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ABSTRACT

Artificial Intelligence is increasingly advancing scientific discovery, with chem-
istry being a key application domain. Synthesis planning, which aims to iden-
tify feasible reaction pathways connecting target molecules to available starting
materials, is a fundamental task in organic synthesis and drug discovery. Prior
work typically relies on backward search, iteratively applying single-step ret-
rosynthesis models, which neglects information from the starting materials and
often leads to inefficient exploration and redundant reactions. In this paper, we
propose CoBiSyn (Coordinated Bidirectional Synthesis Planning), a framework
that alternates between “backward decomposition” and “forward construction”,
while coordinating these two directions through shared frontier information. To
support this process, we introduce a conditional embedding projection mecha-
nism and a learned asymmetric synthetic distance, which together provide local
and global cost estimates to steer the search. The experiments on multiple bench-
mark datasets demonstrate that CoBiSyn significantly improves the efficiency and
quality for synthesis planning, compared to existing approaches.

1 INTRODUCTION

Recent advances in Artificial Intelligence have increasingly transformed scientific discovery, of-
fering new paradigms for tackling complex problems in chemistry, biology, and materials sci-
ence (Jumper et al., 2021; Merchant et al., 2023; Lu et al., 2024; Ding et al., 2025). Within this
context, synthesis planning—the task of designing a feasible synthetic route for a given target
molecule—represents a central task in fields such as organic synthesis and drug discovery (Blake-
more et al., 2018). Since most molecules in practice cannot be obtained in a single step, the problem
inherently involves multi-step planning. With the continuous emergence of novel molecular struc-
tures, traditional empirical knowledge provides limited guidance, and the exponentially expanding
search space poses a significant challenge even for expert chemists (Zhong et al., 2024). A striking
example is the “pupukeanane derivatives” (an important marine natural products with unique anti-
malarial properties): their intricate tricyclic scaffold and multiple stereocenters long defied manual
retrosynthetic analysis by experienced chemists, yet plausible multi-step routes have only recently
been proposed by computer-aided synthesis planning systems (Hardy et al., 2022). Such cases high-
light the potential of AI to address targets beyond human intuition. In response, recent research has
increasingly turned to machine learning methods for synthesis planning.

First, it is important to clarify the intended role of AI based synthesis planning tools. They are not
meant to replace expert chemists, but rather to serve as assistants that generate more structured and
optimized candidate hypotheses for chemists to review, refine, and validate. In practice, the model
outputs should be regarded as starting points rather than fully executable solutions. As the rapid
developing of AI techniques, such human-in-the-loop paradigms are widely adopted in scientific
domains and have been demonstrated to improve efficiency and solution quality (M. Bran et al.,
2024; Sundin et al., 2022; Watson et al., 2023) Currently, the predominant approach for synthesis
planning follows a retrosynthetic reasoning paradigm, where candidate precursors are recursively
predicted for the target molecule until all starting materials are drawn from the available building
blocks (Segler et al., 2018; Kishimoto et al., 2019; Chen et al., 2020; Xie et al., 2022).

Although the predictive capability of single-step retrosynthesis models has been steadily im-
proved (Chen & Jung, 2021; Zhong et al., 2023; Liu et al., 2023; Han et al., 2024), the overall
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Figure 1: The overview of CoBiSyn. Circular nodes represent molecules, while square nodes de-
note reactions. For each internal molecule m, CoBiSyn maintains both intrinsic and conditional
costs (denoted as Csyn(m) and Csyn(m

∗|m), which are formally defined in Sec. 1.1). The search
iterates through three phases: (1) Selection: pick boundary molecules minimizing the conditional
cost of m∗ from both frontiers (the sets of nodes inside the dotted circles), denoting mr from the
backward frontier and mf = N(mr) as its downstream counterpart along the optimal pathway in
the forward direction; (2) Expansion: apply the single-step inference model to expand the selected
molecule, guided by its paired node from the opposite direction; (3) Update: propagate and revise
both Csyn(m) and Csyn(m

∗|m) to reflect the new search states.

search frameworks for multi-step synthesis planning have seen relatively little advancement. The
widely used algorithms such as MCTS (Segler et al., 2018) and Retro* (Chen et al., 2020) still adopt
a “unidirectional” reasoning process that starts solely from the target product, making it difficult to
leverage information from the building block library or to obtain global guidance from the overall
synthesis pathway. Consequently, the resulting routes are often unnecessarily long and may deviate
from the optimal solutions. Intuitively, reasoning about synthesis pathways resembles proving
a mathematical theorem: starting from given conditions (the starting materials), one applies a
series of deductive steps (reactions) to arrive at the theorem to be proved (the target product). In
practice, it is very natural to reason from both ends simultaneously—decomposing the theorem into
simpler lemmas while also building complex structures from known results—until the two chains of
reasoning converge. Motivated by this analogy, we ask:

Can synthesis planning similarly benefit from a coordinated bidirectional strategy—one that
explores the product and reactant sides in parallel, with each direction guided by the frontier states
of the other to enable more efficient search?

Our main contributions. Inspired by the above question, we aim to design a suitable bidirectional
searching strategy. Nevertheless, this is goal is challenging to achieve mainly due to two reasons:
first, it is unclear how to effectively integrate the forward and backward searches, as conducting
them in isolation or without coordination may hinder convergence; second, most existing single-
step retrosynthesis models are tailored for unidirectional expansion, making it difficult to incorporate
supervisory signals from bidirectional search unless seeking for significant architectural changes.

To tackle these obstacles, we propose CoBiSyn (Coordinated Bidirectional Synthesis Planning),
an effective search framework for chemical synthesis planning (Fig.1). Our approach alternates be-
tween retro decomposition from the product side and forward construction from the reactant side,
while leveraging frontier states from both directions to guide the expansion. At each step, the frame-
work identifies a potential counterpart molecule from the opposite side that is likely to appear on the
future pathway, and leverages it as guidance to steer expansion, thereby enabling effective coordi-
nation between the two directions. To support this process, we introduce a novel design for guided
expansion and cost estimation, which involves a condition-guided embedding projection mecha-
nism that operates without altering the structure of single-step models, together with a dual embed-
ding synthetic distance model for intrinsic and conditional cost estimation to steer the search.

The experiments on multiple benchmark datasets demonstrates that CoBiSyn achieves higher effi-
ciency and better pathway quality than existing methods, yielding routes that are on average about
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one reaction step shorter (approximately a 25% reduction). For instance, for a test molecule whose
expert-designed synthesis pathway has a length of 10, Retro* discovers a pathway of length 7,
whereas CoBiSyn achieves a pathway of just 4 steps (see Appendix F for the complete pathway).
Moreover, through grouping benchmark molecules by synthesis difficulty, we find that CoBiSyn is
particularly effective for challenging targets in which the competing methods frequently fail.

1.1 PROBLEM STATEMENT

Figure 2: Molecular space (the grey clouds) and
reaction templates define the search domain, with
building blocks (the blue dot points) serving as
feasible starting points. The bottom illustrates an
exmaplar template of an N-alkylation reaction.

Let M = {m1,m2, . . . } denote the molec-
ular space, where each mi represents a spe-
cific molecule. Further, we let B ⊂ M de-
note the building blocks, i.e., a set of avail-
able or purchasable starting materials. In this
work, we adopt the concept reaction template:
such a template defines a feasible transforma-
tion based on existing domain knowledge or
chemical rules, which maps a set of molecular
subgraphs of reactants to a certain product in
a chemical reaction. During inference, a tem-
plate serves as a candidate operator: in the ret-
rosynthetic direction they decompose the tar-
get molecule into candidate precursors, while
in the forward direction they combine suitable
molecules to yield potential products. We as-
sume T = {t1, . . . , tM} is the given template
set. Each specific chemical reaction contains
three components, that is, it is represented by a
triplet R = (S,mp, t), where S ⊂ M, mp ∈
M, and t ∈ T, denoting the set of reactants, the product, and the reaction template, respectively.
Fig. 2 provides an illustration for these concepts.

Given a target product m∗, a feasible synthesis pathway corresponds to a set of chemical reac-
tions P = {(Si, pi, ti)} such that they can form a directed acyclic graph with two constraints: (1)
∃ i, s.t. pi = m∗ (2) ∀ i, if m ∈ Si and m /∈ B, then ∃ j, s.t. pj = m. The first condition ensures
that the target product m∗ can be synthesized, while the second guarantees that all starting materials
are derived from the building blocks. To assess the quality of P , we define its cost as the sum of the
costs of all starting molecules and reaction templates involved:

c(P) =
∑

(S,mp,t)∈P

∑
m∈S∩B

c(m) +
∑

(S,mp,t)∈P

c(t), (1)

where c(m) and c(t) denote the intrinsic costs of molecule m and template t, respectively. In
practice, these may correspond to molecule purchase prices and reaction expenses. Prior work
typically adopts a simplified convention with c(m) = 0 and c(t) = 1, in which case c(P) reduces
to the pathway length. By contrast, CoBiSyn is a general framework that naturally accommodates
richer cost formulations beyond this simplification. In our following analysis, we use Path(m)
to represent the set of all feasible synthesis pathways that can produce the molecule m; further,
Path(m|m′) represents the subset of those pathways that contain m′ as an intermediate. Finally,
our objective is to find a feasible synthesis pathway with minimum cost, i.e.

P∗ = arg min
P∈Path(m∗)

c(P). (2)

Upon the cost defined in (1), we introduce two specific types of costs for a molecule m: Csyn(m) =
minP∈Path(m) c(P) represents the minimum cost required to synthesize m, while Csyn(m|m′) =
minP∈Path(m|m′) c(P) denotes the minimum cost of synthesizing m along pathways that include
m′ as an intermediate. Here, the former captures the intrinsic synthesis difficulty of m, whereas
the latter quantifies the conditional cost of synthesizing m when an intermediate m′ is introduced.
In particular, it is easy to see Csyn(m

∗) actually is the optimal cost for synthesizing m∗, i.e.,
Csyn(m

∗) = c(P∗). In addition, we define D(m,m′) = Csyn(m|m′)−Csyn(m
′) as the minimum

incremental cost for synthesizing m starting from m′, which can be regarded as an asymmetric
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synthetic distance from m′ to m. In Sec. 2.4, we introduce a trainable neural network “Dθ”, whose
output Dθ(m,m′) can serve as an approximation of D(m,m′).

1.2 RELATED WORK

Single-step retrosynthesis models The objective of a single-step retrosynthesis model is to iden-
tify possible precursors for a given target molecule. Current approaches can be broadly categorized
into three types: template-based, template-free, and semi-template methods. Template-based ap-
proaches select the most suitable transformation rule for the target molecule from a predefined set
of templates (Segler et al., 2018; Dai et al., 2019; Chen & Jung, 2021; Yan et al., 2022). Template-
free approaches bypass the constraints of predefined rules by modeling retrosynthesis as either a
sequence generation (Liu et al., 2017; Zheng et al., 2019; Mao et al., 2021) or a graph generation
problem (Sacha et al., 2021; Zhong et al., 2023). Semi-template approaches adopt a two-stage strat-
egy: first identify the reaction center of the target molecule and decomposing it into intermediate
molecules called synthons, and then complete the synthons into valid precursor molecules (Shi et al.,
2020; Yan et al., 2020; Han et al., 2024).

Synthesis planning The mainstream approaches for retrosynthesis planning are to combine single-
step retrosynthesis models with various search algorithms, iteratively identifying possible reaction
transformations for the target molecule until all starting materials are sourced from the building
blocks, while aiming to minimize an objective function (e.g., the number of steps or overall pathway
cost). Notable methods include Proof-Number Search (Kishimoto et al., 2019), Monte Carlo Tree
Search (MCTS) (Segler et al., 2018; Lin et al., 2020), and the A* algorithm (Chen et al., 2020; Xie
et al., 2022). Overall, these approaches adopt a top-down strategy, starting from the target molecule
and working backward to the building blocks. More recently, a few studies have explored bottom-
up approaches, where synthesis routes are constructed progressively from building blocks, often in
the context of synthesizable molecule design (Gao et al., 2022) or synthesizable molecule projec-
tion (Luo et al., 2024). There has also been growing interest in several variants of the synthesis
planning problem, such as incorporating starting material constraints (Yu et al., 2024), account-
ing for uncertainties in pathway execution (Tripp et al., 2023), and integrating with active learning
frameworks (Yuan et al., 2024).

Bidirectional planners Prior works such as DESP (Yu et al., 2024) and Tango* (Armstrong et al.,
2025) also leverage bidirectional idea. Compared to these methods, our proposed method focuses on
the general synthesis scenario rather than a starting-constrained setting, which dramatically increases
the difficulty of search and matching when considering all available building blocks (∼23M). To
address this, our idea is to introduce a dual-embedding distance model for efficient cross-frontier
matching and employ explicit coordination between forward and backward expansions to guide
node exploration.

2 OUR PROPOSED METHOD

Before formally introducing CoBiSyn, we first present the relevant definitions that will be used
throughout the subsequent sections. We follow the tradition of the previous works Chen et al.
(2020); Xie et al. (2022), which models synthesis pathways as an AND-OR graph G. Specifically,
G consists of two alternating types of nodes: molecules represented as OR nodes and reactions
represented as AND nodes. During the search, every newly added reaction (S,mp, t) corresponds
to a local unit. An illustration of the graph is presented in Fig. 3. Each node is associated with
a Boolean variable solved, indicating whether the corresponding molecule is obtainable or the
reaction is executable. More specifically, we have the following formulas:

m.solved =
∨

r∈Child(m)

r.solved

r.solved =
∧

m∈Child(r)

m.solved
(3)

where a molecule node m is considered solved if at least one of its associated reaction nodes is
solved, and a reaction node r is solved only if all of its precursor molecule nodes are solved. For all
the molecules provided by B, their corresponding nodes are initialized with solved = True.
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Figure 3: An AND-OR graph representation
of multi-step synthesis. Circular nodes de-
note molecules (OR nodes) and square nodes
denote templates (AND nodes). Each reac-
tion corresponds to a local unit in graph.

Then, we define two directions along G, where
the backward direction denotes recursively decom-
posing the target product into simpler intermedi-
ates, and the forward direction indicates expand-
ing from the starting materials toward the desired
product. Please see Fig. 3 for the illustration. To
enable bidirectional search, we maintain two fron-
tier sets, Fretro and Ffwd, which represent the set
of molecules pending retrosynthetic decomposition
and the set of molecules currently available in the
forward direction, respectively. At initialization, we
set Fretro = {m∗} and Ffwd = B, and the ini-
tial search graph G contains only these two sets
of nodes. Like other search-guided synthesis plan-
ning algorithms, CoBiSyn also iteratively performs
three steps: selection, expansion, and update, until
a feasible synthesis pathway is found (as shown in
Fig. 1). To accommodate the bidirectional search
paradigm, we introduce our specific improvements
to each of these steps, which are respectively de-
tailed in Sec. 2.1, 2.2, and 2.3. Due to the space limit, we place the full CoBiSyn algorithm to
Appendix B.

2.1 SELECTION

To enable collaboration between the two search directions, in each iteration CoBiSyn selects one
molecule from Fretro and one from Ffwd, denoted as mr and mf , respectively. One molecule can be
regarded as a potential future node on the pathway of the other, serving to guide its expansion in
expansion stage (details in Sec. 2.2). Since our goal is to identify synthesis pathways with minimum
cost, ideally, mr and mf should both lie on the same optimal synthesis pathway. According to
the definitions above, this criterion implies that mr and mf are the molecules with the minimum
Csyn(m

∗|m) in fretro and Ffwd, respectively. However, in practice, directly computing Csyn(m
∗|m)

is challenging, as it requires minimizing over all possible synthesis pathways (the computation on
Csyn(m) also has the same issue).

Therefore, we adopt an approximation by restricting the search space to the current synthesis graph
G during the search. Specifically, we design a surrogate loss “Csur

syn(m)” to approximate Csyn(m),
which can be recursively computed based on the structure of G: for a non-boundary node, its value
is defined as the minimum cost among its subsequent reactions. Two boundary cases are considered:
(1) if m belongs to the building blocks, we define Csur

syn(m) = c(m); (2) if m ∈ Fretro, we leverage
the molecules in Ffwd as intermediates and define Csur

syn(m) = minm′∈Ffwd Dθ(m,m′) + Csur
syn(m

′).
Here, the minimizer m′, denoted as N(m), can be regarded as the “nearest neighbor” of m in Ffwd.
In summary, for any molecule node m in G, we have:

Csur
syn(m) =


c(m) if m ∈ B
min

m′∈Ffwd
Dθ(m,m′) + Csur

syn(m
′) if m ∈ Fretro

min
(S,m,t)∈G

[
c(t) +

∑
m′∈S Csur

syn(m
′)
]

otherwise
(4)

Similarly, “Csur
syn(m

∗|m)”, a surrogate loss for Csyn(m
∗|m), can be also computed in a recursive

manner. We restrict the computation only to the set of molecular nodes reachable from the target
molecule m∗ within the current search graph G, denoted as Vr, with the corresponding induced
subgraph written as G[Vr]. The calculation is as follows:

Csur
syn(m

∗|m) =



Csur
syn(m) if m = m∗

min
(S,mp,t)∈G[Vr]

s.t. m∈S

[
Csur
syn(m

∗|mp)− Csur
syn(mp)

+ c(t) +
∑
m′∈S

Csur
syn(m

′)
] if m ∈ Vr \ {m∗} (5)
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The boundary condition is specified by the target molecule itself, where Csur
syn(m

∗|m∗) =
Csyn(m

∗). For other molecules m ∈ Vr, the computation of Csur
syn(m

∗|m) relies on two obser-
vations: (1) any synthesis pathway in Path(m∗|m) must include a product molecule mp generated
from m, enabling us to compute Csur

syn(m
∗|m) by leveraging Csur

syn(m
∗|mp); and (2) Csur

syn(m
∗|mp)

implicitly involves Csur
syn(mp), but the optimal synthesis pathway of mp does not necessarily contain

m, so we need to substitute this term with the specific cost of generating mp from m (as shown in
the second case of Eq. 5).

Based on the above, we can select mr from Fretro as the molecule with the minimum Csur
syn(m

∗|m)
value. The corresponding mf is expected to lie downstream of mr along the optimal synthesis
pathway in Path(m∗|mr), which in turn guarantees that mr also belongs to the optimal pathway in
Path(mr). In practice, given the current search graph G, this mf coincides with N(mr), i.e., the
molecule m ∈ Ffwd that minimizes Dθ(mr,m)+Csur

syn(m). In summary, the selection strategy is as
follows:

mr = arg min
m∈Fretro

Csur
syn(m

∗|m), mf = N(mr) = arg min
m∈Ffwd

Dθ(mr,m) + Csur
syn(m). (6)

To avoid redundant computation from recalculating these values at every iteration, we cache
Csur
syn(m) and Csur

syn(m
∗|m) for each molecule m in G and record N(m) for each m ∈ Fretro. As the

search progresses, these values are dynamically updated only when necessary.

2.2 EXPANSION

In conventional synthesis planning approaches, the expansion step typically invokes a single-step
retrosynthesis model, which performs local inference based solely on the current target molecule.
Although such models can propose reasonable precursor candidates, their lack of awareness of the
overall pathway structure often leads to solutions that deviate from optimal routes. In CoBiSyn,
we jointly select a pair of frontier molecules (mr,mf ) from the backward and forward frontiers.
When expanding one molecule, the other serves as a “conditional molecule”, providing contextual
guidance for single-step inference and ensuring coordinated bidirectional reasoning.

Conventional retrosynthesis model, denoted by fsingle, is typically formulated as a mapping from
a target molecule to reaction templates, making them unsuitable for conditional-guided backword
expansion. To avoid tying CoBiSyn to a specific model architecture, we do not directly modify the
model itself; instead, we adjust the embedding of the target molecule by incorporating information
from the conditional molecule. Conceptually, the conditional molecule serves to reweight the con-
tributions of different substructures within the target, thereby directing the model’s attention toward
features most relevant to the conditional context. This adjustment can be interpreted as a projection
operation in the embedding space. Based on this idea, the combined embedding is defined as

h̃(mr|mf ) = Aθ (h(mf ))h(mr) +Bθ (h(mf )) , (7)

where h : M → Rn is the function that maps a molecule into the embedding space (typically the
encoder or the first few layers of the original model), and Aθ ∈ Rn×n and Bθ ∈ Rn are learnable
projection matrix and bias with parameter θ. Thus, the conditional single-step backward inference
model becomes

fretro(mr|mf ) = fsingle(h̃(mr|mf )). (8)

During backward expansion phase, we adopt fretro(mr|mf ) to predict the top-k templates {ti}ki=1,
apply each templates to mr to generate the corresponding precursors Si, and add the resulting nodes
to the search graph G. For each m ∈ Si, we initialize Csur

syn(m) following the second case in Eq. 4.

Compared with single-step retrosynthesis model, single-step forward inference models have re-
ceived relatively little attention. Inspired by Luo et al. (2024), we formulate conditional single-step
forward inference as a sequence generation task and employ a Transformer ffwd(mf |mr) with
an encoder-decoder architecture to autoregressively generate candidate sequences. Specifically, a
chemical reaction (S = {mi}ni=1,mp, t) is represented as a sequence [m1, . . . ,mn, t,mp]. During
inference, the encoder takes [mr] as the source input, while the decoder is initialized with [mf ] as
the starting token. At each decoding step, the model first predicts the next token type from the logits,
and then uses separate MLP heads to predict either the molecular fingerprint or the template index,
depending on the predicted type. The decoding terminates once a template token is generated. The
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detailed architecture of ffwd is provided in Appendix C. Similarly, based on the generated sequences,
we perform the corresponding reactions to obtain products {mpi

}ki=1, and add the resulting nodes
to G. For each newly added molecule mpi

, we initialize Csur
syn(mpi

) according to the third case in
Eq. 4.

2.3 UPDATE

Update solved After each expansion, we update the solved status of mr and the newly gener-
ated products {mpi

} according to Eq. 3. Whenever a node becomes True, this update is propagated
bottom-up along the synthesis graph.

Update frontiers For backward expansion, the expanded node mr is removed from the frontier
and the newly generated precursor molecule nodes are added to it. In contrast, forward expansion
only requires adding the newly generated product nodes to the frontier, without removing any nodes,
since the frontier in this case represents the set of currently available starting materials. The update
rules defined as follows:

Fretro ← (Fretro \ {mr})
k⋃

i=1

Si, Ffwd ← Ffwd

k⋃
i=1

{mpi
} (9)

Update cost We begin by updating Csur
syn(m) in a bottom-up fashion. During backward expan-

sion, Csur
syn(mr) is updated according to the newly added reaction unit following the third case of

Eq.4. During forward expansion, since new available molecules {mpi
} are introduced, the “nearest

neighbor” N(m) for each m ∈ Fretro may change. Accordingly, we update

Csur
syn(m)← min

{
Csur
syn(m), min

mpi

Dθ(m,mpi
) + Csur

syn(mpi
)

}
, m ∈ Fretro. (10)

All updates to Csur
syn(m) are then propagated bottom-up along the synthesis graph according to Eq.4

until they reach the target molecule m∗. Finally, starting from m∗, we perform a top-down compu-
tation of Csur

syn(m
∗|m) for each m, following Eq. 5, until reaching all nodes in Fretro.

2.4 MODEL TRAINING

In this framework, three models need to be trained: fretro, ffwd, and Dθ. Due to the space limit,
we describe the training procedures for fretro and Dθ here, while the details for ffwd are provided in
Appendix C.

Conditional retro model The training of fretro requires triplets of the form D′
retro =

{(mtarget,mcond, t)}. Although such a dataset can be extracted from synthesis pathways (see Ap-
pendix A), it is much smaller in scale compared to the standard retrosynthesis dataset Dretro. To
address this, we adopt a two-stage training strategy for fretro. In the first stage, we perform uncon-
ditional pretraining on Dretro, with the projection module disabled. In the second stage, we fine-tune
the model on D′

retro to learn Aθ and Bθ. The pretraining stage enables the model to acquire com-
mon reaction patterns, while the fine-tuning stage teaches it to bias toward specific reactions when
additional conditional cues are available.

Distance model As defined earlier, D(x, y) denotes the minimum incremental cost of synthesizing
x starting from y, which can be regarded as a measure of the “synthetic distance” between the two
molecules. To learn D, we adopt a dual-embedding framework. Specifically, x and y are encoded
by two separate neural encoders, which allow for asymmetric representation learning tailored to the
distinct roles of product and precursor. The resulting embeddings are mapped into a common latent
space, where the D(x, y) is approximated by the Euclidean distance between their embeddings:

Dθ(x, y) = ||Product-Encoder(x)− Precursor-Encoder(y)||2. (11)

This formulation offers two key advantages. First, by employing distinct encoders for the target
and precursor molecules, the model naturally accommodates the inherent asymmetry of synthetic
distance, where the cost of synthesizing x from y generally differs from that of synthesizing y from
x. Second, the metric structure of the embedding space makes it well-suited for large-scale nearest-
neighbor retrieval, which is critical to efficiently calculate N(m) and Csur

syn(m) for newly added
node m during the search (Eq. 4).
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Table 1: Summary of synthesis planning efficiency across three dataset. “n” denotes the maximum
number of single-step inference model calls allowed during the search process. The best model for
each experiment setting is bolded.

USPTO-190 Pistachio Reachable Pistachio Hard
Methods Solved Rate (%) ↑ Solved Rate (%) ↑ Solved Rate (%) ↑

n=100 300 500 n=100 300 500 n=100 300 500

RANDOM 20.5 35.3 40.5 80.0 88.0 90.0 39.0 56.0 57.0
MCTS 25.8 32.6 35.3 66.7 72.7 74.7 30.0 38.0 41.0
Retro* 39.5 45.3 50.0 90.7 94.7 96.7 48.0 57.0 58.0

Retro*-0 37.9 46.8 51.6 90.7 92.0 95.3 51.0 53.0 56.0

CoBiSyn 38.9 63.2 68.4 92.0 96.0 97.3 53.0 63.0 69.0
SimpleBiSyn 38.9 54.2 64.2 86.0 92.0 96.0 51.0 60.0 62.0

The training of Dθ uses a combination of three losses. A regression term Lreg encourages predic-
tions to match ground-truth distances, with a log-transform to handle the heavy-tailed distribution.
A triangle inequality regularizer Ltriangle preserves structural consistency among molecular pairs. Fi-
nally, a margin lossLmargin ensures that distances between distinct molecules are at least one reaction
step. The three terms are combined with weighting coefficients to form the overall loss. Please refer
to Appendix C for a detailed introduction of these losses.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Building Blocks We adopt the list of purchasable molecules released by eMolecules1 as the set
of building blocks, which is widely used and provides a comprehensive and practically relevant
collection of commercially available compounds. After canonicalizing the molecules with RDKit2

and removing the entries that could not be parsed, a total of 23M molecules remain.

Training Dataset Although previous studies have adopted similar preprocessing pipelines, unfor-
tunately none of them have released data in the format required for extracting training samples for
conditional single-step inference networks (i.e., pathways with associated templates). Consequently,
we reconstruct a synthesis pathway dataset from the USPTO reaction corpus (Lowe, 2017), follow-
ing the processing procedure of Chen et al. (2020). The USPTO dataset contains approximately
3.8M published reaction records. After deduplication and template extraction with rdchiral (Co-
ley et al., 2019) , we obtain a total of 1.42M valid reactions and 230267 reaction templates. We then
randomly split the data set into training and validation sets in a 9:1 ratio. We further use these reac-
tions to construct synthesis graphs and extract valid synthesis pathways. This process yields 235895
training routes and 27901 validation routes. Finally, we derive training and validation data for fretro,
ffwd and Dθ from these synthesis pathways (see Appendix A for details).

Baseline Since CoBiSyn is essentially a search framework for synthesis planning, we compare
it against other search strategies, including RANDOM, MCTS, Retro*, and Retro*-0. RANDOM
selects the next molecule node uniformly at random. MCTS (Segler et al., 2018) and Retro* (Chen
et al., 2020) are both widely adopted synthesis planning algorithms: the former guides expansion
via Monte Carlo rollouts, while the latter is a best-first search performed on AND-OR tree with
neural-based heuristic. Retro*-0 is a variant of Retro* that does not rely on the pretrained value
function as the heuristic. For fair comparison, all the methods employ the same MLP-based single-
step retrosynthesis model (NeuralSyn) as in Chen et al. (2020) to predict the top-50 candidates.

3.2 RESULTS

We conduct the evaluations on three datasets:“USPTO-190” from Chen et al. (2020), and “Pistachio
Hard” and “Pistachio Reachable” from Yu et al. (2024) (see Appendix D for an induction to these

1https://www.emolecules.com/
2https://www.rdkit.org/
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Figure 4: Cumulative solved instances on the test set ordered by SAScore. CoBiSyn shows consis-
tent superiority, especially for molecules with SAScore > 3.

benchmarks). To assess search efficiency, we report the solved rate (the ratio of the target molecules
that are successfully synthesized) under different limits on the maximum number of single-step
inference model calls. The overall performance is summarized in Table 1. Compared with the
baselines, CoBiSyn achieves higher solved rates across almost all thresholds on all three datasets.
We also introduce an ablation variant, SimpleBiSyn, which removes the opposite-direction guidance
during the expansion phase (by disabling the projection module in fretro and the encoder module in
ffwd). In this setting, this variant exhibits consistent performance degradation across all metrics.
This clearly demonstrates the effectiveness of coordinated guidance.

To further compare those methods on handling complex molecules, we rank the test molecules
by SAScore (Ertl & Schuffenhauer, 2009), a commonly used heuristic that estimates the synthetic
accessibility of a molecule, and report the cumulative number of solved instances. We impose a time
limit of 120 seconds per target molecule. As shown in Fig. 4, we observe that all methods perform
comparably on easy cases (SAScore < 3), where synthesis routes are relatively straightforward.
However, once the difficulty increases (SAScore > 3), the performance curves begin to diverge. In
this regime, CoBiSyn consistently maintains the highest solved count, indicating that coordinated
bidirectional search is particularly effective for tackling more challenging synthesis problems.

Table 2: The average lengths of obtained routes on common
solved molecules. The best model for each experiment set-
ting is bolded. Note that MCTS is not included here, since
the number of solved molecules by MCTS is substantially
lower than others (as shown in Fig. 5).

Methods USPTO-190 Pistachio
Reachable

Pistachio
Hard

Retro* 5.29 3.83 4.49
Retro*-0 5.52 4.02 4.76
CoBiSyn 3.90 2.85 3.22

SimpleBiSyn 4.19 2.91 3.29

Furthermore, to evaluate the qual-
ity of the synthesis pathways, we re-
port the average length of the path-
ways in Table 2. Across all datasets,
CoBiSyn achieves substantial reduc-
tions in route length, e.g., shortens
the routes by more than one step
on average. We provide a concrete
example in the Appendix F, where
the expert-designed synthesis path-
way has a length of 10, Retro* dis-
covers a pathway of length 7, while
CoBiSyn further shortens it to only
4 steps. Fig. 5 shows the individual
comparisons between CoBiSyn and each baseline in more detail. We observe that MCTS tends
to produce relatively short routes, but the number of solved cases is limited, especially on harder
datasets. In contrast, Retro* is able to solve more molecules, yet the resulting pathways are sig-
nificantly longer on average. CoBiSyn achieves the best balance: it consistently shortens pathways
(approximately one reaction step fewer than Retro*) while maintaining a high solved rate compara-
ble to or better than existing methods.

Finally, we consider the sensitivity of our performance on the learned distance model Dθ. In par-
ticular, we investigate how the accuracy of Dθ affects CoBiSyn ’s performance. We train three
distance models with identical architectures but different accuracy levels by using varying fractions
of the original training data (100%, 50%, 10%). In addition, we consider a special case named “Dθ-
uniform”, in which Dθ(x, y) ≡ 0 for all input molecule pairs. This special setting means that the
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Figure 5: Comparison of CoBiSyn and baseline methods on three datasets. For each dataset, the left
axis shows the average path length on molecules solved by both CoBiSyn and each baseline (blue
and gray bars), while the right axis shows the number of molecules jointly solved (orange bars).
CoBiSyn consistently produces shorter synthesis routes.

Table 3: Performance of CoBiSyn under distance models of varying accuracy. “n” denotes the
maximum number of single-step inference model calls allowed during the search process. The best
model for each experiment setting is bolded, and the second is underlined.

USPTO-190 Pistachio Reachable Pistachio Hard
Dist Model Solved Rate (%) ↑ Solved Rate (%) ↑ Solved Rate (%) ↑

n=100 300 500 n=100 300 500 n=100 300 500

100% data 38.9 63.2 68.4 92.0 96.0 97.3 53.0 63.0 69.0
50% data 37.4 61.6 68.9 91.3 95.3 97.3 54.0 62.0 67.0
10% data 42.6 58.4 66.3 93.3 95.3 96.0 56.0 63.0 66.0

Dθ-uniform 32.1 48.9 55.8 88.0 92.7 94.7 49.0 65.0 67.0

model learns no distance information and assigns the same score to all pairs. The results of these
four variants are summarized in Table 3. We observe that the model trained with 100% of the data
achieves the best and most stable performance. But the performances of 50% and 10% downgrade
not quite significantly. This suggest that CoBiSyn remains relatively robust even when the distance
model quality is reduced. In contrast, the Dθ-uniform setting leads to a clear performance degrada-
tion, particularly on USPTO-190, indicating that the learned asymmetric distance plays a non-trivial
role in guiding effective cross-frontier coordination and improving search efficiency.

4 CONCLUSION

In this paper, we propose CoBiSyn, a framework that alternates between backward decomposition
and forward construction, while coordinating the two directions through shared frontier information.
Experiments on benchmark datasets demonstrate that CoBiSyn significantly improves efficiency and
solution quality compared to existing approaches. It is important to note, however, that a gap remains
between algorithmic performance and real-world utility, as computational evaluation metrics cannot
fully capture how AI models behave in real scientific tasks. Moving forward, developing more
problem-aware and scientifically grounded evaluation protocols, together with closer collaboration
with chemistry experts, will be essential for translating these algorithmic advances into tangible
impact in chemical synthesis.

REPRODUCIBILITY STATEMENT

The proposed algorithm and training procedures are described in Sec. 2, with additional pre-
processing procedures and implementation details provided in Appendix A-D.2. The source
code and relevant data are provided in an anonymous repository at https://github.com/
anony-research/CoBiSyn-ICLR2026.
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A DATA PREPROCESSING

A.1 REACTION FILTER

We adopt the USPTO dataset provided by rdchiral, which contains approximately 1.8M reac-
tions after template extraction from the original corpus. Based on this dataset, we perform additional
cleaning using the following rules:

1. Remove reactions whose product molecules contain fewer than three heavy atoms;
2. Remove reactant molecules that have no atom mappings appearing in the product;
3. Remove reactions that cannot be correctly reproduced by applying the extracted template

using RDKit and rdchiral;
4. Remove reactions with multiple products.

A.2 EXTRACT DATA FROM SYNTHESIS PATHWAYS

Following the processing procedure of Chen et al. (2020), we first extract synthesis pathway data
from the reaction corpus. Based on these pathways, we further construct the training datasets re-
quired for fretro, ffwd, and Dθ.

For training fretro, we require samples of the form (m,m′, t), where m is the molecule to be ex-
panded, t is a reaction template applicable to m, and m′ is the conditional molecule. Specifically,
for each reaction unit (S,mp, t) in a synthesis pathway, we sample m′ from the set of downstream
descendants of mp in the pathway, yielding training samples (mp,m

′, t).

Similarly, training ffwd requires samples of the form (m,S,m′, t), where m is the molecule to be
expanded, S is the set of co-reactants, t is the applicable reaction template, and m′ is a future
molecule that provides the guiding signal. For each reaction unit (S,mp, t), we sample m′ from the
predecessors of mp, and for each m ∈ S, construct a training samples (m,S\{m},m′, t).
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To train Dθ, we extract molecule pairs with ground-truth distance values from constructed synthesis
pathways. Given a synthesis pathway G for a target molecule, we first compute Csyn for each
intermediate, which indices the minimum number of reaction steps required to reach building blocks.
Then for every pair of molecules (mx,my) where my is reachable from mx along the pathway, we
record their synthetic distance as the difference between their costs. To ensure consistency, if some
pairs appear in multiple routes, we keep the minimal distance observed. This procedure produces a
set of molecule pairs annotated with synthetic distances, which serve as supervision for training the
Dθ.

B FULL ALGORITHM OF COBISYN

Algorithm 1 CoBiSyn
Input: Target product m∗

Output: Synthesis graph G
Initialize G with m∗ and building blocks B
while m∗.solved = False do

mr,mf ← SELECTION(G) // Eq. 6

/* Backward Expansion */
{ti}ki=1 ← fretro(mr|mf ) // Conditional single-step backward inference
for i← 1 to k do

Si ← Apply template ti to mr

Add all m ∈ Si and ti to G

Update Csur
syn(mr) and propagate bottom-up // Eq. 4

Update Csur
syn(m

∗|m) for all m from m∗ to Fretro // Eq. 5

/* Forward Expansion */
{(Si, ti)}ki=1 ← ffwd(mf |mr) // Conditional single-step forward inference
for i← 1 to k do

mpi ← Apply template ti to Si

Add mpi to G

Update Csur
syn(m) for all m ∈ Fretro and propagate bottom-up // Eq. 10 and 4

Update Csur
syn(m

∗|m) for all m from m∗ to Fretro // Eq. 5
return G

Complexity Analysis Let Tfwd, Tretro and Tdist denote the per-step inference time of the forward
and backward single-step reasoning models and distance model, respectively. Suppose that each
inference phase attempts k candidate reactions, and let n denote the number of inference phases
performed so far. We also let d denote the dimension of the latent embedding space of the distance
model (in our implementation, d = 512).

For the backward expansion of a molecule mr, the procedure consists of three steps: (i) calling
backward inference model, (ii) initializing Csur

syn for the newly generated molecules, and (iii) updat-
ing Csur

syn(m) and Csur
syn(m

∗|m) for all molecules in backward side. The resulting time complexity
is

O(Tretro + k · (|B|+ kn) · Tdist︸ ︷︷ ︸
initializing Csur

syn(m)

for new nodes

+ kn︸︷︷︸
updating Csur

syn(m) and Csur
syn(m

∗|m)

for backward side

)

In practical synthesis planning settings, the building-block set is typically large (i.e., |B| ≫ kn),
so the initialization term becomes a non-negligible component in addition to the inference time of
expansion model. Our dual-embedding distance model is specifically designed intended to mitigate
this bottleneck: the embeddings for the forward frontier are precomputed and cached, allowing each
newly added molecule to query the distance model only once before performing a nearest-neighbor
search. There are many efficient implementations of nearest-neighbor search exist, such as product
quantization (Jegou et al., 2010) or locality-sensitive hashing Datar et al. (2004), whose cost we
denote by Tnn (see Appendix D.2). This design reduces the complexity to O(k · (Tdist +Tnn)), where
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the factor k can be further mitigated through batch parallelization. Therefore, the time complexity
of a single backward expansion is only O(Tretro + Tdist + Tnn + kn).

For the forward expansion of a molecule mf , the procedure also consists of three steps: (i) calling
forward inference model, (ii) updating Csur

syn(m) for molecules in Fretro, and (iii) updating Csur
syn(m)

and Csur
syn(m

∗|m) for all molecules in backward side. The first step takes Tfwd. The second step
requires computing the embeddings for new nodes (Tdist) and calculating the distances to the nodes in
the backward frontier (O(knd)). The third step takes O(kn). Therefore, the overall time complexity
of a single forward expansion is

O(Tfwd + Tdist + knd︸ ︷︷ ︸
updating Csur

syn(m)

for m ∈ Fretro
(speed by batch parallelization)

).

In practice, Tretro and Tfwd correspond to more complex neural network inference operations and
therefore dominate the runtime (accounting for more than 85% of the total execution time in our
implementation).

C MODEL ARCHITECTURES AND TRAINING DETAILS

C.1 SINGLE-STEP FORWARD INFERENCE MODEL

ffwd is implemented as a Transformer with an encoder-decoder architecture. The encoder takes
the molecular adjacency matrix as input and processes it through multiple graph Transformer lay-
ers (Ying et al., 2021), applying multi-head self-attention over atoms to produce a tensor of atom-
level embeddings.

The decoder generates tokens autoregressively by combining the encoder output with the current
sequence. A reaction (S = {mi}ni=1, p, t) is represented as the sequence [m1, . . . ,mn, t, p]. Each
molecule token is embedded using MLPfp via its Morgan fingerprint, while the reaction template
token is embedded via an index lookup table. To capture the sequential order, positional encodings
are added to all token embeddings. The sequence embeddings and molecular graph embeddings are
jointly processed by several standard Transformer layers, where multi-head attention integrates the
two sources of information to produce the hidden representation hi for predicting the next token.

The prediction of the next token proceeds in two stages. First, an MLP head applied to hi predicts
the token type (molecule or reaction template), i.e.

type(Tnext) ∼ SOFTMAX(MLPtype(hi)).

If it is a molecule, the corresponding Morgan fingerprint is predicted as pnext =
SIGMOID(MLPfp-pred(hi)), followed by a nearest-neighbor search within the building blocks B.
If it is a reaction template, the index is predicted as

tnext ∼ SOFTMAX(MLPrxn(hi)),

and the decoding process terminates.

The overall loss of ffwd is the sum of three parts: Ltoken, Lmol, and Ltemp. Here, Ltoken and Ltemp
are multi-class classification losses measured by cross-entropy, while Lmol is a binary cross-entropy
loss between the predicted and ground-truth molecular fingerprints.

C.2 TRAINING LOSSES FOR DISTANCE MODEL

The loss function of Dθ consists of three parts. The main part is to minimize the difference between
the predictions and the ground truth values. Since the empirical distribution of distances extracted
from synthesis pathways exhibits a heavy-tailed behavior, we apply a logarithmic transformation to
stabilize training, i.e.

Lreg = E(x,y) [MSE (log(Dθ(x, y) + 1), log(D(x, y) + 1))] . (12)
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Second, we encourage consistency with the triangle inequality D(x, y) ≤ D(x, z) + D(y, z) by
sampling triplets within each batch and penalizing violations through a hinge-style regularizer

Ltriangle = E(x,y,z) [RELU (Dθ(x, y)−Dθ(x, z)−Dθ(z, y))] . (13)

Preserving this property helps maintain the relative ordering among different molecular pairs, en-
suring that predicted distances remain structurally coherent and chemically reasonable. Finally, to
prevent degenerate solutions and reflect the fact that the distance between two distinct molecules
should be at least one reaction step, we introduce a margin loss:

Lmargin = E(x,y) [RELU (1−Dθ(x, y))] . (14)

The final loss function is the sum of the three terms: L = Lreg + λ1Ltriangle + λ2Lmargin, where λ1

and λ2 are hyperparameters to balance three losses.

D EXPERIMENTS DETAILS

D.1 INTRODUCTION TO BENCHMARKS

In our experiments, we adopt three benchmark datasets:

• USPTO-190: a set of 190 challenging molecules selected by Chen et al. (2020). To in-
crease difficulty, they filter out easier molecules using a heuristic BFS planning algorithm,
retaining only those unsolved within a fixed time limit.

• Pistachio Reachable: 150 target molecules extracted from the Pistachio dataset with spe-
cific starting materials Yu et al. (2024). They select routes satisfy: (1) no reactions appear
in the training data, (2) reactions are unique across test routes, (3) all reactions are among
the top 50 predictions of the single-step model, (4) no two targets share Tanimoto similarity
> 0.7, (5) minimum number of routes enforced for different route lengths.

• Pistachio Hard: 100 target molecules extracted using the same procedure as Pistachio
Reachable, except condition (2) is relaxed to require only ≥50% of reactions to be repro-
ducible (in-distribution), resulting in more challenging routes (Yu et al., 2024).

For evaluation, the starting material constraints of “Pistachio Reachable” and “Pistachio Hard” are
removed.

D.2 IMPLEMENTATION DETAILS

Molecular representation In fretro and Dθ, we use the Morgan fingerprint (Rogers & Hahn, 2010)
of each molecule (radius 2 with 2048 bits) as the raw input. In contrast, model ffwd employs the
molecular graph’s adjacency matrix as input to the encoder, while molecular tokens in the decoder
sequence are still represented by their Morgan fingerprints.

Approximate nearest neighbor search In CoBiSyn, nearest neighbor search arises in two con-
texts: (1) During retro-expansion, when initializing Csyn for a newly added molecule m, Eq. 4
requires computing the distance Dθ(m,m′) + Csyn(m

′) to every molecule m′ ∈ Ffwd in order
to identify the nearest neighbor; (2) During the decoding process of the forward expansion model
ffwd, at positions corresponding to molecular tokens, nearest-neighbor search is performed over Ffwd
based on the predicted Morgan fingerprints. Since Ffwd contains at least all building blocks B, its size
is typically very large. To accelerate these operations, we adopt FAISS with Product Quantization
(PQ) for approximate nearest neighbor search.

E OTHER EXPERIMENTAL RESULTS

E.1 ABLATION STUDY

In this section, we provide additional ablation study setting, including: (i) removing the forward
model; (ii) adopting noisy forward model (randomly combine building blocks); (iii) removing the
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Table 4: Performance of CoBiSyn under different ablation setting. “n” denotes the maximum num-
ber of single-step inference model calls allowed during the search process. The best model for each
experiment setting is bolded, and the second is underlined.

USPTO-190 Pistachio Reachable Pistachio Hard
Dist Model Solved Rate (%) ↑ Solved Rate (%) ↑ Solved Rate (%) ↑

n=100 300 500 n=100 300 500 n=100 300 500

CoBiSyn 38.9 63.2 68.4 92.0 96.0 97.3 53.0 63.0 69.0
w/o forward 41.1 55.3 61.6 88.7 95.3 96.0 52.0 56.0 64.0

noisy forward 36.8 60.0 65.8 90.7 92.0 97.3 51.0 62.0 66.0
w/o condition 38.9 54.2 64.2 86.0 92.0 96.0 51.0 60.0 62.0
Dθ-uniform 32.1 48.9 55.8 88.0 92.7 94.7 49.0 65.0 67.0

conditional projection mechanism; (iv) using a severely degraded distance model (Dθ(x, y) ≡ 0).
The results are summarized in Table 4.

Overall, the severe performance drop arises from degrading the distance model, as distance-based
pair matching is the core operation of each expansion step and directly determines node selection
and conditional projection. In contrast, the noisy forward model causes the mildest degradation. We
attribute this to the forward-expansion mechanism in CoBiSyn, which accumulates newly generated
nodes without discarding existing ones. Thus, even if the forward model proposes suboptimal can-
didates, previously valid nodes remain available for pairing with the backward frontier, preventing
error from being amplified.

E.2 CORRELATION STUDY

In this section, we investigate the factors influencing the computational consumption of CoBiSyn.
In our implementation, each molecule is represented using a fixed 2048-dimensional Morgan fin-
gerprint, which serves as input to both the expansion model and the distance model. As a result, the
core computational complexity (after generating this representation) is largely independent of the
molecular size. Instead, the runtime and memory usage are primarily determined by the synthetic
difficulty of the target molecule. The molecules that require deeper or more exploratory search typ-
ically involve more expansion steps and frontier updates, which leads to increased computational
cost.

Table 5: Spearman correlation coefficients between Co-
BiSyn’s computational cost and molecular properties. A
positive coefficient indicates that the metric (runtime or
search iterations) tends to increase as the corresponding
property (molecular size or synthetic difficulty) increases.
All p-values are < 0.05, indicating that each observed cor-
relation is statistically significant.

Spearman (ρ) molecular size synthetic difficulty
runtime 0.413 0.664

search iterations 0.293 0.600

To quantify these effects, we ana-
lyzed all target molecules in USPTO-
190 with respect to (i) molecular size,
measured by heavy atom count, and
(ii) synthetic difficulty, measured by
the length of the ground-truth syn-
thesis pathway. Table 5 summa-
rizes the Spearman correlation co-
efficients between CoBiSyn’s com-
putational cost and these molecular
properties. The results indicate that
runtime and search iterations exhibit
only weak correlation with molecular
size (ρ = 0.413 and 0.293, respec-
tively), but significantly stronger cor-
relation with synthesis pathway length (ρ = 0.664 and 0.600).

We note, however, that molecular size may still affect the overall computational complexity to some
extent, independent of the used search algorithm itself. Specifically, larger molecules may incur ad-
ditional overhead during RDKit-based molecule parsing and reaction template matching. They may
contain more potential matching substructures, and thus the processing time can increase signifi-
cantly. This explains why the Spearman correlation between molecular size and runtime (ρ = 0.413)
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Figure 6: Illustrative examples from USPTO-190. In this case, the expert-designed route has a
length of 10, Retro* yields a shorter route of length 7, while CoBiSyn further discovers an even
shorter route of length 4.

is higher than that between molecular size and search iterations (ρ = 0.293), reflecting that the
computational overhead could be caused by large molecular size rather than the CoBiSyn search
algorithm itself.

F EXAMPLES OF SYNTHESIS PATHWAYS IDENTIFIED

Here we present two illustrative examples from USPTO-190: in the first case, CoBiSyn identifies
a synthesis route that is shorter than the one found by Retro* (Fig. 6); in the second, CoBiSyn
successfully identifies a valid route where Retro* fails (Fig. 7).
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Figure 7: Illustrative examples from USPTO-190. In this case, the expert-designed route has a
length of 8, while CoBiSyn discovers a synthesis route with length 5. Retro* fails to find a valid
solution.

G LLM USAGE

Large Language Models (LLMs) were used in this work solely as assistive tools for polishing lan-
guage of the manuscript and for debugging program errors during code development. The research
ideas, experimental design, and scientific contributions were fully conceived and implemented by
the authors. All authors take full responsibility for the contents of this paper.
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