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ABSTRACT

This paper reveals that large language models (LLMs), despite being trained solely
on text data, are surprisingly strong encoders for purely visual tasks in the ab-
sence of language. Even more intriguingly, this can be achieved by a simple yet
previously overlooked strategy – employing a frozen transformer block from pre-
trained LLMs as a constituent encoder layer to directly process visual tokens. Our
work pushes the boundaries of leveraging LLMs for computer vision tasks, sig-
nificantly departing from conventional practices that typically necessitate a multi-
modal vision-language setup with associated language prompts, inputs, or outputs.
We demonstrate that our approach consistently enhances performance across a di-
verse range of tasks, encompassing purely 2D and 3D visual recognition tasks
(e.g., image and point cloud classification), temporal modeling tasks (e.g., ac-
tion recognition), non-semantic tasks (e.g., motion forecasting), and multi-modal
tasks (e.g., 2D/3D visual question answering and image-text retrieval). Such im-
provements are a general phenomenon, applicable to various types of LLMs (e.g.,
LLaMA and OPT) and different LLM transformer blocks.
We additionally propose the information filtering hypothesis to explain the ef-
fectiveness of pre-trained LLMs in visual encoding – the pre-trained LLM trans-
former blocks discern informative visual tokens and further amplify their effect.
This hypothesis is empirically supported by the observation that the feature acti-
vation, after training with LLM transformer blocks, exhibits a stronger focus on
relevant regions. We hope that our work inspires new perspectives on utilizing
LLMs and deepening our understanding of their underlying mechanisms.

1 INTRODUCTION

Large language models (LLMs), trained on massive amounts of text data, have recently demon-
strated remarkable potential across various tasks, extending beyond their original linguistic domain.
For example, in the field of computer vision, LLMs exhibit the ability to interact with visual to-
kens and decode them into tokenized output. This is commonly achieved in a multi-modal vision-
language framework that incorporates the language modality, as exemplified by either projecting
visual tokens to LLMs via linear layers (Koh et al., 2023; Lin et al., 2023; Merullo et al., 2023;
Schwettmann et al., 2023) or employing cross-attention mechanisms between visual and language
tokens (Alayrac et al., 2022; Li et al., 2022; 2023; Wang et al., 2023). As we explore the limits
of utilizing LLMs for computer vision tasks, an interesting question arises: can LLMs effectively
handle tasks that are exclusively visual, without any reliance on language?

This paper provides a positive demonstration of feasibility in addressing this question, by introduc-
ing a straightforward yet previously overlooked approach: incorporating a frozen transformer block
from a pre-trained LLM as a general-purpose visual encoder layer, directly processing the visual
tokens. Specifically, as illustrated in Fig. 1a and Fig. 1b, our design involves the following steps:
(1) extract a frozen LLM transformer block and append it on top of the original visual encoder; (2)
insert trainable linear layers before and after the added LLM block to align the feature dimensions;
and (3) freeze the LLM transformer while optimizing the other modules as usual during training.

Surprisingly, this simple design enhances performance across a wide spectrum of tasks, including 2D
and 3D recognition (image and point cloud classification), video understanding (action recognition),
and non-semantic (motion forecasting) tasks. In addition to these purely visual tasks, our approach
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(b) Pseudo-Code
def __init__(self, *args, **kawargs):
    # Encoder
    self.ViT = Encoder(args, kwargs)
    self.classifier = Decoder(args, kwargs)
    
    # Language Transformer
    self.L1 = nn.Linear(ViT.hidden_dim, LM.hidden_dim)
    self.LM = LM_Transformer(args, kwargs)
    self.L2 = nn.Linear(LM.hidden_dim, ViT.hidden_dim)

    # Freezing
    for param in self.LM.parameters():
        param.requires_grad = False

def forward(self, img):
    z = self.ViT(x)
    
    z = self.L1(z)
    z = self.LM(z)
    z = self.L2(z)

    y = self.classifier(z)
    return y

Figure 1: Our straightforward method of using a frozen transformer block from pre-trained LLMs
as a visual encoder layer. Visualized with an example of ViT (Dosovitskiy et al., 2021). (a) Our
design simply appends a frozen transformer block (pink) on top of the regular visual encoder (gray).
Only two trainable linear layers (green) are added to align the feature dimensions. (b) Pytorch-style
pseudo-code shows the simplicity of our approach.

is also effective in multi-modal tasks (2D/3D visual question answering and image-text retrieval).
Notably, such improvements are general across various types of LLMs like LLaMA (Touvron et al.,
2023) and OPT (Zhang et al., 2022), as well as different LLM transformer blocks.

Our discovery of using a pre-trained LLM transformer block as a visual encoder layer is intriguing,
because it significantly deviates from the conventional designs of vision-language models (VLMs).
In particular, our treatment of LLM transformers as encoders (1) operates independently of language
prompts, inputs, or outputs; (2) allows for training from scratch without the need for pre-trained
backbones like CLIP (Radford et al., 2021); and (3) decouples and simplifies the usage of LLMs
into separate transformer blocks.

However, one crucial question remains: why are LLMs effective in visual encoding, given that they
have been exclusively trained on text and have never encountered visual input? To this end, we pro-
pose the information filtering hypothesis: the pre-trained LLM transformer blocks discern informa-
tive visual tokens and further amplify their contribution to the latent representation. This hypothesis
stems from our observation across multiple tasks, where the feature activation consistently exhibits
a stronger focus on relevant regions, after integrating the frozen LLM transformer blocks.

In summary, we have made the following contributions:

• We discover that using a frozen transformer block from pre-trained LLMs as a visual encoder
layer facilitates a diverse range of tasks, by introducing a simple yet under-explored approach.

• We demonstrate that the benefits of frozen LLM transformers in visual encoding are a general
phenomenon, through our investigation on various LLMs and transformer blocks.

• We propose the information filtering hypothesis to explain the effectiveness of frozen LLM trans-
formers in processing visual tokens: the incorporated LLM blocks distinguish the informative
tokens and amplify their effect.

We hope that our work will drawn attention to the intriguing application of employing LLM trans-
formers as versatile encoders, not only for visual inputs but potentially also for other modalities.
Additionally, we hope to inspire new perspectives on understanding LLMs and VLMs.

2 RELATED WORK

Large language models. Pre-training transformers (Vaswani et al., 2017) with masked token pre-
diction facilitates the generalizability of language models (LMs) to various tasks, represented by
BERT (Kenton & Toutanova, 2019). Later on, larger models at scale are proposed guided by the
scaling law (Kaplan et al., 2020), such as GPT (Brown et al., 2020), LLaMA (Touvron et al., 2023),
OPT (Zhang et al., 2022), etc. These large models with tens of billions of parameters unlock the
intriguing ability of in-context learning and excellent zero-shot performance on various tasks. Our
work highlights the interesting discovery that the transformer blocks in such large language models
(LLMs) are able to interact with visual data and enhance a wide spectrum of computer vision tasks.

Language models for visual tasks. LMs are mostly used as text encoders for vision-language
models (VLMs) (Dou et al., 2022; Kim et al., 2021) or image-text pre-training (Radford et al.,
2021) before the emergence of LLMs. After the creation of LLMs, their code generation ability
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encourages flexibly combining the vision algorithms for user queries, represented by visual pro-
gramming (Gupta & Kembhavi, 2023). In addition, the strong ability of LLMs has also elicited
using them as generalizable decoders, i.e., translating the latent feature into output tokens. These
frameworks commonly project visual features to the input layer of LLMs directly (Guo et al., 2023;
Koh et al., 2023; Lin et al., 2023; Merullo et al., 2023; Chen et al., 2023) or use the structures of
the latent bottleneck (Jaegle et al., 2021) to further encode visual tokens (Alayrac et al., 2022; Hong
et al., 2023; Li et al., 2022; 2023; Wang et al., 2023). Our exploration reveals the potential of con-
sidering the transformer blocks in LLMs as general-purpose encoders for visual data, as opposed to
the previous usages of either pure encoders for text embeddings or decoders for tokenized outputs.

Interpreting neural networks. Understanding neural networks begins by visualizing the con-
volutional patterns in low-level layers (Erhan et al., 2009). With a deeper interest in semantics,
attribution-based methods like Grad-CAM (Selvaraju et al., 2017) further analyze the contribution
of neurons for a certain class. Network dissection (Bau et al., 2017; Zhou et al., 2018) also discov-
ers that neural network units correspond to semantic concepts. For LLMs, researchers find that the
knowledge is mainly located at the linear layers in feedforward networks (FFN) (Dai et al., 2022;
Geva et al., 2020; Meng et al., 2022a;b), and corresponds to visual concepts (Schwettmann et al.,
2023). Compared with them, we study a new scenario of why a pre-trained LLM transformer can
benefit visual encoding and propose the information filtering hypothesis.

3 METHOD: FROZEN LLM TRANSFORMERS FOR VISUAL ENCODING
Framework design. We formally introduce using a pre-trained LLM transformer as a visual en-
coder layer shown in Fig. 1a. Without loss of generality, we consider a neural network that maps
input x to latent representation z and predicts labels y with an encoder FE and a decoder FD,

FE(x)−→ z, FD(z)−→ y. (1)
Then a single pre-trained transformer block from an LLM like LLaMA (Touvron et al., 2023),
denoted as FLM , is inserted between the encoder FE and decoder FD. As the feature dimensions are
different between the encoder FE and the language transformer FLM , we employ two linear layers
F1

L and F2
L before and after FLM to align the dimensionality. These modify the neural network into

FE(x)−→ z, F2
L ·FLM ·F1

L(z)−→ z′, FD(z′)−→ y. (2)
In the training stage, the pre-trained transformer FLM remains frozen, as in the pseudo-code of
Fig. 1b, while all the other modules are trained normally, including F1

L and F2
L.

Comparison with vision-language models. Our approach appears similar to recent vision-
language models (VLMs) at the first glance, such as Lin et al. (2023), FROMAGe (Koh et al.,
2023), and LiMBeR (Merullo et al., 2023), where linear layers directly project visual features to
the input space of LLMs. However, our approach is different, because the linear layer F1

L does not
necessarily align the visual representation z into the language space. Concretely, this is reflected
in three aspects: (1) Independence of visual pre-training. Our paradigm supports training-from-
scratch without relying on pre-trained visual encoders like CLIP (Radford et al., 2021). (2) Inde-
pendence of language. Our framework can function without language-based input or prompts, and
it is applicable for general visual representation learning instead of only vision-language tasks. (3)
Independence of transformer blocks. Previous VLMs treat an entire LLM as a coherent module,
while our framework separates each transformer block as an independent layer for visual encoding.

Comparison with LLMs. We substantially change the behaviors of LLM transformers, due to the
distinct formats between visual and text data. (1) Attention mask. LLMs commonly utilize auto-
regressive masks to mimic the order of text generation. However, the tokens in visual data come
all at once, such as the image tokens of the cat (Fig. 1a). So we abandon auto-regressive attention
masks and only use attention masks to indicate the padded tokens. (2) Positional embedding. The
positional embedding in LLMs, e.g., rotary positional embedding (Su et al., 2021) in LLaMA, is not
a common option for visual encoders. Therefore, we remove the positional embeddings of LLMs
for simplicity and consistency with the original visual backbones. Considering the importance of
attention masks and positional embeddings in transformers, it is surprising in hindsight that our
framework has a positive influence on visual tasks.

4 APPLICABILITY OF LLM TRANSFORMERS FOR VISUAL TASKS

We instantiate our framework to various tasks and observe the wide applicability of pre-trained LLM
transformers. Our experiments cover 2D (image classification) and 3D (point cloud classification),
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Model ImageNet ImageNet-C ImageNet-A ImageNet-SK ImageNet-R

ViT-T 72.1 43.9 7.7 19.6 32.3
+LLaMA 73.2 45.8 8.7 20.6 33.8
ViT-S 80.1 57.2 20.5 28.9 42.1
+LLaMA 80.7 58.7 22.7 30.5 42.8
ViT-B 80.6 60.5 23.4 31.9 43.5
+LLaMA 81.7 62.1 26.9 33.2 44.3

Table 1: Incorporating a single transformer block from LLaMA to ViT models consistently improves
both accuracy (ImageNet) and robustness (ImageNet-{C,A,SK,R}).

single-frame and multi-frame (action recognition), semantics and motion (motion forecasting), and
tasks involving linguistic input or not (2D and 3D vision-language tasks). By default, we adopt the
last transformer block from LLaMA-7B (Touvron et al., 2023). Our framework achieves consis-
tent and significant improvements across these tasks following the standards of prior work. More
analysis on our designs is in Sec. 5.

4.1 IMAGE CLASSIFICATION

Image classification is the most common challenge for representation learning. We conduct experi-
ments on ImageNet1k (Deng et al., 2009), and additionally evaluate on robustness benchmarks: cor-
rupted images from ImageNet-C (Hendrycks & Dietterich, 2018), natural adversarial images from
ImageNet-A (Hendrycks et al., 2021b), and out-of-distribution images from ImageNet-SK (Wang
et al., 2019) and ImageNet-R (Hendrycks et al., 2021a).

Without loss of generality, we select ViT (Dosovitskiy et al., 2021) due to its wide use and native
support for transformers. Following the notation in Eqn. 2, the encoder FE is the set of self-attention
transformer blocks and the decoder FD denotes a linear classifier. An intuitive illustration is in
Fig. 1a. We train both the baseline ViT models and ViT+LLaMA from scratch following the same
configuration of DeiT (Touvron et al., 2021). More details are in Sec. C.1.

The accuracy of ViT models consistently improves after incorporating the frozen LLaMA trans-
former block as in Table 1, including both the accuracy on clean ImageNet images and the robust-
ness on corrupted or adversarial images. Our further experiments validate that the improvement
is closely related to the LLM transformer instead of the sole consequence of an increased model
capacity. Please refer to Sec. 5.1 and Sec. B.2 for details.

4.2 POINT CLOUD CLASSIFICATION

Model ScanObjectNN
BG OBJ T50

Point-BERT 87.4 88.1 83.1
+LLaMA 88.0 88.5 83.8

Model ModelNet40
1k 4k 8k

Point-BERT 92.67 92.91 93.19
+LLaMA 92.42 92.82 93.56

Table 2: LLM transformer im-
proves point cloud classifica-
tion.

Point cloud classification handles a fundamentally different
modality compared with images. The models predict labels by
processing unordered 3D points and understanding the geom-
etry. Our experiments cover two common datasets: ScanOb-
jectNN (Uy et al., 2019) and ModelNet40 (Goyal et al., 2021).
ScanObjectNN contains three splits: background (BG), fore-
ground (OBJ), and clipped (T50) points. For ModelNet40, we
experiment with different densities (1k, 4k, 8k) of points.

We adopt Point-BERT (Yu et al., 2021) and load its pre-trained
parameters on ShapeNet (Chang et al., 2015). Then we ap-
pend the LLaMA transformer after its final attention block before
fine-tuning on point cloud classification datasets. Details are in
Sec. C.2.

As shown in Table 2, our approach improves the accuracy for point cloud classification, further sup-
porting the applicability of using a frozen LLM transformer as a visual encoding layer. Note that
the accuracy slightly drops on ModelNet40 with 1k and 4k points, due to the saturation and ∼0.2%
variance of performance on ModelNet40 which is also analyzed in Ma et al. (2022). However, with
an increased number of points (8k), the improvement of the LLaMA transformer is noticeable on
ModelNet40. More importantly, on the more challenging ScanObjectNN, our approach improves
the accuracy consistently and significantly. This experiment also shows that our framework is com-
patible with fine-tuning setups, in addition to training-from-scratch scenarios in Sec. 4.1.

4.3 ACTION RECOGNITION

For the video modality, we apply the pre-trained LLM transformer block to action recognition, where
the algorithm predicts the action labels of video clips. We choose the benchmark of “Something-
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(a) 2D VQA and Image Retrieval

Model VQAv2 (Tes-dev) Flickr30k (Val)
Overall Yes/No Number Other IR@1 IR@5 IR@10

METER 69.60 85.08 47.82 61.37 49.66 80.86 89.48
+ LLaMA 70.23 85.70 48.98 61.89 50.22 82.26 90.08

(b) 3D VQA

Methods EM@1 EM@10

ScanQA 46.58 85.97
SQA3D 47.20 86.82

SQA3D-LLaMA 48.09 89.03

Table 5: Frozen LLaMA transformer enhances both 2D (a) and 3D (b) vision-language models.

something-v2” (SSv2) (Goyal et al., 2017b) for evaluation, because it highlights the challenge of
understanding cross-frame movement, instead of relying on single-frame semantics.

Model Acc1 Acc5

ViT-S 64.71 89.15
+LLaMA 65.89 89.93
ViT-B 64.97 89.50
+LLaMA 66.03 90.25

Table 3: Pre-trained LLM
transformer improves action
recognition on SSv2.

We follow VideoMAE (Tong et al., 2022) and adopt the simple yet
effective ViT backbones. Different from patches of tokens in 2D im-
ages, the video tokens are cubes spanning both spatially and tempo-
rally. Identical to Fig. 1a, we place the LLaMA transformer behind
the last self-attention block in ViT. Our training setup also adopts the
two-step practice in VideoMAE: (1) initialize ViT transformers from
MAE (He et al., 2022) pre-training; (2) add the LLM transformer
and then fine-tune on the SSv2 dataset using the same configuration
of VideoMAE. More details are in Sec. C.3.

The LLaMA transformer enhances the accuracy for both ViT-S and ViT-B in Table 3, supporting the
applicability of our framework for videos. To clarify, our baseline accuracy is lower than that re-
ported in VideoMAE’s original paper, because VideoMAE used 32/64 GPUs to enable a larger batch
size than our computational resources. Nonetheless, we control the settings identical between ViT
and ViT-LLaMA for a fair comparison and indicate the positive effects of using LLM transformers.

4.4 MOTION FORECASTING

Model ADE↓ FDE↓ MR↓
VectorNet 0.77 1.23 13.2
+LLaMA 0.76 1.20 12.7
mmTransformer 0.72 1.10 10.7
+LLaMA 0.71 1.08 10.5

Table 4: LLM transformer layer is ben-
eficial for motion forecasting.

We select motion forecasting as an example of a non-
semantic task. It is safety-critical for autonomous driving
and capitalizes on the understanding of dynamics, agent-
agent interaction, and agent-lane relationship. The input
commonly includes the historical trajectories of agents
and way-points of lane segments, which are both repre-
sented in polylines on the bird’s-eye view (BEV). The de-
sired output is a set of K most possible future trajectories.
We conduct experiments on Argoverse (Chang et al., 2019). The evaluation metrics are minimum
average displacement (ADE), minimum final displacement (FDE), and miss rate (MR), which cal-
culate the errors of predictions from different aspects and are better at lower values. We apply the
frozen LLM transformer to VectorNet (Gao et al., 2020) and mmTransformer (Liu et al., 2021). They
first convert the agents and lanes into features, and then our LLaMA transformer block processes
these agent and lane tokens. Demonstration and details are in Sec. C.4.

According to Table 4, the models with LLaMA forecast better trajectories. However, we notice that
the improvement is less significant compared with semantic tasks, which reflects the preference of
LLM transformers for encoding rich semantics over object movements.

4.5 VISION-LANGUAGE TASKS

2D vision-language tasks. The benefits of frozen LLM transformers for visual encoding are not
limited to purely visual tasks. We experiment with 2D vision-language (VL) tasks, including vi-
sual question answering (VQA) on VQAv2 (Goyal et al., 2017c) and zero-shot image retrieval on
Flickr30k (Plummer et al., 2015). We adopt the widely-used METER (Dou et al., 2022) as our
baseline. It extracts uni-modal features for images and text, fuses cross-modal features, and de-
codes the output from the cross-modal features. We insert the LLM transformer block after the
cross-modal fusion. An intuitive illustration is in Fig. H. During training, our setup follows Shi et al.
(2023): initialize the image encoder with CLIP-B/32 (Radford et al., 2021) and the text encoder with
RoBERTa (Liu et al., 2019), and then fine-tune on VQAv2 or Flickr30k. Details are in Sec. C.5. As
in Table 5a, both of the 2D VL tasks are significantly enhanced with the LLaMA transformer. This
evidence supports the potential of a frozen LLM transformer for multi-modal tasks.
3D visual question answering. We extend our proposed idea into 3D VQA, which requires com-
prehending an input 3D scene represented by a point cloud or multi-view images and then answering
questions. 3D VQA challenges the ability to ground language in 3D context. We conduct our exper-
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iments on the SQA3D (Ma et al., 2023) dataset, comparing with baseline methods and state of the
arts (Ma et al., 2023; Azuma et al., 2022) on the exact match (EM) metric. We follow the baseline
SQA3D to process the textual input with LSTM (Hochreiter & Schmidhuber, 1997) and 3D point
clouds with VoteNet (Qi et al., 2019). Here, we add the LLM block after the VL fusion, which
is consistent with our 2D VL design (Sec. 4.5). More details are in Sec. C.6. According to Ta-
ble 5b, adding a frozen LLM transformer effectively enhances the QA ability of models. The full
comparison with detailed breakdown metrics is in Table E.

5 ANALYSIS ON LLM TRANSFORMERS FOR VISUAL TASKS

We justify our design choices (Sec. 5.1) and illustrate the wide applicability of our framework to
various LLMs and transformer layers (Sec. 5.2). Our investigation also discovers that sufficiently
large LLMs are the premise of benefiting visual encoding with a frozen transformer (Sec. B.3) and
discusses the place to insert LLM blocks (Sec. B.4).

5.1 ABLATION STUDY ON DESIGN CHOICES

Model Acc

ViT-S 80.1
ViT-S-LLaMA 80.7
ViT-S-MLP 80.4
ViT-S-LLaMA-FT 78.9

Table 6: Ablation study on
model capacity and fine-
tuning.

Model capacity. Regarding the wide applicability of frozen LLM
transformers, we question if the improvement mainly comes from
the increased capacity of the linear layers F1

L and F2
L, instead of

the pre-trained weights in LLM transformers FLM . To analyze
model capacity, we create ViT-S-MLP, which has identical train-
able parameters compared with ViT-S-LLaMA. Concretely, ViT-
S-MLP removes the LLM block FLM , and then inserts a GeLU ac-
tivation (Hendrycks & Gimpel, 2016) and layer normalization (Ba
et al., 2016) between F1

L and F2
L. It also adopts the identical train-

ing procedure as ViT and ViT-LLaMA in Sec. 4.1 for a fair comparison. The results are summarized
in Table 6: the ViT-S-MLP has better performance than ViT-S due to its increased capacity, but the
improvement is only about half of ViT-S-LLaMA. Therefore, the LLM transformer weights are cru-
cial for the improvement and the observed benefits are not mere consequences of increased model
capacity. Investigation with more tasks and baselines are in Sec. B.2.
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Figure 2: Various LLM transformer lay-
ers improve the accuracy.

Fine-tuning. We further verify whether fine-tuning the
language transformer (ViT-S-LLaMA-FT) is better than
freezing it. As in Table 6, fine-tuning decreases the
performance compared with ViT-S-LLaMA. We analyze
this phenomenon by visualizing the loss curves in Fig. F
and training under an additional setting of 100 epochs.
Although fine-tuning improves performance under short
training (100 epochs in Table A), it hurts the accuracy
when trained sufficiently: in Fig. F, ViT-S-LLaMA-FT
shows lower training loss but relatively larger validation
loss, which indicates overfitting. Thus, our observation
demonstrates the challenges of training large transform-
ers, and we accordingly freeze the LLM transformers in
our design because of its simplicity and effectiveness.

5.2 VARYING LLM TRANSFORMER LAYERS

We discover that different LLM transformers influence visual representation learning significantly
within our framework, even though they have identical capacity. Specifically, we use transformer
blocks from diverse depths of LLaMA-7B (Touvron et al., 2023) and OPT (Zhang et al., 2022)
onto ViT-S. The models are trained in the ablation study setting of 100 epochs. More details are in
Sec. C.7. As shown in Fig. 2, the layer type significantly changes the performance. These experi-
ments also validate that our framework is applicable to various LLMs and transformer layers, and
highlight the importance of selecting proper transformer layers. We additionally observe that the
last LLM layers consistently improve the performance although they might not be optimal.

6 INFORMATION FILTERING HYPOTHESIS

This section aims to explain how a pre-trained and frozen LLM transformer benefits visual tasks.
Intuitively, our hypothesis can be stated as:
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Figure 3: (a) Feature activation regarding both magnitudes and frequencies of features. We highlight
that ViT-LLaMA demonstrates the emergent tendency of object segmentation compared with ViT,
indicating its ability to select informative tokens. (b) Attention scores between the CLS and visual
tokens. The attention from ViT is commonly noisy (left). Though ViT-LLaMA improves the con-
centration on a few heads, most of the attention heads are still noisy. Both good and bad attention
from ViT-LLaMA are sampled for demonstration purpose.

Information filtering hypothesis. A pre-trained LLM transformer functions as a “filter” that
distinguishes the informative tokens and amplifies their contribution for the prediction, in the form
of enlarged magnitudes or frequencies in the feature activation.

We first derive this hypothesis in the context of image classification (Sec. 6.1), then provide quan-
titative investigation (Sec. 6.2), and discuss the observation on other tasks (Sec. 6.3). Due to space
limits, we include more details in Sec. A and discuss limitations in Sec. A.4.

6.1 QUALITATIVE DERIVATION OF INFORMATION FILTERING HYPOTHESIS
Emergent concentration on informative tokens. Our hypothesis originates from the emergent
behavior that the feature activation highlights the informative tokens after adding a pre-trained LLM
transformer. In the analysis, we extract the activation of features after each layer as Fig. 3a, including
the original ViT FE , the attention layer FA

LM and feedforward network FF
LM in the LLM transformer,

and the linear layers F1
L and F2

L. Notably, the feature activation is calculated regarding both magni-
tudes (L2-norm after centering) and frequencies (L2-norm of angles after Fourier transformation)1.
The different layers in Fig. 3a indeed show diverse preferences over magnitudes or frequencies.

As clearly demonstrated in Fig. 3a, the token activation better captures the regions of target objects
after adding the LLM transformer, especially the magnitudes of F2

L and frequencies of FA
LM . Their

tendency of segmentation is a surprising discovery, because emergent segmentation is only observed
in self-supervised learned (Caron et al., 2021) or specially-designed (Darcet et al., 2024; Shi et al.,
2023; Yang et al., 2024) ViTs. More importantly, the activation’s concentration on the target object
directly supports our hypothesis as evidence of selecting the informative tokens.

Noisy attention scores. In contrast to the feature activation, attention scores struggle to capture
the relevant visual tokens for prediction. We investigate the attention scores between the CLS to-
ken and visual tokens in the last transformer block, which are the last self-attention block in FE for
ViT and the transformer FLM for ViT-LLaMA, respectively. Ideal attention scores that distinguish
the target object should exhibit object segmentation patterns like DINO (Caron et al., 2021). How-
ever, supervised ViT models commonly have noisy attention scores (left part in Fig. 3b). Although
ViT-LLaMA illustrates the ability of emergent segmentation in a few attention heads, most of the
attention scores also suffer from scattering and noisiness. These observations contrast the feature
activation and indicate that the benefits of LLM transformers cannot be simply attributed to attention
scores, since attention scores fail to reliably contribute correct visual tokens.

Deriving the amplification of informative tokens. According to our visualization in Fig. 3a,
the frozen LLM transformer distinguishes the informative tokens. Intuitively, such tokens naturally

1Details of calculation are in Sec. A.5.
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benefit the downstream decoding, but this is straightforward only when the decoder directly takes
the visual tokens as input. As a counterexample, ViT utilizes a CLS token for classification, and the
visual tokens output by F2

L is not the input to the decoder and always receives zero gradients during
training. To bridge the gap in CLS token scenarios, the second half of our hypothesis is necessary:
the frozen LLM transformer amplifies the contribution of informative tokens.

Concretely, the calculation of the CLS token is,

z2
L[CLS] = F2

L ·FF
LM ·FA

LM

(
∑
v∈V

wv z1
L[v]

)
, (3)

where V denotes visual tokens, and wv denotes the weight of visual token v. Eqn. 3 describes the
process of (1) aggregating visual tokens z1

L[v] guided by the attention scores wv; and (2) sequentially
flowing through the subsequent layers, including the LLM transformer’s attention head FA

LM , feed-
forward network FF

LM , and the second linear layer F2
L. To concentrate on explaining visual tokens,

Eqn. 3 also slightly simplifies self-attention by removing the CLS token from the right-hand side.

In Eqn. 3, the useful visual tokens are not reliably attributed to the CLS token, because the attention
scores wv are observed to be noisy. Therefore, our objective is to connect the visual tokens in Eqn. 4,

z2
L[v] = F2

L ·FF
LM ·FA

LM(z1
L[v]), where v ∈V, (4)

which are informative (as in Fig. 3a), to the final feature representation z2
L[CLS]. This pursuit makes

us notice that attention scores wv are noisy while token features z2
L[v] are informative. Such a con-

tradiction indicates that amplification of the informative tokens is a more plausible explanation,
compared with better attention scores. We express the hypothesis below in a formal way, which is a
simple change to Eqn. 3:

z2
L[CLS] ∝ ∑

v∈V
wv
(
F2

L ·FF
LM ·FA

LM(z1
L[v])

)︸ ︷︷ ︸
z2
L[v]

. [Hypothesis] (5)

Eqn. 5 holds equal under the special case of F2
L ·FF

LM ·FA
LM being linear transformation. This equation

explains how the informative tokens in Fig. 3a are implicitly supervised in the CLS token.

As a brief remark, our derivation builds upon two observed pieces of evidence: (1) visual tokens
concentrating on informative regions; and (2) noisy attention scores. These lead to the first half of
our hypothesis and explain the benefits when visual tokens are direct input to decoders. By further
connecting visual tokens to the CLS token, we propose that the inserted LLM transformer amplifies
the effects of informative tokens. A more thorough version of the derivation is in Sec. A.1.

6.2 QUANTITATIVE EVIDENCE
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Figure 4: Pseudo-masks from ViT-
LLaMA’s features (F2

L) have larger
mIoU than attention scores and ViT.

The qualitative observation in Sec. 6 is further sup-
ported with quantitative evidence. Specifically, we use
the ImageNet-S (Gao et al., 2022) dataset to provide the
ground truth of “informative regions” from its annota-
tion of semantic segmentation masks. To assess the fi-
delity of feature activation and attention scores, we first
generate pseudo-masks highlighting their concentrating
regions, i.e., the tokens with larger activation or atten-
tion scores than the others on the same image. Then the
quality of features and attention scores are reflected by
the mIoU (mean intersection-over-union) between their
pseudo-masks and ground truth segmentation masks. Im-
plementation details are in Sec. A.3.

Finally, we summarize the mIoU statistics for feature
activation and attention scores in Fig. 4. As demon-
strated, both ViT-S-LLaMA and ViT-B-LLaMA have bet-
ter mIoU of pseudo-masks than attention scores. This di-
rectly supports our hypothesis that the features {z2

L[v])|v∈V} contribute more reliably than attention
scores {wv|v∈V}. We additionally notice that the pseudo-masks from ViT-LLaMA generally have
larger mIoU compared with ViT, which reflects the benefits of training ViTs with a frozen LLM
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ViT-S

ViT-S-LLaMA

Figure 5: Token activation in action recognition. Video tokens are activated jointly in all the frames,
and every video token is a cube with shape 2× 16× 16. After adding the LLM transformer, the
model better concentrates on the relevant objects and hands (“low threshold”) and more accurately
focuses on frames with hand-object interaction (“high threshold”).
transformer. The advantage of the feature in the first linear layer F1

L also reveals that training with
our framework is beneficial to even earlier stages of features. However, we would like to clarify
that the pseudo-masks from either magnitude or frequency activation are intuitive but lossy mea-
sures to quantify feature quality, because neural networks can encode information in other formats.
Therefore, better measurements to analyze network layers will be meaningful for future work.

6.3 INFORMATION FILTERING HYPOTHESIS ON OTHER TASKS

The previous sections mainly discuss our information filtering hypothesis in terms of image classi-
fication. Meanwhile, we also discover supportive evidence of our hypothesis on various other tasks.
This section investigates action recognition as an example, and Sec. A.2 covers additional tasks
including point cloud classification, 2D VQA, and 3D VQA.

We mainly analyze the information filtering hypothesis in action recognition qualitatively, because
the ground truth of “relevant regions” is difficult to quantify for this task. In practice, we follow
a similar procedure in Sec. 6.1 and visualize the activation of video tokens in Fig. 5, and display
the most highly activated tokens according to either low or high thresholds for better clarity. At
a low activation threshold, we notice that the video tokens from ViT-S-LLaMA better capture the
foreground areas of hands and manipulated objects than ViT-S. With the video tokens in VideoMAE
activated both spatially and temporally, we further increase the threshold to demonstrate its ability to
select informative frames. As in the “high threshold” row of Fig. 5, ViT-S-LLaMA more accurately
focuses on the middle frames with actual human-object interaction. Therefore, we conclude that
the informative video tokens are indeed distinguished and augmented in action recognition, which
aligns with the information filtering hypothesis.

7 CONCLUSION

In this work, we explore the unexpected capability of large language models (LLMs) as encoders for
visual tasks, a significant departure from their conventional text-based applications. By seamlessly
integrating a frozen transformer block from pre-trained LLMs into visual encoders, we observe con-
sistent performance enhancements across diverse visual challenges, including 2D image and video
classification, 3D point cloud classification, motion forecasting, and 2D and 3D vision-language
tasks. This phenomenon, underpinned by our proposed information filtering hypothesis, highlights
the inherent adaptability and versatility of LLMs for more general representation learning. We hope
that our insights will catalyze further exploration into the uncharted fields of LLM applications and
foster innovative strategies to harness their potential in novel ways.

Discussion and limitations. We have validated the capability of pre-trained, frozen language trans-
formers across a wide spectrum of visual tasks. It is important to note that our goal is to methodically
explore this under-investigated problem. Therefore, our experiments are designed to maximize the
diversity of tasks under fair comparisons with well-established or competitive baselines, rather than
striving for state-of-the-art performance for all tasks, which is also constrained by our computational
resources. We leave scaling up the experiments to state-of-the-art levels for all tasks as interesting
future work. Meanwhile, we also notice that our information filtering hypothesis has not covered
several intriguing questions, e.g., how to quantify the functions of different layers and analyze how
the training process facilitates the visual token features to cooperate with the language transformer,
which are also meaningful directions.
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A THOROUGH DISCUSSION ON THE INFORMATION FILTERING HYPOTHESIS

A.1 DETAILED DERIVATION OF THE HYPOTHESIS

We expand the details of several steps in our derivation (Sec. 6.1) for better clarity. Beginning from
the formula of the CLS token below,

z2
L[CLS] = F2

L ·FF
LM ·FA

LM

(
∑
v∈V

wv z1
L[v]

)
, (A)

which is identical to Eqn. 3 in the main paper, we further separate the visual tokens into the sub-
set of informative tokens Vi and uninformative tokens Vu. Intuitively, the tokens corresponding to
the foreground objects are informative, and the background ones are uninformative. This changes
Eqn. A into,

z2
L[CLS] = F2

L ·FF
LM ·FA

LM

(
∑
i∈Vi

wi z1
L[i]+ ∑

u∈Vu

wu z1
L[u]

)
. (B)

Using the same notation, our observation on the feature activation can be stated as: the attention
weights for informative tokens {wi, i∈Vi} are still noisy after incorporating the frozen LLM trans-
former, while the final visual tokens shown as below have emergent concentration on target regions:

z2
L[i] = F2

L ·FF
LM ·FA

LM(z1
L[i]), where i ∈Vi. (C)

Combining Eqn. B and Eqn. C inspires us to express our hypothesis in terms of the connection
between visual and CLS tokens with Eqn. D below, where the added modules F2

L ·FF
LM ·FA

LM augment
the informative tokens Vi and lead to better prediction:

z2
L[CLS] ∝ ∑

i∈Vi

wi
(
F2

L ·FF
LM ·FA

LM(z1
L[i])

)︸ ︷︷ ︸
z2
L[i]

+ ∑
u∈Vu

wu
(
F2

L ·FF
LM ·FA

LM(z1
L[u])

)︸ ︷︷ ︸
z2
L[u]

. [Hypothesis] (D)

This is a more thorough expression of our hypothesis in the main paper (Eqn. 5) to better differentiate
the role of informative tokens in our hypothesis.

A.2 INFORMATION FILTERING HYPOTHESIS ON OTHER TASKS

This section provides the evidence for our information filtering hypothesis in other tasks, supple-
menting the discussion on image classification (Sec. 6.1) and action recognition (Sec. 6.3). Specifi-
cally, we observe that the frozen LLM transformer selects and amplifies information tokens in point
cloud classification, 2D visual question answering (VQA), and 3D VQA. The tasks of motion fore-
casting and image-text retrieval are not illustrated, because it is more abstract to intuitively define
their “informative” tokens. For the investigated tasks, we mainly analyze qualitatively because the
ground truth for relevant regions is ambiguous on such tasks, unlike the segmentation masks for
image classification (Sec. 6.2).

Point cloud classification. We visualize the activation of the point tokens in point cloud classifi-
cation before and after adding the frozen LLM transformer in Fig. A. In the examples of chairs and
desks, we observe that “PointBERT-LLaMA” concentrates less on the background (chairs, indicated
with red arrows) and more on the actual object surfaces (desks, indicated with red arrows). This
demonstrates that the frozen LLM transformer learns to focus on the informative points, which is
consistent with our hypothesis.

2D VQA. We investigate the activation of visual tokens in the 2D VQA task in Fig. B. With the
METER (Dou et al., 2022) framework initializing the visual backbone from CLIP (Radford et al.,
2021) weights, the quality of feature activation is reasonable and it mostly concentrates on the target
regions for both the baseline METER and our “METER-LLaMA.” However, we can still witness
that feature activation better aligns with the images and questions than the noisy attention heads.
Furthermore, the activation of “METER-LLaMA” is also slightly advantageous over METER with
less scattering, such as better concentrating on the regions of light and leaves at high thresholds.

3D VQA. We analyze the effect of a frozen LLM transformer for 3D VQA and further confirm
our hypothesis. As in Fig. C, we compare the activation of visual tokens, which are seed points in
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Figure A: Visualization of feature activation for point cloud classification. Brighter colors indicate
higher activation values. To highlight the most salient activation, we apply a threshold to filter out
points with low activation values. This visualization demonstrates that the model learns to focus
on the most discriminative foreground object for classifying the point cloud after adding the frozen
LLM transformer. For visual clarity, we use red arrows to indicate the key regions to observe.

Is the light on? 

Low

METER
METER
+LLaMAThreshold

High

How many leaves? 

Low

Threshold

High

METER
METER
+LLaMA

Attn
Scores

Attn
Scores

Figure B: Visualization of attention scores and feature activation for 2D VQA. We are able to visu-
alize attention scores, because METER uses the CLS token. Both low and high thresholds for feature
activation are displayed to illustrate the concentration on relevant regions.

VoteNet (Qi et al., 2019), before and after incorporating the LLaMA transformer. To provide the
context, the scenes in SQA3D (Ma et al., 2023) are projected onto the bird’s-eye-view (BEV). From
the visualizations, we clearly observe that the feature activation exhibits sharper concentration on the
directions guided by language after adding LLaMA, such as the “table behind me” areas in the left
figure and “to my left side” areas in the right figure. Therefore, these indicate that the added LLM
transformer selects the informative points and augments them for downstream question answering.

A.3 QUANTITATIVE EVIDENCE

In Sec. 6.2, we generate the pseudo-masks from feature activation or attention scores and then eval-
uate their quality with mIoU. This section describes the details.

Situation:	I	am	standing	in	front	of	the	table	and	facing	trash	can.	
Question:	How	many	chairs	are	at	the	table	behind	me?	

Situation:	I	am	standing	between	the	toilet	on	my	right	and	sink	on	my	left.	
Question:	Is	the	door	open	or	closed	to	my	left	side?

SQA3D SQA3D+LLaMA SQA3D-LLaMASQA3D

Figure C: Analysis of feature activation for 3D VQA. The scenes are viewed from BEV. The green
arrow marks the location and facing direction. The colors of points indicate their activation: a lighter
color (yellow) represents a larger magnitude than a dark color (blue and green). We observe that
“SQA3D+LLaMA” has sharper activation that is better related to the questions. Thus, it supports
our information filtering hypothesis. (Best viewed in color and zooming in.)
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Dataset. We leverage ImageNet-S (Gao et al., 2022) because it provides semantic segmentation
masks for ImageNet (Deng et al., 2009) images. Specifically, we adopt the ImageNet-S version with
50 categories and run our evaluation on its validation set, to avoid data leakage from the training set.

Definition of IoU. Our IoU calculates the alignment between the highly activated tokens and the
ground truth mask. As tokens are sparse and in low resolution, we slightly change the calculation of
IoU for our purpose. Specifically, we first project the ground truth mask to the resolution of tokens
to acquire a binary mask of tokens, indicating whether they are related to the target object (with
value 1) or not (with value 0), denoted as Mg. Then we compute the IoU between the pseudo-mask
Mp generated from feature activation with Mg as follows:

TP = sum(MgMp),FP = sum((1−Mg)Mp),FN = sum(Mg(1−Mp)), (E)

ĨoU(Mg,Mp) = TP/(TP+FP+FN). (F)

Pseudo-mask generation. To generate pseudo-masks from feature activation, we are motivated
by Fig. 3a and treat the highly-activated regions as the final result. To generate pseudo-masks with
attention scores, we first sum the scores from all the attention heads and follow a similar procedure
of treating highly-scored regions as pseudo-masks. Concretely, given a feature activation z, gener-
ating a pseudo-mask is as straightforward as Mp=(z>t), where t is a threshold between 0 and 1.
Although the process is natural, we notice that selecting the thresholds for activation or score signifi-
cantly affects the quality of pseudo-masks. Therefore, we always automatically choose the threshold
maximizing the mIoU between the pseudo-masks and ground truth masks to avoid threshold tuning
and enable a fair comparison. The algorithm of choosing the best threshold for the activation or
attention scores for each image is as below,

IoU(Mg,z) = max
t

(
ĨoU(Mg,Mp)

)
,where Mp = z > t and t ∈ {0.1,0.2,0.3, ...,0.9}. (G)

Finally, our mIoU in Sec. 6.2 is the mean IoU on all the images.

Full results with both magnitude and frequency activation. Our comparison of mIoU in Fig. 4
only visualizes the larger mIoU from the activation of magnitude or frequency for clarity. To sup-
plement the comprehension, we display the complete statistics in Fig. D. As illustrated, both ViT-S-
LLaMA and ViT-B-LLaMA have better pseudo-mask quality from feature activation than attention
scores, which directly supports our hypothesis. With the new statistics from both activation types,
we additionally notice that the neural network layers have varied preferences over magnitudes or
frequencies. However, the ViT-LLaMA features still have better fidelity compared with attention
scores and features from ViT. As stated in Sec. 6.2, either magnitude or frequency is an intuitive but
lossy way to understand feature representation. Thus, future work is needed to further investigate
the advantages and properties of individual layers.

Attn												𝑭!" 𝑭!#$ 𝑭!#% 𝑭!& ViT-S Attn														𝑭!" 𝑭!#$ 𝑭!#% 𝑭!& ViT-B
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Figure D: Visualization of mIoU between the ground truth masks and pseudo-masks generated from
attention scores/feature activation. This figure supplements Fig. 4 by providing the mIoU for both
magnitude and frequency activation, where Fig. 4 selects the better one for the clarity of illustration.

A.4 DISCUSSION AND LIMITATIONS OF THE HYPOTHESIS

Perspective of usable information. We supplement the opinions from Xu et al. (2020) that greatly
inspire our investigation of the information filtering hypothesis. Xu et al. (2020) propose that a well-
trained neural network layer can be considered as a decipher adding usable information into the

17



Published as a conference paper at ICLR 2024

features and enabling subsequent modules to better infer the latent information. In our informa-
tion filtering hypothesis, the incorporated modules are indeed acting as deciphers that enlarge the
contribution of usable tokens and benefit downstream predictions.

Limitations. Though our information filtering hypothesis explains how the performance improves
with frozen LLM transformers, we notice that several intriguing phenomena are not yet covered.
First, the current hypothesis is unable to analyze the utilities of different layers separately. Second,
the hypothesis does not explain how the training dynamics facilitate the visual token features to
cooperate with the frozen language transformer, which is interesting future work.

A.5 IMPLEMENTATION DETAILS IN DERIVING THE HYPOTHESIS

Magnitude and frequency activation Our visualization in Sec. 6 and Fig. 3a calculates the feature
activation on magnitude or frequency domains to reflect their concentration on target objects. We
illustrate the Pytorch-style pseudo-code for our operations in Fig. E. For magnitude, we simply
compute the L2 norm of features after centering them. Similarly, the activation in the frequency
domain is the norm of the difference between the angle of a token feature vector and the average
angle vector of all the tokens within the image after Fourier transformation. Finally, the activation
values are normalized to 0 and 1 for visualization and quantitative analysis.

def activations(visual_tokens):
# visual_tokens: tensor with shape [H, W, C]
# magnitude calculation
avg_token_feature = visual_tokens.mean(dim=0, keepdim=True)
activation = (visual_tokens – avg_token_feature).norm(dim=-1)
mag_min, mag_max = activation.min(), activation.max()
mag_activation = (activation – mag_min) / (mag_max – mag_min)

# frequency calculation
freq_token = torch.fft.fft(feat).angle()
avg_freq_token = freq_token.mean(dim=0, keepdim=True)
activation = (freq_token – avg_freq_token).norm(dim=-1)
freq_min, freq_max = activation.min(), activation.max()
freq_activation = (activation – freq_min) / (freq_max – freq_min)
return mag_activation, freq_activation

Figure E: Pytorch-style pseudo-code for calculating the activation of features on magnitude and
frequency domains.

B ADDITIONAL ANALYTICAL RESULTS

B.1 ABLATION STUDY ON DESIGN CHOICES

This section provides supplementary results for the analysis on design choices in Sec. 5.1.

Model Acc

100 Epochs

ViT-S 75.3
ViT-S-LLaMA 75.8
ViT-S-MLP 75.5
ViT-S-LLaMA-FT 76.8
300 Epochs

ViT-S 80.1
ViT-S-LLaMA 80.7
ViT-S-MLP 80.4
ViT-S-LLaMA-FT 78.9

Table A: Ablation studies
on model capacity and fine-
tuning.

Results with 100 epochs of training. We conduct the ablation
studies mostly with 100 epochs to balance the computation and fi-
delity of conclusions. In addition to the experiments lasting 300
epochs in Sec. 5.1, we supplement them with experiments lasting
100 epochs, summarized in Table A. According to the numbers,
adding a frozen LLM transformer as a visual encoder layer is still
effective, improving the accuracy of the baseline ViT. In addition,
we highlight that fine-tuning is beneficial under insufficient train-
ing (100 epochs), but it hurts the accuracy when trained longer due
to overfitting, which is analyzed in the next paragraph. In conclu-
sion, both experiments validate our design choices and the effec-
tiveness of using pre-trained LLM transformer blocks as encoder
layers.

Loss curves for fine-tuning. We analyze the design choice of
fine-tuning the LLM transformer in Sec. 5.1. Fig. F shows the loss curves for both training and
validation sets during the training process. The training loss is much larger than the validation loss,
because their loss functions are different: the training loss is the label-smoothing cross-entropy,
while the validation loss is the regular cross-entropy loss. With the trend in Fig. F, we conclude that
jointly fine-tuning the pre-trained LLM transformer might not benefit the performance, yet making
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the training process more complicated. Therefore, our experiments adopt the simple solution of
freezing the LLM transformer.
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Figure F: Loss curves on the training and validation sets for fine-tuning the LLaMA transformer
(ViT-S-LLaMA-FT) or not (ViT-S-LLaMA). We use solid lines to denote training losses and dashed
lines to denote validation losses. Though fine-tuning shows advantages in the beginning, it finally
hurts the performance due to overfitting (a larger loss on the validation set compared with not fine-
tuning).

B.2 ABLATION STUDY ON NETWORK CAPACITY ACROSS DIVERSE TASKS

This section analyzes whether the improvement of our approach is the consequence of the increased
capacity and supplements Sec. 5.1. Specifically, we experiment with two sets of additional base-
lines: (1) using additional MLPs, aligning the number of trainable parameters; (2) using randomly
initialized LLM transformer blocks, aligning the total number of parameters, to compare with our
approach. Please note that the randomly initialized LLM transformer blocks are trained end-to-end
with the visual encoders.

We conduct experiments across all the tasks covered in Sec. 4, as shown in Table B. The results
show several important findings validating that our performance gains stem from our method rather
than the increased network capacity. More importantly, simply adding MLPs is not a consistently
beneficial strategy for all the visual tasks and can be detrimental, resulting in inferior performance
on some tasks even compared with the plain baselines. This is because naively adding large MLPs or
transformer blocks may lead to challenges in optimization and suffers from a small training dataset
compared with LLM pre-training.

B.3 VARYING LLM TRANSFORMER SCALES

Model Acc

ViT-S 75.25

+ OPT-125M 71.63
+ OPT-350M 71.56
+ OPT-1.3B 75.62
+ OPT-2.7B 75.74
+ OPT-6.7B 76.29

Table C: Accuracy improves
with a larger transformer.

This section analyzes the influence of the scales of language trans-
formers with OPT (Zhang et al., 2022). Our experiments incor-
porate the final transformer layers from OPT-{125M, 350M, 1.3B,
2.7B, 6.7B}, into ViT-S for image classification. Our experiment
setting builds upon DeiT (Touvron et al., 2021) and trains for 100
epochs. Additionally, our experiments with small-scale OPT (OPT-
{125M,350M}) even yield the loss values of NAN when trained with
the original DeiT learning rate, so we decrease their learning rate by
1/5 for stable training. This reflects the importance of the scales of
LLMs for stabilizing the training.

As indicated by the results in Table C, the benefits of frozen language
transformer grow with increasing capacity of OPT transformers. The added transformers enhance
the performance only with sufficient sizes (1.3B, 2.7B, 6.7B) and hurt the accuracy when the sizes
are small (125M, 350M). Therefore, the phenomenon of LLM transformers enhancing visual tasks
only “emerges” at sufficient scales.
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(a) Image Classification (ImageNet)
Methods Acc

ViT-S 80.1
+ LLaMA (Ours) 80.7
+ MLP 80.4
+ Random LLM 76.9

(b) Point Cloud Recognition (ScanObjectNN)
Methods BG OBJ T50

PointBert 87.4 88.1 83.1
+ LLaMA (Ours) 88.0 88.5 83.8
+ MLP 86.5 87.3 83.4
+ Random LLM 87.2 88.0 82.6

(c) Action Recognition (SSv2)
Methods Acc1 Acc5

ViT-S 64.7 89.2
+ LLaMA (Ours) 65.9 89.9
+ MLP 63.8 88.9
+ Random LLM 64.1 88.8

(d) Motion Forecasting (Argoverse)
Methods ADE↓ FDE↓ MR↓
mmTransformer 0.72 1.10 10.7
+ LLaMA (Ours) 0.71 1.08 10.5
+ MLP 0.74 1.16 11.8
+ Random LLM 0.74 1.15 11.5

(e) 2D Retrieval (Flickr30k)
Methods EM1 EM5 EM10

METER 49.66 80.86 89.48
+ LLaMA (Ours) 50.22 82.26 90.08
+ MLP 49.48 81.12 89.58
+ Random LLM 49.80 81.62 89.72

(f) 3D VQA (SQA3D)
Methods EM1 EM10

SQA3D 47.20 86.82
+ LLaMA (Ours) 48.09 89.03
+ MLP 47.14 88.08
+ Random LLM 47.26 88.46

Table B: Addition comparisons for model capacity. We compare our approach of adding the frozen
LLM transformer with adding a randomly initialized MLP (“+MLP”) or LLM blocks (“+Random
LLM”) and training end-to-end. The results on diverse tasks uniformly support that our improvement
is not merely the result of a larger model capacity. Details are in Sec. B.2.

Model Configuration Acc Top 1

ViT-S Baseline ViT-S 75.32

+ LLaMA at Tail (Ours) Single LLaMA block at the end of ViT 75.84
+ LLaMA at Middle Single LLaMA block at the middle of ViT 75.55
+ LLaMA at Head Single LLaMA block at the head of ViT 72.66
+ 2 LLaMA Blocks 2 LLaMA blocks at the end of ViT 77.10

Table D: Varying the position and number of LLaMA blocks.

B.4 LAYERS TO INSERT THE FROZEN LLM BLOCK(S)

Table D presents an ablation study on different architecture variants, including different places to
insert the LLM blocks and the number of LLM blocks. Without loss of generality, we leverage the
image classification with ViT-S for our ablation study. From the experiments, we mainly have the
following discoveries:

LLM block location. Inserting the frozen LLaMA block at the beginning or the middle of the
visual encoder performs worse than our strategy of inserting LLaMA at the end of the encoder. This
supports our design choice and verifies the intuition that LLM blocks are more suitable for high-level
semantics instead of low-level visual patterns.

LLM block number. We also experiment with inserting the last 2 blocks from LLaMA, and
find it to be better than our default strategy of using a single LLaMA block. Due to computation
constraints, we are unable to extend this to diverse computer vision tasks as in Sec. 4, but this avenue
presents an interesting direction and broadening our understanding of LLMs.

B.5 BREAKDOWN METRICS FOR 3D VQA

We additionally provide the full metrics on SQA3D in Table E, supplementing Table 5b. As shown
in the table, adding a frozen transformer improves the performance on the main metric and most of
the analytical metrics.

C IMPLEMENTATION DETAILS

C.1 IMAGE CLASSIFICATION

We follow DeiT (Touvron et al., 2021) in training the models of ViT-{T,S,B} and ViT-{T,S,B}-
LLaMA in Sec. 4.1. Each visual token is a 16×16 patch on 224×224 images. We adopt the
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Methods EM@1 EM@10 What Is How Can Which Others

ScanQA (Azuma et al., 2022) 46.58 85.97 31.64 63.80 46.02 69.53 43.87 45.34
Multi-CLIP (Delitzas et al., 2023) 48.02 - - - - - - -
SQA3D (Ma et al., 2023) 47.20 86.82 33.48 66.10 42.37 69.53 43.02 46.40
SQA3D-LLaMA 48.09 89.03 34.27 67.05 48.17 68.34 43.87 45.64

Table E: Performance of SQA3D and adding language transformers on 3D question answering (QA).
Adding LLaMA achieves the best performance. EM@1 and EM@10 means Top-1 and Top-10
Exact Match (Accuracy) metric. “What,” “Is,” “How,” “Can,” “Which,” and “Others” are detailed
breakdown of question types reported in EM@1.

identical procedure for ViT-T and ViT-S for a fair comparison. The most important configurations
include a total of 300 epochs, a base learning rate of 5e-4, a cosine annealing learning rate sched-
ule (Loshchilov & Hutter, 2016), and an AdamW optimizer (Kingma & Ba, 2014; Loshchilov &
Hutter, 2017). The total time for training lasts 4-6 days on 4×A100 GPUs. The only change we
adopt is the warm-up length of 20 epochs, compared with the original warm-up of 10 epochs in DeiT.
A longer warm-up stabilizes the training of ViT models and also enables us to slightly outperform
the original ViT-T and ViT-S performance in Table 1.

C.2 POINT CLOUD CLASSIFICATION

In this section, we describe the implementation details of the point cloud classification method
presented in Sec. 4.2. For optimization, we use the AdamW (Kingma & Ba, 2014; Loshchilov
& Hutter, 2017) optimizer and a cosine annealing learning rate schedule (Loshchilov & Hutter,
2016). To map the dimension between PointBERT and LLaMa transformer tokens, we add two
linear layers with a learning rate of 5e-5. The PointBERT backbone has a learning rate of 5e-4,
consistent with the original setting in Yu et al. (2021). We fine-tune our model for 300 epochs on
both the ScanObjectNN (Uy et al., 2019) and ModelNet40 (Goyal et al., 2021) datasets. The training
takes around 6-10 hours on 4×A100 GPUs

C.3 ACTION RECOGNITION

We investigate action recognition in Sec. 4.3 and provide more details of implementation here. Our
setup strictly follows VideoMAE (Tong et al., 2022), where a ViT model is (1) pre-trained by masked
auto-encoding (He et al., 2022); then (2) fine-tuned for additional epochs. As stated in Sec. 4.3, we
directly begin from the second step and inherit the parameters of self-attention blocks in ViT from
pre-trained VideoMAE models. During the training process, VideoMAE trains ViT-S for 40 epochs
(5 epochs of warm-up) and ViT-B for 30 epochs (5 epochs of warm-up), where we adopt the same
length of training. The optimizer is AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with
a cosine annealing learning rate schedule (Loshchilov & Hutter, 2016).

In Sec. 4.3 and Table 3, our ViT-S and ViT-B performance is lower than the reported numbers in
VideoMAE. This is because VideoMAE uses 32∼64 GPUs during the fine-tuning stage and supports
a much larger batch size compared with ours, though we scale the learning rate according to the batch
size as Goyal et al. (2017a). Concretely, VideoMAE adopts the batch size of 384 video clips, while
our computational resource only supports a batch size of 24 clips and 12 clips for ViT-S and ViT-B,
respectively. However, we control the setup between ViT and ViT-LLaMA for a fair comparison.
Finally, the ViT-S-LLaMA and ViT-B-LLaMA experiments take around 3-4 days on 4×A100 GPUs.

C.4 MOTION FORECASTING
Model ADE↓(k=1) FDE↓(k=1)

Paper 1.66 3.67
Ours 1.60 3.60

Table F: Our implementation of Vector-
Net is better than their paper. Please
note that this table uses the same
single-modal setting (k=1) as Vector-
Net for a fair comparison.

We evaluate the effects of frozen LLM transformers in
Sec. 4.4 with motion forecasting. For clarity, we intu-
itively demonstrate its problem setting and modular ar-
chitecture in Fig. G, where VectorNet (Gao et al., 2020)
or mmTransformer (Liu et al., 2021) encodes each lane
or agent trajectory into a token embedding, and then our
LLM blocks process these tokens and feed them into the
regression decoder.
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Since VectorNet and mmTransformer have not released
their training code, we reproduce their results on our own and achieve better or similar results as
reported in their papers. As in Table F and Table G, the baselines used in our paper (Table 4) have
comparable or even better performance compared with their original performance in the papers,
which is critical for a fair and meaningful comparison.

Model ADE↓ FDE↓ MR↓
Paper 0.71 1.15 10.6
Ours 0.72 1.10 10.7

Table G: Our implementation of mm-
Transformer is comparable to the per-
formance in their paper, with large ad-
vantages on the main metric of FDE.

During the training time, we separately train VectorNet
or mmTransformer. VectorNet is a relatively simple ar-
chitecture, so its training lasts 60 epochs, with a cosine
annealing learning rate schedule (Loshchilov & Hutter,
2016). We use the AdamW optimizer (Kingma & Ba,
2014; Loshchilov & Hutter, 2017) with a learning rate of
5e-4 and a batch size equal to 32 samples. For mmTrans-
former, we train it with the same learning rate, batch size,
and optimizer as VectorNet. The training lasts 32 epochs,
where we drop the learning rate by 1/4 on epochs 20, 24, and 28. The training time for both models
is around 2 days on one A100 GPU.
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Figure G: Illustration of the typical motion forecasting design and our implementation. Motion
forecasting models the trajectories of agents and lanes as polylines. Exiting models (Gao et al.,
2020; Liu et al., 2021) use MLPs or transformers to convert the lanes and agent trajectories into
token embeddings, and then employ a decoder to regress the future trajectories. In our design, we
treat either VectorNet (Gao et al., 2020) or mmTransformer (Liu et al., 2021) as a general encoder,
and then insert the frozen LLM blocks to process their embeddings.

C.5 2D VISION LANGUAGE

This section provides more details on implementation and designs to supplement our discussion on
2D vision-language models in Sec. 4.5. Our experiments adopt the widely-used METER (Dou et al.,
2022) as the baseline and incorporate pre-trained LLM transformers after its vision-language fusion
module. In Fig. H, we intuitively illustrate the modular design of METER and the specific place to
insert our frozen LLM transformer and linear layers.

Conventionally, METER follows a two-stage training strategy: (1) pre-training the whole vision-
language model (VLM) on a large combination of vision-language datasets, including COCO (Lin
et al., 2014), Conceptual Captions (Sharma et al., 2018), SBU Captions (Ordonez et al., 2011),
and Visual Genome (Krishna et al., 2017); (2) fine-tuning on downstream tasks like visual question
answering (VQA) or image-text retrieval. However, the first step of pre-training is computationally
extensive, so we adopt the setup in Shi et al. (2023) by skipping the pre-training step and directly
training on the target task. Specifically, we initialize the image encoder from CLIP-B/32 (Radford
et al., 2021) and text encoder from RoBERTa (Liu et al., 2019), and then fine-tune all the modules
jointly expect for the LLM transformer FLM . Because of the initialization from CLIP and RoBERTa,
our model is capable of predicting reasonably.

During the training stage, we strictly follow the same hyper-parameters and configurations on
VQAv2 (Goyal et al., 2017c) and Flickr30k (Plummer et al., 2015) provided by METER. The most
critical detail is that METER assigns different learning rates for each module. For example, the
cross-modal fusion module and the decoder have larger learning rates compared with the pre-trained
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image and text encoders. Similarly, our experiments set the learning rates of linear layers (F1
L and

F2
L) 10× the learning rate of the image encoder, because they are randomly initialized. Finally, each

training on VQAv2 and Flickr30k lasts for 10 epochs and around 1 day on 4×A100 GPUs.

Image
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Text
Encoder

What	is	the	woman	
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Fusion
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Figure H: Illustration of the METER (Dou et al., 2022) framework and how to insert the frozen
language transformer (pink FLM) and linear layers (green F1

L and F2
L) to process the visual tokens

after vision-language fusion.

C.6 3D VISION LANGUAGE

This section provides more details of the dataset and training configurations of the 3D vision-
language task. We conduct our experiments on the SQA3D dataset (Ma et al., 2023), which contains
33.4k questions in 650 unique ScanNet scenes. In addition to question answering (QA), the bench-
mark also requires the model to understand its situation (position, orientation, etc.) in the 3D scene
as described by text. Hence it is called situated question answering (SQA). We use a batch size of
32 during our model training, and AdamW as our optimizer. The hidden size for each embedding
token is 768. We train all parameters from scratch for 30 epochs, and decrease the learning rate by
10 times at 10, 15, and 20-th epoch. The model is trained on a single A100 GPU.

C.7 DEPTHS OF LLM LAYERS

When varying the depth of transformer blocks in Sec. 5.2 and Fig. 2, we adopt the ablation setup of
training for 100 epochs, compared with the full training of 300 epochs. The experiments are based
on ViT-S/16 (Dosovitskiy et al., 2021) in DeiT (Touvron et al., 2021) with a batch size of 1,024,
which is also used in other ablation experiments. The whole training process involves 20 epochs of
warm-up and the remaining 80 epochs adopt a cosine annealing learning rate schedule (Loshchilov
& Hutter, 2016). Each experiment takes around 2 days on 4×A100 GPUs.
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