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ABSTRACT

Kernelized Stein discrepancy (KSD), though being extensively used in goodness-of-
fit tests and model learning, suffers from the curse-of-dimensionality. We address
this issue by proposing the sliced Stein discrepancy and its scalable and kernel-
ized variants, which employ kernel-based test functions defined on the optimal
one-dimensional projections. When applied to goodness-of-fit tests, extensive
experiments show the proposed discrepancy significantly outperforms KSD and
various baselines in high dimensions. For model learning, we show its advan-
tages over existing Stein discrepancy baselines by training independent component
analysis models with different discrepancies. We further propose a novel particle
inference method called sliced Stein variational gradient descent (S-SVGD) which
alleviates the mode-collapse issue of SVGD in training variational autoencoders.

1 INTRODUCTION

Discrepancy measures for quantifying differences between two probability distributions play key roles
in statistics and machine learning. Among many existing discrepancy measures, Stein discrepancy
(SD) is unique in that it only requires samples from one distribution and the score function (i.e. the
gradient up to a multiplicative constant) from the other (Gorham & Mackey, 2015). SD, a special case
of integral probability metric (IPM) (Sriperumbudur et al., 2009), requires finding an optimal test
function within a given function family. This optimum is analytic when a reproducing kernel Hilbert
space (RKHS) is used as the test function family, and the corresponding SD is named kernelized
Stein discrepancy (KSD) (Liu et al., 2016; Chwialkowski et al., 2016). Variants of SDs have been
widely used in both Goodness-of-fit (GOF) tests (Liu et al., 2016; Chwialkowski et al., 2016) and
model learning (Liu & Feng, 2016; Grathwohl et al., 2020; Hu et al., 2018; Liu & Wang, 2016).

Although theoretically elegant, KSD, especially with RBF kernel, suffers from the “curse-
of-dimensionality” issue, which leads to significant deterioration of test power in GOF tests
(Chwialkowski et al., 2016; Huggins & Mackey, 2018) and mode collapse in particle inference
(Zhuo et al., 2017; Wang et al., 2018). A few attempts have been made to address this problem,
however, they either are limited to specific applications with strong assumptions (Zhuo et al., 2017,
Chen & Ghattas, 2020; Wang et al., 2018) or require significant approximations (Singhal et al., 2019).
As an alternative, in this work we present our solution to this issue by adopting the idea of “slicing”.
Here the key idea is to project the score function and test inputs onto multiple one dimensional slicing
directions, resulting in a variant of SD that only requires to work with one-dimensional inputs for the
test functions. Specifically, our contributions are as follows.

* We propose a novel theoretically validated family of discrepancies called sliced Stein discrep-
ancy (SSD), along with its scalable variant called max sliced kernelized Stein discrepancy
(maxSKSD) using kernel tricks and the optimal test directions.

* A GOF test is derived based on an unbiased estimator of maxSKSD with optimal test
directions. MaxSKSD achieves superior performance on benchmark problems and restricted
Boltzmann machine models (Liu et al., 2016; Huggins & Mackey, 2018).

*Work done at Microsoft Research Cambridge
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* We evaluate the maxSKSD in model learning by two schemes. First, we train an independent
component analysis (ICA) model in high dimensions by directly minimising maxSKSD,
which results in faster convergence compared to baselines (Grathwohl et al., 2020). Further,
we propose a particle inference algorithm based on maxSKSD called the sliced Stein
variational gradient descent (S-SVGD) as a novel variant of the original SVGD (Liu
& Wang, 2016). It alleviates the posterior collapse of SVGD when applied to training
variational autoencoders (Kingma & Welling, 2013; Rezende et al., 2014).

2 BACKGROUND

2.1 KERNELIZED STEIN DISCREPANCY

For two probability distributions p and ¢ supported on X C R” with continuous differentiable
densities p(x) and ¢(x), we define the score s),(x) = V5 log p(x) and s4(x) accordingly. For a test
function f : X — RP, the Stein operator is defined as

Apf(z) = sp(x)" f(@) + V5 f(w). (1)
For a function fo : RP — R, the Stein class F, of g is defined as the set of functions satisfying
Stein’s identity (Stein et al., 1972): E,[s,(x) fo(x) + Vg fo(z)] = 0. This can be generalized to a

vector function f : RP — RP where f = [fi(z), ..., fp(x)]T by letting f; belongs to the Stein
class of ¢ for each ¢ € D. Then the Stein discrepancy (Liu et al., 2016; Gorham & Mackey, 2015) is

defined as

D(q,p) = sup Eq[A,f(@)] = sup Eq[(sy(2) — 54(2))" f(2)]- )

feFy feFy

When F, is sufficiently rich, and ¢ vanishes at the boundary of X, the supremum is obtained at
f*(x) x sp(x) — s4(x) with some mild regularity conditions on f (Hu et al., 2018). Thus, the Stein
discrepancy focuses on the score difference of p and q. Kernelized Stein discrepancy (KSD) (Liu
et al., 2016; Chwialkowski et al., 2016) restricts the test functions to be in a D-dimensional RKHS
Hp with kernel k to obtain an analytic form. By defining u,(z, ') = s,(z)Ts, (' )k(z,z') +
$p(2) TV k(z,2') + 8,(x) T Vik(z,x') + Tr(Vy o k(x, ")) the analytic form of KSD is:

D?(q,p) = ( sup Eq[.Apf(w)]> = Eqg(a)q(a) [up(x, )] 3)

FEHDfllnp <1

2.2 STEIN VARIATIONAL GRADIENT DESCENT

Although SD and KSD can be directly minimized for variational inference (VI) (Ranganath et al.,
2016; Liu & Feng, 2016; Feng et al., 2017), Liu & Wang (2016) alternatively proposed a novel
particle inference algorithm called Stein variational gradient descent (SVGD). It applies a sequence
of deterministic transformations to a set of points such that each of mappings maximally decreases
the Kullback-Leibler (KL) divergence from the particles’ underlying distribution ¢ to the target p.

To be specific, we define the mapping T'(z) : RP — R as T'(x) = x+e¢p(x) where ¢ characterises
the perturbations. The result from Liu & Wang (2016) shows that the optimal perturbation inside the
RKHS is exactly the optimal test function in KSD.

Lemma 1. (Liu & Wang, 2016) Let T'(x) = x + e¢(x) and q1)(z) be the density of z = T (x)
when x ~ q(x). If the perturbation ¢ is in the RKHS Hp and ||p||n, < D(q,p), then the steepest
descent directions ¢y ,, is

¢4.p() = Eq[Valogp(x)k(z, ) + Vak(z, )] @)
and V K L{giz)|Ip)|e=0 = —D?(g, p)-
The first term in Eq.(4) is called drift, which drives the particles towards a mode of p. The second

term controls the repulsive force, which spreads the particles around the mode. When particles stop
moving, the KL decrease magnitude eD?(q, p) is 0, which means the KSD is zero and p = q a.e.

3 SLICED KERNELIZED STEIN DISCREPANCY

We propose the sliced Stein discrepancy (SSD) and kernelized version named maxSKSD. Theoreti-
cally, we prove their correctness as discrepancy measures. Methodology-wise, we apply maxSKSD
to GOF tests, and develop two ways for model learning.
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Figure 1: (Left) The connections between SD, KSD and the proposed SSD family. (Right) The
intuition of SSD. The rectangular boxes indicate what statistics the discrepancy wants to test. The
circle represents the dimension of the test function required for such test. The double arrow means
equivalence relations or invertable operations.

3.1 SLICED STEIN DISCREPANCY

Before moving to the details, we give a brief overview of the intuition on how to tackle the curse-of-
fimensionality issue of SD (The right figure of Figure 1). For detailed explanation, refer to appendix
B.1. This issue of Stein discrepancy (Eq.2) comes from two sources: the score function s, (x) and
the test function f(x) defined on X C RP. First, we notice that comparing s, and s, is equivalent

to comparing projected score s, = sgr and s; forall r € SP~1 on an hyper-sphere (Green square

in Figure 1 (Right)). This operation reduces the test function’s output from R” to R (Green circle in
Figure 1 (Right)). However, its input dimension is not affected. Reducing the input dimension of
test functions is non-trivial, as directly removing input dimensions results in the test power decrease.
This is because less information is accessed by the test function (see examples in appendix B.1). Our
solution to this problem uses Radon transform which is inspired by CT-scans. It projects the original
test function f(x) in Stein discrepancy (Eq. 2) (as an R” — R mapping) to a group of R — R
functions along a set of directions (g € S”~!). Then, this group of functions are used as the new
test functions to define the proposed discrepancy. The invertibility of Radon transform ensures that
testing with input in the original space R” is equivalent to the test using a group of low dimensional
functions with input in R. Thus, the above two steps not only reduce the dimensions of the test
function’s output and input, but also maintain the validity of the resulting discrepancy as each step is
either equivalent or invertible.

In detail, assume two distributions p and ¢ supported on R? with differentiable densities p(x) and
q(z), and define the test functions f(:;7,g) : R? — R such that f(z;7,g) = fg 0 hy(x) =
frg(xTg), where h(-) is the inner product with g and f,., : R — R. One should note that the 7 and
g in f(-;7,g) should not just be treated as parameters in a test function f. In fact, they are more
like the index to indicate that for each pair of r, g, we need a new f(-;r,g), i.e. new frg,» which
is completely independent to other test functions. The proposed sliced Stein discrepancy (SSD),

defined using two uniform distributions p,-(r) and p,(g) over the hypersphere S”~1, is given by the
following, with f,, € F, meaning f(-;r,g) € Fy:
S(q:p) =Ep,p, | sup Eq [Sg(w)frg(ng) + rTgvagfrg(ng)} . (%)

"'ge q

We verify the proposed SSD is a valid discrepancy measure, namely, S(q,p) = 0iff. ¢ = p a.e.

Theorem 1. (SSD Validity) If assumptions 1-4 in appendix A are satisfied, then for two probability
distributions p and q, S(q,p) > 0, and S(q,p) = 0 ifand only if p = q a.e.

Despite this attractive theoretical result, SSD is difficult to compute in practice. Specifically, the
expectations over r and g can be approximated by Monte Carlo but this typically requires a very



Published as a conference paper at ICLR 2021

large number of samples in high dimensions (Deshpande et al., 2019). We propose to relax such
limitations by using only a finite number of slicing directions r from an orthogonal basis O,. of R,
e.g. the standard basis of one-hot vectors, and the corresponding optimal test direction g, for each 7.
We call this variant maxSSD, which is defined as follows and validated in Corollary 1.1:

Smaz(0:0) = Y sup  Eylsy (@) frg, (27 9,) + 779 Varg, frg (2" g,)].  (6)
O, frop €Fq,g,€5P1

Corollary 1.1. (maxSSD) Assume the conditions in Theorem 1, then Sp,q.(q,p) = 0iff p = q a.e.

3.2 CLOSED FORM SOLUTION WITH THE KERNEL TRICK

The optimal test function given 7 and g is intractable without further assumptions on the test function
families. This introduces another scalability issue as optimizing these test functions explicitly
can be time consuming. Fortunately, we can apply the kernel trick to obtain its analytic form.
Assume for each test function f,., € H,,, where H,, is a scalar-valued RKHS equipped with

kernel k(x,z';7,g) = ko(x” g, 2'T g) that satisfies assumption 5 in appendix A and f,,(x”g) =
(frg,krg(®" g, ))2,,. We define the following quantities:

prg(®@,) = Sg(m)km (nga )+ rTngTngg(a:Tg, )5 (7
hp,rg(®,Y) = sp(@)keg (" g.y" g)s,(y) + 177 g5, (y) Varghrg (" g.y" g)+
1 gs, (@) Vyrgkeg(2" g,y g) + (r79)*Virg yrohrg(® 9,97 g). (8
The following theorem describes the optimal test function inside SSD (Eq.(5)) and maxSSD (Eq.(6)).
Theorem 2. (Closed form solution) If Eq[h,, » o(, )] < 00, then
D74(a,p) = || sup Eq[sp(@) frg(x"g) +17gVarg frg(z" 9)llI?
Frg€Mrg,llfrgll<1 )
= ||Eq[£pyr,g($)]||3-ug = Eq(m)(I(w')[hp,r,g(w»w/)]-

Next, we propose the kernelized version of SSD with orthogonal basis O,., called SKSD.

Theorem 3. (SKSD as a discrepancy) For two probability distributions p and q, given assumptions
1,2 and 5 in appendix A and Eylh,, . o(, )] < oo for all r and g, we define SKSD as

SKo(q.p) = Y /D _Py(9)D7,(a,p)dg, (10)

rcO,

which is equal to 0 if and only if p = q a.e.

Following the same idea of maxSSD (Eq.6), it suffices to use optimal slice direction g, for each
r € O,, resulting in a slicing matrix G € SP*(P~1), We name this discrepancy as maxSKSD, or
maxSKSD-g when we need to distinguish it from another variant described later.

Corollary 3.1. (maxSKSD) Assume the conditions in Theorem 3 are satisfied. Then

SKomaz(q,p) = Y _ sup D2, (¢,p) (11)
reo, I°

is equal to 0 if and only if p = q a.e.

Figure 1 (Left) clarifies the connections between the mentioned discrepancies. We emphasise that
using a single projection g in maxSKSD may be insufficient when no single projected feature % g
is informative enough to describe the difference between p and ¢. Instead, in maxSKSD, for each
score projection r € O,., we have a corresponding g,. One can also use the optimal  to replace the
summation over O,., which provides additional benefits in certain GOF tests. We call this discrepancy
maxSKSD-rg, and its validity can be proved accordingly. Interestingly, in appendix G, we show under
certain scenarios maxSKSD-g can have inferior performance due to the noisy information provided
by the redundant dimensions. Further, we show that such limitation can be efficiently addressed by
using maxSKSD-rg.
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Kernel choice and optimal G RBF kernel with median heuristics is a common choice. However,
better kernels, e.g. deep kernels which evaluate a given kernel on the transformed input ¢ (), might
be preferred. It is non-trivial to directly use such kernel on SKSD or maxSKSD. We propose an
adapted form of Eq.(10) to incorporate such kernel and maintain its validity. We include the details in
appendix D and leave the experiments for future work.

The quality of sliced direction G is crucial for the performance of both maxSKSD-g or maxSKSD-rg.
Indeed, it represents the projection directions that two distributions differ the most. The closed-form
solutions of G is not analytic in general, in practice, finding the optimal G involves solving other
difficult optimizations as well (projection 7 and test function f,.;). For the scope of this work, we
obtained G by optimizing maxSKSD-g or maxSKSD-rg using standard gradient optimization, e.g.
Adam, with random initialization. Still in some special cases (e.g. p, q are full-factorized), analytic
solutions of optimal G exists, which is further discussed in appendix E.

3.3 APPLICATION OF MAXSKSD

Goodness-of-fit Test Assume the optimal test directions g, € G are available, maxSKSD (Eq.(11))
can then be estimated using U-statistics (Hoeffding, 1992; Serfling, 2009). Given i.i.d. samples
{x;}, ~ g, we have an unbiased minimum variance estimator:

— 1
SK maz(q,p) = m Z Z hp,r,g, (@i, ;). 12)

re0, 1<i#j<N

The asymptotic behavior of the estimator is analyzed in appendix F.1. We use bootstrap (Liu et al.,
2016; Huskova & Janssen, 1993; Arcones & Gine, 1992) to determine the threshold for rejecting the
null hypothesis as indicated in algorithm 1. The bootstrap samples can be calculated by

o~ m 1 m 1
SK= > i = @) = 1) D By, (@1,;) (13)
1<i#£j<N reo,
where (w{”,...,w}{})%zl are random weights drawn from multinomial distributions
Multi(N, &,..., %)

Algorithm 1: GOF Test with maxSKSD U-statistics

Input :Samples {z;} Y, ~ ¢(z), score function s, (z), Orthogonal basis O,., optimal test
direction g, for each r € O, kernel function k.4, significant level o, and bootstrap
sample size M.

Hypothesis: Hy: p=qv.s. Hi: g#p

Compute SK mas (¢, p) using U-statistic Eq.(12);

Generate M bootstrap samples {gf\(; M_. using Eq.(13);

Reject null hypothesis H, if the proportion gl\(; > gl\(max(q, p) is less than a.

Model Learning The proposed maxSKSD can be applied to
model learning in two ways. First, it can be directly used Variance Estimation
as a training objective, in such case ¢ is the data distribu-
tion and p is the model to be learned, and the learning algo-
rithm performs min, SK,,44(¢, p). The second model learn-

ing scheme is to leverage the particle inference for latent vari- g A P

ables and train the model parameters using an EM-like (Demp- 506 : e ®6o.
ster et al., 1977) algorithm. Similar to the relation between - ISR A*A‘\A

SVGD and KSD, we can derive a corresponding particle in- 0.4 &~ masvGD10 Toa,
ference algorithm based on maxSKSD, called sliced-SVGD ~E- maxSVGD-200 Sy
(S-SVGD). In short, we define a specific form of the pertur- oo ey 80 100

bation as ¢(x) = [¢,, (27 gi), ..., dep (xTgp)]" and modify

the proofs of Lemma 1 accordingly. The resulting S-SVGD  Figure 2: Estimating the average
algorithm uses kernels defined on one dimensional projected  variance of p(x) = N (0, I') across
samples, which sidesteps the vanishing repulsive force problem  dimensions using SVGD particles.
of SVGD in high dimensions (Zhuo et al., 2017; Wang et al., SVGD-50 means the variance are
2018). We illustrate this in Figure 2 by estimating the variance estimated using 50 samples.
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Figure 3: Each column reports GOF test results for a different alternative hypothesis, with the upper
panel showing the rejection rate of the Null hypothesis and the lower panel showing the discrepancy
value averaged over all trials. Both quantities are plotted w.r.t. the number of dimensions.

of a standard Gaussian with the particles obtained by SVGD or S-SVGD (see appendix J.1). We see
that as the dimension increases, SVGD severely under-estimates the variance of p, while the S-SVGD
remains robust. Furthermore, its validity is justified since in such case the KL gradient equals to
maxSKSD which is a valid discrepancy. Readers are referred to appendix F.2 for the derivations. We
also give an analysis of their memory and computational cost for both GOF and model learning in
appendix H.

4 EXPERIMENTS

4.1 GOODNESS OF FIT TEST

We evaluate maxSKSD (Eq.(11)) for GOF tests in high dimensional problems. First, we demonstrate
its robustness to the increasing dimensionality using the Gaussian GOF benchmarks (Jitkrittum et al.,
2017; Huggins & Mackey, 2018; Chwialkowski et al., 2016). Next, we show the advantage of our
method for GOF tests on 50-dim Restricted Boltzmann Machine (RBM) (Liu et al., 2016; Huggins &
Mackey, 2018; Jitkrittum et al., 2017). We included in comparison extensive baseline test statitics for
GOF test: Gaussian or Cauchy random Fourier features (RFF) (Rahimi & Recht, 2008), KSD with
RBF kernel (Liu et al., 2016; Chwialkowski et al., 2016), finite set Stein discrepancy (FSSD) with
random or optimized test locations (Jitkrittum et al., 2017), random feature Stein discrepancy (RFSD)
with L2 SechExp and L1 IMQ kernels (Huggins & Mackey, 2018), and maximum mean discrepancy
(MMD) (Gretton et al., 2012) with RBF kernel. Notice that we use gradient descent to obtain the test
directions g, (and potentially the slicing directions r) for Eq.(11).

4.1.1 GOF TESTS WITH HIGH DIMENSIONAL GAUSSIAN BENCHMARKS

We conduct 4 different benchmark tests with p = A(0,I): (1) Null test: ¢ = p; (2) Laplace:
q(x) = HdD:1 Lap(z4/0,1/4/2) with mean/variance matched to p; (3) Multivariate-t: ¢ is fully
factorized multivariate-t with 5 degrees of freedom, 0 mean and scale 1. In order to match the variance
of p and ¢, we change the variance of p to 5%2; (4) Diffusion: q(x) = N (0, X1) where the variance
of 1%-dim is 0.3 and the rest is the same as in I. For the testing setup, we set the significance level
o = 0.05. For FFSD and RFSD, we use the open-sourced code from the original publications. We
only consider maxSKSD-g here as it already performs nearly optimally. We refer to appendix 1.1 for
details.

Figure 3 shows the GOF test performances and the corresponding discrepancy values. In summary,
the proposed maxSKSD outperforms the baselines in all tests, where the result is robust to the
increasing dimensions and the discrepancy values match the expected behaviours.

Null The left-most column in Figure 3 shows that all methods behave as expected as the rejection
rate is closed to the significance level, except for RFSD with L2 SechExp kernel. All the discrepancy
values oscillate around 0, with the KSD being less stable.

Laplace and Multivariate-t The two middle columns of Figure 3 show that maxSKSD-g achieves
a nearly perfect rejection rate consistently as the dimension increases, while the test power for all
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Table 1: Test NLL for different dimensional ICA with different objective functions. The above results
are averaged over 5 independent runs of each methods.

Method Dimension
D=10 D=20 D=40 D=60 D=8 D=100 D =200
KSD -10.23 -15.98 -34.50 -56.87 -86.09 -116.51 -329.49
LSD -10.42 -14.54 -17.16 -15.05 -12.39 -5.49 46.63
maxSKSD | -10.45 -14.50 -17.28 -15.70 -11.91 -4.21 47.72

baselines decreases significantly. For the discrepancy values, similar to the KL divergence between g
and p, maxSKSD-g linearly increases with dimensions due to the independence assumptions..

Diffusion This is a more challenging setting since p and q only differ in one of their marginal
distributions, which can be easily buried in high dimensions. As shown in the rightmost column
of Figure 3, all methods failed in high dimensions except maxSKSD-g, which still consistently
achieves optimal performance. For the discrepancy values, we expect a positive constant due to the
one marginal difference between p and g. Only maxSKSD-g behaves as expected as the problem
dimension increases. The decreasing value at the beginning is probably due to the difficulty in finding
the optimal direction g in high dimensions when the training set is small.

4.1.2 RBM GOF TEST

Test Power for RBM

We demonstrate the power maxSKSD for GOF
tests on RBMs, but we now also include results for
maxSKSD-rg. We follow the test setups in Liu et al.
(2016); Jitkrittum et al. (2017); Huggins & Mackey
(2018) where different amounts of noise are injected
into the weights to form the alternative hypothesis
q. The samples are drawn using block Gibbs sam-
plers. Refer to appendix 1.2 for details. Figure 4
shows that maxSKSD based methods dominate the
baselines, especially with maxSKSD-rg significantly

g
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outperforming the others. At perturbation level 0.01,
maxSKSD-rg achieves 0.96 rejection rate, while oth-
ers are all below 0.5. This result shows the advan-

Figure 4: RBM GOF Test with different levels
of perturbation noise. The black vertical line
indicates the perturbation level at 0.01.

tages of optimizing the slicing directions 7.

4.2 MODEL LEARNING

We evaluate the efficiency of maxSKSD-based algorithms in training machine learning models. First,
we use independent component analysis (ICA) which is often used as a benchmark for evaluating
training methods for energy-based model (Gutmann & Hyvérinen, 2010; Hyvérinen, 2005; Ceylan
& Gutmann, 2018). Our approach trains the ICA model by directly minimizing maxSKSD. Next,
we evaluate the proposed S-SVGD particle inference algorithm, when combined with amortization
(Feng et al., 2017; Pu et al., 2017), in the training of a variational autoencoder (VAE) (Kingma &
Welling, 2013; Rezende et al., 2014) on binarized MNIST. Appendix J.5 also shows superior results
for S-SVGD when training a Bayesian neural network (BNN) on UCI datasets (Dua & Graff, 2017).

4.2.1 ICA

ICA consists of a simple generative process z ~ Lap(0, 1) and = W z, where the model parameters
are a non-singular matrix W € RP*P_ The log density for  is log p(x) = logp. (W ~'z) + C,
where the normalization constant C' can be ignored when training with Stein discrepancies. We train
the models on data sampled from a randomly initialized ICA model and evaluate the corresponding
test log likelihoods. We compare maxSKSD with KSD and the state-of-the-art LSD (Grathwohl et al.,
2020). For more details on the setup, we refer the reader to appendix J.2.

Table 1 shows that both maxSKSD and LSD are robust to increasing dimensions, with maxSKSD
being better when D is very large. Also at D = 200, maxSKSD converges significantly faster than
LSD (see Figure 10 in appendix J.3). This faster convergence is due to the closed-form solution for the
optimal test functions, whereas LSD requires adversarial training. While KSD is also kernel-based, it
suffers from the curse-of-dimensionality and fails to train the model properly for D > 20. Instead
the proposed maxSKSD can successfully avoid the problems of KSD with high dimensional data.
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Table 2: Average log likelihood on first 5, 000 Table 3: Label entropy and accuracy for
test images for different D of latent dimensions. imputed images.
Method Latent Dim Method Entropy  Accuracy

D=16 D=32 D=48 D=64

Vanilla VAE | -91.50 -90.39 -90.58 -91.50 Vanilla VAE 0.297 0.718
SVGD VAE | -88.58 -90.43 -9347 -94.88 SVGD VAE 0.538 0.691
S-SVGD VAE | -89.17 -87.55 -87.74 -87.78 S-SVGD VAE | 0.542 0.728

4.2.2 AMORTIZED SVGD

Finally, we consider training VAEs with implicit encoders on dynamically binarized MNIST. The
decoder is trained as in vanilla VAESs, but the encoder is trained by amortization (Feng et al., 2017; Pu
et al., 2017), which minimizes the mean square error between the initial samples from the encoder,
and the modified samples driven by the SVGD/S-SVGD dynamics (Algorithm 3 in appendix J.4).

We report performance in terms of test log-likelihood (LL). Furthermore we consider an imputation
task, by removing the pixels in the lower half of the image and imputing the missing values using
(approximate) posterior sampling from the VAE models. The performance is measured in terms of
imputation diversity and correctness, using label entropy and accuracy. For fair comparisons, we do
not tune the coefficient of the repulsive force. We refer to appendix J.4 for details.

Table 2 reports the average test LL. We observe that S-SVGD is much more robust to the increasing
latent dimensions compared to SVGD. To be specific, with D = 16, SVGD performs the best where
S-SVGD performs slightly worse than SVGD. However, when the dimension starts to increase, LL
of SVGD drops significantly. For D = 64, a common choice for latent space, it performs even
significantly worse than vanilla VAE. On the other hand, S-SVGD is much more robust. Notice that
the purpose of this experiment is to show compare their robustness instead of achieving the state-of-
the-art performance. Still the performance can be easily boosted, e.g. running longer S-SVGD steps
before encoder update, we leave it for the future work.

For the imputation task, we compute the label entropy and accuracy for the imputed images (Table
3). We observe S-SVGD has higher label entropy compared to vanilla VAE and better accuracy
compared to SVGD. This means both S-SVGD and SVGD capture the muli-modality nature of the
posterior compared to uni-modal Gaussian distribution. However, high label entropy itself may not
be a good indicator for the quality of the learned posterior. One can think of a counter-example that
the imputed images are diverse but does not look like any digits. This may also gives a high label
entropy but the quality of the posterior is poor. Thus, we use the accuracy to indicate the “correctness”
of the imputed images, with higher label accuracy meaning the imputed images are closed to the
original image. Together, a good model should give a higher label entropy along with the high label
accuracy. We observe S-SVGD has more diverse imputed images with high imputation accuracy.

4.3 SUMMARY OF THE EXPERIMENTS IN APPENDIX

We present further empirical results on GOF tests and model learning in the appendix to demonstrate
the advantages of the proposed maxSKSD. As a summary glance of the results:

* In appendix G, we analyse the potential limitations of maxSKSD-g and show that they can
be mitigated by maxSKSD-rg, i.e. optimising the slicing direction 7;

* In appendix 1.3, we successfully apply maxSKSD to selecting the step size for stochastic
gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014);

* In appendix J.5, we show that the proposed S-SVGD approach out-performs the original
SVGD on Bayesian neural network regression tasks.

5 RELATED WORK

Stein Discrepancy SD (Gorham & Mackey, 2015) and KSD (Liu et al., 2016; Chwialkowski
et al., 2016) are originally proposed for GOF tests. Since then research progress has been made to
improve these two discrepancies. For SD, LSD (Grathwohl et al., 2020; Hu et al., 2018) is proposed
to increase the capacity of test functions using neural networks with Ly regularization. On the
other hand, FSSD (Jitkrittum et al., 2017) and RFSD (Huggins & Mackey, 2018) aim to reduce
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the computation cost of KSD from O(n?) to O(n) where n is the number of samples. Still the
curse-of-dimensionality issue remains to be addressed in KSD, and the only attempt so far (to the best
of our knowledge) is the kernelized complete conditional Stein discrepancy (KCC-SD (Singhal et al.,
2019)), which share our idea of avoiding kernel evaluations on high dimensional inputs but through
comparing conditional distributions. KCC-SD requires the sampling from ¢(z4|x_4), which often
needs significant approximations in practice due to its intractability. This makes KCC-SD less suited
for GOF test due to estimation quality in high dimensions. On the other hand, our approach does not
require this approximation, and the corresponding estimator is well-behaved asymptotically.

Wasserstein Distance and Score matching Sliced Wasserstein distance (SWD) (Kolouri et al.,
2016) and sliced score matching (SSM) (Song et al., 2019) also uses the “slicing” idea. However, their
motivation is to address the computational issues rather than statistical difficulties in high dimensions.
SWD leveraged the closed-form solution of 1D Wasserstein distance by projecting distributions onto
1D slices. SSM uses Hutchson’s trick (Hutchinson, 1990) to approximate the trace of Hessian.

Particle Inference Zhuo et al. (2017); Wang et al. (2018) proposed message passing SVGD to
tackle the well-known mode collapse problem of SVGD using local kernels in the graphical model.
However, our work differs significantly in both theory and applications. Theoretically, the discrepancy
behind their work is only valid if p and q have the same Markov blanket structure (refer to Section 3
in Wang et al. (2018) for detailed discussion). Thus, unlike our method, no GOF test and practical
inference algorithm can be derived for generic cases. Empirically, the Markov blanket structure
information is often unavailable, whereas our method only requires projections that can be easily
obtained using optimizations. Projected SVGD (pSVGD) is a very recent attempt (Chen & Ghattas,
2020) which updates the particles in an adaptively constructed low dimensional space, resulting
in a biased inference algorithm. The major difference compared to S-SVGD is that our work still
updates the particles in the original space with kernel being evaluated in 1D projections. Furthermore,
S-SVGD can theoretically recover the correct target distribution. There is no real-world experiments
provided in (Chen & Ghattas, 2020), and a stable implementation of pSVGD is non-trivial, so we did
not consider pSVGD when selecting the baselines.

6 CONCLUSION

We proposed sliced Stein discrepancy (SSD), as well as its scalable and kernelized version maxSKSD,
to address the curse-of-dimensionality issues in Stein discrepancy. The key idea is to project the
score function on one-dimensional slices and define (kernel-based) test functions on one-dimensional
projections. We also theoretically prove their validity as a discrepancy measure. We conduct extensive
experiments including GOF tests and model learning to show maxSKSD’s improved performance and
robustness in high dimensions. There are three exciting avenues of future research. First, although
validated by our theoretical study in appendix D, practical approaches to incorporate deep kernels
into SSD remains an open question. Second, the performance of maxSKSD crucially depends on the
optimal projection direction, so better optimization methods to efficiently construct this direction
is needed. Lastly, we believe “slicing” is a promising direction for kernel design to increase the
robustness to high dimensional problems in general. For example, MMD can be easily extended to
high dimensional two-sample tests using this kernel design trick.
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