
Modern Hopfield Networks for Return
Decomposition for Delayed Rewards

Michael Widrich∗

ELLIS Unit Linz and LIT AI Lab
Institute for Machine Learning

Johannes Kepler University Linz, Austria

Markus Hofmarcher*

ELLIS Unit Linz and LIT AI Lab
Institute for Machine Learning

Johannes Kepler University Linz, Austria

Vihang Patil
ELLIS Unit Linz and LIT AI Lab

Institute for Machine Learning
Johannes Kepler University Linz, Austria

Angela Bitto-Nemling
ELLIS Unit Linz and LIT AI Lab

Institute for Machine Learning
Johannes Kepler University Linz, Austria

Sepp Hochreiter†‡

†ELLIS Unit Linz and LIT AI Lab
Institute for Machine Learning

Johannes Kepler University Linz, Austria
‡Institute of Advanced Research in Artificial Intelligence (IARAI)

Abstract

Delayed rewards, which are separated from their causative actions by irrelevant
actions, hamper learning in reinforcement learning (RL). Especially real world
problems often contain such delayed and sparse rewards. Recently, return decom-
position for delayed rewards (RUDDER) employed pattern recognition to remove
or reduce delay in rewards, which dramatically simplifies the learning task of the
underlying RL method. RUDDER was realized using a long short-term memory
(LSTM). The LSTM was trained to identify important state-action pair patterns,
responsible for the return. Reward was then redistributed to these important state-
action pairs. However, training the LSTM is often difficult and requires a large
number of episodes. In this work, we replace the LSTM with the recently proposed
continuous modern Hopfield networks (MHN) and introduce Hopfield-RUDDER.
MHN are powerful trainable associative memories with large storage capacity.
They require only few training samples and excel at identifying and recognizing
patterns. We use this property of MHN to identify important state-action pairs that
are associated with low or high return episodes and directly redistribute reward
to them. However, in partially observable environments, Hopfield-RUDDER re-
quires additional information about the history of state-action pairs. Therefore, we
evaluate several methods for compressing history and introduce reset-max history,
a lightweight history compression using the max-operator in combination with
a reset gate. We experimentally show that Hopfield-RUDDER is able to outper-
form LSTM-based RUDDER on various 1D environments with small numbers of
episodes. Finally, we show in preliminary experiments that Hopfield-RUDDER
scales to highly complex environments with the Minecraft ObtainDiamond task
from the MineRL NeurIPS challenge.

∗Authors contributed equally

Deep Reinforcement Learning Workshop at Neural Information Processing Systems, 2021



Introduction

Recent advances in reinforcement learning (RL) have resulted in impressive models that are capable
of surpassing humans in games [30, 18, 27]. However, RL is still waiting for its breakthrough in
real world applications, which are often characterized by delayed and sparse rewards [7]. Delayed
rewards are given later than their causative action, separated by irrelevant state-action pairs [28]. This
delay hampers and slows down learning [2, 21, 17]. Recently, [2] propose return decomposition for
delayed rewards (RUDDER) to use pattern recognition to detect the causative actions, which can
be used to remove or alleviate these delays. As a consequence, RUDDER dramatically simplifies
and speeds up learning of the underlying RL algorithms. RUDDER can be realized in different ways,
including a long short-term memory (LSTM) [10] in [2] or sequence alignment in [19].

But these realizations of RUDDER come with drawbacks. LSTMs require a large number of samples,
while sequence alignment is difficult to scale to large state-action spaces. Thus, there is a need for
scalable and sample efficient realization of RUDDER.

A key idea of RUDDER is to identify important patterns in the state-action sequence. This is a task
that associative memories, such as the recently introduced continuous modern Hopfield networks
(MHN) [23], excel at. In this work, we introduce Hopfield-RUDDER, a realization of RUDDER
based on MHN to identify important state-action pairs. We show that Hopfield-RUDDER is scalable
and can reduce the reward delay even with a small number of samples.

In related work, adapted Transformer [29] architectures, which share characteristics of MHN, for
RL have been proposed. In [6], RL is reformulated as a conditional sequence modelling task for
offline RL that can be learned by a Decision Transformer. [14] uses a linear Transformer [15] as an
outer-product-based fast-weight programmer [24, 25]. However, in contrast to Hopfield-RUDDER,
these approaches require large amounts of data, as they are based on Transformer architectures.
Furthermore, Hopfield-RUDDER can speed up any learning algorithm that relies on a delayed reward
signal.

Our main contributions are: We (i) introduce modern Hopfield networks for return decomposition
for delayed rewards (Hopfield-RUDDER), (ii) propose and compare different methods, such as
reset-max history, for history compression for Hopfield-RUDDER in POMDP environments, (iii)
show that Hopfield-RUDDER outperforms LSTM-based RUDDER on 1D environments with small
numbers of samples, and (iv) perform preliminary experiments in the MineRL Minecraft environment
indicating that Hopfield-RUDDER scales to large and complex environments.

Review

We define our setting as a finite Markov decision process (MDP) or a finite partially observable Markov
decision process (POMDP) to be a 4-tuple of (S,A,R, p) of finite sets S with states s (random variable
St at time t), A with actions a (random variable At at time t), R with rewards r (random variable Rt

at time t), and state-reward transition distribution p(St+1 = st+1, Rt+1 = rt | St = st, At = at).
The return of a sequence of length T at time t = {1, . . . , T} is defined as gt =

∑T−t
k=0 rt+k.

RUDDER. Complex tasks are often hierarchically composed of sub-tasks. Hence, the Q-function of
an optimal policy often resembles a step function [2]. Such steps indicate patterns like achievements,
failures, accomplished sub-tasks, or changes of the environment. RUDDER reduces the delay in
the rewards by identifying these patterns and moving (redistributing) the rewards to the causative
state-action patterns. [2] propose an LSTM as realization of RUDDER. The LSTM predicts the return
at the end of an episode as early as possible. These predictions ĝ are then used to redistribute the
reward: rt = ĝt − ĝt−1.

The redistributed reward serves as reward for a subsequent learning method and can be used to
optimize a policy. However, training an LSTM network requires a large amount of episodes, which
are often difficult or expensive to obtain.

Modern Hopfield networks. Hopfield networks are energy-based, binary associative memories,
which popularized artificial neural networks in the 1980s [11, 12]. Associative memory networks have
been designed to store and retrieve samples. Their storage capacity can be considerably increased by
polynomial terms in the energy function [5, 20, 3, 8, 1, 13, 4, 16]. In contrast to these binary memory
networks, we use continuous associative memory networks with very high storage capacity. These

2



Figure 1: Illustration of modern Hopfield networks for return decomposition in Hopfield-RUDDER.
The associative memory of modern Hopfield networks associates 2 time steps (raw state patterns)
U of a new episode with 7 time steps (stored patterns) Y of previously observed episodes and their
corresponding observed returns G. Thereby, the state patterns U are associated with estimated
returns Ĝ. U and Y are transformed via mstate and mstored before association, respectively, and
can include information about previous state-action pairs, such as via reset-max history. Dotted
rectangles show a single raw and transformed stored pattern with its observed return.

modern Hopfield networks for deep learning architectures have an energy function with continuous
states and can retrieve samples with only one update [23, 22]. Modern Hopfield Networks have
already been successfully applied to immune repertoire classification [31] and chemical reaction
prediction [26]. There they serve as powerful associative memories with large memory capacity and
excel at pattern-recognition as they associate inputs with similar patterns in their memory.

Hopfield-RUDDER

The application of MHN for RUDDER naturally follows from the idea of identifying patterns:
Patterns, e.g. state-action pairs, of observed episodes with known returns are stored in the memory of
the MHN. A new pattern can then be used to query this memory for similar patterns and their returns.
This yields an estimated return of the new pattern, which can be used to redistribute the rewards.

Fig. 1 illustrates this in detail: The MHN associates N stored patterns Y = {yi}Ni=1 from previously
observed episodes and their corresponding observed returns G = {gi}Ni=1 with M new state patterns
U = {ui}Mi=1. As such, it directly associates the unknown state patterns U with estimated returns
Ĝ = {ĝi}Mi=1. β is a hyper-parameter controlling the temperature of the softmax function.

The raw state patterns U and stored patterns Y may be transformed by functions mstate and mstored,
for example with linear mappings or multiple hidden layers, as in [23, 31].

This results in a return decomposition function ψ in the form of

Ĝ = ψ(Y ,G,U ;β) = softmax
(
β mstate

(
UT
)T

mstored

(
Y T
))

G. (1)

The redistributed reward rt at time t can then be obtained by computing the differences of the
estimated return values as

rt = ĝt − ĝt−1. (2)

For state patterns ut and ut−1 at times t and t− 1 this results in

rt = ψ(Y ,G,ut;β)− ψ(Y ,G,ut−1;β), (3)

where Y contains a representation of the stored state-action pairs {(si, ai)}Ni=1 with their known
corresponding returns G and ut represents a state-action pair (st, at) without known return.

In the simplest case, a raw state pattern u or stored pattern y is a vector containing the observation st
and action at at time t in an episode. The estimated return for a single state pattern ut at time t in
this case is ĝt = ψ(Y ,G, st, at;β) with the redistributed reward rt computed from state patterns
ut−1 and ut as rt = ĝt − ĝt−1 = ψ(Y ,G, st, at;β)− ψ(Y ,G, st−1, at−1;β).

3



History compression and reset-max history. Assume a key event at time t1, e.g. the collection
of a key, that can result in a reward at time t2, e.g. the opening of a chest. In a POMDP, this key
event might only be observable at t1 but not at t2, e.g. the observation space contains no information
whether a key has been collected already. Assume further that observation st and action at are used
as state or stored pattern: The association of the pattern at t2 with a return, which depends on whether
a key was collected at t1, may severely suffer from the missing information.

To address this problem, the state and stored patterns can be augmented by the history of the previous
state-action pairs. However, retaining the complete history of a state-action pair and including it in
the state and stored patterns would not be feasible for environments with large observation spaces or
long episode sequences.

As the purpose of this history is to enable the detection and storage of key events, we propose a fast
and light-weight history compression method: the reset-max history. Assuming a vector vo

t ∈ RK×1

with K features that contains a representation of the state-action pair (st, at) at time t = {1, . . . , T},
the reset-max history features vh

t ∈ RJ×1 with J features, and the final state or stored pattern
vt ∈ R(J+K)×1 is computed as follows:

vt =
[
vh

t;v
o
t

]
; vh

t = max
i=1,...,(t−1)

(vo
i) · freset

(
vh

t−1,v
o
t

)
(4)

with vh
0 initialized with −∞ and

freset
(
vh

t−1,v
o
t

)
= σ

(
W
[
vh

t−1;v
o
t

])
, (5)

where [; ] is the operator for vertical concatenation, the max operator is used to store the previously
observed maximum feature values, and the reset gate freset utilizes the sigmoid activation function σ
and learned weight matrix W ∈ RJ×(J+K) to reset the stored maximum feature values. Notably, this
changes the return decomposition function ψ for a state pattern ut to be dependent on all previous
and current state-action pairs {(si, ai)}ti=1 in the episode: ĝt = ψ(Y ,G, s1,...,t, a1,...,t;β,W ).

Experiments

In this section, we first compare different history compression methods on multiple 1D toy environ-
ments. Subsequently, we compare the performance of Hopfield-RUDDER to the originally proposed
LSTM-RUDDER. Finally, we visually analyse the reward redistribution of Hopfield-RUDDER on
the difficult and complex task of collecting a diamond in the MineRL Minecraft environment.

1D key-chest environment. We designed 16 different versions of a 1D environment, the 1D key-
chest environment, in order to evaluate the performance of Hopfield-RUDDER, different history
compression methods, and to compare Hopfield-RUDDER to LSTM-RUDDER. We use a reward
redistribution score rr_score, which is based on the known optimal policy, for this evaluation and
comparison. For more details see App. A1.

Environment details. The 1D key-chest environment is illustrated in Fig. 2. The agent starts at
position s in the middle. At each position it can move either one position to the right or to the
left, except for the left-most and right-most position, where further movement to the left and right,
respectively, is ignored. If the agent visits position k, it collects 1 key. If the agent visits position s, it
loses all collected keys with a probability of pl. If the agent visits position c while holding nk keys, it
will receive 1 reward at the end of the episode. All episodes have the same fixed length. A reward of
0 or 1 is given at the end of each episode, depending on whether the chest was opened or not.

We evaluate the performance of RUDDER on different versions of this environment with pl = {0, 0.5}
and nk = {1, 3}. We consider fully observable MDP and partially observable POMDP versions of
the environment. Furthermore, we add nrnd = {0, nobs} features that contain random values {0, 1}
to the observation space, where nobs is the number of features of the original observation space. In
total, we created 16 different versions of this environment (see Tab. 1 and App. A1).

To redistribute reward in this environment successfully, RUDDER has to identify that position k
needs to be visited nk times before visiting position c. Furthermore, RUDDER has to identify that
the key-collection process has to be restarted if the keys are lost at s.

4



Figure 2: Illustration of 1D key-chest environment with special states k, s, c, and 9 states in total.

Reward redistribution score By design, the optimal of the two available actions at any state s
in the 1D key-chest environment is known. In particular, at each state st at time t in an episode,
the agent can either take a left or right action at ∈ {al, ar}, which can be a correct, incorrect, or
irrelevant action. We use this knowledge to compute a score rr_score for the quality of the reward
redistribution ψ(:) for an episode with time t = {1, . . . , T} as follows:

rr_score = 0.5 +
1

2T
·

T∑
t=1

scr({(si, ai)}t−1
i=1 , st), (6)

where scr(:) assigns a score {−1, 0, 1} for the redistributed reward rt at each time t.

In detail, action left al is correct if q∗(st, al) > q∗(st, ar). Action right ar is correct if q∗(st, ar) >
q∗(st, al). An action is irrelevant if q∗(st, al) == q∗(st, ar). Here, q∗(st, at) is the Q-function of
the optimal policy π∗.

The redistributed reward rt = ψ(:) is correct if rt for the correct action is higher than for the incorrect
action. If the redistributed reward is correct, scr(:) assigns a score of 1, if it is incorrect a score of -1.
If the action is irrelevant, the reward redistribution receives a score of 0.

Experimental setup. We sample a large test set of 1, 000 episodes and small training sets of
{8, 16, 32, 64, 128, 256, 512} episodes, using a random agent. Half of the episodes have a return of 0
and 1 in each set, with fixed sequence lengths between 32 and 148 times per episode (see App. A1).

Reset-max history outperforms other history compression methods. We first analyze the per-
formance of Hopfield-RUDDER, where the training set is used as stored patterns. For this, we
evaluate Hopfield-RUDDER without history information and with 5 different versions of history
compression: (i) feature-wise max-pooling, (ii) feature-wise sum-pooling, (iii) fully-connected
LSTM (LSTMf), (iv) sparsely-connected LSTM (LSTMs), and (v) reset-max history, as detailed
in App. A1.2. Furthermore, we evaluate each setting with a linear mapping mstate = mstored and
without any mapping. As shown in Tab. 1 and A2, reset-max history consistently outperforms all
other Hopfield-RUDDER versions, except for one POMDP setting and two MDP settings, in which it
is the runner-up method.

Hopfield-RUDDER with reset-max history consistently outperforms LSTM-RUDDER. Sub-
sequently, we analyze the performance of LSTM-RUDDER with reset-max history and without
history information. As shown in Tab. 1, Hopfield-RUDDER with reset-max history consistently
outperforms all LSTM-RUDDER versions on all environment versions.

More details on results, history compression methods, and training can be found in App. A1.

Minecraft. In order to show that Hopfield-RUDDER can scale to complex problems, we perform
preliminary experiments within the challenging MineRL Minecraft environment [9]. Specifically, we
use Hopfield-RUDDER to redistribute rewards for the task ObtainDiamond. As the high complexity
of ObtainDiamond makes random exploration unfeasible, [9] provide the Minecraft environment
with demonstrations of human players solving this task. Players and agents are randomly placed in a
procedurally generated 3D environment without any items in their possession. The objective is to
gather resources and build the tools required to obtain a diamond.

For ObtainDiamond, auxiliary reward is given the first time the player obtains an item, even if
multiple copies of this item are required. For example, agents have to gather multiple logs in order

5



Hopfield-RUDDER LSTM-RUDDER

History: reset-max LSTMf LSTMs max sum none reset-max none

Mapping: linear none linear none linear none linear none linear none linear none none none none none

Learning rate: 1e− 3 - 1e− 3 - 1e− 3 - 1e− 3 - 1e− 3 - 1e− 3 - 1e− 4 1e− 3 1e− 4 1e− 3

Environment specs

nk pl nrnd

POMDP 1 0% 0 93.08 82.42 72.23 70.37 76.94 66.79 91.85 89.96 78.72 41.36 58.30 58.61 65.27 72.85 57.25 74.32

±4.87 ±8.80 ±7.12 ±6.40 ±6.65 ±10.29 ±5.40 ±5.74 ±7.41 ±6.09 ±3.24 ±3.85 ±6.69 ±5.97 ±4.41 ±5.93

POMDP 1 0% nobs 87.66 81.37 66.17 61.51 75.31 62.36 87.90 84.31 76.91 41.92 56.90 57.54 62.23 73.37 53.84 68.23

±5.43 ±4.88 ±5.17 ±5.60 ±7.56 ±6.42 ±6.74 ±5.23 ±6.67 ±4.15 ±3.59 ±2.35 ±8.37 ±4.04 ±5.03 ±7.34

POMDP 1 50% 0 75.41 73.57 58.22 58.75 62.77 59.93 62.85 65.52 52.80 49.28 54.83 55.99 60.21 55.25 48.85 52.11

±10.33 ±13.01 ±7.55 ±7.72 ±9.41 ±11.43 ±7.57 ±7.03 ±6.61 ±2.10 ±6.01 ±5.66 ±4.60 ±8.43 ±7.76 ±7.52

POMDP 1 50% nobs 69.19 66.19 54.87 54.98 56.33 54.33 61.47 60.13 53.07 48.90 54.43 54.64 51.34 51.80 48.79 50.14

±7.95 ±5.52 ±4.37 ±3.84 ±5.00 ±6.34 ±6.31 ±3.84 ±3.50 ±1.36 ±4.01 ±3.43 ±6.32 ±5.01 ±2.59 ±4.34

POMDP 3 0% 0 80.91 74.06 66.61 64.94 76.06 73.80 77.02 77.59 68.16 45.17 54.88 55.31 59.50 66.62 55.37 63.68

±7.74 ±8.43 ±8.17 ±6.98 ±8.44 ±13.78 ±8.81 ±6.17 ±12.70 ±5.25 ±4.03 ±4.08 ±5.75 ±7.37 ±6.15 ±9.36

POMDP 3 0% nobs 77.96 74.07 63.42 61.90 73.32 68.99 75.30 75.06 66.61 45.56 54.56 54.41 53.34 65.84 51.84 58.34

±5.95 ±4.84 ±4.95 ±4.01 ±6.65 ±8.06 ±6.29 ±4.19 ±10.50 ±3.73 ±3.33 ±3.42 ±6.20 ±7.19 ±7.31 ±6.18

POMDP 3 50% 0 74.30 69.60 56.17 58.38 59.50 62.42 57.42 60.44 54.61 55.36 54.84 56.58 52.78 52.80 47.96 49.51

±10.68 ±11.35 ±7.57 ±8.99 ±11.27 ±13.61 ±7.22 ±5.95 ±4.72 ±1.59 ±7.44 ±6.88 ±2.72 ±7.65 ±9.88 ±6.34

POMDP 3 50% nobs 67.30 63.82 53.07 53.06 55.86 54.81 55.79 55.46 55.05 55.55 53.92 53.39 52.64 50.51 46.40 49.93

±8.50 ±6.76 ±4.72 ±3.48 ±5.84 ±8.43 ±5.70 ±3.25 ±2.70 ±0.81 ±4.82 ±3.99 ±5.68 ±4.72 ±3.47 ±4.91

Table 1: Comparison of different Hopfield-RUDDER and LSTM-RUDDER versions w.r.t. reward
redistribution score rr_score on different versions of the 1D key-chest environment. Results show
the mean rr_score over all training set sizes and a 10-fold cross-validation (CV). Error bars show
mean standard deviation of 10-fold CV over all training set sizes. Hopfield-RUDDER with reset-max
history consistently outperforms all LSTM-RUDDER versions. For MDP versions see Tab. A2.

to build all necessary tools but receive reward only for the first log they acquire. However, we omit
these auxiliary rewards and only use episodic return by giving a return of 1 for demonstrations that
obtain a diamond and a return of 0 for those that do not manage to obtain it.

In order to show that Hopfield-RUDDER is able to redistribute reward to relevant state-action pairs in
ObtainDiamond, we train a simple Hopfield-RUDDER model using the reset-max history history
compression. We only use the sequence of inventory states and associated actions as input to Hopfield-
RUDDER. Following [19], we use 10 successful and 10 unsuccessful demonstration episodes as
training set. The state-action pairs from these 20 episodes are used as stored patterns Y . We use the
obfuscated version of the environment and demonstrations, therefore the observations s and actions a
are the hidden representation of an unknown auto encoder (for further details see App. A2.3). We use
a neural network with 2 hidden layers and ReLU activation as mapping functions mstate = mstored.

Training Hopfield-RUDDER does not require massive compute resources. On the contrary, training a
model for 100 episodes takes only minutes on an Nvidia A40 GPU. A small hyper-parameter search
showed that the model is not overly sensitive to hyper-parameter changes and most models produce a
similar reward redistribution.

Fig. 3 shows the redistribution for a demonstration episode, which was not used for training the
model. We use the non-obfuscated inventory states for visualization. It visually seems that Hopfield-
RUDDER is able to redistribute the reward to important state-action pairs. Furthermore, Hopfield-
RUDDER appears to not redistribute rewards to irrelevant state-action pairs, resulting in a reward
redistribution with little noise.

Conclusion

We have introduced Hopfield-RUDDER, a novel realization of RUDDER. Hopfield-RUDDER
replaces the LSTM in the original LSTM-RUDDER with a powerful auto-associative memory, the

6



Figure 3: Top: example of redistributed reward of a successful demonstration using only the
inventory and actions. Red vertical lines indicate the auxiliary reward an agent would receive from the
environment, however the reward redistribution is trained only with reward at episode end. The reward
redistribution seems to identify relevant state-action pairs. Bottom left: Magnified region showing
acquisition of planks through crafting. First, logs are used up, resulting in negative redistributed
reward followed by an increase in planks, which increases the reward prediction. Bottom right:
Time steps showing the crafting of stone pickaxe and furnace. Both items require stone and show a
similar behavior as crafting planks. Predicted reward decreases when the inventory state for base
component decreases and increases when the crafted item appears in the inventory.

modern Hopfield network. In contrast to LSTM-RUDDER, Hopfield-RUDDER can be trained on a
drastically lower number of samples.

Acknowledgments and Disclosure of Funding

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the Federal
State Upper Austria. IARAI is supported by Here Technologies. We thank the projects AI-MOTION
(LIT-2018-6-YOU-212), DeepToxGen (LIT-2017-3-YOU-003), AI-SNN (LIT-2018-6-YOU-214),
DeepFlood (LIT-2019-8-YOU-213), Medical Cognitive Computing Center (MC3), INCONTROL-RL
(FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), DL for GranularFlow (FFG-871302),
AIRI FG 9-N (FWF-36284, FWF-36235), ELISE (H2020-ICT-2019-3 ID: 951847), AIDD (MSCA-
ITN-2020 ID: 956832). We thank Janssen Pharmaceutica (MaDeSMart, HBC.2018.2287), Audi.JKU
Deep Learning Center, TGW LOGISTICS GROUP GMBH, Silicon Austria Labs (SAL), FILL
Gesellschaft mbH, Anyline GmbH, Google, ZF Friedrichshafen AG, Robert Bosch GmbH, UCB
Biopharma SRL, Merck Healthcare KGaA, Verbund AG, Software Competence Center Hagenberg
GmbH, TÜV Austria, and the NVIDIA Corporation.

7



References

[1] L. F. Abbott and Y. Arian. Storage capacity of generalized networks. Phys. Rev. A, 36:5091–
5094, 1987.

[2] J. A. Arjona-Medina*, M. Gillhofer*, M. Widrich*, T. Unterthiner, J. Brandstetter, and
S. Hochreiter. RUDDER: Return decomposition for delayed rewards. In Advances in Neural
Information Processing Systems, pages 13544–13555, 2019.

[3] P. Baldi and S. S. Venkatesh. Number of stable points for spin-glasses and neural networks of
higher orders. Phys. Rev. Lett., 58:913–916, 1987.

[4] B. Caputo and H. Niemann. Storage capacity of kernel associative memories. In Proceedings
of the International Conference on Artificial Neural Networks (ICANN), page 51–56, Berlin,
Heidelberg, 2002. Springer-Verlag.

[5] H. H. Chen, Y. C. Lee, G. Z. Sun, H. Y. Lee, T. Maxwell, and C. Lee Giles. High order
correlation model for associative memory. AIP Conference Proceedings, 151(1):86–99, 1986.

[6] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

[7] F. Dulac-Arnold, D. J. Mankowitz, and T. Hester. Challenges of real-world reinforcement
learning. CoRR, abs/1904.12901, 2019.

[8] E. Gardner. Multiconnected neural network models. Journal of Physics A, 20(11):3453–3464,
1987.

[9] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. P. Mohanty, D. P.
Liebana, R. Salakhutdinov, N. Topin, M. Veloso, and P. Wang. The MineRL competition on
sample efficient reinforcement learning using human priors. arXiv, 2019.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[11] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

[12] J. J. Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088–3092,
1984.

[13] D. Horn and M. Usher. Capacities of multiconnected memory models. J. Phys. France,
49(3):389–395, 1988.

[14] K. Irie, I. Schlag, R. Csordás, and J. Schmidhuber. Going beyond linear transformers with
recurrent fast weight programmers. arXiv preprint arXiv:2106.06295, 2021.

[15] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are RNNs: Fast Autoregres-
sive Transformers with Linear Attention. In Proceedings of the 37th International Conference
on Machine Learning, pages 5156–5165. PMLR, 2020.

[16] D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, pages 1172–1180. Curran Associates, Inc., 2016.

[17] J. Luoma, S. Ruutu, A. W. King, and H. Tikkanen. Time delays, competitive interdependence,
and firm performance. Strategic Management Journal, 38(3):506–525, 2017.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, , and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

8



[19] V. P. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. A. Arjona-
Medina, and S. Hochreiter. Align-rudder: Learning from few demonstrations by reward
redistribution. CoRR, abs/2009.14108, 2020.

[20] D. Psaltis and H. P. Cheol. Nonlinear discriminant functions and associative memories. AIP
Conference Proceedings, 151(1):370–375, 1986.

[21] H. Rahmandad, N. Repenning, and J. Sterman. Effects of feedback delay on learning. System
Dynamics Review, 25(4):309–338, 2009.

[22] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlović,
G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter.
Hopfield networks is all you need. ArXiv, 2008.02217, 2020.

[23] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlović,
G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter.
Hopfield networks is all you need. In 9th International Conference on Learning Representations
(ICLR), 2021.

[24] J. Schmidhuber. Learning To Control Fast-Weight Memories: An Alternative To Dynamic
Recurrent Networks, 1991.

[25] J. Schmidhuber. Learning to Control Fast-Weight Memories: An Alternative to Dynamic
Recurrent Networks. Neural Computation, 4(1):131–139, 1992.

[26] P. Seidl, P. Renz, N. Dyubankova, P. Neves, J. Verhoeven, J. K. Wegner, S. Hochreiter, and
G. Klambauer. Modern hopfield networks for few- and zero-shot reaction prediction. ArXiv,
2104.03279, 2021.

[27] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[28] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts, Dept. of Comp. and Inf. Sci., 1984.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

[30] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Petersen, K. Simonyan, T. Schaul,
H. van Hasselt, D. Silver, T. P. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence,
A. Ekermo, J. Repp, and R. Tsing. Starcraft II: A new challenge for reinforcement learning.
ArXiv, 2017.

[31] M. Widrich, B. Schäfl, M. Pavlović, H. Ramsauer, L. Gruber, M. Holzleitner, J. Brandstetter,
G. K. Sandve, V. Greiff, S. Hochreiter, and G. Klambauer. Modern Hopfield networks and
attention for immune repertoire classification. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 18832–18845. Curran Associates, Inc., 2020.

9


