. The first condition ensures
that the target product m∗ can be synthesized, while the second guarantees that all starting materials
are derived from the building blocks. To assess the quality of P , we define its cost as the sum of the
costs of all starting molecules and reaction templates involved:

c(P) =
∑

(S,mp,t)∈P

∑
m∈S∩B

c(m) +
∑

(S,mp,t)∈P

c(t), (1)

where c(m) and c(t) denote the intrinsic costs of molecule m and template t, respectively. In
practice, these may correspond to molecule purchase prices and reaction expenses. Prior work
typically adopts a simplified convention with c(m) = 0 and c(t) = 1, in which case c(P) reduces
to the pathway length. By contrast, CoBiSyn is a general framework that naturally accommodates
richer cost formulations beyond this simplification. In our following analysis, we use Path(m)
to represent the set of all feasible synthesis pathways that can produce the molecule m; further,
Path(m|m′) represents the subset of those pathways that contain m′ as an intermediate. Finally,
our objective is to find a feasible synthesis pathway with minimum cost, i.e.

P∗ = arg min
P∈Path(m∗)

c(P). (2)

Upon the cost defined in (1), we introduce two specific types of costs for a molecule m: Csyn(m) =
minP∈Path(m) c(P) represents the minimum cost required to synthesize m, while Csyn(m|m′) =
minP∈Path(m|m′) c(P) denotes the minimum cost of synthesizing m along pathways that include
m′ as an intermediate. Here, the former captures the intrinsic synthesis difficulty of m, whereas
the latter quantifies the conditional cost of synthesizing m when an intermediate m′ is introduced.
In particular, it is easy to see Csyn(m

∗) actually is the optimal cost for synthesizing m∗, i.e.,
Csyn(m

∗) = c(P∗). In addition, we define D(m,m′) = Csyn(m|m′)−Csyn(m
′) as the minimum

incremental cost for synthesizing m starting from m′, which can be regarded as an asymmetric

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

synthetic distance from m′ to m. In Sec. 2.4, we introduce a trainable neural network “Dθ”, whose
output Dθ(m,m′) can serve as an approximation of D(m,m′).

1.2 RELATED WORK

Single-step retrosynthesis models The objective of a single-step retrosynthesis model is to iden-
tify possible precursors for a given target molecule. Current approaches can be broadly categorized
into three types: template-based, template-free, and semi-template methods. Template-based ap-
proaches select the most suitable transformation rule for the target molecule from a predefined set
of templates (Segler et al., 2018; Dai et al., 2019; Chen & Jung, 2021; Yan et al., 2022). Template-
free approaches bypass the constraints of predefined rules by modeling retrosynthesis as either a
sequence generation (Liu et al., 2017; Zheng et al., 2019; Mao et al., 2021) or a graph generation
problem (Sacha et al., 2021; Zhong et al., 2023). Semi-template approaches adopt a two-stage strat-
egy: first identify the reaction center of the target molecule and decomposing it into intermediate
molecules called synthons, and then complete the synthons into valid precursor molecules (Shi et al.,
2020; Yan et al., 2020; Han et al., 2024).

Synthesis planning The mainstream approaches for retrosynthesis planning are to combine single-
step retrosynthesis models with various search algorithms, iteratively identifying possible reaction
transformations for the target molecule until all starting materials are sourced from the building
blocks, while aiming to minimize an objective function (e.g., the number of steps or overall pathway
cost). Notable methods include Proof-Number Search (Kishimoto et al., 2019), Monte Carlo Tree
Search (MCTS) (Segler et al., 2018; Lin et al., 2020), and the A* algorithm (Chen et al., 2020; Xie
et al., 2022). Overall, these approaches adopt a top-down strategy, starting from the target molecule
and working backward to the building blocks. More recently, a few studies have explored bottom-
up approaches, where synthesis routes are constructed progressively from building blocks, often in
the context of synthesizable molecule design (Gao et al., 2022) or synthesizable molecule projec-
tion (Luo et al., 2024). There has also been growing interest in several variants of the synthesis
planning problem, such as incorporating starting material constraints (Yu et al., 2024), account-
ing for uncertainties in pathway execution (Tripp et al., 2023), and integrating with active learning
frameworks (Yuan et al., 2024).

Bidirectional planners Prior works such as DESP (Yu et al., 2024) and Tango* (Armstrong et al.,
2025) also leverage bidirectional idea. Compared to these methods, our proposed method focuses on
the general synthesis scenario rather than a starting-constrained setting, which dramatically increases
the difficulty of search and matching when considering all available building blocks (∼23M). To
address this, our idea is to introduce a dual-embedding distance model for efficient cross-frontier
matching and employ explicit coordination between forward and backward expansions to guide
node exploration.

2 OUR PROPOSED METHOD

Before formally introducing CoBiSyn, we first present the relevant definitions that will be used
throughout the subsequent sections. We follow the tradition of the previous works Chen et al.
(2020); Xie et al. (2022), which models synthesis pathways as an AND-OR graph G. Specifically,
G consists of two alternating types of nodes: molecules represented as OR nodes and reactions
represented as AND nodes. During the search, every newly added reaction (S,mp, t) corresponds
to a local unit. An illustration of the graph is presented in Fig. 3. Each node is associated with
a Boolean variable solved, indicating whether the corresponding molecule is obtainable or the
reaction is executable. More specifically, we have the following formulas:

m.solved =
∨

r∈Child(m)

r.solved

r.solved =
∧

m∈Child(r)

m.solved
(3)

where a molecule node m is considered solved if at least one of its associated reaction nodes is
solved, and a reaction node r is solved only if all of its precursor molecule nodes are solved. For all
the molecules provided by B, their corresponding nodes are initialized with solved = True.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: An AND-OR graph representation
of multi-step synthesis. Circular nodes de-
note molecules (OR nodes) and square nodes
denote templates (AND nodes). Each reac-
tion corresponds to a local unit in graph.

Then, we define two directions along G, where
the backward direction denotes recursively decom-
posing the target product into simpler intermedi-
ates, and the forward direction indicates expand-
ing from the starting materials toward the desired
product. Please see Fig. 3 for the illustration. To
enable bidirectional search, we maintain two fron-
tier sets, Fretro and Ffwd, which represent the set
of molecules pending retrosynthetic decomposition
and the set of molecules currently available in the
forward direction, respectively. At initialization, we
set Fretro = {m∗} and Ffwd = B, and the ini-
tial search graph G contains only these two sets
of nodes. Like other search-guided synthesis plan-
ning algorithms, CoBiSyn also iteratively performs
three steps: selection, expansion, and update, until
a feasible synthesis pathway is found (as shown in
Fig. 1). To accommodate the bidirectional search
paradigm, we introduce our specific improvements
to each of these steps, which are respectively de-
tailed in Sec. 2.1, 2.2, and 2.3. Due to the space limit, we place the full CoBiSyn algorithm to
Appendix B.

2.1 SELECTION

To enable collaboration between the two search directions, in each iteration CoBiSyn selects one
molecule from Fretro and one from Ffwd, denoted as mr and mf , respectively. One molecule can be
regarded as a potential future node on the pathway of the other, serving to guide its expansion in
expansion stage (details in Sec. 2.2). Since our goal is to identify synthesis pathways with minimum
cost, ideally, mr and mf should both lie on the same optimal synthesis pathway. According to
the definitions above, this criterion implies that mr and mf are the molecules with the minimum
Csyn(m

∗|m) in fretro and Ffwd, respectively. However, in practice, directly computing Csyn(m
∗|m)

is challenging, as it requires minimizing over all possible synthesis pathways (the computation on
Csyn(m) also has the same issue).

Therefore, we adopt an approximation by restricting the search space to the current synthesis graph
G during the search. Specifically, we design a surrogate loss “Csur

syn(m)” to approximate Csyn(m),
which can be recursively computed based on the structure of G: for a non-boundary node, its value
is defined as the minimum cost among its subsequent reactions. Two boundary cases are considered:
(1) if m belongs to the building blocks, we define Csur

syn(m) = c(m); (2) if m ∈ Fretro, we leverage
the molecules in Ffwd as intermediates and define Csur

syn(m) = minm′∈Ffwd Dθ(m,m′) + Csur
syn(m

′).
Here, the minimizer m′, denoted as N(m), can be regarded as the “nearest neighbor” of m in Ffwd.
In summary, for any molecule node m in G, we have:

Csur
syn(m) =


c(m) if m ∈ B
min

m′∈Ffwd
Dθ(m,m′) + Csur

syn(m
′) if m ∈ Fretro

min
(S,m,t)∈G

[
c(t) +

∑
m′∈S Csur

syn(m
′)
]

otherwise
(4)

Similarly, “Csur
syn(m

∗|m)”, a surrogate loss for Csyn(m
∗|m), can be also computed in a recursive

manner. We restrict the computation only to the set of molecular nodes reachable from the target
molecule m∗ within the current search graph G, denoted as Vr, with the corresponding induced
subgraph written as G[Vr]. The calculation is as follows:

Csur
syn(m

∗|m) =



Csur
syn(m) if m = m∗

min
(S,mp,t)∈G[Vr]

s.t. m∈S

[
Csur
syn(m

∗|mp)− Csur
syn(mp)

+ c(t) +
∑
m′∈S

Csur
syn(m

′)
] if m ∈ Vr \ {m∗} (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The boundary condition is specified by the target molecule itself, where Csur
syn(m

∗|m∗) =
Csyn(m

∗). For other molecules m ∈ Vr, the computation of Csur
syn(m

∗|m) relies on two obser-
vations: (1) any synthesis pathway in Path(m∗|m) must include a product molecule mp generated
from m, enabling us to compute Csur

syn(m
∗|m) by leveraging Csur

syn(m
∗|mp); and (2) Csur

syn(m
∗|mp)

implicitly involves Csur
syn(mp), but the optimal synthesis pathway of mp does not necessarily contain

m, so we need to substitute this term with the specific cost of generating mp from m (as shown in
the second case of Eq. 5).

Based on the above, we can select mr from Fretro as the molecule with the minimum Csur
syn(m

∗|m)
value. The corresponding mf is expected to lie downstream of mr along the optimal synthesis
pathway in Path(m∗|mr), which in turn guarantees that mr also belongs to the optimal pathway in
Path(mr). In practice, given the current search graph G, this mf coincides with N(mr), i.e., the
molecule m ∈ Ffwd that minimizes Dθ(mr,m)+Csur

syn(m). In summary, the selection strategy is as
follows:

mr = arg min
m∈Fretro

Csur
syn(m

∗|m), mf = N(mr) = arg min
m∈Ffwd

Dθ(mr,m) + Csur
syn(m). (6)

To avoid redundant computation from recalculating these values at every iteration, we cache
Csur
syn(m) and Csur

syn(m
∗|m) for each molecule m in G and record N(m) for each m ∈ Fretro. As the

search progresses, these values are dynamically updated only when necessary.

2.2 EXPANSION

In conventional synthesis planning approaches, the expansion step typically invokes a single-step
retrosynthesis model, which performs local inference based solely on the current target molecule.
Although such models can propose reasonable precursor candidates, their lack of awareness of the
overall pathway structure often leads to solutions that deviate from optimal routes. In CoBiSyn,
we jointly select a pair of frontier molecules (mr,mf) from the backward and forward frontiers.
When expanding one molecule, the other serves as a “conditional molecule”, providing contextual
guidance for single-step inference and ensuring coordinated bidirectional reasoning.

Conventional retrosynthesis model, denoted by fsingle, is typically formulated as a mapping from
a target molecule to reaction templates, making them unsuitable for conditional-guided backword
expansion. To avoid tying CoBiSyn to a specific model architecture, we do not directly modify the
model itself; instead, we adjust the embedding of the target molecule by incorporating information
from the conditional molecule. Conceptually, the conditional molecule serves to reweight the con-
tributions of different substructures within the target, thereby directing the model’s attention toward
features most relevant to the conditional context. This adjustment can be interpreted as a projection
operation in the embedding space. Based on this idea, the combined embedding is defined as

h̃(mr|mf) = Aθ (h(mf))h(mr) +Bθ (h(mf)) , (7)

where h : M → Rn is the function that maps a molecule into the embedding space (typically the
encoder or the first few layers of the original model), and Aθ ∈ Rn×n and Bθ ∈ Rn are learnable
projection matrix and bias with parameter θ. Thus, the conditional single-step backward inference
model becomes

fretro(mr|mf) = fsingle(h̃(mr|mf)). (8)

During backward expansion phase, we adopt fretro(mr|mf) to predict the top-k templates {ti}ki=1,
apply each templates to mr to generate the corresponding precursors Si, and add the resulting nodes
to the search graph G. For each m ∈ Si, we initialize Csur

syn(m) following the second case in Eq. 4.

Compared with single-step retrosynthesis model, single-step forward inference models have re-
ceived relatively little attention. Inspired by Luo et al. (2024), we formulate conditional single-step
forward inference as a sequence generation task and employ a Transformer ffwd(mf |mr) with
an encoder-decoder architecture to autoregressively generate candidate sequences. Specifically, a
chemical reaction (S = {mi}ni=1,mp, t) is represented as a sequence [m1, . . . ,mn, t,mp]. During
inference, the encoder takes [mr] as the source input, while the decoder is initialized with [mf] as
the starting token. At each decoding step, the model first predicts the next token type from the logits,
and then uses separate MLP heads to predict either the molecular fingerprint or the template index,
depending on the predicted type. The decoding terminates once a template token is generated. The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

detailed architecture of ffwd is provided in Appendix C. Similarly, based on the generated sequences,
we perform the corresponding reactions to obtain products {mpi

}ki=1, and add the resulting nodes
to G. For each newly added molecule mpi

, we initialize Csur
syn(mpi

) according to the third case in
Eq. 4.

2.3 UPDATE

Update solved After each expansion, we update the solved status of mr and the newly gener-
ated products {mpi

} according to Eq. 3. Whenever a node becomes True, this update is propagated
bottom-up along the synthesis graph.

Update frontiers For backward expansion, the expanded node mr is removed from the frontier
and the newly generated precursor molecule nodes are added to it. In contrast, forward expansion
only requires adding the newly generated product nodes to the frontier, without removing any nodes,
since the frontier in this case represents the set of currently available starting materials. The update
rules defined as follows:

Fretro ← (Fretro \ {mr})
k⋃

i=1

Si, Ffwd ← Ffwd

k⋃
i=1

{mpi
} (9)

Update cost We begin by updating Csur
syn(m) in a bottom-up fashion. During backward expan-

sion, Csur
syn(mr) is updated according to the newly added reaction unit following the third case of

Eq.4. During forward expansion, since new available molecules {mpi
} are introduced, the “nearest

neighbor” N(m) for each m ∈ Fretro may change. Accordingly, we update

Csur
syn(m)← min

{
Csur
syn(m), min

mpi

Dθ(m,mpi
) + Csur

syn(mpi
)

}
, m ∈ Fretro. (10)

All updates to Csur
syn(m) are then propagated bottom-up along the synthesis graph according to Eq.4

until they reach the target molecule m∗. Finally, starting from m∗, we perform a top-down compu-
tation of Csur

syn(m
∗|m) for each m, following Eq. 5, until reaching all nodes in Fretro.

2.4 MODEL TRAINING

In this framework, three models need to be trained: fretro, ffwd, and Dθ. Due to the space limit,
we describe the training procedures for fretro and Dθ here, while the details for ffwd are provided in
Appendix C.

Conditional retro model The training of fretro requires triplets of the form D′
retro =

{(mtarget,mcond, t)}. Although such a dataset can be extracted from synthesis pathways (see Ap-
pendix A), it is much smaller in scale compared to the standard retrosynthesis dataset Dretro. To
address this, we adopt a two-stage training strategy for fretro. In the first stage, we perform uncon-
ditional pretraining on Dretro, with the projection module disabled. In the second stage, we fine-tune
the model on D′

retro to learn Aθ and Bθ. The pretraining stage enables the model to acquire com-
mon reaction patterns, while the fine-tuning stage teaches it to bias toward specific reactions when
additional conditional cues are available.

Distance model As defined earlier, D(x, y) denotes the minimum incremental cost of synthesizing
x starting from y, which can be regarded as a measure of the “synthetic distance” between the two
molecules. To learn D, we adopt a dual-embedding framework. Specifically, x and y are encoded
by two separate neural encoders, which allow for asymmetric representation learning tailored to the
distinct roles of product and precursor. The resulting embeddings are mapped into a common latent
space, where the D(x, y) is approximated by the Euclidean distance between their embeddings:

Dθ(x, y) = ||Product-Encoder(x)− Precursor-Encoder(y)||2. (11)

This formulation offers two key advantages. First, by employing distinct encoders for the target
and precursor molecules, the model naturally accommodates the inherent asymmetry of synthetic
distance, where the cost of synthesizing x from y generally differs from that of synthesizing y from
x. Second, the metric structure of the embedding space makes it well-suited for large-scale nearest-
neighbor retrieval, which is critical to efficiently calculate N(m) and Csur

syn(m) for newly added
node m during the search (Eq. 4).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Summary of synthesis planning efficiency across three dataset. “n” denotes the maximum
number of single-step inference model calls allowed during the search process. The best model for
each experiment setting is bolded.

USPTO-190 Pistachio Reachable Pistachio Hard
Methods Solved Rate (%) ↑ Solved Rate (%) ↑ Solved Rate (%) ↑

n=100 300 500 n=100 300 500 n=100 300 500

RANDOM 20.5 35.3 40.5 80.0 88.0 90.0 39.0 56.0 57.0
MCTS 25.8 32.6 35.3 66.7 72.7 74.7 30.0 38.0 41.0
Retro* 39.5 45.3 50.0 90.7 94.7 96.7 48.0 57.0 58.0

Retro*-0 37.9 46.8 51.6 90.7 92.0 95.3 51.0 53.0 56.0

CoBiSyn 38.9 63.2 68.4 92.0 96.0 97.3 53.0 63.0 69.0
SimpleBiSyn 38.9 54.2 64.2 86.0 92.0 96.0 51.0 60.0 62.0

The training of Dθ uses a combination of three losses. A regression term Lreg encourages predic-
tions to match ground-truth distances, with a log-transform to handle the heavy-tailed distribution.
A triangle inequality regularizer Ltriangle preserves structural consistency among molecular pairs. Fi-
nally, a margin lossLmargin ensures that distances between distinct molecules are at least one reaction
step. The three terms are combined with weighting coefficients to form the overall loss. Please refer
to Appendix C for a detailed introduction of these losses.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Building Blocks We adopt the list of purchasable molecules released by eMolecules1 as the set
of building blocks, which is widely used and provides a comprehensive and practically relevant
collection of commercially available compounds. After canonicalizing the molecules with RDKit2

and removing the entries that could not be parsed, a total of 23M molecules remain.

Training Dataset Although previous studies have adopted similar preprocessing pipelines, unfor-
tunately none of them have released data in the format required for extracting training samples for
conditional single-step inference networks (i.e., pathways with associated templates). Consequently,
we reconstruct a synthesis pathway dataset from the USPTO reaction corpus (Lowe, 2017), follow-
ing the processing procedure of Chen et al. (2020). The USPTO dataset contains approximately
3.8M published reaction records. After deduplication and template extraction with rdchiral (Co-
ley et al., 2019) , we obtain a total of 1.42M valid reactions and 230267 reaction templates. We then
randomly split the data set into training and validation sets in a 9:1 ratio. We further use these reac-
tions to construct synthesis graphs and extract valid synthesis pathways. This process yields 235895
training routes and 27901 validation routes. Finally, we derive training and validation data for fretro,
ffwd and Dθ from these synthesis pathways (see Appendix A for details).

Baseline Since CoBiSyn is essentially a search framework for synthesis planning, we compare
it against other search strategies, including RANDOM, MCTS, Retro*, and Retro*-0. RANDOM
selects the next molecule node uniformly at random. MCTS (Segler et al., 2018) and Retro* (Chen
et al., 2020) are both widely adopted synthesis planning algorithms: the former guides expansion
via Monte Carlo rollouts, while the latter is a best-first search performed on AND-OR tree with
neural-based heuristic. Retro*-0 is a variant of Retro* that does not rely on the pretrained value
function as the heuristic. For fair comparison, all the methods employ the same MLP-based single-
step retrosynthesis model (NeuralSyn) as in Chen et al. (2020) to predict the top-50 candidates.

3.2 RESULTS

We conduct the evaluations on three datasets:“USPTO-190” from Chen et al. (2020), and “Pistachio
Hard” and “Pistachio Reachable” from Yu et al. (2024) (see Appendix D for an induction to these

1https://www.emolecules.com/
2https://www.rdkit.org/

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Cumulative solved instances on the test set ordered by SAScore. CoBiSyn shows consis-
tent superiority, especially for molecules with SAScore > 3.

benchmarks). To assess search efficiency, we report the solved rate (the ratio of the target molecules
that are successfully synthesized) under different limits on the maximum number of single-step
inference model calls. The overall performance is summarized in Table 1. Compared with the
baselines, CoBiSyn achieves higher solved rates across almost all thresholds on all three datasets.
We also introduce an ablation variant, SimpleBiSyn, which removes the opposite-direction guidance
during the expansion phase (by disabling the projection module in fretro and the encoder module in
ffwd). In this setting, this variant exhibits consistent performance degradation across all metrics.
This clearly demonstrates the effectiveness of coordinated guidance.

To further compare those methods on handling complex molecules, we rank the test molecules
by SAScore (Ertl & Schuffenhauer, 2009), a commonly used heuristic that estimates the synthetic
accessibility of a molecule, and report the cumulative number of solved instances. We impose a time
limit of 120 seconds per target molecule. As shown in Fig. 4, we observe that all methods perform
comparably on easy cases (SAScore < 3), where synthesis routes are relatively straightforward.
However, once the difficulty increases (SAScore > 3), the performance curves begin to diverge. In
this regime, CoBiSyn consistently maintains the highest solved count, indicating that coordinated
bidirectional search is particularly effective for tackling more challenging synthesis problems.

Table 2: The average lengths of obtained routes on common
solved molecules. The best model for each experiment set-
ting is bolded. Note that MCTS is not included here, since
the number of solved molecules by MCTS is substantially
lower than others (as shown in Fig. 5).

Methods USPTO-190 Pistachio
Reachable

Pistachio
Hard

Retro* 5.29 3.83 4.49
Retro*-0 5.52 4.02 4.76
CoBiSyn 3.90 2.85 3.22

SimpleBiSyn 4.19 2.91 3.29

Furthermore, to evaluate the qual-
ity of the synthesis pathways, we re-
port the average length of the path-
ways in Table 2. Across all datasets,
CoBiSyn achieves substantial reduc-
tions in route length, e.g., shortens
the routes by more than one step
on average. We provide a concrete
example in the Appendix F, where
the expert-designed synthesis path-
way has a length of 10, Retro* dis-
covers a pathway of length 7, while
CoBiSyn further shortens it to only
4 steps. Fig. 5 shows the individual
comparisons between CoBiSyn and each baseline in more detail. We observe that MCTS tends
to produce relatively short routes, but the number of solved cases is limited, especially on harder
datasets. In contrast, Retro* is able to solve more molecules, yet the resulting pathways are sig-
nificantly longer on average. CoBiSyn achieves the best balance: it consistently shortens pathways
(approximately one reaction step fewer than Retro*) while maintaining a high solved rate compara-
ble to or better than existing methods.

Finally, we consider the sensitivity of our performance on the learned distance model Dθ. In par-
ticular, we investigate how the accuracy of Dθ affects CoBiSyn ’s performance. We train three
distance models with identical architectures but different accuracy levels by using varying fractions
of the original training data (100%, 50%, 10%). In addition, we consider a special case named “Dθ-
uniform”, in which Dθ(x, y) ≡ 0 for all input molecule pairs. This special setting means that the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 5: Comparison of CoBiSyn and baseline methods on three datasets. For each dataset, the left
axis shows the average path length on molecules solved by both CoBiSyn and each baseline (blue
and gray bars), while the right axis shows the number of molecules jointly solved (orange bars).
CoBiSyn consistently produces shorter synthesis routes.

Table 3: Performance of CoBiSyn under distance models of varying accuracy. “n” denotes the
maximum number of single-step inference model calls allowed during the search process. The best
model for each experiment setting is bolded, and the second is underlined.

USPTO-190 Pistachio Reachable Pistachio Hard
Dist Model Solved Rate (%) ↑ Solved Rate (%) ↑ Solved Rate (%) ↑

n=100 300 500 n=100 300 500 n=100 300 500

100% data 38.9 63.2 68.4 92.0 96.0 97.3 53.0 63.0 69.0
50% data 37.4 61.6 68.9 91.3 95.3 97.3 54.0 62.0 67.0
10% data 42.6 58.4 66.3 93.3 95.3 96.0 56.0 63.0 66.0

Dθ-uniform 32.1 48.9 55.8 88.0 92.7 94.7 49.0 65.0 67.0

model learns no distance information and assigns the same score to all pairs. The results of these
four variants are summarized in Table 3. We observe that the model trained with 100% of the data
achieves the best and most stable performance. But the performances of 50% and 10% downgrade
not quite significantly. This suggest that CoBiSyn remains relatively robust even when the distance
model quality is reduced. In contrast, the Dθ-uniform setting leads to a clear performance degrada-
tion, particularly on USPTO-190, indicating that the learned asymmetric distance plays a non-trivial
role in guiding effective cross-frontier coordination and improving search efficiency.

4 CONCLUSION

In this paper, we propose CoBiSyn, a framework that alternates between backward decomposition
and forward construction, while coordinating the two directions through shared frontier information.
Experiments on benchmark datasets demonstrate that CoBiSyn significantly improves efficiency and
solution quality compared to existing approaches. It is important to note, however, that a gap remains
between algorithmic performance and real-world utility, as computational evaluation metrics cannot
fully capture how AI models behave in real scientific tasks. Moving forward, developing more
problem-aware and scientifically grounded evaluation protocols, together with closer collaboration
with chemistry experts, will be essential for translating these algorithmic advances into tangible
impact in chemical synthesis.

REPRODUCIBILITY STATEMENT

The proposed algorithm and training procedures are described in Sec. 2, with additional pre-
processing procedures and implementation details provided in Appendix A-D.2. The source
code and relevant data are provided in an anonymous repository at https://github.com/
anony-research/CoBiSyn-ICLR2026.

10

https://github.com/anony-research/CoBiSyn-ICLR2026
https://github.com/anony-research/CoBiSyn-ICLR2026

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Daniel Armstrong, Zlatko Jončev, Jeff Guo, and Philippe Schwaller. Tango*: Constrained synthesis
planning using chemically informed value functions. Digital Discovery, 4(9):2570–2578, 2025.

David C Blakemore, Luis Castro, Ian Churcher, David C Rees, Andrew W Thomas, David M Wil-
son, and Anthony Wood. Organic synthesis provides opportunities to transform drug discovery.
Nature chemistry, 10(4):383–394, 2018.

Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic planning
with neural guided a* search. In International conference on machine learning, pp. 1608–1616.
PMLR, 2020.

Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity and
global attention. JACS Au, 1(10):1612–1620, 2021.

Connor W. Coley, William H. Green, and Klavs F. Jensen. Rdchiral: An rdkit wrapper for han-
dling stereochemistry in retrosynthetic template extraction and application. Journal of Chemi-
cal Information and Modeling, 59(6):2529–2537, 2019. doi: 10.1021/acs.jcim.9b00286. URL
https://doi.org/10.1021/acs.jcim.9b00286.

Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with
conditional graph logic network. Advances in Neural Information Processing Systems, 32, 2019.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Hu Ding, Pengxiang Hua, and Zhen Huang. Survey on recent progress of ai for chemistry: Methods,
applications, and opportunities. arXiv preprint arXiv:2502.17456, 2025.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1(1):8, 2009.

Wenhao Gao, Rocı́o Mercado, and Connor W. Coley. Amortized tree generation for bottom-up
synthesis planning and synthesizable molecular design. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=FRxhHdnxt1.

Yuqiang Han, Xiaoyang Xu, Chang-Yu Hsieh, Keyan Ding, Hongxia Xu, Renjun Xu, Tingjun Hou,
Qiang Zhang, and Huajun Chen. Retrosynthesis prediction with an iterative string editing model.
Nature Communications, 15(1):6404, 2024.

Melissa A Hardy, Bozhao Nan, Olaf Wiest, and Richmond Sarpong. Strategic elements in computer-
assisted retrosynthesis: A case study of the pupukeanane natural products. Tetrahedron, 104:
132584, 2022.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Akihiro Kishimoto, Beat Buesser, Bei Chen, and Adi Botea. Depth-first proof-number search with
heuristic edge cost and application to chemical synthesis planning. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Kangjie Lin, Youjun Xu, Jianfeng Pei, and Luhua Lai. Automatic retrosynthetic route planning
using template-free models. Chemical science, 11(12):3355–3364, 2020.

Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen,
Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction prediction using
neural sequence-to-sequence models. ACS central science, 3(10):1103–1113, 2017.

11

https://doi.org/10.1021/acs.jcim.9b00286
https://openreview.net/forum?id=FRxhHdnxt1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guoqing Liu, Di Xue, Shufang Xie, Yingce Xia, Austin Tripp, Krzysztof Maziarz, Marwin Segler,
Tao Qin, Zongzhang Zhang, and Tie-Yan Liu. Retrosynthetic planning with dual value networks.
In International conference on machine learning, pp. 22266–22276. PMLR, 2023.

Daniel Lowe. Chemical reactions from US patents (1976-Sep2016). 6 2017. doi: 10.
6084/m9.figshare.5104873.v1. URL https://figshare.com/articles/dataset/
Chemical_reactions_from_US_patents_1976-Sep2016_/5104873.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Shitong Luo, Wenhao Gao, Zuofan Wu, Jian Peng, Connor W. Coley, and Jianzhu Ma. Pro-
jecting molecules into synthesizable chemical spaces. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Pro-
ceedings of Machine Learning Research, pp. 33289–33304. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/luo24a.html.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, 6(5):525–535, 2024.

Kelong Mao, Xi Xiao, Tingyang Xu, Yu Rong, Junzhou Huang, and Peilin Zhao. Molecular graph
enhanced transformer for retrosynthesis prediction. Neurocomputing, 457:193–202, 2021.

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80–85,
2023.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical informa-
tion and modeling, 50(5):742–754, 2010.

Mikołaj Sacha, Mikołaj Błaz, Piotr Byrski, Paweł Dabrowski-Tumanski, Mikołaj Chrominski, Rafał
Loska, Paweł Włodarczyk-Pruszynski, and Stanisław Jastrzebski. Molecule edit graph attention
network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Infor-
mation and Modeling, 61(7):3273–3284, 2021.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
networks and symbolic ai. Nature, 555(7698):604–610, 2018.

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework
for retrosynthesis prediction. In International conference on machine learning, pp. 8818–8827.
PMLR, 2020.

Iiris Sundin, Alexey Voronov, Haoping Xiao, Kostas Papadopoulos, Esben Jannik Bjerrum, Markus
Heinonen, Atanas Patronov, Samuel Kaski, and Ola Engkvist. Human-in-the-loop assisted de
novo molecular design. Journal of Cheminformatics, 14(1):86, 2022.

Austin Tripp, Krzysztof Maziarz, Sarah Lewis, Marwin Segler, and José Miguel Hernández-Lobato.
Retro-fallback: retrosynthetic planning in an uncertain world. In NeurIPS 2023 AI for Science
Workshop, 2023. URL https://openreview.net/forum?id=oRP132De46.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Shufang Xie, Rui Yan, Peng Han, Yingce Xia, Lijun Wu, Chenjuan Guo, Bin Yang, and Tao Qin.
Retrograph: Retrosynthetic planning with graph search. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’22, pp. 2120–2129, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850. doi: 10.1145/
3534678.3539446. URL https://doi.org/10.1145/3534678.3539446.

12

https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://proceedings.mlr.press/v235/luo24a.html
https://openreview.net/forum?id=oRP132De46
https://doi.org/10.1145/3534678.3539446

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, Jinyu Yang, Yang Yu, and Junzhou
Huang. Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural
Information Processing Systems, 33:11248–11258, 2020.

Chaochao Yan, Peilin Zhao, Chan Lu, Yang Yu, and Junzhou Huang. Retrocomposer: composing
templates for template-based retrosynthesis prediction. Biomolecules, 12(9):1325, 2022.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Kevin Yu, Jihye Roh, Ziang Li, Wenhao Gao, Runzhong Wang, and Connor Coley. Double-ended
synthesis planning with goal-constrained bidirectional search. Advances in Neural Information
Processing Systems, 37:112919–112949, 2024.

Luotian Yuan, Yemin Yu, Ying Wei, Yongwei Wang, Zhihua Wang, and Fei Wu. Active retrosyn-
thetic planning aware of route quality. In The Twelfth International Conference on Learning
Representations, 2024.

Shuangjia Zheng, Jiahua Rao, Zhongyue Zhang, Jun Xu, and Yuedong Yang. Predicting retrosyn-
thetic reactions using self-corrected transformer neural networks. Journal of chemical information
and modeling, 60(1):47–55, 2019.

Weihe Zhong, Ziduo Yang, and Calvin Yu-Chian Chen. Retrosynthesis prediction using an end-to-
end graph generative architecture for molecular graph editing. Nature Communications, 14(1):
3009, 2023.

Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Tingjun Hou, and
Mingli Song. Recent advances in deep learning for retrosynthesis. Wiley Interdisciplinary Re-
views: Computational Molecular Science, 14(1):e1694, 2024.

A DATA PREPROCESSING

A.1 REACTION FILTER

We adopt the USPTO dataset provided by rdchiral, which contains approximately 1.8M reac-
tions after template extraction from the original corpus. Based on this dataset, we perform additional
cleaning using the following rules:

1. Remove reactions whose product molecules contain fewer than three heavy atoms;
2. Remove reactant molecules that have no atom mappings appearing in the product;
3. Remove reactions that cannot be correctly reproduced by applying the extracted template

using RDKit and rdchiral;
4. Remove reactions with multiple products.

A.2 EXTRACT DATA FROM SYNTHESIS PATHWAYS

Following the processing procedure of Chen et al. (2020), we first extract synthesis pathway data
from the reaction corpus. Based on these pathways, we further construct the training datasets re-
quired for fretro, ffwd, and Dθ.

For training fretro, we require samples of the form (m,m′, t), where m is the molecule to be ex-
panded, t is a reaction template applicable to m, and m′ is the conditional molecule. Specifically,
for each reaction unit (S,mp, t) in a synthesis pathway, we sample m′ from the set of downstream
descendants of mp in the pathway, yielding training samples (mp,m

′, t).

Similarly, training ffwd requires samples of the form (m,S,m′, t), where m is the molecule to be
expanded, S is the set of co-reactants, t is the applicable reaction template, and m′ is a future
molecule that provides the guiding signal. For each reaction unit (S,mp, t), we sample m′ from the
predecessors of mp, and for each m ∈ S, construct a training samples (m,S\{m},m′, t).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

To train Dθ, we extract molecule pairs with ground-truth distance values from constructed synthesis
pathways. Given a synthesis pathway G for a target molecule, we first compute Csyn for each
intermediate, which indices the minimum number of reaction steps required to reach building blocks.
Then for every pair of molecules (mx,my) where my is reachable from mx along the pathway, we
record their synthetic distance as the difference between their costs. To ensure consistency, if some
pairs appear in multiple routes, we keep the minimal distance observed. This procedure produces a
set of molecule pairs annotated with synthetic distances, which serve as supervision for training the
Dθ.

B FULL ALGORITHM OF COBISYN

Algorithm 1 CoBiSyn
Input: Target product m∗

Output: Synthesis graph G
Initialize G with m∗ and building blocks B
while m∗.solved = False do

mr,mf ← SELECTION(G) // Eq. 6

/* Backward Expansion */
{ti}ki=1 ← fretro(mr|mf) // Conditional single-step backward inference
for i← 1 to k do

Si ← Apply template ti to mr

Add all m ∈ Si and ti to G

Update Csur
syn(mr) and propagate bottom-up // Eq. 4

Update Csur
syn(m

∗|m) for all m from m∗ to Fretro // Eq. 5

/* Forward Expansion */
{(Si, ti)}ki=1 ← ffwd(mf |mr) // Conditional single-step forward inference
for i← 1 to k do

mpi ← Apply template ti to Si

Add mpi to G

Update Csur
syn(m) for all m ∈ Fretro and propagate bottom-up // Eq. 10 and 4

Update Csur
syn(m

∗|m) for all m from m∗ to Fretro // Eq. 5
return G

Complexity Analysis Let Tfwd, Tretro and Tdist denote the per-step inference time of the forward
and backward single-step reasoning models and distance model, respectively. Suppose that each
inference phase attempts k candidate reactions, and let n denote the number of inference phases
performed so far. We also let d denote the dimension of the latent embedding space of the distance
model (in our implementation, d = 512).

For the backward expansion of a molecule mr, the procedure consists of three steps: (i) calling
backward inference model, (ii) initializing Csur

syn for the newly generated molecules, and (iii) updat-
ing Csur

syn(m) and Csur
syn(m

∗|m) for all molecules in backward side. The resulting time complexity
is

O(Tretro + k · (|B|+ kn) · Tdist︸ ︷︷ ︸
initializing Csur

syn(m)

for new nodes

+ kn︸︷︷︸
updating Csur

syn(m) and Csur
syn(m

∗|m)

for backward side

)

In practical synthesis planning settings, the building-block set is typically large (i.e., |B| ≫ kn),
so the initialization term becomes a non-negligible component in addition to the inference time of
expansion model. Our dual-embedding distance model is specifically designed intended to mitigate
this bottleneck: the embeddings for the forward frontier are precomputed and cached, allowing each
newly added molecule to query the distance model only once before performing a nearest-neighbor
search. There are many efficient implementations of nearest-neighbor search exist, such as product
quantization (Jegou et al., 2010) or locality-sensitive hashing Datar et al. (2004), whose cost we
denote by Tnn (see Appendix D.2). This design reduces the complexity to O(k · (Tdist +Tnn)), where

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the factor k can be further mitigated through batch parallelization. Therefore, the time complexity
of a single backward expansion is only O(Tretro + Tdist + Tnn + kn).

For the forward expansion of a molecule mf , the procedure also consists of three steps: (i) calling
forward inference model, (ii) updating Csur

syn(m) for molecules in Fretro, and (iii) updating Csur
syn(m)

and Csur
syn(m

∗|m) for all molecules in backward side. The first step takes Tfwd. The second step
requires computing the embeddings for new nodes (Tdist) and calculating the distances to the nodes in
the backward frontier (O(knd)). The third step takes O(kn). Therefore, the overall time complexity
of a single forward expansion is

O(Tfwd + Tdist + knd︸ ︷︷ ︸
updating Csur

syn(m)

for m ∈ Fretro
(speed by batch parallelization)

).

In practice, Tretro and Tfwd correspond to more complex neural network inference operations and
therefore dominate the runtime (accounting for more than 85% of the total execution time in our
implementation).

C MODEL ARCHITECTURES AND TRAINING DETAILS

C.1 SINGLE-STEP FORWARD INFERENCE MODEL

ffwd is implemented as a Transformer with an encoder-decoder architecture. The encoder takes
the molecular adjacency matrix as input and processes it through multiple graph Transformer lay-
ers (Ying et al., 2021), applying multi-head self-attention over atoms to produce a tensor of atom-
level embeddings.

The decoder generates tokens autoregressively by combining the encoder output with the current
sequence. A reaction (S = {mi}ni=1, p, t) is represented as the sequence [m1, . . . ,mn, t, p]. Each
molecule token is embedded using MLPfp via its Morgan fingerprint, while the reaction template
token is embedded via an index lookup table. To capture the sequential order, positional encodings
are added to all token embeddings. The sequence embeddings and molecular graph embeddings are
jointly processed by several standard Transformer layers, where multi-head attention integrates the
two sources of information to produce the hidden representation hi for predicting the next token.

The prediction of the next token proceeds in two stages. First, an MLP head applied to hi predicts
the token type (molecule or reaction template), i.e.

type(Tnext) ∼ SOFTMAX(MLPtype(hi)).

If it is a molecule, the corresponding Morgan fingerprint is predicted as pnext =
SIGMOID(MLPfp-pred(hi)), followed by a nearest-neighbor search within the building blocks B.
If it is a reaction template, the index is predicted as

tnext ∼ SOFTMAX(MLPrxn(hi)),

and the decoding process terminates.

The overall loss of ffwd is the sum of three parts: Ltoken, Lmol, and Ltemp. Here, Ltoken and Ltemp
are multi-class classification losses measured by cross-entropy, while Lmol is a binary cross-entropy
loss between the predicted and ground-truth molecular fingerprints.

C.2 TRAINING LOSSES FOR DISTANCE MODEL

The loss function of Dθ consists of three parts. The main part is to minimize the difference between
the predictions and the ground truth values. Since the empirical distribution of distances extracted
from synthesis pathways exhibits a heavy-tailed behavior, we apply a logarithmic transformation to
stabilize training, i.e.

Lreg = E(x,y) [MSE (log(Dθ(x, y) + 1), log(D(x, y) + 1))] . (12)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Second, we encourage consistency with the triangle inequality D(x, y) ≤ D(x, z) + D(y, z) by
sampling triplets within each batch and penalizing violations through a hinge-style regularizer

Ltriangle = E(x,y,z) [RELU (Dθ(x, y)−Dθ(x, z)−Dθ(z, y))] . (13)

Preserving this property helps maintain the relative ordering among different molecular pairs, en-
suring that predicted distances remain structurally coherent and chemically reasonable. Finally, to
prevent degenerate solutions and reflect the fact that the distance between two distinct molecules
should be at least one reaction step, we introduce a margin loss:

Lmargin = E(x,y) [RELU (1−Dθ(x, y))] . (14)

The final loss function is the sum of the three terms: L = Lreg + λ1Ltriangle + λ2Lmargin, where λ1

and λ2 are hyperparameters to balance three losses.

D EXPERIMENTS DETAILS

D.1 INTRODUCTION TO BENCHMARKS

In our experiments, we adopt three benchmark datasets:

• USPTO-190: a set of 190 challenging molecules selected by Chen et al. (2020). To in-
crease difficulty, they filter out easier molecules using a heuristic BFS planning algorithm,
retaining only those unsolved within a fixed time limit.

• Pistachio Reachable: 150 target molecules extracted from the Pistachio dataset with spe-
cific starting materials Yu et al. (2024). They select routes satisfy: (1) no reactions appear
in the training data, (2) reactions are unique across test routes, (3) all reactions are among
the top 50 predictions of the single-step model, (4) no two targets share Tanimoto similarity
> 0.7, (5) minimum number of routes enforced for different route lengths.

• Pistachio Hard: 100 target molecules extracted using the same procedure as Pistachio
Reachable, except condition (2) is relaxed to require only ≥50% of reactions to be repro-
ducible (in-distribution), resulting in more challenging routes (Yu et al., 2024).

For evaluation, the starting material constraints of “Pistachio Reachable” and “Pistachio Hard” are
removed.

D.2 IMPLEMENTATION DETAILS

Molecular representation In fretro and Dθ, we use the Morgan fingerprint (Rogers & Hahn, 2010)
of each molecule (radius 2 with 2048 bits) as the raw input. In contrast, model ffwd employs the
molecular graph’s adjacency matrix as input to the encoder, while molecular tokens in the decoder
sequence are still represented by their Morgan fingerprints.

Approximate nearest neighbor search In CoBiSyn, nearest neighbor search arises in two con-
texts: (1) During retro-expansion, when initializing Csyn for a newly added molecule m, Eq. 4
requires computing the distance Dθ(m,m′) + Csyn(m

′) to every molecule m′ ∈ Ffwd in order
to identify the nearest neighbor; (2) During the decoding process of the forward expansion model
ffwd, at positions corresponding to molecular tokens, nearest-neighbor search is performed over Ffwd
based on the predicted Morgan fingerprints. Since Ffwd contains at least all building blocks B, its size
is typically very large. To accelerate these operations, we adopt FAISS with Product Quantization
(PQ) for approximate nearest neighbor search.

E OTHER EXPERIMENTAL RESULTS

E.1 ABLATION STUDY

In this section, we provide additional ablation study setting, including: (i) removing the forward
model; (ii) adopting noisy forward model (randomly combine building blocks); (iii) removing the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Performance of CoBiSyn under different ablation setting. “n” denotes the maximum num-
ber of single-step inference model calls allowed during the search process. The best model for each
experiment setting is bolded, and the second is underlined.

USPTO-190 Pistachio Reachable Pistachio Hard
Dist Model Solved Rate (%) ↑ Solved Rate (%) ↑ Solved Rate (%) ↑

n=100 300 500 n=100 300 500 n=100 300 500

CoBiSyn 38.9 63.2 68.4 92.0 96.0 97.3 53.0 63.0 69.0
w/o forward 41.1 55.3 61.6 88.7 95.3 96.0 52.0 56.0 64.0

noisy forward 36.8 60.0 65.8 90.7 92.0 97.3 51.0 62.0 66.0
w/o condition 38.9 54.2 64.2 86.0 92.0 96.0 51.0 60.0 62.0
Dθ-uniform 32.1 48.9 55.8 88.0 92.7 94.7 49.0 65.0 67.0

conditional projection mechanism; (iv) using a severely degraded distance model (Dθ(x, y) ≡ 0).
The results are summarized in Table 4.

Overall, the severe performance drop arises from degrading the distance model, as distance-based
pair matching is the core operation of each expansion step and directly determines node selection
and conditional projection. In contrast, the noisy forward model causes the mildest degradation. We
attribute this to the forward-expansion mechanism in CoBiSyn, which accumulates newly generated
nodes without discarding existing ones. Thus, even if the forward model proposes suboptimal can-
didates, previously valid nodes remain available for pairing with the backward frontier, preventing
error from being amplified.

E.2 CORRELATION STUDY

In this section, we investigate the factors influencing the computational consumption of CoBiSyn.
In our implementation, each molecule is represented using a fixed 2048-dimensional Morgan fin-
gerprint, which serves as input to both the expansion model and the distance model. As a result, the
core computational complexity (after generating this representation) is largely independent of the
molecular size. Instead, the runtime and memory usage are primarily determined by the synthetic
difficulty of the target molecule. The molecules that require deeper or more exploratory search typ-
ically involve more expansion steps and frontier updates, which leads to increased computational
cost.

Table 5: Spearman correlation coefficients between Co-
BiSyn’s computational cost and molecular properties. A
positive coefficient indicates that the metric (runtime or
search iterations) tends to increase as the corresponding
property (molecular size or synthetic difficulty) increases.
All p-values are < 0.05, indicating that each observed cor-
relation is statistically significant.

Spearman (ρ) molecular size synthetic difficulty
runtime 0.413 0.664

search iterations 0.293 0.600

To quantify these effects, we ana-
lyzed all target molecules in USPTO-
190 with respect to (i) molecular size,
measured by heavy atom count, and
(ii) synthetic difficulty, measured by
the length of the ground-truth syn-
thesis pathway. Table 5 summa-
rizes the Spearman correlation co-
efficients between CoBiSyn’s com-
putational cost and these molecular
properties. The results indicate that
runtime and search iterations exhibit
only weak correlation with molecular
size (ρ = 0.413 and 0.293, respec-
tively), but significantly stronger cor-
relation with synthesis pathway length (ρ = 0.664 and 0.600).

We note, however, that molecular size may still affect the overall computational complexity to some
extent, independent of the used search algorithm itself. Specifically, larger molecules may incur ad-
ditional overhead during RDKit-based molecule parsing and reaction template matching. They may
contain more potential matching substructures, and thus the processing time can increase signifi-
cantly. This explains why the Spearman correlation between molecular size and runtime (ρ = 0.413)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Illustrative examples from USPTO-190. In this case, the expert-designed route has a
length of 10, Retro* yields a shorter route of length 7, while CoBiSyn further discovers an even
shorter route of length 4.

is higher than that between molecular size and search iterations (ρ = 0.293), reflecting that the
computational overhead could be caused by large molecular size rather than the CoBiSyn search
algorithm itself.

F EXAMPLES OF SYNTHESIS PATHWAYS IDENTIFIED

Here we present two illustrative examples from USPTO-190: in the first case, CoBiSyn identifies
a synthesis route that is shorter than the one found by Retro* (Fig. 6); in the second, CoBiSyn
successfully identifies a valid route where Retro* fails (Fig. 7).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Illustrative examples from USPTO-190. In this case, the expert-designed route has a
length of 8, while CoBiSyn discovers a synthesis route with length 5. Retro* fails to find a valid
solution.

G LLM USAGE

Large Language Models (LLMs) were used in this work solely as assistive tools for polishing lan-
guage of the manuscript and for debugging program errors during code development. The research
ideas, experimental design, and scientific contributions were fully conceived and implemented by
the authors. All authors take full responsibility for the contents of this paper.

19

	Introduction
	Problem statement
	Related work

	Our Proposed Method
	Selection
	Expansion
	Update
	Model Training

	Experiments
	Experimental setup
	Results

	Conclusion
	Data Preprocessing
	Reaction filter
	Extract data from synthesis pathways

	Full Algorithm of CoBiSyn
	Model Architectures and Training Details
	Single-step Forward Inference Model
	Training losses for distance model

	Experiments Details
	Introduction to benchmarks
	Implementation Details

	Other Experimental Results
	Ablation Study
	Correlation Study

	Examples of Synthesis Pathways Identified
	LLM usage

