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Abstract: In this paper, we present PianoMime, a framework for training a piano-
playing agent using Internet demonstrations. The Internet is a promising source
of large-scale demonstrations for training our robot agents. In particular, in the
case of piano playing, YouTube is full of videos of professional pianists playing
a wide variety of songs. In our work, we leverage these demonstrations to train
a generalist piano-playing agent capable of playing any song. Our framework
is divided into three parts: a data preparation phase to extract the informative
features from the YouTube videos, a policy learning phase to train song-specific
expert policies from the demonstrations, and a policy distillation phase to distill
the policies into a single generalist agent. We explore different policy designs for
representing the agent and evaluate the influence of the amount of training data
on the agent’s ability to generalize to novel songs not present in the dataset. We
show that we are able to learn a policy with up to 57% F1 score on unseen songs.
Project website: https://pianomime.github.io/
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1 Introduction

The Internet is a promising source of large-scale data for training generalist robot agents. If properly
exploited, it is full of demonstrations (video, text, audio) of humans solving an infinite number
of tasks [1, 2, 3] that could inform our robot agents on how to behave. However, learning from
these databases is challenging for several reasons. First, unlike teleoperation demonstrations, video
data does not specify the actions that the robot is performing, which typically requires the use of
reinforcement learning to induce the robot’s actions [4, 2, 5]. Second, videos typically show a human
performing the task while the learned policy is applied to a robot. This often requires retargeting
the human motion to the robot body [5, 6, 7]. Finally, as pointed out in [2], if we want to learn a
generalist agent, we need to choose a task for which large databases are available and which allows
for an unlimited variety of open-ended goals.

From opening doors [6] to manipulating ropes [8] or pick and place tasks [9, 10], previous work
has successfully taught robot manipulation skills through observations. However, these approaches
have been limited to robots with low dexterity or to a small variety of goals.

In this work, we focus on the task of learning a generalist piano player from Internet demon-
strations. Piano-playing is a highly dexterous open-ended task [11]. Given two multi-fingered robot
hands and a desired song, the goal of a piano-playing agent is to press the right keys, and only the
right keys, at the right time. In addition, the task can be conditioned on arbitrary songs, allowing for
large and high-dimensional goal conditioning.

In addition, the Internet is full of videos of professional piano players performing a wide variety of
songs. Interestingly, these pianists often record themselves from above, making it easy to observe
their performances. In addition, they usually share the MIDI files of the song they are playing,
making it easier to extract relevant information.
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Figure 1: The goal of this work is to train a generalist piano-playing agent (PianoMime) from
Youtube videos. We collect a set of videos and accompanying MIDI files and train a single agent to
play any song, combining reinforcement learning and behavioral cloning.

To learn a generalist piano-playing agent from Internet data, we introduce PianoMime, a framework
for training a single policy capable of playing any song (see Figure 1). In essence, the PianoMime
agent is a goal-conditioned policy that generates actions in the configuration space, given the desired
song to be played. At each time step, the agent receives a trajectory of keys to press as goal input.
The policy then generates a trajectory of actions and executes them in chunks.

To train the agent, we combine both reinforcement learning and imitation learning. We train in-
dividual song-specific expert policies using reinforcement learning in conjunction with YouTube
demonstrations, and we distill all the expert policies into a single generalist behavior cloning policy.
To represent the agent, we perform ablations of different architectural design strategies to model
the behavior cloning policy. We investigate the benefit of incorporating representation learning to
enhance the geometric information of the goal input. In addition, we explore the effectiveness of a
hierarchical policy that combines a high-level policy generating fingertip trajectories with a learned
inverse model generating joint space actions (see Figure 2). We show that the learned agent is able
to play arbitrary songs not included in the training dataset with about 56% F1 score.

In summary, the main contribution of this work is a framework for training a generalist piano-playing
agent using Internet demonstration data. To achieve this goal, we

* Introduce a method for learning policies from Internet demonstrations by decoupling the
human movement information from the task-related information.

* Present a reinforcement learning approach that combines residual policy learning strate-
gies [12, 13] with style reward-based strategies [5].

* Explore different policy architecture designs, introduce novel strategies to learn geometri-
cally consistent latent features, and perform ablations on different architecture designs.

Finally, we release the dataset and trained models as a benchmark for testing Internet-data-driven
dexterous manipulation.

2 Related Work

Robotic Piano Playing. Several studies have investigated the development of robots capable of
playing the piano. In [14], multi-target Inverse Kinematics (IK) and offline trajectory planning
are used to position the fingers over the intended keys. In [15], a Reinforcement Learning (RL)
agent is trained to control a single Allegro hand to play the piano using tactile sensor feedback.
However, the piano pieces used in these studies are relatively simple. Subsequently, in [11], an RL
agent is trained to control two Shadow hands to play complex piano pieces by designing a reward
function that includes a fingering reward, a task reward, and an energy reward. In contrast to previous
approaches, our approach exploits YouTube piano-playing videos, allowing for faster training and
more accurate robot behavior.

Motion Retargeting and Reinforcement Learning. Our work has similarities with motion re-
targeting [16], especially those works that combine motion retargeting with RL to learn control



policies [17, 18, 5, 19, 6]. Given a mocap demonstration, it is common to use the demonstration ei-
ther as a reward function [5, 19] or as a nominal behavior for residual policy learning [18, 6]. In our
work, we extract not only the mocap information, but also task-related information (piano states),
which allows the agent to balance between mimicking the demonstrations and solving the task.

3 Method

The PianoMime framework consists of three phases: data preparation, policy learning, and policy
distillation.

In the data preparation phase, given the raw video demonstration, we extract the informative
signals needed to train the policies. Specifically, we extract the fingertip trajectories and a MIDI file
that informs us of the state of the piano at each instant.

In the policy learning phase, we train song-specific policies via RL. This step is essential to generate
the robot actions that are missing in the demonstrations. The policy is trained with two reward
functions: a style reward and a task reward. The style reward aims to match the robot’s finger
movements with those of the human in the demonstrations to preserve the human style, while the
task reward encourages the robot to press the right keys at the right time.

In the policy distillation phase, we train a single behavioral cloning policy to mimic all the song-
specific policies. The goal of this phase is to train a single generalist policy that can play any song.
We explore different policy designs and goal representation learning to improve the generalizability
of the policy.

3.1 Data Preparation: From raw data to human and piano state trajectories

We generate the training dataset by web scraping. We download YouTube videos of professional
piano artists playing different songs. In particular, we select YouTube channels that also upload
MIDI files of the songs played. The MIDI files represent the trajectories of the piano’s state (keys
pressed/unpressed) throughout the song. We use the video to extract the movement of human pi-
anists and the MIDI file to inform about the target state of the piano during the execution of the song.
We choose the fingertip position as the key signal for the robot hand to mimic. While some dex-
terous tasks may require the use of the palm (e.g., grasping a bottle), we believe that mimicking
the fingertip motion is sufficient for the piano-playing task. This also reduces the constraints on the
robot, allowing it to adapt its embodiment more freely.

To extract the fingertip motion from the videos, we use MediaPipe [20], an open-source framework
for perception. Given a frame from the demonstration videos, MediaPipe outputs the skeleton of
the hand. We find that the classic top-view recording in YouTube videos of piano playing is highly
beneficial for obtaining an accurate estimate of fingertip positions.

Note that since the videos are RGB, we lack the depth signal. Therefore, we predict the 3D fingertip
positions based on the piano state. The detailed procedure is explained in Appendix A.

3.2 Policy Learning: Generating robot actions from observations

In the data preparation phase, we extract two trajectories: a human fingertip trajectory 7, and a
piano state trajectory T » The human fingertip trajectory 7 : (@1, ...,27) is a T-step trajectory

of the 3D fingertip positions of two hands = € R3*'0 (10 fingers). The piano state trajectory
T (d1,...,d7) is a T-step trajectory of piano states d € B5S, represented by an 88-dimensional
binary variable representing which keys should be pressed.

Given the ROBOPIANIST [11] environment, our goal is to learn a goal-conditioned policy g that
plays the song defined by T ) while matching the fingertip movement given by 7. Note that satis-
fying both objectives jointly may be impossible. Perfectly tracking the fingertip trajectory T, might
not lead to playing the song correctly. Although both trajectories are collected from the same source,
errors in hand tracking and embodiment mismatches might lead to deviations, resulting in poor song
performance. Therefore, we suggest using 7, as a style guide behavior.
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Figure 2: Proposed distillation policy architecture. Given a L steps window of a target song T} :

(dr.¢4 1) at time ¢, a latent representation 7% is computed given a pre-trained observation encoder.
Then, the policy is decoupled between a high-level fingertip policy that generates a trajectory of
fingertip positions 7, and a low-level inverse model that generates a trajectory of target joint position
Tq:
Similar to [11], we formulate the piano playing as an Markov Decision Process (MDP) with the
horizon of the episode H, which is the duration of the song to be played. The state observation is
defined by the robot’s proprioception s and the goal state g;. The goal state g, at time ¢ informs the
desired piano key configurations d in the future gi = (J’Hl, o J’H 1), where L is the lookahead
horizon. As claimed in [11], to successfully learn how to play, the agent must be aware of several
steps into the future to plan its actions. The action a is defined as the desired configuration for both
hands q € R23%2+1 each with 23 joint angles and one dimension for the sustain pedal.

We propose to solve the reinforcement learning problem by combining residual policy learning [12,
13, 6] and style mimicking rewards [5, 19].

Residual Policy Architecture. Given the fingertip trajectory 7, we solve an IK [21] problem to
obtain a trajectory of desired joint angles 7 : (q{', .. ., ') for the robot hands. Then we represent
the policy mg(als, g:) = 7j4(als, g:)+¢l,; as a combination of a nominal behavior (given by the IK
solution) and a residual policy 7. Given the target state at time ¢, the nominal behavior is defined as
the next desired joint angle q,i}jrl. We then learn only the residual term around the nominal behavior.
In practice, we initialize the robot at gix and roll both the goal state and the nominal behavior with a
sliding window along 7 and ‘rflk respectively.

Style Mimicking Reward. We also include a style-mimicking reward to preserve the human style
in the trained robot actions. The reward function r = r Nt T consists of a task reward r | and a
style-mimicking reward r,. While the task reward r ) encourages the agent to press the correct keys,
the style reward r,, encourages the agent to move his fingertips similar to the demonstration 7,,. We
provide further details in Appendix D.

3.3 Policy Distillation: Learning a generalist piano-playing agent

In the policy learning phase, we train song-specific expert policies from which we roll out state

and action trajectories 7s : (So,...,s7) and 7¢ : (qo,...,qr). Then we generate a dataset
D (Ta Tg> Taes T}) N, where N is the number of songs learned. Given the dataset D, we apply Be-

havioral Cloning (BC) to learn a single generalist piano-playing agent 7o (qs.t1 1., Tit 4 1.|S¢, t:011 )
which outputs configuration space actions g;.;+;, and fingertip movements ;.. conditioned on
the current state s; and the future desired piano states ﬁt:H L.

We explore different strategies to represent and learn the behavioral cloning policy and improve its
generalization capabilities. In particular, we explore (1) representation learning approaches to in-
duce spatially informative features, (2) a hierarchical policy structure for sample-efficient training,
and (3) expressive generative models [22, 23, 24] to capture the multimodality of the data. Also,
inspired by current behavioral cloning approaches [22, 25], we train policies that output sequences
of actions rather than single-step actions and execute them in chunks.

Representation Learning. We pre-train an observation encoder over the piano state & to learn spa-
tially consistent latent features. We hypothesize that two piano states that are spatially close should
lead to latent features that are close. Using these latent features as a target should lead to better



generalization. To obtain the observation encoder, we train an autoencoder with a reconstruction
loss over a Signed Distance Field (SDF) defined on the piano state. Specifically, the encoder com-
presses the binary vector of the goal into a latent space, while the decoder predicts the SDF function
value of a randomly sampled query point (the distance between the query point and the closest “on”
piano key). For the BC policy, we concatenate L-timestep desired piano states and pass through the
pre-trained observation encoder to obtain the latent goal representation. We provide more details in
Appendix G.

Hierarchical Policy. We represent the piano-playing agent with a hierarchical policy. The high-
level fingertip policy takes a sequence of desired future piano states & and outputs a trajectory of
human fingertip positions . Then, a low-level inverse model takes the fingertip and piano state tra-
jectories as input and outputs a trajectory of desired joint angles g. On the one hand, while fingertip
trajectory data is readily available from the Internet, obtaining low-level joint trajectories requires
solving a computationally expensive RL problem. On the other hand, while the high-level mapping
(& — x) is complex and involves fingerings, the low-level mapping (z > q) is relatively simple,
involving a task space to configuration space mapping. This decoupling allows us to train the more
complex high-level mapping on large, cheap datasets, and the simpler low-level mapping on smaller,
expensive datasets. We visualize the policy in Figure 2.

Expressive Generative Models. Considering that the human demonstration data of piano playing
is highly multimodal, we explore the use of expressive generative models to better represent this
multimodality. We compare the performance of different deep generative models based policies,
such as Diffusion Policies [22] and Behavioral Transformer [23], as well as a deterministic policy.

4 Experimental Results

We divide the experimental evaluation into three parts. In the first part, we investigate the perfor-
mance of our proposed framework in learning song-specific policies via RL. In the second part, we
perform ablation studies on policy designs for learning a generalist piano-playing agent by distill-
ing the previously learned policies via BC. Finally, in the third part, we study the influence of the
amount of training data on the generalization capabilities.

Dataset and Evaluation Metrics All experiments are performed on our collected dataset, which
contains the notes and corresponding demonstration videos and fingertip trajectories of 60 piano
songs from a Youtube channel, PianoX '. To standardize the length of each task, each song is
divided into several clips, each 30 seconds long (the dataset contains a total of 431 clips, 258K
state-action pairs). In addition, we select 12 unseen clips to investigate the generalization ability of
the generalist policy. These clips consist of completely new songs that do not appear in the training
dataset. We use the same evaluation metrics from RoboPianist [11], i.e., precision, recall, and F1
score (see Appendix B). We run each policy for the whole song and evaluate its performance.
Simulation Environment Our experimental setup uses the ROBOPIANIST simulation environment
[11], implemented in the Mujoco [26]. The agent predicts target joint angles at 20Hz, and the tar-
gets are converted to torques using PD controllers running at S00Hz. The notes of the songs are also
discretized at a frequency of 20Hz. We use the same setup as [11] with two modifications: 1) The
z-axis sliding joints attached to both forearms are enabled to allow more versatile hand movements.
2) We increase the proportional gain of the PD controller for the x-axis sliding joints to allow faster
horizontal movement, which we feel is essential for some fast-paced piano songs.

4.1 Evaluation on learning song-specific policies from demonstrations

In this section, we evaluate the song-specific policy learning and aim to answer the following ques-
tions: (1) Does the integration of human demonstrations with RL help to achieve better performance?
(2) Which elements of the learning algorithm are most important for good performance?

We use Proximal Policy Optimization (PPO) [27] because we found that it performs best compared
to other RL algorithms. We compare our model to two baselines:

"https://www.youtube.com/channel/UCsR6ZEAOAbBhrE-NCeET6vQ
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Figure 3: Left: Hand postures (Baseline and Ours). Middle: The F1 score achieved by three methods
for 10 chosen clips; Right: The F1 score achieved by excluding different elements in RL.

RoboPianist [11] We use the RL method introduced in [11]. We keep the same reward functions as
in the original work and manually label the fingering from the demonstration videos to provide the
fingering reward.
Inverse Kinematics (IK) [21] Given a fingertip trajectory demonstration 7, a Quadratic
Programming-based IK solver [21] is used to compute a target, joint position trajectory and exe-
cute it open-loop.

We select 10 clips from the collected dataset with
different levels of difficulty. We individually train
specialized policies for each of the 10 clips using
both the baselines and our method. We then evalu-
ate and compare their performance based on the ob-
tained F1 score.

Performance. As shown in Figure 3, our method
consistently outperforms the RoboPianist baseline
for all 10 clips, achieving an average F1 score of 0.94 ULTTTITTT IR 1T Kl
compared to the baseline’s 0.74. We attribute this WEE'JW,J ww‘wml m
improvement to the incorporation of human priors, - - - -
which narrows the RL search space to a favorable Figure 4: Comparison of hand poses. Top:
subspace, thereby encouraging the algorithm to con- Youtgbe video, Middle: IK solution given
verge on more optimal policies. In addition, the IK the video. Bottom: After residual RL.
method achieves an average F1 score of 0.70, only

slightly lower than the baseline. This demonstrates the effectiveness of incorporating human priors,
which provides a strong starting point for RL. We also observe that our method trains faster than the
baseline. On an RTX 4090, the baseline took an average of 4 hours to train, while our method took
an average of 2.5 hours.

Impact of Elements. Our RL method has two main elements: a style-mimicking reward and a
residual learning. We exclude each element individually to study their respective influences on pol-
icy performance (see Figure 3). We clearly observe the critical role of residual learning, which
implies the benefit of using human demonstrations as nominal behavior. We observe a marginal
performance increase of 0.03 when excluding the style-mimicking reward, but this also results in
a larger discrepancy between the robot and human fingertip trajectories. Thus, the weight of the
style-mimicking reward can be considered as a parameter that controls the human similarity of the
learned robot actions. The ablation study for this weight is discussed in Appendix F.

Hand Pose Visualization.” We provide Figure 3 and Figure 4 as an example of hand poses in dif-
ferent settings and provide attached videos on the website with further examples. In Figure 4, we
exemplify that our policy places the hands in similar poses to the YouTube videos. We measure the
distance between fingertips in YouTube videos and the robot in Appendix F. We observe that the IK
nominal behavior leads the robot to place the fingers in positions similar to those in YouTube videos.
The RL policy then slightly adapts the fingertip positions to press the keys correctly. Besides, we
observe that the RoboPianist baseline sometimes presents visually unhuman-like motions. For ex-

The key colors in Figure 3 and Figure 4 mean the following: green indicates a correctly pressed key, yellow
indicates a key that should be pressed but is not, and red indicates a key that should not be pressed but is.



Multi-RL  BC-MSE  AIRL | Two-Stage Diff -res | w/o SDF | One-Stage | BeT

: P 0.85 0.56 0.83 0.87 0.89 0.86 0.53 0.63
E 0.20 0.29 0.24 0.78 0.80 0.76 0.34 0.42
F1 0.12 0.30 0.21 0.81 0.82 0.78 0.35 0.49

P 0.95 0.54 0.91 0.69 0.71 0.66 0.58 0.53

é 0.18 0.22 0.20 0.54 0.55 0.49 0.27 0.30
F1 0.13 0.21 0.17 0.56 0.57 0.51 0.26 0.31

Table 1: Quantitative results evaluated on Training and Test Datasets. Test datasets consist of 12

clips unseen in the training dataset. We report Precision (P), Recall (R) and F1-score (F1).

ample, in Figure 3 Left, the middle finger and the ring finger of the left robot hand are at relatively
unhuman-like positions.

4.2 Evaluation of model design strategies for policy distillation

This section focuses on the evaluation of the policy distillation for playing different songs. We
evaluate the influence of different policy design strategies on the agent’s performance. We aim to
assess (1) the impact of integrating a pre-trained observation encoder to induce spatially consistent
features, (2) the impact of a hierarchical design of the policy, and (3) the performance of different
generative models on piano-playing data.

Proposed Models. We propose two base policies, Two-stage Diff and Two-stage Diff-res
policy. Both use hierarchical policies and goal representation learning, as described in Section 3.3.
The only difference between them is that the low-level policy of Two-stage Diff predicts the
target joints directly, while Two-stage Diff-res predicts the residual term of an IK solver. A
detailed description of the policies can be found in Appendix I.

Baselines. We consider as baselines a Multi-task RL policy and a BC policy with MSE Loss from
[11]. Additionally, we implement an Adversarial Inverse Reinforcement Learning (AIRL) baseline
[28]. We provide further details of the models in Appendix 1.

Ablation Models. To analyze the impact of our policy design choices, we design three variants of
our proposed model, i.e., w/o SDF: We train a policy that directly receives the 88-dimensional binary
representation of the goal, without using the SDF observation encoder, to evaluate the impact of the
goal’s representation learning, One-stage: We train an end-to-end diffusion policy to evaluate the
impact of the hierarchical architecture, BeT: We train a two-stage Behavior-Transformer [23] to
evaluate the impact of using diffusion models.

Results. As shown in Table 1, our methods (Two-stage Diff and Two-stage Diff-res) outper-
form the others on both training and test datasets. Multi-task RL and AIRL have higher precision
on the test dataset, but this is because they barely press any keys. We observe a large improvement
when using both diffusion policies instead of BeT, a hierarchical policy instead of an end-to-end
policy and a slight improvement when using a pre-trained observation encoder, especially on the
test dataset.

We also observe a slight performance improvement when the model predicts the residual term of IK
(Two-stage Diff-res).

4.3 Evaluations on the impact of the data in the generalization

In this section, we investigate the impact of scaling the training data on the generalization capabili-
ties of the agent. We divide the experiments into two parts:

(1) We evaluate the impact of scaling the training data on the performance of three policy designs
(One-stage Diff, Two-stage Diff, and Two-stage Diff-res) evaluated on the test dataset
by training them with different proportion of the dataset (see Figure 5 Top).



(2) We evaluate the influence of a good high-level policy of Two-stage Diff by training differ-
ent high-level policies on different proportions of the dataset (see Figure 5 Bottom). We provide
additional results in Appendix M.

Impact of scaling training data. We observe that

both Two-stage Diff and Two-stage Diff-res One-stage Diff === Two-stage Diff
show consistent performance improvement when in- = Tworstage Diff-res

creasing the training data (Figure 5 Top). This

trend implies that the two-stage policies have not yet o0

reached their performance saturation with the given 0.2 F

data and could potentially continue to benefit from

0.6

F

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

additional training data in future works. Data Used (%)
Impact of high-level policy quality. We further (HLGT)  mmmm(HL 100%)

employ different combinations of the high-level and
low-level policies of Two-stage Diff trained with o6
different proportions of the dataset and assess their Coa —
performance. In addition, we introduce a high-level -

oracle policy that outputs the ground-truth finger- o2 /

tip positions from the human demonstration videos. 00 o2
The results (see Figure 5 Bottom) demonstrate that
the overall performance of the policy is signifi-
cantly influenced by the quality of the high-level pol-
icy. Low-level policies paired with Oracle high-level signs. Bottom: Performance comparison on
policies consistently outperform the ones paired with - ~401 5o o4 different proportions of
other high-level policies. Besides, we observe early high-level and low-level datasets. The x-
performance convergence with increasing training axijs represents the percentage of the low-
data when paired with a low-quality high-level pol- level dataset utilized, while HL % indicates
icy. the percentage of the high-level dataset used.

s (HL 50%) === (HL 1%)

0.4 0.6 0:8 1:0
Data Used (%)

Figure 5: F1 scores in test data with vary-
ing amounts of training data. Top: Perfor-
mance comparison for different policy de-

4.4 Limitations

Inference Speed One of the limitations is the infer-

ence speed. The models operate with an inference frequency of approximately 15Hz on an RTX
4090 machine, which is lower than the standard real-time demand on hardware. Future works can
employ faster diffusion models, e.g., DDIM [29], to speed up the inference.

Out-of-distribution Data Most of the songs in our collected dataset are of modern style. When eval-
uating the model on the dataset from [11], which mainly contains classical songs, the performance
degrades. It implies the model’s limited generalization across songs of different styles. Future work
can collect more diverse training data to improve this aspect.

Acoustic Experience Although the policy achieves up to 57% F1-score on unseen songs, we found
that higher accuracy is still necessary to make the song acoustically appealing and recognizable.
Future work should focus on improving this accuracy to enhance the overall acoustic experience.

5 Conclusion

In this work, we present PianoMime, a framework for training a generalist robotic pianist using
Internet video sources. The proposed framework is composed of three distinct phases: first, extract
task-related and human motion-related trajectories from videos, second, train song-specific policies
with reinforcement learning and finally, distill all the song-specific policies in a single generalist
policy. We found that the resulting policy demonstrates an impressive generalization capability,
achieving an average F1-score of 57% on unseen songs. We believe that the findings for learning fine
motor skills in piano playing can be applied to other tasks that require high dexterity and precision,
and scenarios where robot data collection through teleoperation is challenging.
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Figure 6: Compute homography matrix given 8 correspondence feature points.

A Retargeting: From human hand to robot hand

To retarget from the human hand to the robot hand, we follow a structured process.

Step 1: Homography Matrix Computation Given a top-view piano demonstration video, we
firstly choose n different feature points on the piano. These points could be center points of specific
keys, edges, or other identifiable parts of the keys that are easily recognizable (see Figure 6). Due
to the uniform design of the pianos, these points represent the same physical positions in both
the video and Mujoco. Given the chosen points, we follow the Eight-point Algorithm to compute
the Homography Matrix H that transforms the pixel coordinate in videos to the x-y coordinate in
Mujoco (the z-axis is the vertical axis).

Step 2: Transformation of Fingertip Trajectory We then obtain the human fingertip tra-
jectory with MediaPipe [20]. We collect the fingertips positions every 0.05 seconds. Then we
transform the human fingertip trajectory within pixel coordinate into the Mujoco x-y 2D coordinate
using the computed homography matrix H.

Step 3: Heuristic Adjustment for Physical Alignment We found that the transformed fin-
gertip trajectory might not physically align with the notes, which means there might be no detected
fingertip that physically locates at the keys to be pressed or the detected fingertip might locate at
the border of the key (normally a human presses the middle point on the horizontal axis of the
key). This misalignment could be due to the inaccuracy of the hand-tracking algorithm and the
homography matrix. Therefore, we perform a simple heuristic adjustment on the trajectory to
improve the physical alignment. Specifically, at each timestep of the video, we check whether there
is any fingertip that physically locates at the key to be pressed. If there is, we adjust its y-axis
value to the middle point of the corresponding key. Otherwise, we search within a small range,
specifically the neighboring two keys, to find the nearest fingertip. If no fingertip is found in the
range or the fingertip has been assigned to another key to be pressed, we then leave it. Otherwise,
we adjust its y-axis value to the center of the corresponding key to ensure proper physical alignment.

Step 4: Z-axis Value Assignment Lastly, we assign the z-axis value for the fingertips. For
the fingertips that press keys, we set their z-axis values to 0. For other fingertips, we set their z-axis
value to 2 - Ayey, Where hye, is the height of the keys in Mujoco.

B Evaluation Metrics

We use the same metrics from RoboPianist [11], i.e., Precision, Recall, and F1 score. Here we
provide a detailed definitions of them:

* True Positive (TP): Keys that should be pressed are pressed.
* False Positive (FP): Keys that should not be pressed are pressed.
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 False Negative (FN): Keys that should be pressed are not pressed.

TP

Precision = W (1)
TP

Recall = ——— 2

T TPYFN @

2 - Precision - Recall 3
~ Precision + Recall ©)
Given the ground truth and the executed piano state trajectory, we calculate Precision, Recall, and F1
score for each timestep. We then get the overall Precision, Recall, and F1 score by averaging them
over timesteps. In this way, precision evaluates the robot’s capability of avoiding pressing the wrong
keys, while recall evaluates the robot’s capability of pressing the correct keys. F1 score combines
both of them.

F1

C Implementation of Inverse Kinematics Solver

The implementation of the IK solver is based on the approach of [21]. The solver addresses multiple
tasks simultaneously by formulating an optimization problem and finding the optimal joint velocities
that minimize the objective function. The optimization problem is given by:

min w; Jz —Ki’l)i 2, 4
i Z | T34 H @)

where w; is the weight of each task, K is the proportional gain and v; is the velocity residual. We
define a set of 10 tasks, each specifying the desired position of one of the robot’s fingertips. We
do not specify the desired quaternions. All the weights w; are set to be equal. We use quadprog *
to solve the optimization problem with quadratic programming. The other parameters are listed in
Table 2.

Table 2: The parameters of IK solver

Parameter Value
Gain 1.0
Limit Gain 0.05
Damping le-6

Levenberg-Marquardt Damping  1le-6

D Detailed MDP Formulation of Song-specific Policy

We present a detailed representation of the reward functions applied in our method in Table 3.

E Training Details of Song-specific Policy

We use PPO [27] (implemented by StableBaseline 3 [30]) to train the song-specific policy with resid-
ual RL(See Algorithm 1). All of the experiments are conducted using the same network architecture
and tested using 3 different seeds. Both actor and critic networks are of the same architecture, con-
taining 2 MLP hidden layers with 1024 and 256 nodes, respectively, and GELU [31] as activation
functions. The detailed hyperparameters of the networks are listed in Table 6.

*https://github.com/quadprog/quadprog
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Table 3: The detailed reward function to train the song-specific policy. The Key Press reward is the
same as in [11], where k, and k, represent the current and the goal states of the key respectively,
and g is a function that transforms the distances to rewards in the [0, 1] range. p4r and p, y represent
the fingertip positions of human demonstrator and robot respectively.

Reward  Formula Weight Explanation

Key Press 0.5 g(||ks — kgll2) + 0.5 - (1 — Lfaise positive)  2/3 Press the right keys and
only the right keys

Mimic 9(|lpar — prsl2) 1/3 Mimic the demonstrator’s
fingertip trajectory

Table 4: The observation space of song-specific agent.

Observation Unit Size
Hand and Forearm Joint Positions Rad 52
Hand and forearm Joint Velocities Rad/s 52
Piano Key Joint Positions Rad 88
Piano key Goal State Discrete 88
Demonstrator Forearm and Fingertips Cartesian Positions m 36
Prior control input @ (solved by IK) Rad 52
Sustain Pedal state Discrete 1

F Ablation Study for Weight of Style-mimicking Reward

To numerically evaluate the human-likeness of the robot motion, we include an additional metric,
A ft, which computes the average Euclidean distance between the robot fingertip positions and the
human demonstrators for each timestep. We further make an ablation study to explore the impact
of the weight of style-mimicking reward on A ft and F1 score, respectively (See Figure 7). The
result indicates that when the weight of the mimic reward is zero, the F1 score is the highest, but the

0.0 Oj2 0j4 Orﬁ 0.8 1:0
Weight of Mimic Reward

Figure 7: Impact of the weight of style-mimicking reward on A ft and F1 score
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Table 5: The action space of song-specific agent.

Action Unit Size
Target Joint Positions Rad 46
Sustain Pedal Discrete 1

Table 6: The Hyperparameters of PPO

Hyperparameter Value
Initial Learning Rate 3e-4
Learning Rate Scheduler Exponential Decay
Decay Rate 0.999
Actor Hidden Units 1024, 256
Actor Activation GELU
Critic Hidden Units 1024, 256
Critic Activation GELU
Discount Factor 0.99
Steps per Update 8192
GAE Lambda 0.95
Entropy Coefficient 0.0
Maximum Gradient Norm 0.5

Batch Size 1024
Number of Epochs per Iteration 10

Clip Range 0.2
Number of Iterations 2000
Optimizer Adam

relative distance between the human fingertip positions and the robot’s fingertip positions is also the
greatest. As we increase the influence of the mimic reward, the performance decreases, while the
relative distance to the human fingertip positions also diminishes. This allows us to balance between
improving performance and achieving a behavior more similar to the videos by adjusting the mimic
reward. The discrepancy is unavoidable since the robot’s embodiment differs from that of a human,
and accurately playing the piano song might necessitate some deviation from human behavior.

G Representation Learning of Goal

We train an autoencoder to learn a geometrically continuous representation of the goal (See Figure
8 and Algorithm 2). During the training phase, the encoder £, encodes the original 88-dimensional
binary representation of a goal piano state J; into a 16-dimensional latent code z. The positional
encoding of a randomly sampled 3D query coordinate x is then concatenated with the latent code z
and passed through the decoder D. We use positional encoding here to represent the query coordinate
more expressively. The decoder is trained to predict the SDF f(x,d;). We define the SDF value of
x with respect to J; as the Euclidean distance between the z and the nearest key that is supposed to
be pressed in &, mathematically expressed as:

SDF(z,d) = min |z —p|, (5)

pe{pildsi=1}

where p; represents the position of the i-th key on the piano. The encoder and decoder are jointly
optimized to minimize the reconstruction loss:

L(z,,d) = (SDE(z,d;) — D(E(v, z)))%. (6)
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Algorithm 1: Training of the song-specific policy with residual RL

1: Initialize actor network g
2: Initialize critic network vy,
3: fori =1 : Njieration dO

4:  # Collect trajectories
5 fort=1:Tdo
6: Get human demonstrator fingertip position x; and observation o
7 Compute the prior control signal that tracks x; with the IK controller @; = ik(z¢, o)
8: Run policy to get the residual term 7, = 74 (0;)
9: Compute the adapted control signal u; = u; + 7,
10: Execute u; in environment and collect s¢, u¢, ¢, St41
11:  end for

12:  # Update networks
13: forn=1:Ndo

14: Sample a batch of transitions {(s;, u;, 7}, s;4+1)} from the collected trajectories
15: Update the actor and critic network with PPO
16:  end for
17: end for
Query
Coordinate
i
88-dimensional l
binary vector (__@(_@ Positional
ER Embedding
0
—> SDF
0
1
1 Latent
— Code

Figure 8: 1) Encoding: The encoder compresses the binary representation of the goal into latent
code. 2) Decoding: A 3D query coordinate x is randomly sampled. A neural network predicts the
SDF value given the positional encoding of x and the latent code.

We pre-train the autoencoder using the GiantMIDI dataset 4, which contains 10K piano MIDI files
of 2,786 composers. The pre-trained encoder maps the J; into the 16-dimensional latent code,
which serves as the latent goal for behavioral cloning. The encoder network is composed of four
1D-convolutional layers, followed by a linear layer. Each successive 1D-convolutional layer has an
increasing number of filters, specifically 2, 4, 8, and 16 filters, respectively. All convolutional layers
utilize a kernel size of 3. The linear layer transforms the flattened output from the convolutional
layers into a 16-dimensional latent code. The decoder network is an MLP with 2 hidden layers, each
with 16 neurons. We train the autoencoder for 100 epochs with a learning rate of le — 3.

*https://github.com/bytedance/GiantMIDI-Piano
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Algorithm 2: Training of the goal autoencoder

1: Initialize encoder £y

2: Initialize decoder D,

3: fori =1: Nepocn, do

4 for j = 1: Npatcn, do

5 for each goal v in batch do

6: Compute the latent code z = &, ()

7: Sample a 3D coordinate as query x = Sample3DCoordinate()

8 Compute the positional encoding of query pe = PositionalEncoding(z)

9: Compute the output of the decoder conditioned by the query Dy/(z, pe)
10: Compute the SDF value of query SDF(z, J;)
11: Compute the reconstruction loss L
12: end for
13: Compute the sum of the loss
14: Compute the gradient
15: Update network parameter ¢, ¢
16:  end for
17: end for

H Training Details of Diffusion Model

All the diffusion models utilized in this work, including One-stage Diff, the high-level and low-level
policies of Two-stage Diff, Two-stage Diff-res, and Two-stage Diff w/o SDF, share the same
network architecture. The network architecture is the same as the U-net diffusion policy in [22]
and optimized with DDPM [32], except that we use temporal convolutional networks (TCNs) as
the observation encoder, taking the concatenated goals (high-level policy) or fingertip positions
(low-level policy) of several timesteps as input to extract the features on the temporal dimension.
Each level of U-net is then conditioned by the outputs of TCNs through FiLM [33].

High-level policies take the goals over 10 timesteps and the current fingertip position as in-
put and predict the human fingertip positions. In addition, we add a standard Gaussian noise on the
current fingertip position during training to facilitate generalization. We further adjust the y-axis
value of the fingertips pressing the keys in the predicted high-level trajectories to the midpoint
of the keys. This adjustment ensures closer alignment with the data distribution of the training
dataset. Low-level policies take the predicted fingertip positions, the goals over 4 timesteps, and the
proprioception state as input to predict the robot’s actions. The proprioception state includes the
robot joint positions and velocities, as well as the piano joint positions. We use 100 diffusion steps
during training. To achieve high-quality results during inference, we find that at least 80 diffusion
steps are required for high-level policies and 50 steps for low-level policies.
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Table 7: The Hyperparameters of DDPM

Hyperparameter Value
Initial Learning Rate le-4
Learning Rate Scheduler Cosine
U-Net Filters Number 256, 512, 1024
U-Net Kernel Size 5

TCN Filters Number 32, 64
TCN Kernel Size 3
Diffusion Steps Number 100
Batch Size 256
Number of Iterations 800
Optimizer AdamW
EMA Exponential Factor 0.75

EMA Inverse Multiplicative Factor 1

I Policy Distillation Experiment

Two-stage Diff. The model consists of a hierarchical policy with a pre-trained goal observation
encoder, as described in Section 3.3. Note that the entire dataset is used for training the high-level
policy, while only around 40 % of the collected clips (110K state-action pairs) are trained with RL
and further used for training the low-level policy. The detailed network implementation is described
in Appendix H.

Two-stage Diff w/o SDF. We directly use the binary representation of the goal instead of the SDF
embedding representation to condition the high-level and low-level policies.

Two-stage Diff-res The model is close to Two-stage Diff, with slight changes. We employ
an IK solver to compute the target joints given the fingertip positions predicted by the high-level
policy. The low-level policy predicts a residual term around the IK solution instead of the robot’s
actions.

Two-stage BeT. We train both high-level and low-level policies with Behavior Transformer
[23] instead of DDPM. The hyperparameter of Bet are listed in Table 8.

One-stage Diff. We train a single diffusion model to predict the robot actions given the
SDF embedding representation of goals and the proprioception state.

Multi-task RL. We create a multi-task environment where for each episode a random song
is sampled from the dataset. The observation and action space, as well as the reward function of the
environment, follow the same settings as described in [11]. Consequently, we use Soft-Actor-Critic
(SAC) [34] to train a single agent within the environment. Both the actor and critic networks are
MLPs, each with 3 hidden layers, and each hidden layer contains 256 neurons.

BC-MSE. We train a feedforward network to predict the robot action of the next timestep
conditioned on the binary representation of goal and proprioception state with MSE loss. The
feedforward network is an MLP with 3 hidden layers, each with 1024 neurons.

AIRL [28]. We use the same multi-task environment as Multi-task RL. We use an open-
source implementation of AIRL based on PPO 5. where the actor and critic networks in PPO are

>https://github.com/toshikwa/gail-airl-ppo.pytorch
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MLPs, each consisting of three hidden layers with 256 neurons per layer. The reward and shaping
term of the discriminator also use the same MLP architecture, with three hidden layers and 256
neurons in each layer. We collect expert state-action pairs by rolling out the song-specific policies,
where the state consists of the song’s notes and proprioceptive state, and the action is the joint-space
robot action. The collected data is then fed into the discriminator.

Table 8: The Hyperparameters of Behavior Transformer

Hyperparameter Value
Initial Learning Rate 3e-4
Learning Rate Scheduler Cosine
Number of Discretization Bins 64
Number of Transformer Heads 8
Number of Transformer Layers 8
Embedding Dimension 120
Batch Size 256
Number of Iterations 1200
Optimizer AdamW
EMA Exponential Factor 0.75

EMA Inverse Multiplicative Factor 1

J F1 Score of All Trained Song-Specific Policies

Figure 10 shows the F1 score of all song-specific policies we trained.

K Detailed Results on Test Dataset

In Table 9 and Table 10, we show the Precision, Recall, and F1 score of each song in our collected
test dataset and the Etude-12 dataset from [11], achieved by Two-stage Diff and Two-stage Diff-res,
respectively. We observe an obvious performance degradation when testing on Etude-12 dataset.
We suspect that the reason is due to out-of-distribution data, as the songs in the Etude-12 dataset are
all classical, whereas our training and test dataset primarily consists of modern songs.
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Table 9: Quantitative results of each song in our collected test dataset

Two-stage Diff Two-stage Diff-res
Song Name
Precision  Recall F1 Precision  Recall F1

Forester 0.81 0.70  0.68 0.79 0.71  0.67
Wednesday 0.66 0.57 0.58 0.67 0.54 0.55
Alone 0.80 0.62 0.66 0.83 0.65 0.67
Somewhere Only We Know 0.63 0.53 0.58 0.67 0.57 0.59
Eyes Closed 0.60 0.52 0.53 0.61 0.45 0.50
Pedro 0.70 0.58 0.60 0.67 0.56  0.47
Ohne Dich 0.73 0.55 0.58 0.75 0.56 0.62
Paradise 0.66 042 043 0.68 045 047
Hope 0.74 0.55 0.57 0.76 0.58 0.62
No Time To Die 0.77 0.53 0.55 0.79 0.57 0.60
The Spectre 0.64 0.52 0.54 0.67 0.50 0.52
Numb 0.55 0.44 045 0.57 047 048
Mean 0.69 0.54 0.56 0.71 0.55 0.57

Table 10: Quantitative results of each song in the Etude-12 dataset

Two-stage Diff Two-stage Diff-res
Song Name
Precision  Recall F1 Precision  Recall F1

FrenchSuiteNo1Allemande 0.45 031 0.34 0.39 0.27  0.30
FrenchSuiteNo5Sarabande 0.29 023 0.24 0.24 0.18 0.19
PianoSonataD8451StMov 0.58 0.52 0.52 0.60 0.50 0.51
PartitaNo026 0.35 022 024 0.40 024 0.26
WaltzOp64Nol 0.44 0.31 0.33 0.43 0.28 0.31
BagatelleOp3No4 0.45 0.30 0.33 0.45 0.28 0.32
KreislerianaOp16No8 0.43 0.34 0.36 0.49 0.34  0.36
FrenchSuiteNo5Gavotte 0.34 0.29 0.33 0.41 0.31 0.33
PianoSonataNo232NdMov 0.35 0.24 0.25 0.29 0.19 0.21
GolliwoggsCakewalk 0.60 043 045 0.57 0.40 042
PianoSonataNo21StMov 0.32 0.22  0.25 0.36 0.23  0.25
PianoSonataK279InCMajor1StMov 0.43 035 0.35 0.53 0.38 0.39
Mean 0.42 031 033 0.43 0.30 0.32

L Failure Cases

For song-specific policies, because the starting position of the hands is fixed to the middle of the
piano, we observe that some policies do not behave well at the beginning of the song. Particularly,
when they are required to press the keys on the sides of the piano. For multi-song policies, especially
for unseen songs, we observe that while the robot tends to press the desired keys, it sometimes
wrongly presses the neighboring ones. This likely occurs because the model does not accurately

learn the system dynamics.
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M Extension: Evaluations on the impact of the data in the generalization

In this section, we provide additional details on Section 4.3. We present the recall, precision, and
F1 scores for the two experiments conducted in Section 4.3 in Figure 9. By observing the recall and
precision, we can clearly observe that increasing the dataset positively impacts both the precision
and recall of the learned policy. This indicates that the robot not only presses the proper keys more
often (improves recall) but also avoids pressing the wrong keys equally often (improves precision).
Thus, the observed improvement of the F1-score is led by both.
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Figure 9: Precision, Recall, and F1 Score for policies trained with varying amounts of data volumes
evaluated on the test dataset. Top: The models (One-Stage diffusion, Two-Stage Diffusion, and
Two-Stage Diffusion-res) are trained with the same proportion of high-level and low-level datasets.
Bottom: Two-stage diffusion models are trained with different proportions of high-level and low-

level datasets. The x-axis represents the percentage of the low-level dataset utilized, while HL %
indicates the percentage of the high-level dataset used.
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Figure 10: F1 score of all 184 trained song-specific policies (descending order)
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