Published as a conference paper at ICLR 2025

TASKS, CHALLENGES, AND PATHS TOWARDS Al FOR
SOFTWARE ENGINEERING

Alex Gu Naman Jain* Wen-Ding Li*

MIT CSAIL University of California, Berkeley Cornell University
gualmit.edu naman_jain@berkeley.edu wl678@cornell.edu
Manish Shetty* Yijia Shao

University of California, Berkeley Stanford University
manishs@berkeley.edu shaoyj@cs.stanford.edu
Ziyang Li Diyi Yang Kevin Ellis

University of Pennsylvania Stanford University Cornell University

liby99@seas.upenn.edu diyiy@cs.stanford.edu kellis@cornell.edu

Koushik Sen Armando Solar-Lezama

University of California, Berkeley MIT CSAIL

ksen@berkeley.edu asolar@csail.mit.edu
ABSTRACT

Al for software engineering has made remarkable progress, becoming a notable
success within generative Al. Despite this, achieving fully automated software
engineering is still a significant challenge, requiring research efforts across both
academia and industry. In this position paper, our goal is threefold. First, we
provide a taxonomy of measures and tasks to categorize work towards Al soft-
ware engineering. Second, we outline the key bottlenecks permeating today’s
approaches. Finally, we highlight promising paths towards making progress on
these bottlenecks to guide future research in this rapidly maturing field.

1 INTRODUCTION

Al for software engineering has made remarkable progress, becoming a notable success within gen-
erative Al Despite this, achieving fully automated software engineering remains a significant chal-
lenge, requiring significant research efforts across academia and industry. In this paper, we provide
an opinionated view of the tasks, challenges, and promising directions towards achieving this goal.

Many existing surveys focus on particular topics discussed in this work. [Liang et al.| (2024) and
Sergeyuk et al.| (2025) survey the successes and challenges of Al programming assistants, (Wang
et al.} |2024a) survey using LLMs for software testing, and [Joel et al.| (2024)) survey using LLMs in
low-resource and domain-specific languages, and [Zhang et al.|(2023) focus on automated program
repair, both with and without LLMs. Finally,|Yang et al.|(2024) is a roadmap for formal mathemati-
cal reasoning and has some overlap with our discussion on software verification. In addition, many
works discuss the current state, challenges, and future of Al for software engineering (Fan et al.,
2023} |Ozkayal 2023} [Wong et al., 2023 Zheng et al., 2023} [Hou et al.,|2024; Jin et al., 2024; [Wan
et al.| |2024). Our work draws inspiration from them, and we recommend that the reader consult
them for alternative perspectives.

In this position paper, our goal is threefold. In Sec. [2] we provide a structured way to think about
progress in the field and list tasks important in Al for software engineering. We also provide three
measures for categorizing concrete realizations of the task: the scale of the problem, the amount of
algorithmic complexity, and the level of human intervention. In Sec. [3| we highlight nine challenges
in the field that today’s models face, each of which applies to several tasks. In Sec. il we posit five
research themes that are promising to tackle the aforementioned challenges. We hope that through

Published as a conference paper at ICLR 2025

our paper, the reader can appreciate the progress the field has made, understand the shortcoming of
today’s state-of-the-art models, and gain concrete research ideas for tackling these challenges.

2 TASKS IN Al SOFTWARE ENGINEERING

We first provide a taxonomy of tasks in Al software engineering. To provide a structured way to
consider concrete realizations of each task, we define three measures that apply across them: scope,
algorithmic complexity, and level of human intervention. To achieve an Al software engineer, we
strive for Al to be capable across all three measures.

Scope Measure: We define three levels of scope, the extent of changes that the Al makes to the
codebase. Function-level scope refers to single, self-contained functions such as in HumanEval
(Chen et al.| 2021). Self-contained unit scope goes beyond singular functions and to larger chunks
of code such as entire files and classes. Finally, project-level scope refers to larger codebases such as
entire repositories, such as in Commit0 (Zhao et al.,|2024) and SWE-Bench (Jimenez et al., 2024)).

Algorithmic Complexity Measure: Tasks require a wide range of reasoning abilities when it comes
to devising algorithms to solve them. Low algorithmic complexity tasks require little to no reasoning,
such as writing CRUD (create, read, update, delete) applications or using APIs. Medium algorith-
mic complexity tasks include most LeetCode problems, finding inputs to fuzz simple programs, and
reasoning about execution behavior of multithreaded programs. High algorithmic complexity tasks
require meticulous and challenging levels of algorithmic reasoning, either because the algorithm
is complex or because the problem requires clever thinking and insights. This includes difficult
competition programming problems, writing large thread-safe concurrent programs, cracking cryp-
tographic ciphers, and solving SMT-like problems. Many popular coding benchmarks are function-
level, medium-high algorithmic complexity, such as APPS (Hendrycks et al., [2021), CodeContests
(L1 et al., [2022)), and LiveCodeBench (Jain et al., [2024b).

Level of Human Intervention Measure: Al coding is a collaborative task. Following the autonomy
taxonomy in Morris et al.[(2023)), we define three levels of human intervention. Low autonomy is
when the human has full control over the task and uses Al to automate simple sub-tasks. Medium
autonomy is when there is a similar amount of human-AlI collaboration, with interactive coordination
of goals and tasks. High autonomy is when Al drives the tasks, with the human providing feedback.

Next, with our taxonomy of measures in place, we turn to the set of tasks that are reflective of the
tasks and capabilities of a human software engineer.

2.1 CODE GENERATION

Code generation is the task of generating code from a specification. In code completion (e.g. Github
Copilot), the specification takes the form of a pre-existing code snippet. In natural language to
code, where the specification is a natural language description containing information such as the
task description, input-output examples, libraries to use, and other requirements about the code. The
difficulty of a code generation task depends highly on its scope and algorithmic complexity.

2.2 CODE TRANSFORMATION

Code Optimization: Transforming programs to improve performance characteristics while main-
taining functional correctness is a critical software task. These optimizations span multiple dimen-
sions, including execution time, memory usage, energy consumption, and parallel efficiency. The
challenge lies not only in identifying opportunities for optimization but also in reasoning about
complex performance trade-offs across different hardware architectures and usage scenarios.

Code Translation: Code translation is the task of translating code from a source language to a target
language. This task is difficult because it requires understanding, in depth, how constructs expressed
in the source language map to the target language. This requires reasoning at a very high level of
abstraction. In the industry, there are many large-scale code translation attempts (like C to Rust, or
Python to C), and this task is also useful for porting legacy code to modern programming languages.

Code Refactoring: Code refactoring presents a unique challenge in code transformation because
success extends far beyond functional correctness or metrics. The goal is often to improve code
maintainability, readability, or extensibility—qualities that are inherently difficult to quantify and
highly context-dependent. For instance, extracting shared functionality into helper methods presents

Published as a conference paper at ICLR 2025

trade-offs between modularity and cognitive complexity (Parnas| [1972). These challenges are fur-
ther compounded by the need to understand implicit trade-offs customized to specific codebases,
respect conventions, and reason about the long-term maintenance implications of structural changes.

2.3 CODE UNDERSTANDING

Understanding the moving parts of a codebase is an important skill for being a stellar engineer.
Code can often be difficult to understand due to many wrapper functions, error-handling boiler-
plate, deep call stacks, and sometimes even poor code cleanliness. We identify four practical code-
understanding tasks that we find practical and important:

Code Summarization and Documentation: To ensure maintainability, readability, and ease of
collaboration, code must be documented well. Writing good documentation is challenging because it
needs to be written cleanly and crisply, describing both what the function does and how the function
works. Importantly, it must also anticipate and address any misunderstandings that a programmer
might have, such as potential side effects or special cases.

Code Navigation: It is challenging to navigate and get accustomed to a mature codebase for new
joiners. Code navigation means finding where relevant functionality is implemented. Doing this well
requires understanding both the high-level layout of where every functionality lies in the codebase
and the low-level understanding of which helper functions are used to implement each functionality.

Code Question Answering: The holy grail of code understanding is the ability to answer arbitrarily
complex questions about a codebase, which requires sophisticated code understanding and reasoning
abilities. Models should not hallucinate or give incorrect information that skews a developer’s men-
tal model of the code. Beyond other tasks mentioned in this section, developers might commonly
ask questions related to data flow (when and where data structures get mutated), code functional-
ity (whether there are any side effects), performance characteristics (determining the runtime and
memory complexity of a function), or error handling (whether certain corner cases are handled).

2.4 CODE DEBUGGING

Software inevitably will have bugs that vary in scope and algorithmic complexity. Minor bugs
might miss a few corner cases and require only a few lines of modification, e.g. simple, stupid
bugs (Mosolyg6 et al |2021). Complex bugs (e.g. concurrency bugs) might have very high algo-
rithmic complexity. Because bugs can often pass tests and syntax checks, even detecting them can
be tricky and requires thorough testing both during development and production work. The diffi-
culty of fixing a bug depends on scope and algorithmic complexity. Function-level, low algorithmic
complexity bugs can easily fixed by feeding in the error information. Repository-level, high algo-
rithmic complexity bugs could require locating the bug, re-thinking the algorithm, and restructuring
or refactoring the codebase. These changes must be general and should not break the functionality
of other parts of the codebase.

2.5 SCAFFOLDING AND META-CODE

For a software system to work, the core logic must be written well, but that is not enough. Many
infrastructural aspects must be in place to support the software. We group these into two main
categories: scaffolding and meta-code. We define scaffolding to be code that is important to make
the system work but does not actually participate in the execution of its main logic. Examples of
scaffolding include test harnesses, configuration files, CI/CD code, Makefiles, Dockerfiles, sandbox
databases, and preprocessors. In contrast, we define meta-code as a task outside of the code that
must be done to get the software running the property. Examples of meta-code include setting up
Google authentication, subscribing to APIs, managing file storage, and generating API tokens.

2.6 FORMAL VERIFICATION

The task of formal verification involves generating checkable, mechanized proofs that can guarantee
that a piece of code works as intended. Formal verification of software is necessary in mission-
critical applications such as aircraft software, where it is crucial that code is correct with absolute
certainty. Over the years, there have been countless programming languages designed specifically
for formal verification. Some of the popular ones include TLA (Lamport, |1994)), Coq (The Coq
Development Team|, [2024)), Lean (De Moura et al.| [2015)), Dafny (Leinol, [2010), Isabelle (Nipkow
et al.,[2002), and Verus (Lattuada et al., [2024).

Published as a conference paper at ICLR 2025

In the formal methods literature, there are two major classes of formal verification: full functional
verification (FFV) and property verification (PV). In FFV, the goal is to design a complete and
precise formal specification that captures the desired behavior of the implementation. While FFV
provides a complete set of guarantees, it is usually sufficient to opt for PV, where a few key properties
of a system are proven correct, such as ensuring that two threads do not simultaneously enter a
critical section of a program. Unlike in FFV, the specification is simpler to write and the challenge
is finding the right domain-specific tool and algorithms to write the proof.

3 CHALLENGES

While the field of Al for code has made fruitful progress, cutting-edge Al still struggles with SWE
tasks, especially at larger scopes and higher levels of algorithmic complexity. Next, we discuss ten
key challenges in Al for code. Each challenge spans multiple tasks, and progress on any can lead to
improvements on many tasks at once. We order these roughly by how easy it is to resolve them.

3.1 EVALUATION AND BENCHMARKS

Our taxonomy of tasks and measures highlights some of the shortcomings of today’s evaluations
and benchmarks. For example, the majority of today’s coding evaluations have no level of human
intervention, with a few, such as Copilot-Arena (Chi et al.l 2024)), having low to medium auton-
omy. HumanEval, MBPP, APPS, CodeContests, and LiveCodeBench are all at function-level scope,
with low to medium-high algorithmic complexity. Commit0 and SWE-Bench, TestGenEval (Jain
et al., 2024a), RefactorBench (Gautam et al., [2024) are at project-level scope with low to medium
algorithmic complexity. Today, we lack benchmarks 1) at project-level scope with high algorith-
mic complexity, 2) for many tasks other than code generation, and 3) requiring human intervention.
Next, we note that current coding evaluations primarily focus on the code generation task. Most of
the tasks discussed in Sec[3]are either not studied such as Code QA or only studied in self-contained
scopes like EvalPerf (Liu et al., 2024), formal verification (Sun et al., 2024)).

3.2 INTELLIGENT TOoOL USAGE

Software engineering has witnessed the development of various open and proprietary tooling support
for programming, debugging, analysis, and code management throughout time. For example, linters
and type-checkers provide assurances on static code correctness. Print statements and debuggers
are used for dynamically analyzing and debugging programs. Beyond programming, such tools
are richly integrated into the entire software development lifecycle, e.g. code navigation or search,
reviewing code, CI testing. While many efforts combine LLMs and agents with tools, they do not
achieve fully dynamic and intelligent software engineering tool usage. There are a few challenges
towards this goal: first, the agent must identify which tools could potentially be useful for the task
at hand. Second, the agent then needs to decide when to invoke the tool. Third, the agent then must
figure out how to best make use the tool. Finally, the agent needs to incorporate the output provided
by the tool in order to inform its next steps.

3.3 HUMAN-AI COLLABORATION

While Al coding assistants are increasingly more powerful, the majority of Al coding assistants are
still at a low to medium autonomy level, with constant human supervision required. We identify
a few key challenges of today’s Al coding systems that prevent these systems from working with
humans effectively at higher levels of autonomy.

Lack of controllability: When programmers use Al coding assistants, they are often looking for
a specific result and functionality. However, they currently do not have reliable ways of steering
LLMs to generate a very specified chunk of code. Often, they rely on a guess-and-check like ap-
proach where the LLM is repeatedly sampled or given feedback until outputting a piece of code the
programmer likes. As a result, humans still need to spend a lot of time reviewing and modifying the
code to ensure that it performs their desired functionality (Weisz et al., | 2024)).

Identifying when human input is necessary: LLMs rarely defer to humans for clarification, while
developers often ask questions to clarify the description of a task provided by their peers. One
example is a product manager refining a requirements document: developers confused about the
requirements or the scope ask questions and add comments to the document, which are typically
resolved by the manager with the goal of iteratively disambiguating the requirements (Nahar et al.,
2022)). Based on its knowledge of existing software, Al should be able to incorporate implicit priors

Published as a conference paper at ICLR 2025

from a specification while keeping the user in the loop. For example, when designing an academic
website for someone, there are implicit requirements, such as including a person’s list of publications
and contact information, but whether to include the person’s GPA may be a clarification point.

3.4 VAGUE SPECIFICATIONS AND USER MISALIGNMENT

When using code LLMs, we typically prompt them with a natural language specification. This can
include a natural language description of the desired code, input-output examples, relevant code
snippets, and other functional requirements. However, there is a gap in the level of abstraction be-
tween English and code, leading to incomplete or ambiguous specifications. For longer programs,
the number of ambiguous decision points also increases, and choices traditionally made by a human
are now implicitly incorporated into the LLM’s generated code. This often leads to user misalign-
ment due to vague specifications.

Inherent trade-offs in software development: Designing large software systems always surfaces
trade-offs between various desiderata such as readability, scalability, performance, maintainability,
reliability, security, etc. These trade-offs are often context dependent. A long-term and rapidly
moving project may be willing to trade off some performance to have simplicity and readability.
Performance-critical applications may completely sacrifice readability to eke out every millisecond
of speed. Finding the sweet spot among these trade-offs can often involve extensive prototyping and
benchmarking to understand the performance characteristics of different approaches. User specifi-
cations rarely include details about these trade-offs, nor do models often take them into account.

Formal specifications: Autoformalization can mitigate underspecification by translating user intent
into formal specifications. Ideally, a formal language could completely and unambiguously capture
the desired software behavior. However, autoformalization may also suffer from the misalignment
problem by misinterpreting user intent, resulting in a formal specification that does not accurately
reflect the user’s actual requirements. Therefore, users must understand and carefully verify the
formalized specification generated by autoformalization tools.

3.5 LONG-HORIZON CODE PLANNING

When working on large projects, engineers and tech leads often make complex decisions about how
to design and structure the code to best support the various functionalities that will eventually be
needed. To build a long-lasting software system, an engineer must know the potential paths that the
system’s evolution might take. This requires domain expertise and experience in how different code
structures require different forms of extension.

Designing good abstractions: One instance of long-horizon code planning is choosing the right
abstractions from the onset. An API designed with good abstractions will allow new features to be
implemented seamlessly with minimal user overhead, while an API designed with poor abstractions
may lead to excessive code duplication, refactoring, or even debugging. One example of this is
Library learning: designing APIs and libraries with useful abstractions often leads to more code
reuse and more intuitive interfaces. The challenge of library learning is to derive a library of useful
abstractions from a corpus of programs by abstracting out common, reusable computations |Ellis
et al.| (2021));|Stengel-Eskin et al.|(2024). While the traditional library learning literature has focused
primarily on code reuse, a truly effective library must also prioritize ease of use and maintainability,
as well as be robust and adaptable to future extensions. Another challenge is data representation,
as the choice between data structures leads to a variety of trade-offs when it comes to performance
aspects such as memory usage and processing speed. For example, database engineers need to decide
between various data models, storage formats, and indexing methods to balance performance.

3.6 LARGE SCOPE AND LONG CONTEXTS

The tasks in Sec. 2] become significantly more difficult at the repository-level scope, as engineering
with large codebases is a multi-step task. For code generation, there are naturally many decision
points where specifications can be vague. Because these decisions compound, it is tricky to generate
the right code that the user wants. In code refactoring, modifications will touch multiple parts of the
codebase, and it can be tricky to keep the repository consistent. In both code debugging and code
navigation, as repositories get bigger, localization becomes more difficult. In code debugging, func-
tions can be large and bugs can be nested deeply within stacks of function calls. In code navigation,

Published as a conference paper at ICLR 2025

because there are so many functions interacting in various ways, it can be difficult to know where
each piece of functionality is implemented and how the code is put together.

The limits of long-context models: Software engineering often requires dealing with very large
codebases—for example, Google has repositories with over a billion lines of code (Potvin & Leven-
berg, [2016). Dealing with large context lengths has long been an outstanding challenge for LLMs,
and progress has been rapid with Gemini providing over 1M tokens of context. In coding, Magic has
even trained models with 100M token context. While these models show good performance in toy
benchmarks such as needle retrieval, we have not seen evidence of how this performance translates
to large real-world code-bases.

The limits of retrieval-augmented generation (RAG): Retrieval-based algorithms have been the
predominant way to deal with long-context coding issues. First, the retriever retrieves relevant
functions. Then, the generator leverages the retrieval to improve generation. While RAG has proven
effective in many NLP tasks such as question answering (Gao et al., 2023} [Lewis et al., 2020), the
code domain provides new challenges for these methods. In the code domain, for the retrieval step,
it is often unclear what the correct item to retrieve is. In addition, code embeddings generally group
code together via syntactic similarity (Ma et al.,[2024} Utpala et al.,2023)), which can make it hard to
retrieve crucial snippets that are semantically relevant but syntactically unrelated. For the generation
step, in NLP tasks it often is a straightforward application of the retrieved information. However,
in code, writing a new function requires more than copying and pasting retrieved code snippets.
Rather, the relevant snippets must first be analyzed, an algorithm using these code snippets must be
developed, and be pieced together coherently in a precise manner.

3.7 GLOBAL UNDERSTANDING OF CODEBASES

After working with a codebase for a while, programmers have a global understanding and mental
model of the codebase. This includes overall codebase structure, different algorithms, stylistic as-
pects, data representation, program invariants, package versions, test coverage, and the interplay
between different functions. This holistic understanding is necessary for performing many tasks.

LLMs struggle at global understanding of codebases for several reasons. First, the way that code is
pieced together can be relatively intricate, and understanding all these complex relationships can be
difficult. Second, code can have units with high algorithmic complexity with custom algorithms that
may never have appeared anywhere in the training data. Finally, because a disproportionately large
number of LLM training tokens are spent on code generation rather than other coding tasks, models
may lack a holistic awareness and world model of code. Generalizing across coding tasks may not be
as simple as training: |Gu et al.| (2024) found that fine-tuning coding models on additional problems
and solutions led to significant improvements on code generation but not code execution. Here,
additional training on coding data did not transfer to improving code understanding and execution.

3.8 LOW-RESOURCE LANGUAGES AND CUSTOM LIBRARIES

As we adapt code LLMs to individual codebases, generating correct code in out of distribution
(OOD) scenarios becomes crucial. Much of software development in business contexts revolves
around proprietary codebases, a distribution shift from the open-source code that dominates LLM
training data (Ahmed et al., 2024). Examples include domain-specific languages (DSLs), custom
internal libraries, low-resource APIs, and company-specific coding styles/conventions.

Syntactic failures and poor semantic understanding: Models often hallucinate constructs from
higher resource languages when working in low-resource languages. [Blinn et al.[(2024) found that
when writing Hazel, LLMs often borrowed syntax and library functions from OCaml and Elm,
higher-resource languages. When writing Triton, models often use syntactically incorrect constructs
such as array indexing. In addition, models have less exposure to the various language constructs.
Therefore, they have a weaker semantic understanding of the language. Many studies reveal that
code LLMs perform poorly when asked to write code in low-resource languages. Due to the lack
of training data in these OOD domains, models may struggle to write common primitives or piece
together functionality coherently. On HumanEval, Qwen 2.5 Coder Instruct (32B) (Hui et al.| [2024)
has an accuracy of 83% in Python but only 27% in DP_]

'As reported by the BigCode Models Leaderboard on the MultiPL-E benchmark (Cassano et al.,[2023)

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

Published as a conference paper at ICLR 2025

Library usage failures: In OOD scenarios, LLMs lack awareness of the libraries and functions
available for use. In new codebases using custom libraries, many functions appear only a few times,
providing limited training data for AI models to learn their usage. This scarcity can lead to overfit-
ting, where models fail to recognize an effective use-case of these functions. Models also frequently
hallucinate non-existent functions based on patterns that it infers.

3.9 LIBRARY AND API VERSION UPDATES

Continual learning, the idea of training an Al system to take in new information continually, has
been a long-standing challenge in Al and NLP (Wu et al., 2024, Wang et al., 2024b). In software
engineering, codebases are continuously changing as new features are supported and awkward de-
sign patterns are reworked. While backwards compatibility is often prioritized in software design,
it inevitably becomes broken as codebases evolve further. Therefore, programming libraries have
version releases, each release supporting and deprecating features in the last version.

Continous adaptation: Language models are not as dynamic as codebases, and new features and
APIs released yesterday will not be in the training data of today’s code LMs. Code written with
new APIs and new versions of existing libraries are low-resource. Even when there are new and
simplified ways to write features, LLMs may rely on older, more cumbersome approaches because
those are the ones seen more frequently in the model’s training data.

Version-specific constructs: For fast-changing libraries that are not backward compatible, it can
be difficult for LLMs to implicitly keep track of which constructs are associated with each version.
This makes consistently using constructs from the right version difficult. Therefore, LLMs may
write code that mixes and matches API constructs from different versions of the same library.

3.10 HIGH ALGORITHMIC COMPLEXITY: OOD DOMAINS

Some programming tasks are challenging for even the best human programmers, requiring ap-
proaches with a very high algorithmic complexity. Examples of tasks that fall into this category
include superoptimizing programs, discovering attacks for purportedly secure code, writing perfor-
mant compilers, optimizing GPU kernels (Ouyang et al., [2025)), and writing very error-prone and
very technical code. Because they are hard for humans, these tasks are very rarely in the training
data of today’s language models. They have unique, domain-specific, challenges that making gener-
alizing from existing data difficult. For these problems, language models rely heavily on feedback-
driven search algorithms (Mankowitz et al.,2023)), and it can be difficult to navigate the search space
effectively. In addition, many of these tasks lack feedback mechanisms, which is crucial for Al to
pick up learning signals. When designing a complex algorithm or data structure, it is often hard to
know if you are on the right track until you get to the correct result. When writing code for a large
multithreaded operation, it may be hard to know if the algorithm has concurrency issues until all the
parts are fully fleshed out. Without feedback, incremental improvement is nearly impossible.

4 PATHS FORWARD
4.1 TRAINING: NEW OBJECTIVES AND SYNTHETIC DATA

Reinforcement Learning (RL): RL has delivered considerable improvements in isolated but chal-
lenging algorithmic problems (DeepSeek-Al et al) 2025). A promising direction is to scale such
reinforcement learning approaches to more mature real-world tasks by collecting execution-assisted
gym-like programming environments (Jain et al.| [2024cj |Pan et al., 2024). Particularly, we believe it
will be important to incorporate tasks with high construct validity and consider ways of mitigating
and model task ambiguity (Shao et al., 2024).

Synthetic Data: In code, synthetic data is a promising method for gathering more data. In contrast
to text, code contains strong, verifiable feedback such as test cases, program execution engines, and
other symbolic tools. For example, to generate code with interesting program invariants, we can
sample a large batch of programs and filter using an invariant detector to keep the ones with inter-
esting invariants. Successful synthetic data can also be used to seed the generation of more complex
synthetic data. Code is also compositional, allowing the possibility of combining individual build-
ing blocks to even generate synthetic data with repository-level scope. In DSLs, it is often possible
to generate programs with desired properties via sampling. This technique has been successfully
applied to difficult reasoning tasks such as ARC-AGI (Li et al., 2024)) and math olympiad problems
(Trinh et al.| [2024; \Googlel, [2024)).

Published as a conference paper at ICLR 2025

4.2 DEVELOPING A WORLD MODEL FOR CODE

In Sec. we discussed how LLMs do not have a global understanding of codebases. We believe
it is important for a coding language model to have a good “world model” for code in the same way
that students completing a programming course will gain a holistic understanding of coding.

Augmenting Data with Program Information: While code is currently often treated as pure tokens,
we can actually extract a lot of information about a program by using the wide variety of program-
ming language tools available. These tools can be used to augment existing programs in the training
set with available information describing properties the code. We believe that being able to see code
alongside its properties will enhance a model’s overall world model of code. These properties can
include static analysis (abstract syntax trees, data flow analyses), dynamic analysis (program states,
call stacks), program instrumentation (memory consumption, code coverage), and formal verifica-
tion (concurrency analysis, program invariants).

Training with More Tasks: Another way to steer code models to have a more general understanding
of code is to widen the distribution of tasks models are exposed to during training, such as including
the tasks in Sec. [2| Training should include more tasks that improve a model’s semantic understand-
ing, such as describing errors in subtle bugs or predicting the execution states of a program. This
training could be done in a curriculum-like manner to gradually improve world model capabilities.

4.3 INTEGRATION WITH SWE DEVELOPMENT FRAMEWORKS

Integrating Al with SWE development frameworks is critical for practical applications and impact
on developer workflows. While software development is inherently integrated with tools, workflows,
and processes, scaffolding and meta-code (Sec. [3.§) is often absent from source code and scarce in
Al training data. Ensuring that Al deeply understands software deployment beyond code editing is
crucial, as writing code is only a small part of the development cycle. In continuous integration and
continuous deployment (CI/CD), automated pipelines are the backbone for building, testing, and
deploying code changes. CI/CD accelerates feedback cycles and minimizes integration issues. Al
offers several integration points within CI/CD. Al-powered code review tools can be incorporated
into CI pipelines to automatically identify and flag style violations, potential security vulnerabilities,
and code smells before human reviewers are involved. Furthermore, Al can provide intelligent
deployment risk assessments. By analyzing code changes, test outcomes, and historical deployment
data, AI can predict the likelihood of deployment issues, informing decisions about whether to
proceed with automated deployment or mandate manual verification steps. Finally, Al can automate
the generation of release notes by summarizing commit messages, issue tracker data, and relevant
code modifications within the CI/CD process.

4.4 AGENTS AND TOOL INTEGRATION

Learned Tool Usage: To improve the tool usage of Al agents, we should teach agents to understand
the intricacies of tools so that they can autonomously invoke them as needed when writing code.
Drawing inspiration from learning how to play games, we imagine a RL approach where the model
can learn the strengths and weaknesses of each tool by trying it out at various points in code writing.

Neurosymbolic Approaches: Today, the majority of research in Al for code do not take into account
the deep symbolic properties of code. We believe that LMs and ymbolic tools should be more deeply
integrated with each other. This could include using information about program structure in training
(e.g. ASTs) or using the grammar of the programming language to do constrained decoding.

4.5 CONTEXT ADAPTATION AND CONTINUAL LEARNING

Low-resource languages (Sec. [3.8), custom APISs, library version updates (Sec. [3.9), and large
codebases (Sec. [3.6) all surface the fact that code LMs struggle to adapt to specialized contexts.

Test-time training: One recent paradigm is test-time training, the idea of adapting to a specific
problem instance by training on a narrow set of in-distribution examples. This allows a model to
adapt to a specific codebase, new domain, or unseen API. The model could also use synthetic data
to create in-distribution examples and annotate them with symbolic (e.g. compiler) feedback to gain
a more global understanding of the current environment.

Published as a conference paper at ICLR 2025

Controllable forgetting: If the correct repository version can be identified, the model can also be
trained on the specific version of each API, reducing version-related hallucinations. This can also
be combined with algorithms that can induce controllable forgetting (Wu et al.,|2024).

Retrieval-augmentation: In these domains, the challenge is purely syntactic rather than algorithmic,
making RAG-based methods ideal. When using APIs with multiple versions, providing retrievals in
the current version can steer the model. These retrievals can be in the form of documentation, API
function definitions, or example use cases.

5 CONCLUSION

In this position paper, we have identified key tasks at the heart of Al for software engineering, critical
cross-cutting challenges that permeate throughout many tasks, and promising research directions
for alleviating these challenges and advancing Al towards being a more capable software engineer.
We hope this work provides a valuable framework for understanding the current landscape and
encourages future research in these directions. By building on these insights, we can work toward
developing Al-driven solutions that better support software engineers in real-world settings.

REFERENCES

Toufique Ahmed, Christian Bird, Premkumar Devanbu, and Saikat Chakraborty. Studying llm per-
formance on closed-and open-source data. arXiv preprint arXiv:2402.15100, 2024.

Andrew Blinn, Xiang Li, June Hyung Kim, and Cyrus Omar. Statically contextualizing large
language models with typed holes. Proceedings of the ACM on Programming Languages, 8
(OOPSLA2):468-498, 2024.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
e: a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions
on Software Engineering, 49(7):3675-3691, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wayne Chi, Valerie Chen, Wei-Lin Chiang, Anastasios N. Angelopoulos, Naman Jain, Tianjun
Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. Copilot arena, 2024.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378-388. Springer, 2015.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiagi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,

Published as a conference paper at ICLR 2025

Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948,

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping in-
ductive program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm
sigplan international conference on programming language design and implementation, pp. 835—
850, 2021.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and
Jie M Zhang. Large language models for software engineering: Survey and open problems. In
2023 IEEE/ACM International Conference on Software Engineering: Future of Software Engi-
neering (ICSE-FoSE), pp. 31-53. IEEE, 2023.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam.
Refactorbench: Evaluating stateful reasoning in language agents through code. In NeurIPS 2024
Workshop on Open-World Agents, 2024.

Google. Ai achieves silver-medal standard solving international mathematical olympiad problems.
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/, 2024.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution. arXiv
preprint arXiv:2401.03065, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurlPS, 2021.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. ACM Transactions on Software Engineering and Methodology, 33(8):1-79, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. Testgeneval: A real world unit test generation
and test completion benchmark. arXiv preprint arXiv:2410.00752, 2024a.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024b. URL https://arxiv.org/abs/
2403.07974.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turn-
ing any github repository into a programming agent environment. In Forty-first International
Conference on Machine Learning, 2024c.

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974

Published as a conference paper at ICLR 2025

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to llm-
based agents for software engineering: A survey of current, challenges and future. arXiv preprint
arXiv:2408.02479, 2024.

Sathvik Joel, Jie JW Wu, and Fatemeh H Fard. A survey on llm-based code generation for low-
resource and domain-specific programming languages. arXiv preprint arXiv:2410.03981, 2024.

Leslie Lamport. Introduction to tla. 1994.

Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee Cho, Hayley LeBlanc,
Pranav Srinivasan, Reto Achermann, Tej Chajed, Chris Hawblitzel, et al. Verus: A practical
foundation for systems verification. In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, pp. 438—454, 2024.

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In Interna-
tional conference on logic for programming artificial intelligence and reasoning, pp. 348-370.
Springer, 2010.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduction for
abstract reasoning. arXiv preprint arXiv:2411.02272, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Jenny T Liang, Chenyang Yang, and Brad A Myers. A large-scale survey on the usability of ai
programming assistants: Successes and challenges. In Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering, pp. 1-13, 2024.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evalu-
ating language models for efficient code generation. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=IBCBMeAhmC.

Wei Ma, Shangqing Liu, Mengjie Zhao, Xiaofei Xie, Wenhang Wang, Qiang Hu, Jie Zhang, and
Yang Liu. Unveiling code pre-trained models: Investigating syntax and semantics capacities.
ACM Transactions on Software Engineering and Methodology, 33(7):1-29, 2024.

Daniel J] Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Igbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms
discovered using deep reinforcement learning. Nature, 618(7964):257-263, 2023.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Alek-
sandra Faust, Clement Farabet, and Shane Legg. Levels of agi: Operationalizing progress on the
path to agi. arXiv preprint arXiv:2311.02462, 2023.

Baldzs Mosolygd, Norbert Vandor, Gdbor Antal, and Péter Heged{s. On the rise and fall of simple
stupid bugs: a life-cycle analysis of sstubs. In 20271 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 495-499. IEEE, 2021.

Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Késtner. Collaboration challenges in building
ml-enabled systems: Communication, documentation, engineering, and process. In Proceedings
of the 44th international conference on software engineering, pp. 413-425, 2022.

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=IBCBMeAhmC

Published as a conference paper at ICLR 2025

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer, 2002.

Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Ré, and Azalia
Mirhoseini. Kernelbench: Can llms write efficient gpu kernels? arXiv preprint arXiv:2502.10517,
2025.

Ipek Ozkaya. Application of large language models to software engineering tasks: Opportunities,
risks, and implications. /IEEE Software, 40(3):4-8, 2023.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2024. URL https:
//arxiv.org/abs/2412.211309.

David Lorge Parnas. On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM, 15(12):1053-1058, 1972.

Rachel Potvin and Josh Levenberg. Why google stores billions of lines of code in a single repository.
Communications of the ACM, 59(7):78-87, 2016.

Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, and Iftekhar Ahmed. Using ai-based coding
assistants in practice: State of affairs, perceptions, and ways forward. Information and Software
Technology, 178:107610, 2025.

Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang, and Diyi Yang. Collaborative gym: A frame-
work for enabling and evaluating human-agent collaboration, 2024. URL https://arxiv.
org/abs/2412.15701.

Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. Regal: refactoring programs to discover
generalizable abstractions. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Closed-loop verifiable code
generation. In International Symposium on Al Verification, pp. 134—155. Springer, 2024.

The Coq Development Team. The Coq reference manual — release 8.19.0. https://coqg.
inria.fr/doc/V8.19.0/refman| 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Saiteja Utpala, Alex Gu, and Pin Yu Chen. Language agnostic code embeddings. arXiv preprint
arXiv:2310.16803, 2023.

Yao Wan, Zhanggqian Bi, Yang He, Jianguo Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Hai
Jin, and Philip Yu. Deep learning for code intelligence: Survey, benchmark and toolkit. ACM
Computing Surveys, 2024.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software test-
ing with large language models: Survey, landscape, and vision. IEEE Transactions on Software
Engineering, 2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024b.

Justin D Weisz, Shraddha Kumar, Michael Muller, Karen-Ellen Browne, Arielle Goldberg, Ellice
Heintze, and Shagun Bajpai. Examining the use and impact of an ai code assistant on developer
productivity and experience in the enterprise. arXiv preprint arXiv:2412.06603, 2024.

Man-Fai Wong, Shangxin Guo, Ching-Nam Hang, Siu-Wai Ho, and Chee-Wei Tan. Natural lan-
guage generation and understanding of big code for ai-assisted programming: A review. Entropy,
25(6):888, 2023.

12

https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.15701
https://arxiv.org/abs/2412.15701
https://coq.inria.fr/doc/V8.19.0/refman
https://coq.inria.fr/doc/V8.19.0/refman

Published as a conference paper at ICLR 2025

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
Continual learning for large language models: A survey. arXiv preprint arXiv:2402.01364, 2024.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075,
2024.

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of
learning-based automated program repair. ACM Transactions on Software Engineering and
Methodology, 33(2):1-69, 2023.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexan-
der M Rush. CommitO: Library generation from scratch. arXiv preprint arXiv:2412.01769, 2024.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi Ye, and Jiachi
Chen. A survey of large language models for code: Evolution, benchmarking, and future trends.
arXiv preprint arXiv:2311.10372, 2023.

13

	Introduction
	Tasks in AI Software Engineering
	Code Generation
	Code Transformation
	Code Understanding
	Code Debugging
	Scaffolding and Meta-Code
	Formal Verification

	Challenges
	Evaluation and Benchmarks
	Intelligent Tool Usage
	Human-AI Collaboration
	Vague Specifications and User Misalignment
	Long-Horizon Code Planning
	Large Scope and Long Contexts
	Global Understanding of Codebases
	Low-Resource Languages and Custom Libraries
	Library and API Version Updates
	High Algorithmic Complexity: OOD Domains

	Paths Forward
	Training: New Objectives and Synthetic Data
	Developing a World Model for Code
	Integration with SWE development frameworks
	Agents and Tool Integration
	Context Adaptation and Continual Learning

	Conclusion

