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Abstract
A central goal of machine learning is generaliza-
tion. While the No Free Lunch Theorem states
that we cannot obtain theoretical guarantees for
generalization without further assumptions, in
practice we observe that simple models which ex-
plain the training data generalize best—a principle
called Occam’s razor. Despite the need for sim-
ple models, most current approaches in machine
learning only minimize the training error, and at
best indirectly promote simplicity through regu-
larization or architecture design. Here, we draw a
connection between Occam’s razor and in-context
learning—an emergent ability of certain sequence
models like Transformers to learn at inference
time from past observations in a sequence. In
particular, we show that the next-token prediction
loss used to train in-context learners is directly
equivalent to a data compression technique called
prequential coding, and that minimizing this loss
amounts to jointly minimizing both the training
error and the complexity of the model that was
implicitly learned from context. Our theory and
the empirical experiments we use to support it not
only provide a normative account of in-context
learning, but also elucidate the shortcomings of
current in-context learning methods, suggesting
ways in which they can be improved. We make
our code available at https://github.com/
3rdCore/PrequentialCode.

1. Introduction
The goal of machine learning (ML) is to learn models that
generalize to unseen data. Longstanding theory shows that
minimizing training error alone can lead to overfitting and
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poor generalization (Bishop & Nasrabadi, 2006). To enable
better generalization, ML follows the principle of Occam’s
razor—the best explanation is the simplest one that explains
the observations (Rathmanner & Hutter, 2011; Sunehag &
Hutter, 2014; Hutter, 2010). The intuition is that simple
rules that explain the data cannot simply memorize observa-
tions, and must instead capture more general patterns. Con-
sequently, learning algorithms usually trade off low training
error and low model complexity with ad hoc approaches
(e.g., via regularization and inductive biases), motivating
the need for notions of complexity that can be tractably
minimized directly.

Although there exist mathematical notions of model com-
plexity such as VC dimension (Vapnik et al., 1998) or Kol-
mogorov complexity, these quantities cannot be directly
minimized, or even tractably computed for the latter. In
practice, we instead learn predictors that minimize training
error as well as proxies of the model’s complexity, such as
the L1 norm of the parameters, or rely on inductive biases
for low-complexity solutions that are implicit in the model
class and learning algorithm. Defying this trend, however,
pretrained large sequence models (such as large language
models—LLMs) have a surprising ability to rapidly learn
and generalize from small amounts of data presented in their
context (or prompt) without any parameter updates (Radford
et al., 2019). This form of “model fitting at inference” falls
under the category of in-context learning (ICL) which gen-
erally refers to the ability of models to learn new tasks from
context. Although ICL refers to a wide range of phenomena
in the literature (Lampinen et al., 2024) such as an LLM
learning a task by following instructions, here, we focus on
ICL as the process where a pretrained sequence model infers
a statistical model from a training dataset passed in-context,
which is also called memory-based meta-learning (e.g., Xie
et al., 2022; Chan et al., 2022).

The main contribution of this paper is to provide theoretical
arguments linking ICL to Occam’s razor and a preference
for simple models (Figure 1). Briefly, our theory frames ICL
as a meta-learning algorithm whose next-token prediction
objective is directly equivalent to a powerful compression
method called prequential coding (Blier & Ollivier, 2018).
Given the relationship between compression and Occam’s
razor, we show that the meta-objective in ICL is to find a
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Figure 1. In-context learning fits simple models to training data. a. Standard train-risk minimization fits predictors that perform well
on the training data, while a meta-learner trained on next-token prediction (in-context learning) learns to infer predictors that generalize
to unseen (next-token) data, mitigating overfitting. b. Prequential coding: a method for estimating K(D) using a model pθ’s learning
algorithm T . As the learner T sees more data, it outputs models pθi = T (D1:i) that assign a higher likelihood to new observations di+1,
and can thus better compress them. The prequential code length Lpreq(D;T ) for describing the data in this way is given by the area
under the curve, and the model’s complexity is related to the learner’s speed of adaptation. c. Illustration of the solutions fit by each
learner. Train-risk minimization produces models that overfit the training data and generalize poorly, whereas in-context learning infers
simpler solutions.

learner capable of jointly minimizing both training error
and model complexity across a diverse range of tasks. Our
theory, along with the empirical experiments that we use
to support it, explain why ICL has proven so effective in
meta-learning settings, and also explain the shortcomings of
current ICL methods. Namely, we find that current methods
produce learning algorithms which are susceptible to under-
fitting and can fail to generalize to novel tasks, suggesting
principled avenues for future research.

2. In-Context Learning and Occam’s Razor
In this section, we introduce a meta-learning objective that
targets simple models, and then show that it is equivalent
to the next-token prediction objective underlying ICL. We
reach this result via four key steps:

1. We begin by formalizing both training error and model
simplicity through the lens of Kolmogorov complexity,
which deals with optimal data compression.

2. We then show how learning algorithms can be used
to compress data through a technique called prequen-
tial coding (Blier & Ollivier, 2018), whose resulting
“prequential code length” can be minimized to improve
compression.

3. We then introduce the idea of finding a learning algo-
rithm that minimizes prequential code length by for-
malizing a meta-learning problem that appears difficult
to optimize.

4. Finally, we show that the next-token prediction objec-
tive underlying ICL already solves this meta-learning

problem in an efficient and scalable way.

2.1. Kolmogorov Complexity and Data Compression

Kolmogorov complexity (Kolmogorov, 1965; Li & Vitányi,
2008) is a notion of information quantity. Intuitively, the
Kolmogorov complexityK(x) of an object x is the length of
the shortest program (in some programming language) that
outputs x. A related notion is the conditional Kolmogorov
complexity K(x|y) of the object x given another object y,
which is the length of the shortest program that takes y as
input and outputs x. While quite abstract, this notion of
complexity has deep ties to compression, making it intu-
itive as a measure of information quantity. The smaller and
more “structured” an object is—regularity, patterns, rules,
etc.—the more easily it can be described by a short program,
correspondingly having lower Kolmogorov complexity. Al-
though Kolmogorov complexity is very general—objects
x, y can be datasets, programs, models—it is intractable to
compute. However, it can often be tractably estimated or
bounded.

A quantity relevant to ML is the Kolmogorov complexity
of a dataset K(D), where D = (d1, ..., dn) with di ∼ p.
According to (Grünwald, 2007), if the dataset is sufficiently
large, it can be optimally compressed by first encoding the
data-generating process p and then encoding the data under
this distribution. It is well known that optimally encoding
data under a distribution takes only − log2 p(D) bits (e.g.,
using an arithmetic coding scheme, Witten et al., 1987), as
in the case of Shannon information (Shannon, 2001). We
therefore have that:

K(D) = K(p) +K(D|p) = K(p)− log2 p(D), (1)
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where K(p) refers to the complexity of the distribution (i.e.,
the length of the shortest program that outputs function
p : D → R+). This term is intractable to compute as it
requires an enumeration over all programs that output p, but
K(D|p) = − log2 p(D) is easily computed: it is simply
the negative log-likelihood of the data under p, a commonly
used objective function in ML. It follows that simple models
which achieve lower training error better compress data. We
provide further background on Kolmogorov complexity in
Appendix A.

As we are interested in model optimization, we henceforth
consider parameterized models pθ with parameters θ. We
denote a learning algorithm by a function T : P (D) → Θ
(where P denotes the power-set), which maps a dataset D
to a model pT (D). Maximum likelihood training on iid data,
which is the norm in ML, is a learning algorithm Tml which
minimizes:

Tml(D) = argmin
θ′

−
∑
d∈D

log2 pθ′(d). (2)

However, Occam’s razor says that we also need simple
models that best compress the data–mathematically, this is
because the “true” model generating the data in Equation (1)
optimally compresses the data. Thus, we consider the learn-
ing algorithm T oc, which defines “simple” via complexity:

T oc(D) = argmin
θ′

[
K(pθ′)−

∑
d∈D

log2 pθ′(d)

]
. (3)

In reality, the Occam’s razor learner T oc is intractable since
K(pθ′) cannot be computed. In practice, maximum log-
likelihood training Tml is often enhanced with regularizers
(e.g., L2-norm of parameters) and inductive biases (e.g., re-
stricting the model class) to implicitly favor low-complexity
models that combat overfitting and improve generalization.
For instance, deep neural networks (DNNs) trained through
stochastic gradient descent (SGD) tend to be biased towards
simple solutions (Blier & Ollivier, 2018; Goldblum et al.,
2024; Mingard et al., 2025). However, most existing reg-
ularizers at most amount to indirect methods that roughly
penalize model complexity K(pθ) along with training error;
learning algorithms (which we will often call “learners” for
brevity) rarely directly attempt to minimize compression
length of D, as T oc would. In what follows, we introduce
learners Tϕ that have learnable parameters ϕ, estimated via
meta-optimization, to approximate the ideal learner T oc.

2.2. Prequential Coding

While a learner T that adheres to Occam’s razor and solves
Equation (3) by optimally compressing D would improve
generalization, it is difficult to design one in practice. Even
if K(pθ) could be computed efficiently, there is the further
challenge of minimizing it. Instead, we will first describe

an algorithm for efficiently compressing D that does not
require estimating K(pθ), and then we will consider how to
optimize this compressor in the next section.

While K(pθ) is difficult to measure directly, it turns out that
we can compress D without it using an algorithm called
prequential coding (illustrated in Figure 1) that leverages
the learner T which produced pθ (i.e., pθ = T (D)). Con-
sider an ordered dataset D = {d1, ..., dN}, and denote
D1:i = {d1, ..., di}. Prequential coding uses the learner T
to train models on increasing amounts of data. First, we
train a model on just the first data point to get pθ1 = T (d1).
Because the model is trained on a single datapoint, it will
not be very accurate; however, it should be better than a
random model that has seen no data at all. We can then use
this model pθ1 to compress the next (unseen) datapoint d2,
which takes − log2 pθ1(d2) bits. At this point, we can train
a new model pθ2 = T (D1:2). Having seen more data, this
model should assign a higher likelihood to a new datapoint
d3, which we can compress using − log2 pθ2(d3) bits. This
process repeats until the entire dataset has been covered. At
this point, the model pθ can be obtained simply by applying
the learning algorithm to the complete dataset pθ = T (D).

The total number of bits that it takes to compress D using
prequential coding is the sum of how many bits it takes to
compress each datapoint using a model that was trained on
all previous ones. Visually, it is the area under the prequen-
tial coding curve shown in Figure 1b. The length of this
program is called the prequential code length Lpreq(D;T )
(Blier & Ollivier, 2018):

Lpreq(D;T ) =

N−1∑
i=0

− log2 pθi(di+1) ≥ K(D). (4)

Lpreq(D;T ) is an upper-bound on K(D) since prequential
coding is one way to compress the data. In Section 2.3 we
will minimize this quantity with respect to the learner T ,
and thus minimize the description length of the data.

Prequential coding relates Kolmogorov complexity to intu-
itions about generalization in ML: the simpler a model is, the
quicker it generalizes from limited amounts of training data.
Although the relationship in Equation (4) offers a promis-
ing way forward to operationalize Occam’s razor, there is
a problem. The prequential code length given by Equa-
tion (4) conditions on the choice of a learner T . However,
prequential coding also requires us to encode the learning
algorithm itself. When we take the description length of
T into account, the quantity Lpreq(D;T ) + K(T ) upper
bounds K(D) (see Appendix B). As we describe below, we
will optimize for learners Tϕ that minimize Lpreq(D;Tϕ),
and will articulate how Tϕ has low complexity given mini-
mization over multiple datasets.
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2.3. Minimizing Prequential Code Length

Consider a parameterized learner Tϕ that minimizes the
prequential code length Lpreq(D;Tϕ) of a dataset D. This
objective aims to optimally compress D like the idealized
learner T oc does, but only when K(Tϕ) is low. This second
criteria is violated if Tϕ overfits to a single dataset D. To
forbid Tϕ from memorizing a single dataset, we consider a
meta-dataset D = {D1, ..., DM} coming from M different
tasks and meta-learn Tϕ to minimize prequential code length
on average across the meta-dataset D . This allows us to
write the following objective for the learner Tϕ:

L(D ;ϕ) =

M∑
i=1

Lpreq(D
i;Tϕ) ≥

M∑
i=1

K(Di|Tϕ). (5)

By minimizing L(D ;ϕ) =
∑M

i=1 Lpreq(D
i;Tϕ), we

thus end up with a learner Tϕ∗ that minimizes compres-
sion length in expectation over datasets, and after meta-
training compresses a new dataset of interest D using
Lpreq(D;Tϕ∗) ≥ K(D) bits. The learner Tϕ∗ will suc-
ceed in compressing D when it generalizes to that novel
dataset.

The learner Tϕ∗ and the Occam’s razor learner T oc (=
argminθ′ [K(pθ′)− log2 pθ′(D)]) are not exactly identi-
cal: T oc compresses the data by directly minimizing model
complexity and training error, whereas Tϕ∗ compresses the
data by minimizing its prequential code length. Despite
these differences in compression strategy, however, the two
learners are deeply related through the minimum descrip-
tion length principle (Grünwald, 2007) because they both
attempt to optimally compress their training data. In par-
ticular, if Tϕ∗ significantly compresses the data through
prequential coding, the minimum description length princi-
ple states that the model pθ = Tϕ∗(D) which it fits is likely
to generalize because optimal compression is achieved by
the true generative process (Equation (1)). In this way, the
learner Tϕ∗ implicitly fits simple models with low train-
ing error, minimizing K(pθ) − log2 pθ(D). In Section 3,
we will empirically show this to be the case across diverse
tasks, where pθ = Tϕ∗(D) will generalize far better than
the typical ML approach of minimizing training error alone.

2.4. ICL Minimizes Prequential Code Length

In practice, solving the meta-learning problem in Equa-
tion (5) involves several constraints:

1. The performance of Tϕ(·) must be evaluated w.r.t. a
dataset’s prequential code length.

2. Tϕ(·) must be fast to evaluate because it is iteratively
called on multiple datasets.

3. To meta-optimize ϕ, it must be easy to take gradients
of Lpreq(·;Tϕ) w.r.t. ϕ.

4. ϕ must parameterize an expressive class of learning
algorithms, capable of minimizing prequential code
length on a broad distribution of tasks and generalizing
to unseen ones.

While this may appear daunting, it turns out that these
desiderata are readily addressed by ICL in probabilistic
sequence models. Such models are trained to predict the
distribution over the next element in a sequence given
its past context: F (dt|D1:t−1). Crucially, the sequence
model F is both the learner Tϕ and the inner model
pθ. Indeed, ϕ corresponds to the parameters of the se-
quence model F (e.g. weights in a Transfomer), and
θ = Tϕ(D1:t−1) is encoded by the activations of hid-
den units in the model when presented with the context
D1:t−1. Thus, the predicted distribution over the next token
is given by: F (dt|D1:t−1) = pTϕ(D1:t−1)(dt). The model
is trained to minimize the cumulative next-token predic-
tion error: L(D;ϕ) =

∑N
t=1 − log pTϕ(D1:t−1)(dt), which

corresponds exactly to the prequential code length in Equa-
tion (4).

The dual nature of the sequence model as both the learner
and the learned model offers a natural solution to the con-
straints above, enabling fast and differentiable evaluation
of Tϕ(·) (2 & 3 above) with respect to cumulative next-
token prediction loss (1 above). Moreover, modern se-
quence models can parameterize a rich class of learning
algorithms, which is crucial to minimizing Equation (5) (4
above). Notably, architectures such as Transformers are
known to have components which make them especially
good meta-learners, such as multi-head attention (Olsson
et al., 2022). It is thus no surprise that sequence models
are leveraged in settings outside of the language domain
(Von Oswald et al., 2023; Bauer et al., 2023; Kirsch et al.,
2022), making them general-purpose meta-learners.

This predictive formulation can be used to model data
which contains sequential correlations, such as language,
but it is more general. Indeed, consider an iid dataset
D = {(x1, y1), ..., (xT , yT )} and the supervised task of
learning a function y = f(x). In this setting, a data point
is given by the pair dt = (xt, yt), and straightforward tok-
enization schemes can be used to append a novel query x∗ to
the context D such that the predicted output ŷ∗ is given by
the next token in the sequence. This ICL setup is well-suited
for regression-type tasks (see e.g. (see e.g., Von Oswald
et al., 2023; Oswald et al., 2023)) but can be used for most
supervised tasks. ICL thus turns the training of a sequence
model into a meta-optimization problem over datasets—an
approach also called memory-based meta-learning (Hochre-
iter et al., 2001; Santoro et al., 2016; Ortega et al., 2019).
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Prequential code length is well-defined over arbitrary se-
quences, so our theory relating ICL to Occam’s razor applies
to both iid and nonstationary data, as explored in Section 3.

Summary. We showed that sequence models trained on
cumulative next-token prediction losses explicitly optimize
a meta-learning objective for compression, thus jointly min-
imizing training error and model complexity. This provides
a normative account of ICL in terms of Occam’s razor, and
explains recent experimental findings showing that LLMs
are good universal compressors (Deletang et al., 2024).

3. Experiments
Our experiments are designed to illustrate the benefits of
ICL in terms of fitting simple models that generalize. In
Section 3.1, we compare ICL’s standard next-token predic-
tion objective to an alternative that minimizes training error
alone, rather than prequential code length. Section 3.2 then
compares ICL to standard gradient-based learners that min-
imize training error, such as SGD. Section C.2 shows the
impact of regularization on gradient-based learners from a
compression perspective. In Section 3.3, we explore the im-
pact of learner Tϕ’s architecture on prequential code length
minimization. Section 3.4 explores the ability of Tϕ to gen-
eralize to novel tasks. Experimental details not described in
the main paper (e.g., precise architectures, hyperparameters,
etc.) can be found in Appendix C.

Tasks. In line with similar work studying ICL in a con-
trolled setting (Mahankali et al., 2024; Garg et al., 2022;
Akyürek et al., 2023), we use synthetically-generated tasks.
Each task consists of a supervised learning dataset Di =
{(x1, y1), ..., (xk, yk)}, where the labels are a (potentially
stochastic) function of the input yj = f i(xj , ϵj). ICL learn-
ers Tϕ are trained on a meta-dataset D = {D1, ..., DN},
where each Di is associated with a different ground-truth
data-generating function f i. We primarily study three meta-
datasets: (1) Linear regression problems where x ∈ R3

and y ∈ R. The ground-truth functions f i are noisy linear
mappings yj =W ixj+b

i+ϵj , where each {W i, bi} is sam-
pled from a standard Normal distribution and ϵj is Gaussian
noise with σ2 = 0.04. (2) Sinusoidal regression problems
where xj ∈ R and functions f i are linear combinations
yj =

∑L
l=1 α

i,l sin (ωlxj). We use L = 3 with frequencies
ωl ∼ U(0, 5) that are shared across tasks, varying only the
amplitudes αi,l ∼ N (0, 1). (3) Mastermind: a multi-label
classification problem inspired by the code-breaking game
Mastermind. Each f i is associated with an underlying dis-
crete code (a fixed-size sequence of digits) that needs to be
inferred from random guesses that return partial informa-
tion. The inputs xj are random guesses for the code, and
yj = f i(xj) is a tuple of two class labels where the first
specifies the number of digits in xj that are correct in terms
of both position and value, and the second label specifies the

number of digits that are correct in value but not necessarily
position. We use randomly sampled codes of length 8 with
digits varying from 1..6.

The tasks above produce iid datapoints so that we could
make fair comparisons to learners that minimize training
error under iid assumptions (e.g., SGD). However in Sec-
tion 3.3 we will compare prequential ICL learners with dif-
ferent architectures, and we consider another, non-iid task,
(4) HMM: next token prediction on synthetically-generated
nonstationary data from Hidden Markov Models (HMMs)
that were designed to mimic the statistical properties of nat-
ural language in a simplified and controlled setting. The
models are evaluated on unseen HMMs with novel transition
and emission matrices. See Appendix C for details.

3.1. Comparisons to ICL With a Train-Risk Objective

We have argued that standard ICL can be seen as a meta-
learning method who’s meta-objective is to minimize train-
ing error and model complexity through cumulative next-
token prediction (prequential code length). However, this is
not the only meta-objective that one could design for ICL.
In particular, we can design an alternative meta-objective
that minimizes only training error simply by training Tϕ
to predict past datapoints in the context rather than future
unseen ones. In both cases, the learner Tϕ is some function
that takes a context (i.e., a partial dataset) as input, and out-
puts a model pθ capable of making predictions for arbitrary
datapoints. For supervised learning, this can be represented
as ŷq = Tϕ((x, y)1:j , xq) where (x, y)1:j corresponds to an
observed context, xq is the queried input, and the model
pθ is implicitly encoded in Tϕ’s weights and latent activa-
tions given the context. In standard ICL (which we will
refer to as prequential ICL), the query xq is a novel input
that does not appear in the context. In the alternative form
of ICL (which we will call train-risk ICL), the query xq
is a randomly-selected input that appeared previously in
the context x1:j . Note the similarities of train-risk ICL to
standard objectives of learners that minimize training error:
it processes some fixed-sized training set (here a context)
and attempts to minimize the empirical risk on a subset of
that very same data (here a single query that appeared in
the context). While nobody uses train-risk ICL in practice,
it serves as an ideal control to illustrate our theory of ICL
and the generalization benefits of minimizing prequential
code length as opposed to only training error. One can use
an identical architecture for Tϕ in both cases and train using
precisely the same methodology and loss function; the only
difference is which query the loss function is evaluated on.

In our experiments, we parameterize Tϕ using a Transformer.
For the train-risk case, a standard Transformer could simply
attend to the context position that matches xq and retrieve
the corresponding label. To prevent this trivial solution,
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prequential ICL 
train-risk ICL 
SGD (no meta-learning)

Transformer w/ bottleneck 
Transformer w/o bottleneck 
Mamba 1 
Mamba 2

Pretrained LLM 
Naive baseline 
Our Transformer

Figure 2. Experimental results comparing different learners. Figures show average prequential coding curves for a meta-dataset,
which is the mean prediction error on unseen data (generalization error, y-axis) given observed contexts of increasing length (datapoints
seen, x-axis). The area underneath these curves corresponds to prequential code length. ICL from next-token prediction objectives
(prequential ICL, blue) yields lower prequential code lengths than ICL from past-token prediction objectives (train-risk ICL, orange), with
greater effects in low-data regimes. An SGD-based learner (green) fits more complex models than prequential ICL and performs poorly
in low-data regimes, but can generalize better in large-data regimes on a difficult Mastermind task due to underfitting in ICL. Error is
measured using MSE for linear and sinusoid regression and cross-entropy for Mastermind. Error bars show standard error across seeds (5
for ICL, 15 for SGD).

prequential ICL 
train-risk ICL 
SGD (no meta-learning)

Transformer w/ bottleneck 
Transformer w/o bottleneck 
Mamba 1 
Mamba 2

Pretrained LLM 
Naive baseline 
Our Transformer

ground truth 
prequential ICL 
train-risk ICL

Figure 3. Models inferred by different learners. Visualization of inferred models for noisy linear and cubic regression tasks (leftmost
and middle right). Observed data is shown in black points, ground-truth in gray, prequential ICL in blue, and train-risk ICL in orange.
Train-risk ICL consistently overfits, while prequential-ICL infers simpler functions closer to the ground truth. Middle left and rightmost
plots show the L2-norm of inferred coefficients for polynomial orders greater than the ground-truth data-generating orders, plotted against
context length. Train-ICL fits complex models using high-degree components to overfit the data.

we instead use a bottlenecked architecture for Tϕ described
in Mittal et al. (2025). In this architecture, a Transformer
first summarizes the context into a low-dimensional vector
z = Transformerϕ((x, y)1:j), and a separate prediction
head—here a multi-layer perceptron (MLP)—subsequently
outputs a prediction for the query ŷq = MLPϕ(xq, z). For
fair comparison, we use the same bottleneck architecture
for train-risk ICL and prequential ICL in all experiments,
unless otherwise stated. Figure 2 shows our comparisons
between prequential ICL to train-risk ICL, where we plot
the prequential coding curves for each ICL method after loss
convergence on a meta-dataset. The curves are constructed
at inference time by evaluating the average generalization
error (i.e., unseen next-token prediction loss) on unseen
tasks from the meta-dataset, for varying context lengths.

Findings. Two findings follow directly from our theory.
The first is that for large context lengths, generalization er-
ror is identical for both prequential ICL and train-risk ICL.

This is because with significant data, optimal compression
is dominated by training error (Equation (1)), making over-
fitting less likely to occur. The benefits of simple models are
instead expected to be most prominent in low-data regimes
where generalization is difficult, and this is precisely what
we observe. Across all tasks, prequential ICL consistently
outperforms train-risk ICL in terms of generalization for
short context lengths, and this performance gap extends fur-
ther the more difficult the task (e.g., it is small for linear
regression, and larger for sinusoid regression and master-
mind). We confirm that the performance gap widens with
increasing task difficulty by fixing the function class and
increasing the dimensionality of the inputs x in Appendix D,
which is expected given that harder tasks require more data
for generalization. In Appendix F we repeat these analy-
ses on a modified version of the HMM task that is more
amenable to train-risk minimization and find similar trends
as above for non-iid data. Lastly, in Appendix G, we com-
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prequential ICL 
train-risk ICL 
SGD (no meta-learning)

Transformer w/ bottleneck 
Transformer w/o bottleneck 
Mamba 1 
Mamba 2

Pretrained LLM 
Naive baseline 
Our Transformer

Figure 4. Sequence model architecture impacts ICL’s ability to minimize prequential code length. Figures show average prequential
coding curves for a meta-dataset, which is the mean prediction error on unseen data (generalization error, y-axis) given observed contexts
of increasing length (datapoints seen, x-axis). The area underneath these curves corresponds to prequential code length. Error is measured
using MSE for linear and sinusoid regression and cross-entropy for Mastermind and HMM. Error bars show standard error across 5 seeds.

pare the generalization performance of an in-context learner
trained on the full sequence of tokens versus only the latter
half of the sequence. Consistent with our theory, the lack of
low-data signal in the latter case results in worse prequential
code length and less pressure toward simple models.

Visualization of learned models. To better understand
the solutions learned by prequential and train-risk ICL, we
visualize the inferred models for noisy linear and cubic re-
gression tasks in Figure 3. We also replace the prediction
head of our bottlenecked models with a parameter-free poly-
nomial function, so that the bottleneck represents a vector
of inferred polynomial components. Figure 3 shows that
for a small context length (15) train-risk ICL overfits the
data by fitting complex models with high polynomial order,
whereas prequential ICL fits simple functions that are more
robust to noise. Further experimental details are provided in
Section C.3.

3.2. Comparisons to Gradient-Based Learners

We next consider whether there are empirical advantages
of meta-learning a learner Tϕ to minimize prequential code
length through ICL, compared to using standard out-of-
the-box learning algorithms. In particular, we know that
traditional SGD-based learners can optimize DNN models
that generalize well across a wide range of tasks, despite
only explicitly minimizing training error. We consider a
standard SGD-based learner that fits a randomly-initialized
MLP to the training set until validation loss converges. We
repeatedly sample a dataset from our meta-dataset, truncate
it to a specified number of observed datapoints, apply the
SGD-based learner to the truncated dataset, and evaluate the
resulting model’s generalization error on new datapoints.

Findings. Figure 2 compares this SGD-based learner to
prequential (and train-risk) ICL learners. Across all tasks,
the models obtained through ICL generalize better in low-
data regimes, aligning with our theory that ICL minimizes
model complexity. With enough training data, however,

models obtained through the SGD-based learner generalize
just as well. In fact, on the Mastermind task, SGD performs
better in large-data regimes. This result demonstrates that
even though the next-token prediction objective in ICL is
well-motivated from the theoretical perspective of compres-
sion, the degree to which that objective can successfully be
minimized strongly depends on the architecture of Tϕ and
the methods used to train it. For instance, when Tϕ is a
Transformer, the expressivity of the model it implicitly fits
to the context scales with the number of activations in the
network (N ), whereas the expressivity of a DNN trained
through SGD scales with the number of weights (N2). Fur-
thermore, the amount of compute time that Tϕ uses to fit the
context amounts to one forward pass of a network, whereas
the compute time that goes into fitting a dataset using SGD
can be arbitrarily large.

Regularized SGD. We also considered the effects of differ-
ent regularization techniques that can be applied to SGD to
indirectly influence the complexity of the resulting model
(e.g., L2), shown in Appendix E. As expected, regulariza-
tion influences prequential code length by trading off model
complexity and training error to varying degrees. However,
all SGD regularization methods are still outperformed by
prequential ICL in low-data regimes, due to prequential
ICL’s direct compression objective that optimally balances
model complexity and training error.

3.3. Influence of the ICL Architecture

The previous section argued that the structure of Tϕ can
influence its ability to minimize prequential code length. In
this section, we further illustrate this point by considering
a wider breadth of neural architectures for Tϕ. Since state-
space models (SSMs) have recently been shown to exhibit
ICL (Lu et al., 2024), we test Mamba 1 (Gu & Dao, 2024)
and Mamba 2 (Dao & Gu, 2024). We also test a standard
causal Transformer in addition to the bottlenecked Trans-
former from previous sections. We refer to Appendix C for
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additional information about the specificity of each architec-
ture.

Findings. Prequential code length comparisons in Figure 4
show that the architecture for Tϕ indeed plays a substan-
tial role, which interacts substantially with the meta-dataset.
For instance, only the Transformer without bottleneck does
well on Mastermind, whereas on the HMM task it is outper-
formed by SSMs. Analyzing these results in depth is out
of scope for this work; we only intend to show that having
a next-token prediction objective alone does not guarantee
that prequential code length can successfully be minimized
in practice through ICL.

3.4. Large Pretrained Models

A core element of our theory of ICL is that Tϕ is trained to
minimize average prequential code length on a meta-dataset.
There is no guarantee, however, that prequential code length
will be small on a novel dataset at inference time: this
depends on the generalization abilities of the learner Tϕ. In
this section, we look at the task-generalization abilities of a
large pretrained LLM (GPT-4 Achiam et al., 2023) on the
Mastermind task. We do this by prompting the LLM with a
description of the task and a number of in-context examples,
then obtaining the logits and prediction error for a novel
example.

prequential ICL 
train-risk ICL 
SGD (no meta-learning)

Transformer w/ bottleneck 
Transformer w/o bottleneck 
Mamba 1 
Mamba 2

Pretrained LLM 
Naive baseline 
Our Transformer

Figure 5. Large pretrained sequence models can fail to min-
imize prequential code length on novel tasks. GPT-4 (gray)
performs far worse than small ICL models trained on a distribution
of Mastermind tasks (blue) and a naive baseline that predicts the
marginal class distribution over the context (purple). Error is mea-
sured using cross-entropy. Error bars show standard error across 5
seeds.

Findings. In Figure 5, we find that despite its massive
pretraining across a breadth of tasks, the LLM is unable to
meaningfully minimize prequential code length on Master-
mind. Not only is its prequential code length substantially
higher than for a much smaller model trained on a distri-
bution of Mastermind tasks, but it is also higher than for
a naive baseline that just predicts the empirical marginal
distribution over class labels in the context. These results
demonstrate that even when the size of the model and meta-

dataset used to train Tϕ are scaled significantly, current
methods for ICL can still struggle to minimize prequential
code length on a novel task.

4. Related Work
Sequence modeling and compression. The idea that
probabilistic models can be used to efficiently compress
data is a topic widely studied in machine learning across dif-
ferent modalities and settings (Ollivier, 2015; Deletang et al.,
2024; Blier & Ollivier, 2018; Veness et al., 2015), specifi-
cally in sequence modeling (Goyal et al., 2019; Valmeekam
et al., 2023; Deletang et al., 2024) due to its close similari-
ties to prequential coding (Blier & Ollivier, 2018). While
Goyal et al. (2019) and Valmeekam et al. (2023) claim that
learned sequence models can outperform simple compres-
sors like JPEG or gzip, they overlook model complexity
in their analysis, adhering strictly to Shannon’s notion of
compression. In contrast, more recent studies from Dele-
tang et al. (2024) and Bornschein et al. (2023) opted for the
Kolmogorov approach, incorporating model size to account
for model complexity. Deletang et al. (2024), in particular,
add nuance to the claimed advantages of foundation models
due to the substantial memory allocation required to store
their weights. Our theory builds on these works by relat-
ing compression and sequence modeling to the approach
of meta-learning across tasks using ICL, which we show
yields simple models that adhere to Occam’s razor.

ICL as Bayes-optimal prediction. One of the dominant
perspectives of ICL and related meta-learning approaches is
that they yield Bayes-optimal learners (Ortega et al., 2019;
Mikulik et al., 2020; Müller et al., 2022; Hollmann et al.,
2023; Binz et al., 2023; Wang et al., 2023), in the sense that
they learn a prior distribution over tasks during training, and
then compute a posterior given data presented in-context
at inference time. This posterior can then be used to make
predictions with minimum Bayes’ risk. Various studies have
tested this in controlled settings with tractable posteriors
(Xie et al., 2022; Panwar et al., 2024; Genewein et al., 2023;
Mittal et al., 2023). Xie et al. (2022) assume a concept la-
tent that parameterizes the generation of dependent samples
through an HMM and provide formal conditions for ICL to
effectively approximate the Bayes-optimal predictor on the
prompt. In a supervised fashion, Akyürek et al. (2023) con-
struct sequence of labeled examples (x, f(x)) and shows
that under uncertainty, ICL behaves as the Bayes-optimal
predictor on noisy linear regression. Additionally, they ar-
gue that with limited capacity, ICL does not necessarily
match the Bayes predictor but can meta-learn other learning
algorithms, such as gradient-based algorithms on linear mod-
els and closed-form ridge regressors (Panwar et al., 2024).
Grau-Moya et al. (2024) induce a prior for model simplicity
in ICL by generating tasks from short programs run on Uni-
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versal Turning Machines. Finally, (Raventós et al., 2024)
find that under a sufficiently diverse set of pretraining tasks,
ICL does not yield Bayes-optimal predictors, but instead
infers a more uniform prior. While the Bayesian perspective
of ICL is very useful and complementary to the Kolmogorov
one that we have proposed, we argue in Appendix H that
the Kolmogorov perspective generalizes the Bayesian one
and more easily accounts for diverse findings in ICL (e.g.,
cases where ICL does not yield Bayes-optimal predictors).

ICL as a direct meta-learned optimizer. Elaborating
on the possibility that ICL emulates non-Bayesian learning
algorithms, Von Oswald et al. (2023) show that k-layer lin-
ear Transformers with a specific weight parameterization
can mimic k steps of gradient descent for a least squares
loss. Ahn et al. (2023) provide a theoretical foundation for
these observations, provably showing that the optimization
of the parameters of a linear Transformer under certain as-
sumptions about the data distribution effectively implements
this learning algorithm. Concurrent studies by Zhang et al.
(2024) and Mahankali et al. (2024) report similar findings,
albeit under slightly different assumptions regarding weight
initialization or data generation processes. Beyond the scope
of linear regression, Kirsch et al. (2022) explore this phe-
nomenon on augmented natural data (MNIST, CIFAR10)
and provide insightful empirical conditions for the emer-
gence of ICL as a general-purpose learning algorithm. Other
works empirically show that Transformers can learn more
complex function classes in-context, such as sinusoidal re-
gression (Von Oswald et al., 2023), decision trees (Garg
et al., 2022), and RASP-programmable functions (Zhou
et al., 2024). While prior works such as these attest to
the powerful meta-learning capabilities of ICL, our work
differs in that it identifies the precise meta-objective as an
implementation of Occam’s razor.

5. Discussion and Future Work
In this work, we introduced novel theoretical arguments
linking ICL and the next-token prediction objective to Oc-
cam’s razor. Our theory provides a normative account of the
strong generalization abilities of in-context learners at infer-
ence time, especially in low-data regimes when compared
to traditional optimizers. These theoretical insights were
supported by a number of empirical experiments, some of
which also identified shortcomings of current methods for
ICL that should be addressed in future work.

One such shortcoming is that models learned through cur-
rent ICL methods can underfit data presented in-context,
which can hamper generalization in large-data regimes on
difficult tasks. We also found that the degree of underfitting
was highly dependent on the architecture used to parame-
terize the in-context learner (i.e., the sequence model)—a

finding corroborated by Ding et al. (2024). In light of this,
we hypothesize that ICL can be improved through the design
of novel sequence model architectures that explicitly target
prequential code length. For example, current methods
learn in-context through a single forward pass of a sequence
model with fixed layer depth. In contrast, DNNs can be
trained using gradient-based methods until training loss con-
verges, which can take weeks and substantial compute. One
improvement to ICL might therefore be to augment current
sequence model architectures with “layers” that use built-in
optimization primitives with variable compute budgets, as
was done in Oswald et al. (2023). Another promising ap-
proach is to combine ICL and SGD through a “mixture of
learners” that reaps their complementary benefits. ICL is
sample-efficient and generalizes well in low-data regimes,
while SGD-based methods that optimize the weights of a
DNN excel on difficult tasks when significant training data
is available. Recent work by Bornschein et al. (2024) ex-
plored a simple method for combining both learners by
presenting a smaller number of recent tokens in-context to
a sequence model for ICL, while at the same time using a
large number of earlier tokens to fine-tune the weights of the
sequence model using gradient methods, finding significant
performance gains.

Another challenge of ICL that follows directly from our
theory is that the in-context learner must generalize to novel
tasks and datasets. While we found that task generaliza-
tion was successful over narrow task distributions (e.g. a
distribution of linear regression tasks), we also found that
task generalization was more difficult in open-ended cases,
in which even a large pretrained LLM was unable to learn
in-context on a novel task that was easily solved by a small
MLP trained using SGD. One possible path forward is to
have many domain-specific in-context learners that each
specialize in compressing data from a given task distribu-
tion. Another option is to learn simple learners that are
more likely to generalize to novel tasks, which could be
achieved through inductive biases, regularization, or, in-
triguingly, through an additional meta-layer of ICL at the
task level that would minimize the Kolmogorov complexity
of the learner itself (and not only the model it fits).

Finally, given that our theory generalizes to nonstationary
data (where prequential coding remains a strong compres-
sion algorithm), many further questions arise. In particular,
the ordering of data presented in-context can have a substan-
tial impact on prequential code length and model complexity
(Zhang et al., 2020), which can guide the design of optimal
curricula for strong and data-efficient generalization.
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Impact Statement
Hundreds of millions of people now use conversational
agents weekly for productivity, learning, and more. These
agents rely heavily on In-Context Learning (ICL) to generate
high-quality, contextually appropriate responses. However,
as their use expands into high-stakes settings, understanding
ICL’s inner workings and failure modes becomes critical to
ensure the safe deployment of conversational AI. Our work
aims to uncover some of the characteristics and limitations
of a particular form of ICL, providing valuable insights for
developing more robust ICL in future work. Such advance-
ments are crucial for accelerating the path toward safe gen-
eral artificial intelligence (AGI). The societal implications
of AGI are broad and significant, and we direct readers to
the field of AI safety for further discussion on these critical
issues.
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A. Background on Kolmogorov complexity
Kolmogorov complexity was independently developed in the 1960s by Kolmogorov (1965), Solomonoff (1964), and Chaitin
(1966), and defines a notion of “information quantity”.

Intuitively, the Kolmogorov complexity of an object is the length of the shortest program (in some programming language)
that outputs that object. Specifically, given some finite string x, K(x) is the length l(r) (in bits) of the shortest binary
program r that prints x and halts. Let U be a universal Turing machine that executes these programs. The Kolmogorov
complexity of x is then:

K(x) = min
r

{l(r) : U(r) = x, r ∈ {0, 1}∗}, (6)

where {0, 1}∗ denotes the space of finite binary strings. A related notion is the conditional Kolmogorov complexity of a
string x given another string y, which is the length of the shortest program that takes y as input and outputs x:

K(x|y) = min
r

{l(r) : U(r(y)) = z, r ∈ {0, 1}∗}, (7)

where r(y) denotes a program taking y as input. Finally, we can also define a “joint” Kolmogorov complexityK(x, y), which
denotes the length of the shortest program that jointly outputs both x and y. Surprisingly, joint Kolmogorov complexity is
related to conditional Kolmogorov complexity (up to an additive logarithmic term, which we will ignore) by the Symmetry
of Information theorem (Li & Vitányi, 2008):

K(x, y) = K(y|x) +K(x) = K(x|y) +K(y). (8)

Kolmogorov complexity has many intuitive properties that make it attractive as a measure of information quantity, and
although it is less common than notions from Shannon information theory (Shannon, 2001), it is strictly more general (as we
will show later below). The smaller and the more “structure” an object has—regularity, patterns, rules, etc.—the more easily
it can be described by a short program and the lower its Kolmogorov complexity. Kolmogorov complexity therefore is deeply
rooted in the idea of compression. For instance, a sequence with repeating patterns or a dataset that spans a low-dimensional
subspace can be significantly compressed relative to its original size, and this results in low Kolmogorov complexity. In
contrast, a random string devoid of any structure cannot be compressed at all and must in effect be “hard-coded”, making its
Kolmogorov complexity equal to its original size in bits.

While powerful, Kolmogorov complexity has certain limitations. First and foremost, Kolmogorov is intractable to compute
exactly because it requires a brute force search over an exponentially large space of possible programs. It is therefore often
of conceptual rather than practical value, although it can nevertheless be upper-bounded using more efficient compression
strategies. Second, Kolmogorov complexity depends on the programming language of choice. For instance, if a programming
language has a built-in primitive for the object being encoded, Kolmogorov complexity is trivially small. This concern,
however, is often overblown: given any two Turing-complete programming languages, the difference in Kolmogorov
complexity that they assign to an object is upper-bounded by a constant that is independent of the object itself, because any
Turing-complete programming language can simulate another (Grünwald & Vitányi, 2003; Fortnow, 2000). In practice,
we can simply consider “reasonable” Turing-complete programming languages that don’t contain arbitrary object-specific
primitives, in which case this simulation constant will be relatively small and the particular programming language of choice
will have little effect. Finally, Kolmogorov complexity is only defined for discrete objects because no terminating program
can output a continuous number with infinite precision. This concern is also less consequential in practice, because we can
always represent continuous objects using finite (e.g., floating-point) precision.

Important properties for machine learning. In ML, we are often concerned with datasets and probabilistic models.
Kolmogorov complexity relates to these two concepts in several interesting ways. First, we can ask about the Kolmogorov
complexity of a finite dataset X = (x1, ..., xn) where each sample is drawn iid from a distribution p(x). It turns out that if

14



In-Context Learning and Occam’s Razor

we have access to the true distribution p(x), optimal algorithms such as arithmetic coding (Witten et al., 1987) can encode
each sample using only log2 p(xi) bits. Intuitively, this is because samples that occur more frequently can be encoded using
shorter codes in order to achieve an overall better compression. We thus have that:

K(X|p) = −
n∑

i=1

log2 p(xi). (9)

If instead of access to the true distribution p(x) we only have a probabilistic model of the data pθ(x), we have that:

K(X|pθ) ≤ −
n∑

i=1

log2 pθ(xi), (10)

where we have equality when pθ = p. This insight is significant. Notice that −
∑n

i=1 log2 pθ(xi) is the negative log-
likelihood of the data under the model, which is a common loss function used in ML. This tells us that models with lower
error better compress their data, and directly relates Kolmogorov complexity to optimization in ML. However, what if
we do not have a model? What is the Kolmogorov complexity of the data itself? Intuitively, if the dataset is sufficiently
large, the optimal method for encoding it should be to first specify a model and then encode the data using that model as in
Equation (10). Specifically, using identities in Fortnow (2000), we have:

K(X) ≤ K(X|pθ) +K(pθ). (11)

This encoding scheme on the RHS is referred to as a 2-part code (Grünwald, 2007). We have equality when the model’s
description length and error are jointly minimized, which occurs when the model pθ(x) is equivalent to the true distribution
p(x):

K(X) = argmin
pθ

K(X|pθ) +K(pθ) = argmin
pθ

−
n∑

i=1

log2 pθ(xi) +K(pθ) (12)

= K(X|p) +K(p) = −
n∑

i=1

log2 p(xi) +K(p). (13)

Again, we can draw important connections to ML. Equation (11) says that the Kolmogorov complexity of a dataset is
upper-bounded by the a model’s error and complexity. In addition, Equations (12) and (13) tell us that the simplest model
that explains the data is most likely to be the true one, which draws a theoretical link between compression, maximum
likelihood training, model complexity, and generalization (Goldblum et al., 2024).

Relation to Shannon information. In Shannon information theory (Shannon, 2001), the notion of information quantity
is entropy. Given a random variable X ∼ p(x), entropy is defined as: H(X) = Ex∼p(x) − log2(p(x)). Notice that the
− log2(p(x)) inside the expectation is equal the quantity inside the sum of Equation (9), which specified the minimum
number of bits needed to encode a sample from a dataset given the distribution that sample was drawn from. This is no
accident: entropy can be seen as the average number of bits needed to compress events from a distribution using an optimal
encoding scheme when the distribution p(x) is known. If we simply sum these bits for a finite number of samples instead of
taking an expectation, we get exactly K(X|p) as defined in Equation (9).

As we have seen, though, the assumption about a known distribution p(x), need not be made in the Kolmogorov complexity
framework. In this sense, Kolmogorov complexity is a strict generalization of Shannon information theory: K(X) as defined
in Equation (13) is equivalent to summed entropy plus the complexity of the distribution p(x), which is unknown and needs
to be encoded. In the Shannon framework, it is difficult to derive a meaningful notion for the information quantity in the
distribution p(x) because it is an individual object—a function, in particular—and Shannon information is only defined for
random variables (Grünwald & Vitányi, 2003). A second drawback of Shannon information is that entropy is a measure of
statistical determinability of states; information is fully determined by the probability distribution on states and unrelated to
the representation, structure, or content of the individual states themselves (Grünwald & Vitányi, 2003). For this current
work, we require a notion of complexity that can account for representations and functions, making Kolmogorov complexity
better suited to the task.
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B. Prequential coding and compression without a known learning algorithm
When introducing the relationship between prequential coding and optimal compression in Equation (4), we mentioned that
a key assumption is that the learning algorithm T is known. In reality, then, we have that:

K(D) ≤ K(D, pθ) (14)
= K(D|T ) +K(T ) (15)
≤ Lpreq(D;T ) +K(T ) (16)

=⇒ Lpreq(D;T ) +K(T ) ≥ K(D), (17)

where inequality Equation (14) appears because compressing additional objects can only take more bits, and inequality
Equation (16) comes from the fact that prequential coding is not necessarily the optimal way to compress a dataset given a
learning algorithm. If the learning algorithm is a short program like SGD, however, then K(T ) ≈ 0 and Lpreq(D;T ) is an
upper-bound on K(D). For simple learning algorithms, then, Equation (4) holds.

C. Experiment and task details
In this section, we provide additional experimental details, including a comprehensive overview of the model architectures
and hyperparameters used during training. All experiments were run on GPUs with at least 32 GB of RAM, and each took
less than 1 day to run on a single NVIDIA V100 with all seeds stated in figure captions.

C.1. Meta-learner architectures

We considered different architectures which exhibit ICL to study and compare their ability to minimize prequential code
length (Section 3.3). Each architecture described here parameterizes the meta-learner Tϕ.

Transformer with bottleneck. We use a standard causal decoder-only Transformer with 4 layers, 4 attention heads, 256
latent dimensions and a feed-forward network with 512 dimensions. Additionally, it has linear projection that bottlenecks
the Transformer to 128 dimension. A 5-layer MLP with RELU activations and 256 latent dimensions is used as a separate
prediction head.

The Transformer takes a dataset D as input in the format [x1, y1], [x2, y2], . . . , [xn, yn] (where xi and yi are concatenated
and each [·] is a token) and computes Tϕ(D1:t−1) for each context size starting from 1 to n − 1. The computation of
Tϕ(D1:t−1) is based on the encoding of the t-th token, which attends only to tokens that appear to the left of [xt, yt]
and itself. Information leakage from future tokens is prevented using a causal mask. After computing Tϕ(D1:t−1), we
concatenate it with xt (i.e., [Tϕ(D1:t−1), xt]) and pass this combined input to an MLP prediction head to predict the next
y-token.

Transformer without bottleneck. We use a custom encoder-decoder Transformer with 4 layers, 4 attention heads, 256
latent dimensions and a feed-forward network with 512 dimensions. Also, in contrast to the previous architecture we don’t
use a separate prediction head.

To allow for parallel processing at each position x without leaking information about the corresponding y in a model without
bottleneck, we augment a standard Transformer architecture in the following manner. It considers two sets of tokens, namely
(a) D in the format [0, 0], [x1, y1], [x2, y2], . . . , [xn, yn] (where xi and yi are concatenated for each token), and (b) X in the
format [x1], [x2], . . . , [xn] (where each token only has x information). Note that [·] describes a token, and the first token in
D represents an empty context.

Each layer of this Transformer performs the following attention procedures:

X(l) = Attention
(

Query = X(l−1),Key = D(l−1),Value = D(l−1),Mask = MX
)

(18)

D(l) = Attention
(

Query = D(l−1),Key = D(l−1),Value = D(l−1),Mask = MD
)

(19)
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where MX ensures that X(l−1)
t can only attend to D(l−1)

1:t−1 and MD ensures that D(l−1)
t can only attend to D(l−1)

1:t . Both
X(l) and D(l) go through a residual feed-forward network after the attention operations.

Note that the above operation achieves two distinct properties: (a) it prevents the token [xt] from accessing information
about yt while allowing access to all x1:t−1 and y1:t−1 in making the corresponding prediction, and (b) akin to standard
Transformers the [xt, yt] token can attend to x1:t and y1:t.

Mamba. We experiment with two state-space model (SSM) architectures, Mamba 1 and Mamba 2, both composed of 4
layers, 256 latent dimensions, state dimensions 8, and local convolution dimension of 4. Additionally, each layer includes a
gated MLP with 256 latent dimensions. Similar, to the Transformer with bottleneck, the prediction model is a 5-layer MLP
with RELU activations and 256 latent dimensions is used as a separate prediction head.

The SSM takes a dataset D as input in the format [x1, y1], [x2, y2], . . . , [xn, yn] (where xi and yi are concatenated and each
[·] is a token). For each context of size t− 1, we compute the Tϕ(D1:t−1) which is a vector that represents the parameters of
the output model obtained after processing the first t− 1 data points. After computing Tϕ(D1:t−1), we concatenate it with
xt (i.e., [Tϕ(D1:t−1), xt]) and pass this combined input to an MLP prediction head to predict the next y-token.

C.2. Meta-training and evaluation setup

In this section, we outline the complete set of hyperparameters and configurations used across different training objectives
and model architectures in our experiments.

In-context learner (prequential and train-risk). We trained both the Transformer-based meta-learners (with and without
bottleneck) for 50 epochs and the Mamba-based meta-learners for 120 epochs. All results were averaged across 5 different
random seeds to mitigate the effect of randomness in the pipeline. The training was conducted on a meta-dataset consisting
of 10,000 tasks, each with 1,000 data points that serve as context. We used the Adam optimizer (Kingma & Ba, 2015) with
a learning rate of η = 0.0001 and a batch size of 256, without any early stopping. After meta-training, we evaluated the
learners on a distinct meta-dataset of 100 tasks, each with 1,000 data points.

Gradient based learner. Since gradient-based learner are off-the-shelf learning algorithms which don’t require meta-
training. The prediction model used is a 5-layers MLP with RELU activations and latent dimensions of 64 or 256 depending
on the complexity of the task. We used a meta-dataset of 10000 tasks (with 2000 data points each) split into training (80%)
and validation (20%). At each step of prequential coding, we train and evaluate a model by randomly sampling a dataset of
fixed size across each of the tasks, starting from 20 to 2000 datapoints. We used an early stopping criteria with minimum
loss delta of 0.001 and patience of 10 epochs to avoid overfitting. On each of them, the prediction model was fit using the
Adam optimizer (Kingma & Ba, 2015) with a learning rate of η = 0.0001 and a batch size of 64. All results were averaged
across 15 different random seeds.

C.3. Visualization of the model inferred in-context

For a given context length, next-token loss serves as a quantitative proxy for the overfitting behavior of a learned prediction
function. Beyond that metric, in experiments generating Figure 3, we visualized the kinds of models inferred by ICL on
simple regression problems in a way that lets us clearly inspect their complexities. The tasks consist of noisy polynomial
regression problems of the form:

f(x) =

N∑
i=1

αiCi(x) + ϵ,

where Ci is the i-th Chebyshev polynomial of the first kind and ϵ ∼ N (0, σ2). We use this basis of polynomials instead of
the usual canonical basis for both data generation and the hypothesis class of our learned predictor, due to the favorable
numerical properties (e.g., orthogonality) of the Chebyshev basis. Specifically, when used to generate data, Chebyshev
polynomials offer better coverage of different functional behaviors; and when used for function approximation, they lead to
smaller approximation error and faster convergence.

We train prequential ICL and train-risk ICL for 400 epochs on a meta-distribution of 20000 functions of degree up to k. We
experiment with both k = 1 (linear functions) and k = 3 (cubic functions). We use a bottlenecked model (Section C.1)
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to infer the Chebyshev polynomial coefficients α ∈ RN of the unknown function f , where we make N ≫ k so that the
in-context models have the capacity necessary to overfit the training data. These inferred coefficients are then passed to a
parameter-less prediction head that, given a query input xq , computes:

f(xq, α) =

N∑
i=1

αiCi(x).

Restricting the regression tasks to functions of degree k ≪ N allows us to compare learners in the over-parameterized
regime, which is the most common settings in modern machine learning. Our results, shown in Figure 3, align with the
trends observed in Figure 2, confirming that train-risk ICL more frequently exploits high-degree components (i.e., degrees
strictly greater than k) to overfit in-context training data, compared to prequential ICL which fits simpler models closer to
the ground-truth data-generating processes.

C.4. Pretrained LLM on Mastermind

As described in Section 3.4, we evaluate the performance of a pretrained LLM on the Mastermind task using one of the
latest OpenAI models GPT-4 (i.e., gpt-4o). To query the model, we used the OpenAI API with a temperature of 0,
ensuring that the outputs are deterministic. Along with the responses, we also obtained the log probabilities using the
API for calculating the prediction error with respect to each query. This was possible using logprobs (boolean) and
top k logprobs (integer) attributes in the API that returns log probabilities for each token in the response and the k
tokens with the top log probabilities corresponding to each token in response. By using a structured prompting technique and
a retry mechanism (up to 10 retries in case of failure to adhere to the required output format), we were able to consistently
obtain appropriate responses to our queries. An example prompt, which includes the task description, context, and the query,
is provided below. To calculate the prequential code length, we iteratively query novel examples with an increasing number
of in-context examples and obtain the prediction errors. This process emulates the prequential ICL objective.

Example Prompt

I have a secret code in mind. It’s a 8-digit code with each digit ranging
between 0 and 5. I’ll give you a couple example guesses, and for each guess
I’ll tell you two numbers:

- First number: the number of correct correct digits at their correct
position. - Second number: the number of correct digits, which aren’t
necessarily in the correct position.

Here’s a demo to show you what a guess and response would look like.
Imagine my secret code was:
0 5 2 1 3 4 2 4
And imagine the guess I presented you was:
0 2 1 1 0 2 0 4
Then, the response would be:
3 5

The response is the way it is because the first, forth and last digit were
in the correct place (first response number is therefore 3) and additionally
the second and sixth digit were in the guess but at the wrong position
(second response number is therefore 5).

The game is about to start. I’ll present you with a series of guesses and
their responses. Finally, I will present you with a new guess, and you’ll
have to predict the correct response. Make sure your response is formatted
the same way as in the examples (i.e., with 2 digits between 0-8, separated
by a space). Let’s begin.
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----------------------
Guess: 4 2 1 3 4 0 0 5
Response: 3 7

Guess: 1 1 4 3 5 5 0 1
Response: 2 5

Guess: 3 0 2 2 0 5 3 4
Response: 2 6

Guess: 0 2 5 0 4 2 0 1
Response: 1 5

Guess: 4 1 3 2 5 4 2 3
Response: ? ?
-----------

What do you think the response is for this final guess? Make sure to reply
with just 2 digits between 0-8, separated by a single space character.

C.5. Hidden Markov Model task

A prominent theory for why ICL emerges from the next-token prediction objective of LLMs is that sequences x1:n in
the pretraining dataset (e.g. large corpuses of text) can be interpreted as implicitly being sampled from a latent variable
generative model Q(x1:n | τ ) where τ are some abstract concepts underlying samples (Chan et al., 2022; Xie et al., 2022).
τ can range from abstract style attributes in natural language (Xie et al., 2022) to task parameters such as the teacher weight
matrix in linear regression ICL task (Von Oswald et al., 2023); the important part is that some latent variables can be inferred
from the context and subsequently aid prediction. ICL would then emerge as the ability of performing implicit Bayesian
inference (i.e. learn from the context) in order to predict xt :

Q(xt | x<t) =
∑
τ

Q(xt | x<t, τ)︸ ︷︷ ︸
Condition on the latent

Q(τ | x<t)︸ ︷︷ ︸
Infer latent

(20)

We propose to leverage this conceptual framework to devise a novel generation procedure for synthetic LLM pretraining
datasets. The general idea is to design a family of sequence models Qτ (x1:n) parameterized by task latents τ , leading to the
latent variable generative distribution

Q(x1:n | τ ) = Qτ (x1:n).

Specifically, we use Hidden Markov Models (HMMs) as the sequences models, and we parameterize the HMMs Qτ (x1:n)
with parameters fξ(τ ) = ψτ . We use this function f to introduce hyper-parameters ξ which define the whole family of
sequence models; i.e. the dataset. Below, we define in details a specific ad-hoc function fξ(τ ) which generates a family of
HMM where each member share non-trivial structure.

C.5.1. DETAILED DESCRIPTION OF THE GENERATIVE PROCESS

A HMM defines a probability distribution over sequences of observations xi ∈ X with a discrete-time probabilistic process
over hidden states zi ∈ Z paired with a mapping Z → X . Both X and Z are discrete sets. The hidden process is defined by
an initial state distribution π(z) and a transition matrix A ∈ R|Z|×|Z| such that

Q(zi|zj) = Aji

Lastly, the mapping between states and observations is governed by the emission matrix B ∈ R|Z|×|X| such that

Q(xj |zi) = Bji
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In the rest of the section, we will explicitly define how fξ(τ ) generates ψτ = (πτ , Aτ , bτ ). We first give a high level
description.

The hyper-parameters ξ will define a number of building blocks which will be used to create the transition and emission
matrix of all HMMs. Then τ will specify a specific way to combine and manipulate these building blocks to instantiate a
specific HMM Qτ . For the transition matrix Aτ , the building blocks are pre-defined cycles; which are combined, flipped
and accelerated based on τ . For the emission matrix Bτ , the building blocks are groups of sub-emission matrices which
each only affect a subset of |X |; which are combined and possibly internal shifted based on τ . Overall, we will have

ξ = (N BASE CYCLES, N BASE SPEEDS, N CYCLE FAMILIES,

N GROUP PER FAMILY, N FAMILY SPEEDS, N EMISSION GROUPS,

N EMISSION PER GROUP, N EMISSION SHIFT)

and

τ = (BASE ID, BASE SPEED, FAMILIES IDS,

FAMILIES SPEED, EMISSION IDS, EMISSION SHIFT)

We will refer to the dimensions of ξ, τ as ξi, τi to avoid clutter and discuss further details below.

Transition matrix Aτ . We define a cycle as sequence of hidden states c = (c0, . . . , c|c|−1), ci ∈ Z , and the following
manipulation functions

DIR(c, k) =

{
(c0, c|c|−1, . . . , c1) if k = 1

c otherwise.

SPEED(c, k) = (c0, ck(mod |c|), c2k(mod |c|), . . .)

In words, SPEED(c, k) changes the speed at which the cycle is traversed and DIR(c, k) change its direction. We finally
define the transition matrix T (c) associated with cycle c such that

T (c)ij =

{
1 if ∃k < n s.t (i, j) = (ck, ck+1(mod n))

0 otherwise.

Initially, we randomly generate ξ0 base cycles bi which go through all states zi. Further, we initialize ξ2 families of ξ3
groups of cycles gi

j , i ∈ [ξ1], j ∈ [ξ2]. Each HMM’s transition matrix is then built from these ”building blocks” cycles.
Specifically,

Aτ = T (SPEED(DIR(bτ0 , τ1), τ2)) +

ξ2∑
i=1

τ4,i

ξ3∑
j=1

·T (SPEED(DIR(gi
j , τ5), τ6))

In words, each transition matrix is made of a) one of ξ0 base cycle, possibly sped up and flipped and b) ξ2 groups of smaller
cycles (each from a pool of ξ3 groups), possibly sped up and flipped. The number of possible speeds for the base cycle is
defined by ξ1. For the cycle families, it is defined by ξ4

Emission matrix Bτ . We separate the states z ∈ Z in ξ5 groups hi ⊂ Z and for each group we initialize ξ6 sub-emission
matrices Hi

j ∈ R|hi|×|Z|. Then, we define the manipulation function SHIFT(H, k) which applies a circular shift of k to the
indices of the matrix. Finally, we have

Bτ =

ξ5∑
i=1

SHIFT(Bi
τ7,i , τ8)

In words, each emission matrix is made of ξ5 possibly overlapping sub-emission matrix, each picked from a pool of ξ6
unique ones. The number of possible shifts is ξ7.

Initial distribution. We always use the uniform distribution.
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C.5.2. HMM HYPER-PARAMETERS

For experiments in this paper, we use |X | = 50 and |Z| = 20. The hyper-parameters of f , ξ, are given in Table C.1. This
results in a total of 512 different transition matrices and 24 different emission matrices, for a total of 12,228 different HMMs.
We show results averaged from 5 different seed.

N BASE CYCLES (ξ0) 4
N BASE SPEEDS (ξ1) 2
N CYCLE FAMILIES (ξ2) 3
N GROUP PER FAMILY (ξ3) 2
N FAMILY SPEEDS (ξ4) 2
N EMISSION GROUPS (ξ5) 3
N EMISSION PER GROUP (ξ6) 2
N EMISSION SHIFT (ξ7) 3

Table C.1. HMM dataset hyper-parameters

C.5.3. TRAINING

We train on 200,000 trajectories from 60,000 unique compositions of latent variables, and evaluate on 50,000 trajectories
from 13,728 held out compositions of latent variables. Training consists on next-token prediction with a cross-entropy loss.
We use the same model and training hyperparameters as in Section C.1 and Section C.2.

D. Effect of task difficulty on prequential code length
In Section 3.1 Figure 2, we found that a meta-learned in-context learner trained to minimize prequential code length
(prequential ICL) was better able to generalize than one that only minimized training error (train-risk ICL). We further noted
that the gap in generalization error between these two learners was greater in low-data regimes, and that the gap extended
further as a function of task difficulty (i.e., more in-context data was required to close the gap going from linear regression,
to sinusoid regression, to Mastermind). This result is predicted by our theory relating ICL to Occam’s razor. A complex
task requires the algorithm to learn more complex functions to successfully minimize train risk. However, learning more
complex functions with very limited data leads to overfitting, which is the basis for our hypothesis that as task complexity
increases, simple predictors learned by minimizing prequential code length enjoy a bigger advantage over predictors learned
by minimizing train risk.

To investigate the effect of task difficulty more systematically in this section, we fix the underlying meta-dataset (sinusoid
regression tasks) and vary the dimensionality of the input data dim(x). We plot our results in Figure D.1, showing the
difference in generalization error between train-risk ICL learners and prequential ICL learners. As expected, ask task
difficulty increases, this generalization gap extends further, and the train-risk learners must observe more data in-context in
order to close it.

E. Effect of SGD regularization on prequential code length
Regularization techniques are widely used for gradient-based learners to prevent over-fitted solutions. In this experiment we
fit prediction models considering different regularization techniques, namely early-stopping combined with validation data,
and weight-decay (L2 regularization). The results are presented in Figure E.1.Experiments with early-stopping halt training
when the validation loss does not decrease by more than 1e− 4 over 10 consecutive steps. Experiments with weight-decay
consider a regularization parameter λ ∈ {0.05, 0.005} and were trained for 1000 epochs. The prediction models used are
5-layers MLPs with RELU activations and latent dimensions of 64. The different prediction models were fit using an Adam
optimizer (Kingma & Ba, 2015) with a learning rate of η = 0.0001 and a batch size of 64. All results were averaged across
15 different random seeds.
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Prequential ICL 
Unregularized 
Validation early stop 
L2 - (0.005) 
L2 - (0.05)

Uniform context lengths 
Skewed short context lengths

220M tokens 
610M tokens

Uniform context lengths 
Skewed short context lengths

Task dimensionality 
10, 8, 5, 3, 1

Figure D.1. Comparison of gap between prequential ICL and train-risk ICL as a function of task difficulty. Figure shows the
difference in average prequential coding curves (i.e., generalization error for train-risk ICL − generalization error for prequential ICL)
for sinusoid regression tasks of increasing input dimensionality. Error is measured using MSE. Error bars show standard error across 5
seeds. For all task dimensionalities, the performance gap is positive: ICL from next-token prediction objectives (prequential ICL) yields
lower prequential code lengths than ICL from past-token prediction objectives (train-risk ICL), with greater effects in low-data regimes.
This gap in generalization error increases with task dimensionality, demonstrating that learners which minimize prequential code length
generalize better in virtue of fitting simpler models, and that these simpler models are most important when generalization is difficult (i.e.,
when the task dimensionality is large relative to the amount of training data observed).

Task dimensionality 
10, 8, 5, 3, 1

Prequential ICL 
Unregularized 
Validation early stop 
L2 - (0.005) 
L2 - (0.05)

prequential ICL 
train-risk ICL 
SGD (no meta-learning)

Figure E.1. Experimental results comparing different regularization techniques. Figure show average prequential coding curves
obtained using both unregularized and regularized Adam optimizers on a linear regression task. Regularized learners exhibit better
compression rate (i.e. lower PCL), which implies a stronger incentive toward simple models according to our theory. This experiment
confirms the claim that regularization techniques serve as indirect Occam’s aligned methods to learn simple models. Analogous to the
meta-learning setting, PCL could be minimized with respect to the hyperparameters of the regularization technique.

F. Hidden-Markov-Model task comparisons to ICL with a train-risk objective and SGD
In Section 3.1, we only considered iid tasks so that we could make fair comparisons to learners that minimize training error
under iid assumptions (i.e., train-risk ICL and SGD). In this section, we nevertheless attempt to make these comparisons
on our synthetically-generated nonstationary data from our Hidden Markov Models (HMMs). See Appendix C for further
details on this data.

By default, our HMM tasks are not amenable to learners that minimize train-risk. This is because in our theory, we see
individual context tokens as “datapoints” that are processed separately by a train-risk model to minimize prediction error.
However, on a nonstationary sequence dataset, the learnable structure is about the relationship between datapoints. While
this sort of structure is ordinarily learned by minimizing next-token prediction error, this amounts to prequential ICL. A
train-risk baseline would somehow need to be trained to minimize error on previously observed tokens in the context, and
there is no way to query the model on such tokens at training time while evaluating its predictions on the next token at
inference time.

To make our HMM tasks amenable to learners that minimize train-risk, we applied a simple transformation that turned the
sequence datasets into supervised learning problems. Call a sequence of HMM observations D = (y1, ..., yk), where the
subscript denotes the time index. We transform D into a supervised learning dataset D′ = {(x1 = 1, y1), ..., (xk = k, yk)},
where yi is a model observation and xi is the integer time index of that observation. In this way, we can evaluate train-risk
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ICL and SGD in the same way as for our iid supervised datasets, and measure prequential code length by querying the
resulting models on the next timepoint xk+1. For fair comparison, prequential ICL was also trained and evaluated used the
same supervised version of the HMM task. As a technical note, we embed each xi using relative positional encodings (Shaw
et al., 2018).

Task dimensionality 
10, 8, 5, 3, 1

Prequential ICL 
Unregularized 
Validation early stop 
L2 - (0.005) 
L2 - (0.05)

prequential ICL 
train-risk ICL 
SGD (no meta-learning)

Figure F.1. Comparisons between prequential ICL, train-risk ICL, and SGD on nonstationary HMM data. Average prequential
coding curve for a meta-dataset sampled from HMMs, which is the mean prediction error on the next unobserved token (generalization
error, y-axis) given observed contexts of increasing length (datapoints seen, x-axis). The area underneath these curves corresponds to
prequential code length. Error is measured using cross-entropy. Error bars show standard error across seeds (5 for ICL, 15 for SGD).

Our results are shown in Figure F.1, where we use the same models and training setup as in Section 3.1. We find that
prequential ICL, as expected, minimizes prequential code length well and generalizes at all context lengths. This shows how
prequential coding through ICL can fit simple models that compress not only iid, but also nonstationary data due to the
quickly-adapting online nature of the learning algorithm. In contrast, both train-risk ICL and SGD fail to generalize at every
context length, and are unable to predict the next token in a sequence at inference time after having only been trained to fit
the earlier part of the sequence.

G. Effect of sequence length used at pretraining for HMM task: Full vs. Partial
As argued in Section 2.4, an in-context learner behaves as an effective online compression algorithm known as prequential
coding. The fact that it implements such procedure lies in the fact that it is tasked to iteratively make predictions on novel
data given increasing numbers of datapoints in-context, starting from an empty context.

Exactly as we did with train-risk ICL, we could have come up with a different training objective, such that the in-context
learner trained on it no longer implements prequential coding. One possibility is to train an in-context learner to predict only
on the last half of the context instead of the full context. Note that in both cases, the learner still observes the full context, but
gradients are only computed and backpropagated for predictions made on the second half. This adjustment is made to mimic
the standard way of training of LLMs, where predictions are primarily made under large-context conditions; even though
early tokens in a sequence initially have shorter contexts, the majority of training steps occur once the context window is
sufficiently filled. While this training scheme does not correspond to any known coding algorithm for data compression, we
conjecture that such learner has a weaker incentive toward compression and should therefore yield worse generalization
performance than its prequential ICL counterpart.

Task dimensionality 
10, 8, 5, 3, 1

Prequential ICL 
Unregularized 
Validation early stop 
L2 - (0.005) 
L2 - (0.05)

prequential ICL 
train-risk ICL 
SGD (no meta-learning)

Only suffix 
Full sequence

Figure G.1. Impact of partial-context training on next-token prediction in HMM data. Mean next-token prediction error (generaliza-
tion error, y-axis) as a function of observed context length (x-axis), comparing models meta-trained trained to predict full sequences
versus only the latter half of sequences. Results are shown for two architectures: a GPT-2-style transformer and Mamba. For contexts
longer than 100 tokens (half the maximum sequence length), there is no statistically significant difference in generalization error between
the two training regimes, suggesting that the In-Context learner trained the prequential way does not learn simpler model in this setting.
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As Figure G.1 shows, the model pre-trained on sequences for which no auto-regressive gradient was used for the first half of
the sequence (shown as “only suffix”) shows worse generalization than the model training to minimize the full prequential
coding curve. As expected, this discrepancy is stronger in low data regimes and the gap between the two models shrinks as
testing sequence length grows. Future experiments could further explore generalization properties of pre-trained learners
based on accessible sequence length and on task iid requirements.

H. Advantages over the Bayesian perspective
The Bayes-optimal prediction perspective of ICL and meta-learning says that by meta-training on some set of tasks D , the
learner infers some prior over latent task variables—or, equivalently, a prior over models—p(pθ|D). On some novel task D,
the learner then infers a posterior over models that both explain the training data (i.e., assign it a high likelihood) and are
consistent with the prior: pD(pθ|D) = p(D|pθ)p(pθ|D)/Z, where Z is a normalizing constant. According to the theory,
subsequent predictions are then done through implicit Bayesian averaging under this posterior model distribution.

Crucial differences in our theory are that D does not need to be drawn from a well-defined distribution over tasks
for us to reason about the meta-learning problem (the Kolmogorov framework does not require this) and minimizing∑M

i=1 Lpreq(D
i;Tϕ) ≥

∑M
i=1K(Di|Tϕ) need not induce a prior probability distribution over models given D (although it

can if this is the best way to compress the meta-dataset using the meta-learner Tϕ). As a result, our theory generalizes the
Bayesian perspective.

To see why these generalizations provide value, consider where the prior in the Bayesian framework p(pθ|D) comes from.
This prior is not defined explicitly in the ICL framework; instead, it is implicitly defined based on D , the implicit initial
prior p(pθ), and the implicit inference machinery that approximates p(pθ|D) = p(D |pθ)p(θ)/Z. All of these implicit
components make any meaningful analysis difficult, since it is difficult to characterize them. However, these implicit
components are all intrinsic properties of the meta-learning algorithm (the meta-learner’s architecture, the meta-objective,
etc.), which we do have explicit control over. Our theory only makes reference to this meta-learner Tϕ and the description
length of data under it Lpreq(D

i;Tϕ) ≥ K(D), rather than to objects that are only implicitly defined (and never known).
As such, we argue that our theory is more amenable to analysis and provides more explanatory value.

For example, in the Kolmogorov framework that we have proposed, it is easy to see how ICL might in some cases generalize
to a novel dataset D that is entirely out-of-domain with respect to D . Perhaps, for instance, the tasks have compositional
structure and Tϕ has some inductive biases for compositional generalization. In contrast, it is far more difficult to find
a good explanation for such a phenomenon in the Bayesian framework. The explanation would have to be in terms of
some implicit initial prior p(pθ) (which we never defined) and the subsequent prior p(pθ|D) that it induced, which can
easily lead to just-so stories of the form “generalization here must have been possible because p(pθ) had the right kind of
structure”. However, this sort of post-hoc rationale could be used to explain any outcome (positive or negative), and is
therefore problematic as a scientific explanation (Deutsch, 2012).

Another problem with the Bayesian perspective is that its predictions do not always hold in practice. Notably, Raventós et al.
(2024) found that when the diversity in pretraining tasks is sufficiently large, solutions emerge that are not consistent with
a Bayes-optimal predictor that uses the pretraining task distribution as its prior. Instead, the solution is consistent with a
much broader prior, which allows the learner to adapt to novel tasks that are outside of the pretraining task distribution.
Our theory, in contrast, permits explanations for this phenomenon. For instance, perhaps that model used to parameterize
Tϕ had insufficient capacity to encode a diverse (and potentially complex) prior over tasks, and instead learned a simpler
approximation with more broad coverage over a larger space of tasks.
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