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Abstract

It has been shown that the chain of thought (CoT) can enhance the power of large
language models (LLMs) to solve certain mathematical reasoning problems. How-
ever, the capacity of CoT is still not fully explored. As an important instance, the
following basic question has not yet been answered: Does CoT expand the capa-
bility of transformers across all reasoning tasks? We demonstrate that reasoning
with transformers is essentially a memorization problem for reasoning datasets.
Thus, examining the power of CoT across all reasoning tasks amounts to analyzing
the memorization capabilities of CoT transformers. In this paper, we give a com-
plete description of the memorization capabilities of fixed-precision transformers
with or without CoT and give a negative answer to the above-mentioned question.
Precisely, we first give necessary and sufficient conditions for fixed-precision trans-
formers with and without CoT to memorize a finite reasoning dataset and show
that these two conditions do not imply each other. Then, we give lower and upper
bounds for the number of parameters needed for transformers with or without
CoT to memorize a finite reasoning dataset with N elements, which are Θ(N) in
all cases. This implies that there exist reasoning tasks for which CoT does not
enhance the reasoning power of transformers, leading to a negative answer to the
above-mentioned question. Finally, we give the first results on memorizing infinite
reasoning datasets by CoT transformers and show that some simple infinite datasets
cannot be memorized by transformers with or without CoT.

1 Introduction

Transformer-based LLMs [33] are the most powerful models in natural language processing, and
autoregressive transformer-based models [27, 4, 28, 14, 42] are the predominantly used forms, which
can solve a huge number of tasks by turning them into a sequence generation problem.

It has been shown that CoT [36] allows LLMs to generate a step-by-step “thinking” process, thus
improving the mathematical reasoning power of LLMs. Theoretical studies reached the same
conclusion. Log-precision transformers without CoT can only solve problem class TC0 [22], but
log-precision transformers with CoT can solve any P problem [21]. Transformers with CoT can solve
arithmetic problems and dynamic programming problems which cannot be solved for transformers
without CoT [8]. It was further shown that CoT also enhances the reasoning power of constant
precision transformers [16, 7]. These findings clearly illustrate the advantages of CoT in boosting
the capability of transformers to simulate some algorithms by constructing transformers step by step
according to the algorithm.
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However, the capability of CoT is still not fully explored. First, many problems may not have an
explicit algorithm, such as the decision of whether an algebraic differential equation has a rational
solution [37]. Even if algorithms exist, they may be too complicated for constructing a simulating
transformer, such as symbolic integration [3]. For these types of problems, the earlier method of incre-
mentally building transformers following the algorithm appears ineffective. Whether CoT enhances
the capability of transformers to solve such problems is not known. Second, experimental studies
indicate that CoT has limited scalability, even worse performance compared to direct prompting
in planning problems [31] and pattern-based in-context learning problems [43]. So we raise the
following natural and basic question:

Question 1. Does CoT expand the capability of transformers across all reasoning tasks?

Since mathematical reasoning demands exact results, a key observation of this paper is that reasoning
with LLMs is essentially a memorization problem. Following previous work, we formulate a reasoning
task as a function or an algorithm: y = R(x). For a sample set S = {(x, y) : y = R(x)}x∈D of R
over a given input domain D, the memorization problem asks whether there exists a transformer F
such that y = F(x) for every (x, y) ∈ S. In the previous work on LLMs reasoning, memorizing
reasoning datasets permits using information from the algorithm R. For example, the arithmetic
problems considered in [8] can be viewed as the memorization of the reasoning dataset Zp,n.

As a capacity measure of neural networks, memorization was widely studied [10, 9, 23, 41, 32].
Recently, optimal memorization capacities of transformers have been established for both the general
dataset [19] and the dataset that satisfies a separability condition [12]. However, in these works,
the autoregressive transformers that can generate intermediate steps or CoT were not considered.
Furthermore, the precision of their model parameters depends on the input and/or model parameters,
and the more realistic case of fixed-precision parameters was not considered.

In light of the above observations on the interplay between reasoning and memorization, alongside
the limitation on existing research on memorization, we can rephrase Question 1 as follows:

Question 2. Does CoT expand the memorization capability of transformers for all reasoning datasets?

In this paper, we give a complete description of the memorization capabilities of fixed-precision
transformers with or without CoT for general datasets and give a negative answer to Questions 1 and
2. Our main conclusions and contributions are as follows:

1. Necessary and sufficient conditions for fixed-precision transformers with and without CoT
to memorize a finite reasoning dataset are given. It is shown that these two conditions do not
imply each other. We further show that by using position embedding (adding more basic symbols),
transformers without CoT (with CoT) can memorize all finite datasets.

2. Lower and upper bounds for the number of parameters needed for fixed-precision transform-
ers with or without CoT to memorize a finite reasoning dataset S are given. For a dataset S with
N elements, all these bounds are Θ(N), when omitting some smaller quantities. This implies that
both CoT transformer and no-CoT transformer need exactly Θ(N) parameters to memorize certain
reasoning datasets.

As a consequence of the above results, we know that although CoT can enhance performance on
some tasks, there exist reasoning tasks for which CoT does not enhance the reasoning power of
transformers, leading to a negative answer to Questions 1 and 2.

3. We give the first results on memorizing infinite datasets by CoT-transformers. We show
that both transformers with or without CoT cannot memorize some simple infinite datasets and
arithmetic tasks in Zp cannot be memorized by any CoT-transformer with positive confidence (refer
to Proposition 5.7 for precise meaning).

In conclusion, our results provide not only new theoretical insights into the capabilities of CoT but
also practical guidance. The tight bound for the number of parameters of memorization transformers
and the effects of the position encoding and more symbols (Section 4.3) may serve as useful guidance
for practitioners. Even the negative results, such as “CoT does not help general memorization” are
useful in practice: when solving difficult problems or problems with no explicit algorithms, CoT
probably has no effect, which is aligned with the experimental results in [31, 43].
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2 Related work

Memorization. As a capacity measure of neural networks, memorization has been widely studied. It
was shown that feedforward neural networks (FNNs) with O(N) parameters and various activation
functions can memorize any dataset with N elements [10, 29, 9, 23, 41], and O(N) parameters are
also necessary for memorization [30]. A neural network with O(N2/3) parameters can memorize a
dataset satisfying certain separation conditions [25]. Furthermore, O(

√
N) parameters are enough

for memorization [32]. Since the VC dimension of FNNs with N parameters and ReLU activation
function is at most O(N2) [1], the result of [32] is optimal. Robust memorization networks were
constructed in [15, 39], which require essentially more parameters than memorization. Sample
complexities for memorization FNNs were established [40] and it was shown that memorization
FNNs are not generalizable for certain data distributions [15, 40]. It has been shown that memorization
can enhance the generalization ability of large models by memorizing diversified features of the data
[17, 2, 6, 40].

For memorization of the general dataset using transformers, O(N) parameters are also sufficient and
optimal [19, 20, 11]. O(

√
N) parameters are also optimal for memorization with transformers for

datasets satisfying certain separation conditions [12, 13].

Our results are new in that autoregressive transformers are used and the parameters have fixed
precision. For instance, in order to achieve O(

√
N) parameters [12], it inevitably leads to an

unbounded parameter precision.

Reasoning with CoT. CoT is a key method to enhance the reasoning capabilities of LLMs [36].
Recent studies have explored various aspects of CoT, including its theoretical foundation and practical
applications. For the theoretical foundation, transformers were shown to be Turing complete when
infinite precision parameters are allowed [26]. The log-precision transformer without CoT can only
solve problems within the complexity class TC0 [22]. With CoT, the log-precision transformers can
solve any P problem [21]. CoT also enhances the reasoning power of constant precision transformers
[16, 7]. The mutual expression relationship between Turing machines and LLMs was further studied
in [24, 5]. CoT has proven to be highly effective in solving traditional mathematical problems such
as arithmetic and dynamic programming [8]. For practical applications, a series of works have further
improved the inference accuracy of transformers using CoTs [34, 44, 18]. However, some works
showed that CoT also has certain limitations [35, 38].

It is important to note that these theoretical findings, such as [8, 21], neither conflict with nor imply
our results. They showed that CoT can enhance the ability of transformers to solve polynomial-time
problems, by simulating a known algorithm. We show that there exist reasoning problems for which
CoT does not increase the power of transformers, by establishing memorization capabilities.

3 Prerequisite

In this paper, we use O(A) to mean a value not greater than cA for some constant c, and O to mean
that small quantities, such as logarithms, are omitted. We use Ω(A) to mean a value not less than cA
for some constant c, and Ω or O to mean that small quantities are omitted.

Data. Let Γ = {γi}Ti=1 be a set of basic symbols. We call the sequence (γij )
k
j=1 a length-k

sentence and use 2Γ to denote the set of all such sentences. For a sentence x, let len(x) be its length
and typ(x) ⊂ Γ be the set of all the distinct symbols in x. Moreover, let γ0 be the stop symbol that
does not appear in the sentence or label, which is only used to stop the transformer. In this paper, we
consider the following kind of data.

Definition 3.1. A subset S = {(xi, yi)}i∈∆ ⊂ 2Γ × Γ is called a language based on symbols Γ, if
yi ̸= yj implies xi ̸= xj .

Here is a language used throughout the paper.
Example 3.2. Let Arithp be the arithmetic in Zp, where p is a given prime number. We have
Γ = {γi}Ti=1, where T = p + 7, and γi = i − 1 for i ∈ [p], γp+1 to γp+7 are =,+,−,×, /, (, ),
respectively. (x, y) is in Arithp if and only if x is an arithmetic expression in Zp and y is the result
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of x. Further, let Arithp,n = {(x, y) ∈ Arithp : len(x) ≤ n} be the set of arithmetic expressions
with length not greater than n. Clearly, Arithp is an infinite set and Arithp,n is a finite set.
Remark 3.3. In Sections 4 and 5, only finite languages are considered, which can clearly be described
by a Turing machine. The infinite languages considered in Section 6 are also computable by a Turing
machine. So all languages considered in this paper can be computed by a Turing machine and thus
are reasoning datasets.
Remark 3.4. As a first step of our study, only single-token labels are considered in this paper.
Please note that even the single-token label case includes many meaningful tasks, such as language
recognition and other single-token classification tasks, mathematical multiple-choice questions and
other multiple-choice questions, single-token mathematical computation and other single-token
generation problems.

Autoregressive Transformer. An autoregressive transformer F has three parts:

Part One: Embedding. The transformer first embeds each basic symbol γi into a vector vi ∈ Rd,
where vi serves as an adjustable parameter in the transformer based on different tasks and d is called
the embedding length. Then the given sentence x = (γij )

n
j=1 ∈ 2Γ is embedded into a matrix with

n-rows and d-columns. See appendix A for details.
Remark 3.5. We do not use position encoding in the embedding layer in most of our results. See
Appendix A for details on the embedding layer.

Part Two: Hidden layer. Firstly, we define the feedforward layer and the attention layer. For
an input x ∈ Rn×d, the feedforward layer with width W is FNN(x) = Relu(xE1 ⊕ b)E2, where
E1 ∈ Rd×W , b ∈ R1×W , E2 ∈ RW×W are the parameters, and xE1 ⊕ b means adding the vector
b to each row of xE1. For an input x ∈ Rn×d, the attention-layer with width W and head H is
ATT(x) =

∑H
i=1 softmax(xQiKix

t +M)xVi, where Qi ∈ Rd×W ,Ki ∈ RW×d, Vi ∈ Rd×W are
parameters. M ∈ {−∞, 0}n×n is a causal mask defined as Mi,j = −∞ if and only if j > i.
M can ensure that i-th row can only attend to j-th row where j ≤ i, which is commonly used in
autoregressive generation.

Let xi be the output of the i-th layer and x0 the input. Then the i-th hidden layer of the transformer is
xi = xi−1Wi−1 + ATTi(x

i−1) + FNNi(x
i−1Wi−1 + ATTi(x

i−1)),

where ATTi and FNNi are the i-th feedforward and attention layers defined above, Wi is a residual
matrix. It is easy to see that xi−1 and xi have the same number of rows.
Remark 3.6. The residual matrix Wi cannot improve the power of the transformer, which helps the
transformer to use fewer parameters to express the target. Details can be found in Appendix A.2.

Part three: Output layer. The output layer performs a linear transformation for the last row of the
output of the last hidden layer, that is, F(x) = WxL

len(x) + b ∈ RT+1, where xL
len(x) is the last row

of xL. Write the classification result of F(x) as F̂(x). Let the number of parameters in a transformer
with depth D, width W and head H be para(W,D,H, T ) = TW + (T + 1)(W + 1) +D((3H +
3)W 2 +W ) = O(TW +DHW 2). Moreover, the transformer is said to have precision q ∈ Z+ if
every parameter of the transformer is a q-digit decimal real number whose absolute value is not more
than 10q . If we say q = ∞, means the transformer without precision limitation.

Classification result for transformer. Let j = argmaxi∈[T+1](F(x))i. Then the classification
result of F(x), which is written as F̂(x), is γj when j ≤ T ; and the classification result of F(x) is
γ0 when j = T + 1.

Transformers with or without CoT. For any sentence x, its label can be predicted using a
transformer F by employing two methods:

1. No CoT Transformer. Just like FNN, use y = F̂ (x) as the prediction label of x. For conve-
nience,we refer to this type of transformers as no-CoT-transformers.

2. CoT Transformer. The result is obtained as follows: Let cot = ().

(1) Let x′ be the concatenation of x and cot, let y = F̂(x′); (2) If y ̸= γ0, insert y as the last element
of cot, and return to (1); (3) If y = γ0, let the last element of cot be the prediction label of x and be
denoted as F̂cot(x) which is said to be obtained with CoT-transformers.
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Remark 3.7. For the CoT-transformer, we require that the transformer terminates in a finite number
of steps, and at termination, CoT is not empty.

Here is an illustrative example. If we input 3 + (2− 1)× 5 to a no-CoT-transformer, it directly gives
the answer 8. If we input 3 + (2− 1)× 5 to a CoT-transformer, it can obtain the answer step by step,
such as = 3 + 1× 5 = 3 + 5 = 8γ0, where γ0 is the stop symbol.
Definition 3.8. Let Hq

W,D,H (Hq
W,D,H,cot) be the hypothesis space of no-CoT (CoT) transformers

with width W , depth D, head H , and parameter precision q.

A transformer F in Hq
W,D,H (Hq

W,D,H,cot) and based on the basic symbol set Γ contains
para(W,D,H, T ) = TW + (T + 1)(W + 1) + D((3H + 3)W 2 + W ) = O(TW + DHW 2)
parameters.

4 Memorization expressive ability of transformers

In this section, we give necessary and sufficient conditions for CoT- and no-CoT-transformers to
memorize a finite language and give upper bounds for the number of parameters of the memorization
transformer. We further compare the expressive powers of CoT- and no-CoT-transformers. Proofs are
given in the Appendix.

4.1 Memorization using no-CoT-transformer

A no-CoT-transformer (CoT-transformer) F is said to be a memorization of a language S if F̂(x) = y

(F̂cot(x) = y) for any (x, y) ∈ S. We have the following general memorization theorem for
no-CoT-transformers.
Theorem 4.1. Let S be a finite language of basic symbols Γ = {γi}Ti=1, N = |S|, L =
max(x,y)∈S{len(x)}, and q ∈ Z+. Then S can be memorized by a no-CoT-transformer if and
only if (x1, y1), (x2, y2) ∈ S and typ(x1) = typ(x2) = {γk} for some k ∈ [T ] imply y1 = y2.

Furthermore, if the above condition is satisfied, then there exists a no-CoT memorization transformer
F for S in Hq

O(T ),O(NLT⌈L2 ln2(NLT )/q⌉),O(T )
and F can be computed in polynomial time about

N,T, L, q. This gives an upper bound para(F) = O(NLT 4⌈L2 ln2(NLT )/q⌉) for the number of
parameters needed to memorize S.

Theorem 4.1 gives a necessary and sufficient condition for a language to be memorized by a no-
CoT-transformer and the required transformer size. It is clear that most commonly used languages
satisfy the condition in Theorem 4.1. For example, the language Arithp,n satisfies this condition
and thus can be memorized by a non-CoT-transformer. This theorem indicates that even without CoT
and position embedding, transformers have the power to memorize most languages. If the sentence
lengths are uniform in the language, then the condition in Theorem 4.1 is inherently met. Thus, we
obtain:
Corollary 4.2. If a finite language S satisfies len(x) = L for all (x, y) ∈ S, then there exists a
no-CoT memorization transformer F for S in Hq

O(T ),O(NLT⌈L2 ln2(NLT )/q⌉),O(T )
.

The following result gives the reason behind the condition in Theorem 4.1.
Proposition 4.3. Given x1, x2 ∈ 2Γ such that typ(x1) = typ(x2) = {γk} for a certain k ∈ [T ], it
follows that F̂(x1) = F̂(x2) for any no-CoT-transformer F .

4.2 Memorization using CoT-transformer

In this section, the memorization capacity of CoT-transformers will be discussed. We first introduce
several notations. For a sentence x, let x[i] be the i-th symbol of x and x[n] be the sentence composed
of the first n symbols of x. For example, if x = (γ1, γ2, γ3), then x[2] = γ2 and x[2] = (γ1, γ2). For
any language S and (x, y) ∈ S, we define a set Sx ⊂ 2Γ as follows: z ∈ Sx if and only if

(1) z[len(x)] = x and z[len(z)] = y;

(2) |typ(z[len(x)+1])| > 1; and
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(3) for any (x1, y1) ∈ S, if len(x1) > len(x) and z[len(x1)] = x1, then y1 = y.

Furthermore, let S1
x = {z[len(x) + 1] : z ∈ Sx}. We have the following result.

Theorem 4.4. Let S be a finite language of T symbols, N = |S|, L = max(x,y)∈S{len(x)}, and q ∈
Z+. Then S can be memorized by a CoT transformer if and only if (1): |Sx| > 0 for any (x, y) ∈ S
and (2): ∩(x,y)∈S,typ(x)={γj}S

1
x ̸= ∅ for any j ∈ [T ] satisfying {(x, y) ∈ S : typ(x) = {γj}} ≠ ∅.

Furthermore, if the above condition is satisfied, then there exists a CoT memorization transformer F
for S in Hq

O(T ),O(NL2T⌈L2 ln2(NLT )/q⌉),O(T ),cot
, which can be computed in polynomial time about

N,T, L, q. This gives an upper bound para(F) = O(NL2T 4⌈L2 ln2(NLT )/q⌉) for the number of
parameters needed to memorize S.

Theorem 4.4 gives a necessary and sufficient condition for a language to be memorized by a CoT
transformer and estimates the required transformer size. But the necessary and sufficient condition in
Theorem 4.4 is not intuitive, and we give several easy-to-check sufficient conditions below.
Proposition 4.5. Let S be a finite language of symbol set Γ. Then each of the following conditions is
sufficient for S to be memorized by a CoT-transformer.

1. The set of the last elements of all sentences in S is a proper subset of Γ, that is,
{x[len(x)] : (x, y) ∈ S} ⫋ Γ.

2. All sentences in S have the same length, that is, len(x) = L for all (x, y) ∈ S.

By Proposition 4.5, most commonly used languages representing algorithms satisfy this condition.
For example, by Condition 1 of Proposition 4.5, the language Arithp,n defined in Example 3.2
satisfies this condition because the four arithmetic operators ‘+’, ‘-’, ‘×’, ‘/’ cannot be the last symbol
of an arithmetic expression.

4.3 CoT and no-CoT-transformers: comparison and more results

This section will address the distinctions between the two types of transformers. In particular, we
will show that their memorization powers are different.

The memorization powers for no-CoT-transformer and CoT-transformer are different. From
Theorems 4.1 and 4.4, the conditions for languages that can be memorized by no-CoT or CoT-
transformers are rather stringent. While the memorization powers of CoT- and no-CoT-transformers
are both strong enough to memorize most languages, the languages that can be memorized by CoT-
and no-CoT-transformers are different, as shown by Proposition 4.7. We first define a language.
Example 4.6. For any basic symbol set Γ = {γi}Ti=1, we define the language of length calculation
problem LCP: (x, y) ∈ LCP if and only if x is a sentence and the label of x is y = γt(x), where
t(x) = len(x) mod T and mod is defined as (i+ kT ) mod T = i for 0 < i ≤ T and k ∈ Z+.
In addition, let LCPn = {(x, y) ∈ LCP : len(x) ≤ n}, LCP=1

n = {(x, y) ∈ LCPn : |typ(x)| = 1},
and LCP>1

n = {(x, y) ∈ LCPn : |typ(x)| > 1}.

This is a simple language that counts the length of sentences. We have the following result.
Proposition 4.7. For any symbol set Γ such that |Γ| ≥ 2 and n ≥ 2, and precision q ∈ Z+, we have

(1) LCPn cannot be memorized by any no-CoT or CoT-transformer.

(2) LCP=1
n can be memorized by a CoT-transformer, but cannot be memorized by any no-CoT-

transformer.

(3) LCP>1
n can be memorized by a no-CoT-transformer, but cannot be memorized by any CoT-

transformer.

From Proposition 4.7, CoT- and no-CoT-transformers can solve different parts of LCPn, which
confirms their different expressive abilities and demonstrates that using CoT can change the range
of languages that transformers can memorize, but it is not strictly superior to those without
CoT. But transformers with CoT or without CoT cannot memorize LCPn. In fact, it is not hard
for transformers to memorize LCPn. From Corollaries 4.9 and 4.12 given below, (CoT) no-CoT-
transformers can memorize LCPn by (adding new symbols) using position embedding.
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Position embedding is important for no-CoT-transformer, but not for CoT-transformer. Theo-
rem 4.1 shows that no-CoT-transformers without position embedding can memorize almost every
language but cannot memorize certain special languages. This limitation arises because the no-CoT-
transformer cannot completely leverage the length information, which leads to Proposition 4.3. If
position encoding is added, then there will be no such limitation, as shown below.
Proposition 4.8. Let S be a finite language with N elements and T basic symbols, L =
max(x,y)∈S{len(x)}, and q ∈ Z+. Then S can be memorized by a no-CoT-transformer F in
Hq

O(T+ln(L)),O(NLT⌈L2 ln2(NLT )/q⌉),O(T )
, which uses position encoding for the first L positions.

As a consequence, we have
Corollary 4.9. For any given q ∈ Z+, every finite language can be memorized by a no-CoT-
transformer with precision q and position encoding.

On the other hand, position encoding is not as useful for CoT-transformers, as shown below.
Proposition 4.10. Let S be a finite language and |typ(x)| > 1 for any (x, y) ∈ S. If S cannot
be memorized by a CoT-transformer, then it also cannot be memorized by a CoT-transformer with
position encoding.

Position embedding can help memorize sentences x satisfying |typ(x)| = 1, which is a weakness
for the no-CoT-transformer. But based on the conditions in Theorem 4.4 and Proposition 4.5, the
CoT-transformer is capable of managing these types of sentences in the majority of cases; thus,
position embedding holds limited significance for CoT-transformers.
Remark 4.11. In most results in this paper, we do not use position encoding. Results just proved show
that position encoding is important for transformers without CoT, but has no effect for transformers
with CoT, which increases our understanding of positional encoding. See Appendix A for more
details.

More basic symbols are important for CoT-transformer, but not for no-CoT-transformer. By
condition 1 of Proposition 4.5, adding a few new symbols to Γ enables CoT-transformers to memorize
all finite languages, as illustrated below.
Corollary 4.12. A finite language S can be memorized by a CoT-transformer if ∪(x,y)∈Styp(x) is a
proper subset of Γ.

Corollary 4.12 is not applicable to non-CoT-transformers, highlighting the benefit of CoT’s ability to
exploit the basic symbols entirely. We will give additional clarification on this phenomenon. Let S
be a language based on Γ = {γi}N+M

i=1 and typ(x) ⊂ {γi}Ni=1 for any (x, y) ∈ S. Then when we
classify S by a no-CoT-transformer, the symbols {γi}M+N

i=N+1 are useless; but when we classify S

by a CoT-transformer, {γi}M+N
i=N+1 are useful because they can appear in the CoT. For example, in

mathematical proofs, logical symbols like “∵”, “∴”, “→” are often used in the proof, but are not
commonly used in the problem description. So, if we do not use CoTs, such logical symbols are
useless for generating proofs; but if we use the CoTs, these symbols are useful in generating the
proofs, so adding more symbols to the basic symbols can better help the transformer generate a CoT.

5 Necessary conditions for memorization with transformers

In this section, we give some necessary conditions for memorization with CoT- and no-CoT-
transformers, and show that, from the perspective of necessary conditions, CoT may not provide
particularly significant assistance in some situations.

5.1 O(N) parameters are necessary and sufficient for memorization

In Section 4, we show that O(N) parameters are sufficient for both no-CoT-transformer and CoT-
transformer to memorize any language with N elements. In this section, we will show that O(N)
parameters are also necessary for both kinds of transformers to memorize some languages.
Theorem 5.1. For any q,N, T ≥ 3 and basic symbols {γ}Ti=1, there exists a finite language S
that satisfies the condition in Theorem 4.1 (Theorem 4.4) and max(x,y)∈S len(x) ≤ O(ln(N)), such
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that for any given W,D,H , if para(W,D,H, T ) < O(N lnT
q ), then S cannot be memorized by any

transformer F ∈ Hq
W,D,H(F ∈ Hq

W,D,H,cot).

This theorem establishes a lower bound for the number of parameters of a transformer to memorize
finite languages, even if T, L ≪ N , Ω(N) parameters are required for some languages, and the lower
bounds for two kinds of transformers are essentially the same, which implies CoT cannot effectively
reduce the number of parameters required for memorization for some languages.
Remark 5.2. From Theorems 4.1, 4.4, and 5.1, we see that there exists a gap between the lower
bound and the upper bound for the number of parameters for memorization transformers. But when
q, T are constants and N ≫ L, as shown in the Theorems 5.1, we can only consider N as in most
existing works. Then Ω(N) parameters are necessary and sufficient for both CoT- and no-CoT-
transformers to memorize a language of size N , giving the optimal memorization capacity for
both CoT- and no-CoT-transformers. Note that in most cases, we have N ≫ L, and in the actual
situation, q and T are always constants, so the above discussion is meaningful.

5.2 The length of sentences affects memorization

In this section, we will show how the length of sentences affects memorization. Firstly, in Theorems
4.1 and 4.4, the memorization transformer depends on the sentence length L, which is due to the
limitation on the parameter precision (i.e. q ∈ Z+). Without limitation (i.e. q = ∞) on the parameter
precision, the structure of the transformer does not need to depend on L, as shown below; the proofs
are given in the Appendix F.2.1 for no-CoT-transformer and Appendix F.2.2 for CoT-transformer.
Proposition 5.3. Let S be a finite language with N elements and for T basic symbols, which
satisfies the condition in Theorem 4.1 (Theorem 4.4). Then there exists a no-CoT-transformer
(CoT-transformer) F ∈ H∞

O(T ),O(N),O(T ) (F ∈ H∞
O(T ),O(N2),O(T ),cot) which can memorize S.

But when the precision is limited, the increase in length will bring more difficulties to memorization
for transformers, and CoT cannot help to eliminate this difficulty. We can show that if the precision
of transformers is limited, the number of parameters of the memorization transformer must depend
on the length for some language, as shown below.
Theorem 5.4. For any P ∈ Z+ and precision q ∈ Z+, there exists a n ∈ Z+, a basic symbol set Γ
such that |Γ| ≤ 5 and a sub-language S ⊂ LCPn with |S| ≤ 10, such that S satisfies the condition
in Theorem 4.1 (Theorem 4.4), but S cannot be memorized by any F ∈ Hq

P,P,P (F ∈ Hq
P,P,P,cot).

The above theorem shows that as the length n increases, any fixed structure transformer is not
sufficient to memorize certain languages which just contain O(1) sentences and O(1) basic symbols.
Although we do not know how to accurately calculate the dependence of parameters on sentence
length, the above theorem actually implies that both types of transformers will face difficulties with
languages with unbounded sentence lengths.

6 Memorization of infinite language is hard

In the preceding sections, we only considered finite languages. This section will explore the challenge
transformers face in memorizing infinite languages, illustrated through two specific languages. If a
transformer can memorize an infinite language like Arithp, then we can say that transformers truly
have the ability to simulate an algorithm. For the expressive power of CoT-transformers, all results
are for finite languages. For instance, Arithp,n is considered in [8] and input with finite length is
considered in [21].

In this section, we discuss whether a transformer can memorize infinite languages which is an
important open problem, and give some negative results on this open problem. We demonstrate that
neither the no-CoT-transformer nor the CoT-transformer is able to memorize certain basic infinite
languages, suggesting that CoT might not genuinely aid transformers in resolving these issues.

Memorizing LCP with transformer. By Theorem 4.1(Theorem 4.4), for any S ⊂ LCPn that
satisfies the condition in Theorem 4.1 (Theorem 4.4), there exists a no-CoT-transformer (CoT-
transformer) that memorizes S. But for the infinite language LCP, this is not true, as shown below,
which is a corollary of Theorem 5.4.
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Proposition 6.1. There exists a basic symbol set Γ and an infinite sub-language S of LCP based on
Γ, such that S satisfies the condition in Theorem 4.1 (Theorem 4.4), but S cannot be memorized by
any no-CoT-transformer (CoT-transformer) with any precision q ∈ Z+ ∪∞.

This proposition shows that both types of transformers, even without precision limitations, cannot
memorize certain simple infinite languages, such as length counting.

Memorizing Arithp with transformer. Since Arithp is a very basic computation problem or
algorithm, it is an interesting open problem to show whether there exists a CoT-transformer that can
memorize Arithp. We will prove a negative answer to this problem under certain conditions.

We first define how to use transformers to solve problems in Arithp,n and Arithp. We say that a no-
CoT-transformer F can solve Arithp,n (Arithp) if F can memorize Arithp,n (Arithp). We say
that a CoT-transformer F can solve Arithp,n (Arithp) if F can memorize Arithp,n (Arithp), and
for any (x, y) ∈ Arithp,n(Arithp), F(x) outputs a CoT as follows: x = x1 = · · · = xM = yγ0,
where xi is a sentence in Arithp,n(Arithp) obtained from xi−1 (x = x0) by performing several
accurate arithmetic computations. We introduce a notion below.
Definition 6.2. For a transformer F and a sentence x, define the confidence of F(x) to be Fi(x)−
maxj ̸=i Fj(x) where i = argmaxj Fj(x). We say that a no-CoT-transformer F can solve Arithp,n

(Arithp) with confidence c ∈ R+, if the confidence of F(x) is not smaller than c for all (x, y) ∈
Arithp,n(Arithp). We say that a CoT-transformer F can solve Arithp,n(Arithp) with confidence
c, if the confidence of each step in CoT is not smaller than c for all (x, y) ∈ Arithp,n(Arithp).

We explain the motivation of the notion. In real computation on a computer, it is impossible to
achieve arbitrary precision, so to ensure that F produces an accurate output for the input x with a
positive certainty(the confidence level of the correct label should exceed the confidence level of the
incorrect labels), the confidence of F(x) must exceed a specific constant c. We will show that, in
such confidence assumption, the transformer cannot solve Arithp.
Proposition 6.3. (1) For any c > 0, precision q ∈ Z+ ∪ ∞ and n ∈ Z+, there exists a no-CoT-
transformer or a CoT-transformer with precision q that can solve Arithp,n with confidence c.

(2) For any c > 0 and any precision q ∈ Z+ ∪∞, there does not exist a no-CoT-transformer or a
CoT-transformer with precision q that can solve Arithp with confidence c.

This theorem reveals that, despite the absence of precision constraints for transformer parameters,
under the realistic assumption of positive confidence, it is not feasible to tackle infinitely long
arithmetic problems. However, finite-length arithmetic problems can be addressed effectively. This
conclusion highlights the challenges that transformers face when tackling entire arithmetic problems.
In fact, we propose the following conjecture.
Conjecture 6.4. Arithp cannot be memorized by any fixed-precision CoT- or no-CoT-transformers.

7 Conclusion

In this work, from a memorization-capacity perspective, we theoretically analyze the impact of CoT
on autoregressive transformers. We have found and proven the necessary and sufficient conditions for
a finite language to be memorized by the CoT-transformer or no-CoT-transformer, and estimated the
number of parameters required for memorization from the perspective of upper and lower bounds.
Thus, the relationship between CoT-transformer and no-CoT-transformer was thoroughly studied.
Specifically, the languages that no-CoT-transformer and CoT-transformer can be memorized by
transformers are different, and no-CoT-transformer requires position embedding to enhance its
expressive power, but CoT-transformer needs only more basic symbols to enhance its expressive
power. Finally, we proved that CoT cannot help the transformer to solve some problems from the
perspective of necessity, such as memorizing infinite languages.

Limitation and Future Work. This paper only analyzes the power of CoT in memorization for
data with one token as the label and ignores LayerNorm in order to simplify the model for analysis.
Positional encoding is not considered in most results. Refer to Remark 4.11 for a detailed explanation
of this issue. Although no experiments are given, our results have some practical implications that
are explained in the last paragraph of Section 1. Finally, there still exist gaps in fully understanding
the power of CoT, such as Conjecture 6.4.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we have done.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: In the Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[Yes]
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Justification: In this Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Our contributions are theoretical research.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Our contributions are theoretical research.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our contributions are theoretical research.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our contributions are theoretical research.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification:Our contributions are theoretical research.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: Our contributions are theoretical research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there exists a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: None of these.
Guidelines:

• The answer NA means that there exists no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there exists a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there exist negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our contributions are theoretical research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our contributions are theoretical research.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our contributions are theoretical research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our contributions are theoretical research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [No]
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Justification: The large model only helps polish the language.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


A Details about the structure of the transformer

A.1 Position Encoding

Embedding matrix. For a sentence x, the embedding matrix of x is xe = (vi1 , vi2 , . . . , vin)
τ , which

will be the input to the first hidden layer in the transformer. We call n the input length. Unlike
feedforward neural networks, the input length of the transformer does not need to be fixed, and a
transformer can handle input sentences with any length.

About Position Encoding. With position encoding, the embedding of x is (vi1 + E1, vi2 +
E2, . . . , vin + En)

τ , where Ei is the position encoding for the i-th position. The position en-
coding provides location information. However, the use of position encoding may limit the length of
the language that the transformer can process. In this paper, we aim for the transformer to handle
languages of arbitrary length and do not limit the length of CoT, so we do not employ position
encoding. For example, if we see position encoding as adjustable parameters, then encoding the first
N positions only will make the transformer able to process input with a length of no more than N . If
we take position encoding as n for the n-th position, then, at the later positions, the position encoding
may exceed the precision limitation.

A.2 The residual layer

In the definition of transformers, we use a transition matrix Wi−1 in the residual layer. In some other
works such as [8], Wi−1 = I is the identity matrix.

In fact, the functions that the transformer can express under these two definitions are the same, as
shown below. Firstly, we name the transformer defined by Wi−1 = I in each residual layer as FI .
Then we have the following result.

Proposition A.1. For any given basic symbol set Γ, we have

(1) For any transformer FI , there exists a transformer F with transition matrices such that F(x) =
FI(x) for any x ∈ 2Γ.

(2) For any transformer F with transition matrices, there exists a transformer FI such that FI(x) =
F(x) for any x ∈ 2Γ, and width(FI) ≤ 2width(F), depth(FI) ≤ 4depth(F) and head(FI) ≤
head(F).

Proof. (1) in the proposition is apparent: we just need to take the whole transition matrix in the
residual layer of F as I , and other parameters are the same as FI .

We now prove (2). We will show the following at first: for any hidden layer in F , it can be expressed
by a combination of four hidden layers whose transition matrices in the residual layer are I .

Let a hidden layer L of F with width m and head H be written as L(x) = xW+ATT(x)+FNN(xW+

ATT(x)), where ATT(x) =
∑H

i=1 softmax(xQiKix
t +M)xVi and FNN(x) = Relu(xw1 ⊕ b)w2.

Then we define four layers with width not more than 2m and head H whose transition matrix in the
residual layer is I as follows:

The first layer L0 also uses x ∈ Rn×m to obtain (x, 0) ∈ Rn×2m, which is similar to that in the proof
in Lemma B.2.

The second layer is L1(t) = t+ Relu(t(WT ,−WT )T )V where Vj,m+j = 1, Vm+j,m+j = −1 for
all j ∈ [m] and the other weights are 0.

The third layer is L2(t) = t+ ATT2(t) + FNN2(t+ ATT2(t)).

The attention layer is calculated as ATT2(t) =
∑H

i=1 softmax(tQ′
iK

′
it

T + M)tV ′
i , where Q′

i ∈
R2m×2m is defined as: the (j, k)-th weight is the same as the (j, k)-th weight of Qi, where j, k ∈ [m],
and other weights are 0. K ′

i ∈ R2m×2m is defined as: the (j, k)-th weight is the same as the (j, k)-th
weight of Ki where j, k ∈ [m], and other weights are 0. V ′

i ∈ R2m×2m is defined as: the (j, k+m)-th
weight is the same as the (j, k)-th weight of Vi, where j, k ∈ [m], and other weights are 0.

The FNN layer is calculated as FNN2(t) = Relu(tw′
1 ⊕ b′)w′

2. w′
1, w

′
2 are defined as: the (i+m, j+

m)-th weight is the same as the (i, j)-th weight of wk, where i, j ∈ [m], and other weights are 0. b′
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is defined as: the (j +m)-th weight is the same as the j-th weight of b but other weights are 0, where
j ∈ [m].

Then we have that, for any x ∈ Rn×m, we can obtain x′ = (x, 0) ∈ Rn×2m by the first layer
L0. Then by the definition of L1, we can calculate: L1(x

′) = (x, xW ). Hence in the L2, it holds
ATT2((x, xW ))) =

∑H
i=1 softmax(xQiKix

T +M) ·(0, xVi) = (0,ATT(x)). In the FNN, we have
FNN2((x, xW )+ATT2((x, xW ))) = FNN2((x, xW +ATT(x))) = (0,FNN(xW +ATT(x))). So
we get L2(x

′) = (x, xw + ATT(x) + FNN(xw + ATT(x)).

Let the last layer Ll use (x, xw+ATT(x)+FNN(xw+ATT(x)) to obtain xw+ATT(x)+FNN(xw+
ATT(x).

So L(x) = xW + ATT(x) + FNN(xW + ATT(x)) is equal to Ll(L2(L1(L0(x)))) =
Ll(L2(L1((x, 0))) = Ll(L2((x, xW ))) = xW + ATT(x) + FNN(xW + ATT(x)). And it is
easy to see that the width, heads of L0, L1, L2 and Ll are not more than 2m and H , respectively.

So by the above result, for an F with width W1, depth D and head H , for each hidden layer in the
transformer, we can construct four hidden layers as above. Then use such layers and the output layer
which is the same as that in F to form a transformer FI , which has width 2W1, depth 4D, head H ,
and FI(x) = F (x) for any x ∈ 2Γ. So we prove the result.

B Preliminary results

We give two lemmas that will be used in the subsequent proofs.

Lemma B.1. For any sentences x and z, if the first n symbols in x and z are the same, then for any
transformer F and j ∈ Z+, the first n rows in the outputs of the j-th hidden layers of F(x) and F(z)
are the same.

Proof. Firstly, we prove that for the j-th hidden layers F j of F , if x1 and z1 satisfy that the first n
rows in x1 and z1 are the same, then the first rows n of F j(x1) and F j(z1) are the same.

Assume that F j can be written as: F j(x) = xw+
∑H

k=1 softmax(xQkVkx
T+M)xKk+FNN(xw+∑H

k=1 softmax(xQkVkx
T +M)xKk).

In the residual layer, the calculations in this layer do not include the interactions between different
rows, just do the same transformation to each row. So when x1 and z1 satisfy that the first n rows in
x1 and z1 are the same, x1w and z1w also satisfy that the first n symbols are the same.

In the attention layer, from the definition of M , for any i ∈ Z+, the i-th row of softmax(xQkVkx
T +

M) can be written as (xiQkVkx
T
1 , xiQkVkx

T
2 , xiQkVkx

T
3 , . . . , xiQkVkx

T
i , 0, 0, . . . , 0), where xi is

the i-th row of x. So it is easy to see that, when x1 and z1 satisfy that the first n rows in x1 and z1 are
the same, the first n rows of softmax(x1QkVkx

T
1 +M)x1 and softmax(z1QkVkz

T
1 +M)z1 are the

same. Hence, because the other parts in the attention layer do not include the interactions between
different rows, we have that the whole output of the attention also satisfies that the first n symbols are
the same when input x1 and z1.

By the above result, we find that the first n rows of x1w +
∑H

k=1 softmax(x1QkVkx
T
1 +M)x1Kk

and z1w +
∑H

k=1 softmax(z1QkVkz
T
1 +M)z1Kk are the same. Similarly to the residual layer, we

know that the first n rows of FNN(x1w+
∑H

k=1 softmax(x1QkVkx
T
1 +M)x1Kk) and FNN(z1w+∑H

k=1 softmax(z1QkVkz
T
1 +M)z1Kk) are the same. Adding them, we can obtain the result.

Now, we can prove the lemma. We prove the result for the first layer. If the first n symbols in x and z
are the same, then the first n rows of their embedding matrix are also the same. According to the
above result, we see that the first n rows in the output of the first hidden layer are the same for input
x and z.

If the first n rows in the output of the i-th hidden layer are the same, according to the above result
and the fact that the output of the i-th hidden layer is the input of the (i+ 1)-th hidden layer, then the
first n rows in the output of the (i+ 1)-th hidden layer are also the same. When input x and z to the
transformer, we have proved that the result is valid for i = 1, so the result is valid for any i. We prove
the lemma.
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Lemma B.2. Let F : R1×n → R1×m be an FNN network with depth D and width W . Then we have

(1) If F has no output layer, then we can find a transformer F1 without an output layer such that for
any k ∈ Z+ and x ∈ Rk×n, it holds F1(x) = (FT (x1),FT (x2), . . . ,FT (xk))

T , where xi is the
i-th row of x. Hence, F1 has width O(W ) and depth O(D), and has the same precision as F .

(2) We can find a transformer F1 such that for any k ∈ Z+ and x ∈ Rk×n, it holds F1(x) = F(xk),
where xk is the last row of x. Hence, F1 has width O(W ) and depth O(D), and has the same
precision as F .

Proof. It is easy to see that (2) can be obtained by (1), so we just need to prove (1). To prove (1), we
just need to show how to simulate an FNN layer by the transformer layer.

Let an FNN layer be written as Relu(xW+B) : R1×n → R1×m, where W ∈ Rn×m and B ∈ R1×m.
Then we can use three transformer layers with width m+ n to simulate it, which directly proves the
lemma.

The first layer F1. Use x ∈ Rk×n to calculate the (x, 0) ∈ Rk×(n+m). Just need to take the residual
layer in the transformer layer as xw, where w = (I, 0) ∈ Rn×(n+m), and I is the identity matrix.
Other parameters in the attention layer and the FNN layer are all zero.

The second layer F2. Let the residual layer be x and the parameters in the attention layer be all 0.
Then the second layer can be written as: x+ FNN(x) = x+ Relu(xw1 ⊕ b)w2.

Then, we define w1 ∈ R(n+m)×(n+m) as: the last m columns are w′
1 = (WT , 0)T and the first n

columns are 0. We define b ∈ 1× (n+m) as: the last m columns equal to B and the first n columns
are 0. Then w2 ∈ R(n+m)×(n+m) is an identity matrix.

It is easy to check that the k-th row of Relu(F1(x)w1 ⊕ b)w2 is (0,Relu(xkW +B)), where xk is
the k-th row of x and k ∈ [n]. So the k-th row of F2(F1(x)) is (xk, 0)+ (0, F (xk)) = (xk, F (xk)).

The third layer F3. This layer satisfies F3((xk, F (xk))) = F (xk) for each k ∈ [n]. We just need
to take the residual layer as xw where w = (0, I)T ∈ R(n+m)×m and other parameters are 0.

We prove the lemma.

C Proofs of results in Section 4.1

In this section, we will give proofs for Theorem 4.1 and Proposition 4.3.

C.1 Position value

For a given sequence s consisting of a and b, such as s = (a, a, b, a, b), let |s| be the length of s.
We define the position-a value of s as V α

a (s, k) where α ∈ Z+ and k ≤ |s|, which is calculated as
(similar for the position-b value of s as V α

b (s, k)):

(1) Let na(s, k) =
∑k

i=1 I(si = a) be the number of a in the first k elements of s. Similarly, let
nb(s, k) =

∑k
i=1 I(si = b), where si is the i-th element of s.

(2) Let qαa (s, k) =
na(s,k)

eαnb(s,k)+na(s,k)
.

(3) Let V α
a (s, k) = 1

k

∑k
i=1 q

α
a (s, i).

We call V α
a the position value. It is easy to see that if |s1| = |s2| = n, then V α

a (s1, k) = V α
a (s2, k)

for any k ∈ [n] if and only if s1 = s2. So the position value can be used to distinguish the sequences
with the same length.

For the s1 and s2 with the different lengths, the position value can be used to distinguish them. We
have the following lemma.

Lemma C.1. Let α ∈ Z+ and s1, s2 be sequences satisfying |s1| ≠ |s2|. If V α
a (s1, |s1|), V α

a (s2, |s2|)
are not 0 and 1, then V α

a (s1, |s1|) ̸= V α
a (s2, |s2|).
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Proof. Without loss of generality, we assume that |s1| < |s2|. Assume that V α
a (s1, |s1|) and

V α
a (s2, |s2|) are not 0 and 1, and V α

a (s1, |s1|) = V α
a (s2, |s2|). We derive contradictions to prove the

lemma in three steps.

Step one: We define two rational polynomials Fa,s1(x) = 1
|s1|

∑|s1|
k=1

na(s1,k)
xnb(s1,k)+na(s1,k)

and

Fa,s2(x) =
1

|s2|
∑|s2|

k=1
na(s2,k)

xnb(s2,k)+na(s2,k)
, then we have the following result:

Fa,s1(x) = Fa,s2(x) for any x ∈ R.

This is because Fa,s1(e
α) = V α

a (s1) = V α
a (s2) = Fa,s2(e

α), and considering that eα is not an
algebraic number and Fa,si(x) is a rational polynomial whose coefficients are rational numbers. We
thus have Fa,s1(x) = Fa,s2(x) for all x ∈ R.

Step two: Assume that P ≤ |s2| is the maximum prime number not more than |s2|. Then we have
the following result: The first P elements of s2 are the same.

If not, we have na(s2, P ) ̸= 0 and nb(s2, P ) ̸= 0, so we consider the value of Fa,s1(x) and Fa,s2(x)

for x = −na(s2,P )
nb(s2,P ) (1 + ϵ).

Because P is the maximum prime smaller than |s2|, so P > |s2|/2. So, there exist no Q ∈ [|s2|] and
Q ̸= P such that −na(s2,Q)

nb(s2,Q) = −na(s2,P )
nb(s2,P ) . If not, there must be P |na(s2, Q) + nb(s2, Q), which

implies Q ≥ 2P > |s2|, a contradiction with Q ∈ [|s2|].

So, when x = −na(s2,P )
nb(s2,P ) (1 + ϵ) and ϵ → 0, at most one sub-rational formula in Fa,s1 and Fa,s2

tends to ∞ (i.e. the na(si,P )
xnb(si,P )+na(si,P ) ).

So if na(s1, P ) = na(s2, P ), then Fa,si(x)/(
1

|si|
na(si,P )

xnb(si,P )+na(si,P ) ) tends to 1 when ϵ → 0 for
i = 1, 2. Since |s1| < |s1|+ 0.5 < |s2|, we have Fa,s1(x) <

−1
(len(s1)+0.5)ϵ < Fa,s2(x) when ϵ → 0,

which is a contradiction to step one.

If na(s1, P ) ̸= na(s2, P ), then Fa,s1(x) will not tend to ∞ when ϵ → 0, which is also a contradiction
to step one. So we proved step two.

Step three: We now prove the lemma.

Because V α
a (s1, |s1|) and V α

a (s2, |s2|) are not 0 and 1, so there exists at least one a and at least one
b in the s1 and s2. By step two, without loss of generality, we assume that the first P elements in s2
are all a, and the position of the first b in s2 is at m0 + 1. It is easy to see that m0 ≥ P .

Then, we consider the values of Fa,s1(x) and Fa,s2(x) for x = −na(s2,m0+1)
nb(s2,m0+1) (1 + ϵ).

Firstly, we show that no other Q ̸= m0 + 1 and Q ∈ [s2] satisfy −na(s2,Q)
nb(s2,Q) = −na(s2,m0+1)

nb(s2,m0+1) .

Because m0 ≥ P > |s|/2 and nb(s2,m0 + 1) = 1, so if −na(s2,Q)
nb(s2,Q) = −na(s2,m0+1)

nb(s2,m0+1) , there must be
na(s2, Q) ≥ 2na(s2,m0 + 1) ≥ 2m0 ≥ 2P > |s2|, which is a contradiction.

Then, similar as before, we can prove that if x = −na(s2,m0+1)
nb(s2,m0+1) (1 + ϵ) and ϵ → 0, then Fa,s1(x) ̸=

Fa,s2(x), which is a contradiction to step one, so we prove the lemma.

We have the following result for sequences of the same length.

Lemma C.2. Let α ∈ Z+. For any such sequences s1 and s2 where len(s1) = len(s2) = n and
V α
a (s1, n) = V α

a (s2, n). We have

(1) The number of k ∈ [n] such that V α
a (s1, k) = 1 is equal to the number of k ∈ [n] such that

V α
a (s2, k) = 1.

(2) The number of k ∈ [n] such that V α
a (s1, k) = 0 is equal to the number of k ∈ [n] such that

V α
a (s2, k) = 0.

Proof. We prove (1) first.
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If V α
a (s1, n) = V α

a (s2, n) = 1, then we know that all elements in si are all 1; if V α
a (s1, n) =

V α
a (s2, n) = 0, then we know that all elements in si are all 0.

Assume V α
a (s1, n) = V α

a (s2, n) ̸= 0 and V α
a (s1, n) = V α

a (s2, n) ̸= 1. We define two rational poly-
nomials Fa,s1(x) = 1

|s1|
∑|s1|

k=1
na(s1,k)

xnb(s1,k)+na(s1,k)
and Fa,s2(x) = 1

|s2|
∑|s2|

k=1
na(s2,k)

xnb(s2,k)+na(s2,k)
.

Then, similar to the proof of Lemma C.1, we have the following result: Fa,s1(x) = Fa,s2(x) for any
x ∈ R.

It is easy to see that when x → ∞, na(s1,k)
xnb(s1,k)+na(s1,k)

→ 0 when nb(s1, k) ̸= 0, and if nb(s1, k) = 0,

there must be na(s1,k)
xnb(s1,k)+na(s1,k)

= 1. So consider the Fa,s1(x) = Fa,s2(x) when x → ∞, we know

that there must be the same number of 1 in { na(s1,j)
xnb(s1,j)+na(s1,j)

}j∈[n] and { na(s2,j)
xnb(s2,j)+na(s2,j)

}j∈[n].

It is easy to see that na(s1,j)
xnb(s1,j)+na(s1,j)

= 1 equals na(s1,i)
xnb(s1,i)+na(s1,i)

= 1 for any i ≤ j, similar for

s2. So the same number of 1 in { na(s1,j)
xnb(s1,j)+na(s1,j)

}j∈[n] and { na(s2,j)
xnb(s2,j)+na(s2,j)

}j∈[n] implies there
exist the same number of k ∈ [|s1|] such that V α

a (s1, k) = V α
a (s2, k) = 1. Hence, we directly get

(1) in the lemma.

For (2) in the lemma, just need to consider that qαa (sk, j) + qαb (sk, j) = 1 and V α
a (sk, j) +

V α
b (sk, j) = 1 for any k ∈ {0, 1} and j ≤ n. Similar to the proof of (1), we get the result.

Then, we calculate the following value:

mins1,s2,len(s1)≤L,len(s2)≤L,V α
a (s1,|s1|)̸=V α

a (s2,|s2|) |V
α
a (s1, |s1|)− V α

a (s2, |s2|)|.
Firstly, we have the following lemma.
Lemma C.3. If f is a nonzero integral coefficient polynomial whose coefficients have absolute values
not more than A, then for any s ∈ Z+ satisfying es > A+ 1, we have |f(es)| > 1.

Proof. Because es > A+ 1, so
∑n

i=0 Aeis = A ens+s−1
es−1 ≤ ens+s − 1.

So, letting L = deg(f), we have |f(es)| > esL−
∑L−1

i=0 Aeis = esL−A eSL−1
es−1 > esL−(esL−1) =

1, this is what we want.

Lemma C.4. If eα ≥ L2L+2 + 1, then

min
s1,s2,len(s1)≤L,len(s2)≤L,V α

a (s1,|s1|) ̸=V α
a (s2,|s2|)

|V α
a (s1, |s1|)− V α

a (s2, |s2|)| ≥
1

e2αLL2L+4
.

Proof. Firstly, without loss of generality, let V α
a (s1) > V α

a (s2), we have that:

V α
a (s1, |s1|)− V α

a (s2, |s2|)
= 1

|s1|
∑|s1|

k=1 q
α
a (s1, k)− 1

|s2|
∑|s2|

k=1 q
α
a (s2, k)

= 1
|s1|

∑|s1|
k=1

na(s1,k)
eαnb(s1,k)+na(s1,k)

− 1
|s2|

∑|s2|
k=1

na(s2,k)
eαnb(s2,k)+na(s2,k)

= 1
|s1|

Fs1 (e
α)

Hs1
(eα) −

1
|s2|

Fs2 (e
α)

Hs2
(eα)

=
|s2|Fs1 (e

α)Hs2 (e
α)−|s1|Fs2 (e

α)Hs1 (e
α)

|s1||s2|Hs1
(eα)Hs2

(eα) .

Here Hsi(x) = Π
|si|
i=1(nb(si, k)x+na(si, k)) is an integral coefficient polynomial, whose coefficients

are not more than Π
|si|
i=1(nb(si, k) + na(si, k)) ≤ LL; Fsi(x) =

∑|si|
i=1

na(si,k)Hsi
(x)

nb(si,k)x+na(si,k)
is an inte-

gral coefficient polynomial, whose coefficients are not more than Fsi(x) ≤
∑|si|

i=1 na(si, k)L
L−1 ≤

LL+1.

So, we have that |s2|Fs1(x)Hs2(x) and |s1|Fs2(x)Hs1(x) are two positive integral coefficient
polynomials, so |s2|Fs1(x)Hs2(x)− |s1|Fs2(x)Hs1(x) is an integral coefficient polynomial, where
the absolute values of coefficients are not more than L×LL+1 ×LL = L2L+2. Considering Lemma
C.3 and eα > L2L+2 + 1, we can prove that |s2|Fs1(e

α)Hs2(e
α)− |s1|Fs2(e

α)Hs1(e
α) > 1.

Hence, we have that |s1||s2|Hs1(e
α)Hs2(e

α) ≤ L2(L × LLeαL)2 = L2L+4e2αL. We prove the
result.
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C.2 A lemma for FNN classification

For FNN, we have the following result.
Lemma C.5. Let f(x) = Relu((Ax + B)/10C) where A,B,C are integers. Then f(x) can be
expressed as a network with width 6 and depth O(⌈ln(max{|A|, |B|})/q⌉+ ⌈C/q⌉) and precision q.

Proof. Firstly, we define a function hi(m) for any integer m: when m ≥ 0, hi(m) =
[m/10iq] − 10q[m/10q+iq]; when m < 0, hi(m) = −hi(−m). Then we have that: m =∑[log10 m/q]

i=0 10iqhi(m). Hence, let Hj(m) =
∑[log10 m/q]

i=[log10 m/q]−j 10
(i+j−[log10 m/q])qhi(m) when

j ≤ [log10 m/q]. It is easy to see that H[log10 m/q](m) = m. When j > [log10 m/q], let
Hj(m) = m.

Then, we can calculate Relu(Ax+B) as follows:

The first layer has width 6:

Use x to calculate Relu(x), Relu(−x), Relu(H0(A)x), Relu(−H0(A)x), Relu(H0(B)), and
Relu(−H0(B)). Because H0(A) and H0(B) are q-precision, so such a layer just needs q-precision.

The n-th layer has width 6:

Assume n − 2 < [log10 A/q]. Since Hn−1(A)x = 10qHn−2(A)x + h[log10 m/q]−n+1(A)x
and Hn−2(A)x = Relu(Hn−2(A)x) − Relu(−Hn−2(A)x), x = Relu(x) − Relu(−x),
we can use a layer with q-precision to calculate Relu(Hn−1(A)x),Relu(−Hn−1(A)x) by
Relu(Hn−2(A)x),Relu(−Hn−2(A)x) and Relu(x),Relu(−x). If n − 2 ≥ [log10 A/q], then we
just need to keep Hn−1(A) = Hn−2(A). Hn−1(B) can be calculated similarly.

So we can use

Relu(x),Relu(−x),Relu(Hn−2(A)x),Relu(−Hn−2(A)x),Relu(Hn−2(B)),Relu(−Hn−2(B))

to calculate the following values in the q precision:

Relu(x),Relu(−x),Relu(Hn−1(A)x),Relu(−Hn−1(A)x),Relu(Hn−1(B)),Relu(−Hn−1(B)).

At the T = [log10 max{A,B}/q] + 2 layer, calculate Relu(Ax+B).

Because T − 2 ≥ [log10 A/q] and T − 2 ≥ [log10 B/q], so HT (A) = A and HT (B) = B.

In this layer, we use

Relu(x),Relu(−x),Relu(HT (A)x),Relu(−HT (A)x),Relu(HT (B)),Relu(−HT (B))

to calculate Relu(Ax + B), just use HT (A) = A, HT (B) = B and Relu(Ax + B) =
Relu(Relu(Ax)− Relu(−Ax) + Relu(B)− Relu(−B)). We can obtain the result.

Finally, in the next [C/q] layers, we just need to divide Relu(Ax+B) by 10q in each layer, and in the
last layer, divide it by 10C−q[C/q]. Then we obtain Relu((Ax+B)/10C) and prove the lemma.

Lemma C.6. For any given 0 < x1 < x2 < · · · < xN where xi < C and |xi − xj | > c, any given
yi ∈ [m], there exists a network f with precision q, width O(1), and depth O(N⌈ | lnmC/c|

q ⌉) that
satisfies |f(xi)− yi| < 0.2.

Proof. To begin with, we demonstrate the case for the scenario without precision limitations. In this
scenario, achieving these tasks requires a depth of O(N) and a width of O(1), as described below:

The first part: In this part, f1 is used to calculate the label of x1 and has three layers.

The first layer f1,1(x) has width 2, with f1,1
1 (x) = Relu([10q1x2]− 10q1x) and f1,1

2 (x) = Relu(x),
where q1 is the minimum integer such that 10q1x2 ≥ 10q1x1 + 2. Since x2 ≥ x1 + c, we have
10q1 ≤ O(1/c).

The second layer f1,2(x) has width 3: f1,2
1 (x) = Relu(1 + f1,1

1 (x)/10q2), f1,2
2 (x) = Relu(10 ×

(0.5− f1,1
1 (x))) and f1,2

3 (x) = Relu(f1,1
2 (x)), where q2 is the minimum integer such that 10q2−2 >

m. It is easy to see that q2 ≤ O(logm).
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The third layer f1,3(x) is the output of the first part, which has width 2: f1
1 (x) = f1,3

1 (x) =

Relu(y1(f
1,2
1 (x)− f1,2

2 (x))) and f1
2 (x) = f1,3

2 (x) = Relu(f1,2
3 (x)).

So when i ̸= 1, we have f1,1
1 (xi) = 0, so f1,2

1 = 1 and f1,2
2 = 5. Hence f1

1 (x) = Relu(y1(1−5)) =
0. When i = 1, using the definition of q1, we have 20 > 10q1x2 − 10q1x1 ≥ Relu([10q1x2] −
10q1x1) = f1,1

1 (x1) ≥ Relu(10q1x2 − 1 − 10q1x1) ≥ 1, so 1 ≤ f1,2
1 (x) = 1 + f1,1

1 (x)/10q2 ≤
1+0.2/m (use the value of q2) and f1,2

2 (x1) = Relu(10×(0.5−f1,1
1 (x))) ≤ Relu(10−(0.5−1)) = 0.

Hence, we have f1
1 (x1) = Relu(y1f

1,2
1 ) ∈ [y1, y1 + 0.2], using the |y1| ≤ m. Finally, we have

f1
1 (xi) ∈ [y1, y1 + 0.2] if and only if i = 1 and f1

2 (xi) = xi for any i ∈ [N ] which is apparent.

The i-th part, where i ≤ N : This part is used to calculate the label of xi and has five layers.

The input to i-th part is the output of (i−1)-th part. If the (i−1)-th part f i−1(x) satisfies: the output
of f i−1(x) has width 2, |f i−1

1 (xj)− yj | ≤ 0.2 when j ≤ i− 1, f i−1
1 (xj) = 0 when j > i− 1, and

f i−1
2 (xj) = xj for any j ∈ [N ], then we can make the output of the i-th part f i(x) to satisfy: f i(x)

has width 2, |f i
1(xj) − yj | ≤ 0.2 when j ≤ i, f i

1(xj) = 0 when j > i, and f i
2(xj) = xj for any

j ∈ [N ].

To do this, the i-th part needs six layers:

The first layer and the second layer output f i,2(x) satisfying:

f i,2
1 (x) = f i−1

1 (x), f i,2
2 (x) = 2Relu(⌈10q1xi⌉/10q1 − f i−1

2 (x))+ f i−1
2 (x) and f i,2

3 (x) = f i−1
2 (x),

where q1 is the minimum integer that satisfies ⌈10q1xi⌉/10q1 < xi + c/3. It is easy to see that
10q1 ≤ O(1/c). Now we show that f i,2

2 (xp)− f i,2
2 (xi) > c/3 for any p ̸= i.

We know that f i,2
2 (xj) = xj when j > i, and f i,2

2 (xk) = 2⌈10q1xi⌉/10q − xk when k ≤ i, so there
must be f i,2

2 (xp)− f i,2
2 (xi) ≥ mink<i, j>i{2⌈10q1xi⌉/10q − xk, xj}− (2⌈10q1xi⌉/10q1 − xi) for

all p ̸= i. Based on the definition of q1, we know that xj − (2⌈10q1xi⌉/10q1 − xi) > c/3 for any
j > i and (2⌈10qxi⌉/10q1 − xk)− (2⌈10q1xi⌉/10q1 − xi) > c for any k < i, so we get the result.

Then let the next three layers follow the first part, and use f i,2(xj) to obtain f i,5(x) that satisfies:
f i,5
1 (x) = f i−1

1 (x); |f i,5
2 (xi) − yi| ≤ 0.2, f i,5

2 (xj) = 0 when j ̸= i; and f i,5
3 (x) = f i,2

3 (x) =

f i−1
2 (x).

And the last layer is the output of the i-th part, where: f i
1(x) = Relu(f i,5

1 (x) + f i,5
2 (x)) and

f i
2(x) = f i,5

3 (x), which is what we want.

The output part: Just output fn
1 (x), and this is what we want.

It is easy to check that such a network has O(N) nodes and has width O(1), where each parameter is
not greater than O(mC/c). Now we just need to turn the parameters of the above network to be of
q-precision. By Lemma C.5 and each layer defined before, if a node has parameters beyond precision,
we can use a network with O(1) width and ⌈O(lnmC/c)⌉ depth instead of it. So we obtain the
result.

We have the following lemma which is used in the paper [25].
Lemma C.7. For any v ∈ Rn and T ≥ 1, let u ∈ Rn be uniformly randomly sampled from the

hypersphere Sn−1. Then we have P (|⟨u, v⟩| < ||v||2
T

√
8
nπ ) <

2
T .

So we can prove the following lemma.
Lemma C.8. For any given {xi}Ni=1 ⊂ Rn where ||xi||∞ ≤ 1 and ||xi − xj ||∞ > c, any given
yi ∈ [m], there exists a network f with width O(1) and depth O(N⌈ lnmNn/c

q ⌉) that can satisfy
|f(xi)− yi| < 0.2.

Proof. Firstly, we can find a vector u ∈ Rn that satisfies ||u||2 = 1 and |uxi − uxj | > Ω( c
N2n ), just

using Lemma C.7.

Then, we can find a ur ∈ Rn such that: ||ur − u||∞ ≤ O( c
N2n2 ) and each weight of ur is a finite

decimal with precision O(ln(N
2n2

c )/q), so we have |urxi − urxj | > Ω( c
N2n ) and |urxi| ≤ 2n.
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Then, we can use a layer to map xi to urxi + 2n, and then use Lemma C.6 to find an FNN to
memorize {(urxi + 2n, yi)} and obtain the result.

C.3 Proof of Theorem 4.1

Now we prove Theorem 4.1.

Proof. The proof has five parts.

For any given (x, y) ∈ S, we define a sequence sx,i ∈ 2{a,b} as follows: sx,i has the same length as
x, and the j-th element of sx,i is a if and only if x[j] = γi.

Part One: The Embedding.

We will embed in the following way:

The basic symbols γi will embed in (vi1, v
i
2, . . . , v

i
T ) ∈ {0, 1}4T where vij = (0, 0, 1, 1) when j ̸= i,

vii = (0, 1, 0, 1).

Hence, the input sentence x whose len(x) = n will be embedded in a vector Vx ∈ {0, 1}n×4T .

Part Two: Use the O(⌈ln(L lnL)/q⌉) layers to calculate the position value.

Let α be the minimum positive integer such that e10
α ≥ L3L. It is easy to see that α ≤ O(ln(L lnL).

Step one: Firstly, for any input x whose embedding matrix is Vx, we use ⌈α
q ⌉ hidden layer to make

all the (4i− 1)-th columns of Vx expand 10α times, where i ∈ [T ].

To do this, in the first [α/q] layers, we make the parameters in the FNN layer and attention layer
0, but the transition matrix in the residual layer is defined as: the (j, j)-th weight of the transition
matrix is 1 if j ̸= 4i− 1 for any i ∈ [T ]; the (4i− 1, 4i− 1)-th weight is 10q; other weights are 0.
Of course, to make the (4i− 1)-th columns expand 10α times, in the [α/q] + 1-th layer, the transition
matrix in the residual layer is 10α−q[αq ] at (4i− 1, 4i− 1)-th weights.

Step two: We use a hidden layer to calculate q10
α

a (sx,i, k).

Firstly, let the attention layer in this hidden layer have T heads and let the i-th head in this attention
layer be written as softmax(xQiKix

T + M)xVi, where Qi ∈ {0, 1}4T×4T , the (4i, 4i − 1)-th
weight of Qi is 1, others are 0; Ki ∈ {0, 1}4T×4T and Ki is the identity matrix; Vi ∈ {0, 1}4T×4T ,
where the (4i− 2, 4i− 2)-th weights of Vi are 1 and others are 0.

Now, we consider the output of the i-th head when input x into the transformer, assuming that the
output of the previous step is x′. Firstly, by part one and the definition of Qi,Ki, we know that the
k-th row of x′QiKix

′T is

x′
kQiKix

′T

= x′
kQix

′T

= ((x′
k)4i(x

′
1)4i−1, (x

′
k)4i(x

′
2)4i−1, . . . , (x

′
k)4i(x

′
n)4i−1)

= ((x′
1)4i−1, (x

′
2)4i−1, . . . , (x

′
n)4i−1)

= 10α(I(x[1] ̸= γi), I(x[2] ̸= γi), . . . , I(x[n] ̸= γi)).

Hence, considering the definition of M , the weight in k-th row and 4i − 2-th column of

softmax(x′QiKix
′T +M)x′ is

∑k
j=1 I(x[1]=γi)

e10α
∑k

j=1 I(x[1]̸=γi)+
∑k

j=1 I(x[1]=γi)
, which is equal to q10

α

a (sx,i, k).

Then, it is easy to check that (4i− 2)-th column of softmax(x′QiKix
′T )x′Vi is

(q10
α

a (sx,i, 1), q
10α

a (sx,i, 2), q
10α

a (sx,i, 3), . . . , q
10α

a (sx,i, len(x)))
T .

By the definition of Vi, it is easy to know that other columns of softmax(x′QiKix
′T )x′Vi are 0.

Hence, let the residual layer use a matrix W ∈ {0, 1}4T×4T , which is defined as: for the i ∈ [T ],
(4i− 1, 4i− 1)-th and (4i, 4i)-th weights of Wi are 1, and the other weights are 0. The FNN layer is
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all 0. Then, assume that the whole layer will calculate a matrix M1(x) ∈ Rlen(x)×4T by inputting x
to the transformer. It is easy to check that the (4i− 2)-th (i ∈ [T ]) column of M1(x) is

(q10
α

a (sx,i, 1), q
10α

a (sx,i, 2), q
10α

a (sx,i, 3), . . . , q
10α

a (sx,i, len(x)))
T .

Other columns are the same as Vx.

Step three: Next, we use a hidden layer to calculate V 10α

a (sx,i, k).

In this layer, the input is the M1(x) gotten by the above layer, so we can calculate the position value
by M1(x).

Let the attention layer in this layer have T heads, and in the i-th head (i ∈ [T ]), we have Qi = Ki = 0,
Vi ∈ {0, 1}4T×4T , and the (4i− 2, 4i− 2)-th weights of Vi are 1, while others are 0.

Because Qi = Ki = 0, it is easy to check that in the i-th head, it holds

softmax(M1(x)QiKiM
T
1 (x) +M)M1(x) = softmax(0 +M)M1(x) = I↓M1(x),

where I↓ is an under-triangle semi-matrix, and the i-th row is ( 1i ,
1
i , . . . ,

1
i , 0, 0, . . . , 0) (the first i

weights are 1/i, while others are 0). Considering that V 10α

a (s, k) = 1
k

∑k
i=1 q

10α

a (s, i), based on the
definition of M1(x), we know that the 4i− 2 columns of i-th head are

I↓((M1(x)
T )4i−2)

T = (V 10α

a (sx,i, 1), V
10α

a (sx,i, 2), V
10α

a (sx,i, 3), . . . , V
10α

a (sx,i, len(x)))
T .

By the definition of Vi, it is easy to know that other columns are 0.

Let the residual layer and the FNN layer in this layer be the same as in the layer in step two. So we
can easily check that when we input the x to the transformer, we can obtain the matrix M2(x) in this
layer, whose (4i− 2)-th column (i ∈ [T ]) is

(V 10α

a (sx,i, 1), V
10α

a (sx,i, 2), V
10α

a (sx,i, 3), . . . , V
10α

a (sx,i, len(x)))
T .

Other columns are the same as M1(x), which implies other columns are the same as vx.

Part Three: Use FNNs.

Define the set Vj = {V 10α

a (sx,i, j)}(x,y)∈S,i∈[T ] where j ∈ [L] and V = ∪j∈[L]Vj .

We try to find an FNN f1 such that:

(1) |f1(1)| < 0.2 and |f1(0)| < 0.2;

(2) If z ∈ Vj/{0, 1}, then there exists a zq ∈ [NT ] such that |f1(z) − zq(NTL)2j−2| < 0.2;
moreover, when z1, z2 ∈ vj , there exists (z1)q ̸= (z2)q .

Since there exist at most NT samples in Vj and Vj ∩ Vi ⊂ {0, 1} when i ̸= j by Lemma C.1, such a
network f1 must exist. Hence, considering Lemma C.4 and Lemma C.6, we know that such an FNN
f1 just needs precision q and O(NLT ⌈L10α lnLNT/q⌉) layers and O(1) width.

Based on the M2(x) and the above f1, when input x to the transformer, we define the matrix M3(x)
which has the same size as M2(x) as: the (4i− 1)-th columns of M3 are f1((M2(x))4i−2), where
(M2(x))4i−2 is the (4i− 2)-th column of M2(x); other columns are the same as those of M2(x).

Then by Lemma B.2, we can use a transformer with width O(1) and depth
O(NLT ⌈10αL lnLNT/q⌉) to obtain M3(x) by M2(x).

Part Four. In this part, we use several hidden layers to obtain a vector that is different from x by
M3(x).

In the first layer, this attention layer has T heads, in the i-th head, Qi = 0, Ki = 0 and Vi ∈
{0, 1}4T×4T such that the (4i− 1, 4i− 1)-th weight of Vi is 1; others are 0.

The residual layer uses W ∈ {0, 1}4T×4T which is defined as: for the i ∈ [T ], (4i − 2, 4i − 2)-th
weights of W are 1, others are 0. The FNN layer is all 0.

Finally, we use ⌈ 2L lnNTL
q ⌉ layers to reduce the (4i− 1)-th columns (i ∈ [T ]) of the output of the

first layer by (NTL)2L times, in order to reduce the norm of the output for the above layer to no
more than 1.
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Let the last row for the output of the above layers be Ml(x) when input x with length n to the
transformer. Then based on the definition of M3(x), we have that:

(1) The (4i− 2)-th weight of Ml(x) is V 10α

a (sx,i, n) for any i ∈ [n].

(2) The (4i− 1)-th weight is
∑n

j=1 f1(V
10α

a (sx,i,j))

n(NTL)2L
for any i ∈ [n].

Firstly, by the definition of position value and f1, it is easy to see that ||Ml(x)||∞ ≤ 1. Then we will
prove that: for all (x, y), (z, yz) ∈ S that do not satisfy typ(x) = typ(z) = γl for some l ∈ [T ], we
have ||Ml(x)−Ml(z)||∞ ≥ min{ 1

e2×10αLL2L+4 ,
1

L(NTL)2L
}.

When typ(x) = typ(z) = 1, let γi = typ(x). Then it is easy to see that γi /∈ typ(z). Now we
consider the (4i− 2)-th weights of Ml(x) and Ml(z). It is easy to see that the (4i− 2)-th weight of
Ml(x) is 1 but the (4i− 2)-th weight of Ml(1) is 0. Which is what we want.

When typ(x) > 1, we consider two situations.

If len(x) ̸= len(z), by typ(x) > 1, there must be an i such that γi ∈ typ(x) and typ(z) ̸= {γi},
so we consider the (4i− 2)-th weights of Ml(x) and Ml(z). By Lemmas C.1 and C.4, for such an
i ∈ [T ], there must be |V 10α

a (sx,i, len(x))− V 10α

a (sz,i, len(z))| > 1
e2×10αLL2L+4 .

If len(x) = len(z), let i ∈ [T ] satisfy sx,i ̸= sz,i. Such i must exist, because sx,i = sz,i implies
that γi has the same position in x and z. Since it stands for any i ∈ [T ], there must be x = z.
If V 10α

a (sx,i, len(x)) ̸= V 10α

a (sz,i, len(z)), then we have similar results as before. If not, then

we consider the (4i − 1)-th weights of Ml(x) and Ml(z), which are
∑n

j=1 f1(V
10α

a (sx,i,j))

len(x)(NTL)2L
and∑n

j=1 f1(V
10α

a (sz,i,j))

len(z)(NTL)2L
.

Assume k is the maximum one in [n] satisfying V 10α

a (sx,i, k) ̸= V 10α

a (sz,i, k). Based on the
definition of f1 and Lemma C.2, we know that

|
∑n

j=1 f1(V
10α

a (sx,i, j))−
∑n

j=1 f1(V
10α

a (sz,i, j))|
> (NTL)2k−2 − 0.2− (

∑k−1
j=0 NT (NTL)2j−2 + 0.2)

= (NTL)2k−2 − (NTL)2k−2−1
NTL2−1/(NT ) − 0.2L > 1.

So we have

|
∑n

j=1 f1(V
10α

a (sx,i, j))

len(x)(NTL)2L
−

∑n
j=1 f1(V

10α

a (sz,i, j))

len(z)(NTL)2L
| ≥ 1

L(NTL)2L
.

The case of typ(z) > 1 is similar, so we obtain the result.

Part Five.

If typ(x) = typ(z) = γi, Proposition 4.3 shows that there must be F(x) = F (z). Considering the
conditions of the theorem, x and z have the same label, so let S1 = {(x, y) ∈ S : |typ(x)| = 1} ⊂ S
and S2 = {(γi, yi) : ∃(x, yi) ∈ S, typ(x) = γi}. We just need a transformer to memorize S2∪S/S1.

In this part, we use an FNN to obtain the result. By Lemma C.8 and Part Four, since 10α = O(L lnL),
there exists an FNN with depth O(N⌈L2 ln2 NTL/q⌉) and width O(1) which can classify Ml(x)
to y for all (x, y) ∈ S2 ∪ S/S1. Hence, by Lemma B.2, we can use a transformer with depth
(O(N⌈L2 ln2 NTL/q⌉) and width O(1) to simulate that FNN network. Adding all the above four
parts, we can directly get the theorem.

C.4 Proof of Proposition 4.3

Proof. Assume that x satisfies typ(x) = {γi}. To prove the proposition, we need only to show
F(x) = F(γi) for any given transformer F .

Firstly, we will show that, in each hidden layer F j of F , if the input of F j ensures that each row is
the same, then the output of Fj ensures that each row is the same.

We just need to prove it for j = 1; other layers are similar. Let Vx be the embedding matrix of x and
easily see that the input of the first hidden layer is Vx whose rows are the same.
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Let the first layer be written as

F1(Vx) = VxW1 +
∑H

i=1 softmax(VxQiKiV
t
x +M)VxVi

+ FNN(VxW1 +
∑H

i=1 softmax(VxQiKiV
t
x +M)VxVi).

In the attention layer, because each row of Vx is the same, we have softmax(VxQiKiV
t
x +M)Vx =

I↓Vx where I↓ is a semimatrix under, and the i-th row is ( 1i ,
1
i , . . . ,

1
i , 0, 0, . . . , 0) (the first weights

of i are 1/i, others are 0). Then the first hidden layer is

F1(Vx) = VxW1 +

H∑
i=1

I↓VxVi + FNN(VxW1 +

H∑
i=1

I↓VxVi).

By the definition of I↓, we have that I↓Vx = Vx, and by the definition of transformer, it is easy to
see that all other parameter matrices in the attention layer and FNN layer are all right multiplied for
Vx, which does the same transformation between all rows in the Vx. Thus all rows of F1(Vx) are the
same. Similar for the other layers.

To be convenient, let F have l hidden layers and F l(x) be the output of the last hidden layer of F(x).
By the above result, we know that the rows in the output of the first hidden layer are all the same;
hence we can obtain the output of the second hidden layer all the same, and so forth. Finally, we have
that the rows of F l(x) are all the same. Hence, by Lemma B.1, the first row of F l(x) is equal to the
first row, which is also the only row, of F l(γi). So all the rows in the F l(x) are equal to F l(γi).

Now, we can prove the proposition. By the structure of the transformer, the output of the F(x) is a
linear transformation on the last row of F l(x). Because we have shown that each row of the F l(x) is
the same as F l(γi), so F(x) is also equal to the linear transformation on the F l(γi), which is equal
to F(γi). So we get the result.

D Proofs of results in Section 4.2

D.1 Proof of Theorem 4.4

First, we prove the sufficient condition.

Proof. The proof of the sufficient condition for Theorem 5.1 needs three parts.

Part One: In this part, we construct a new set Sss as follows.

For each (x, y) ∈ S, we select an xz ∈ Sx satisfying the following conditions to form a set
Sss = {xz : (x, y) ∈ S}.

(c1) for any k, the xz[len(x) + 1] are the same for all (x, y) ∈ S satisfying typ(x) = {γk}, and

(c2) len(z) ≤ L+ 2 .

By the conditions given in the theorem, (c1) must be satisfied. Based on the definition of Sx, z ∈ Sx

only affects the first L+ 1 symbols and the last symbol in z, and the subsequent symbols will not
affect the overall satisfaction of the conditions in the definition of Sx. So, if z is longer than L+ 2,
we just need to remove the L+ 2 to the penultimate symbols in z, and it is still in the Sx. So, (c2)
can be satisfied.

Part Two: Define a new language.

First, we will use Sss to define a new language Sn.

For any given (x, y) ∈ S and xz ∈ Sx, we define γxz
j = xz[j] if and only if j ≤ len(xz) and

γxz

len(xz)+1 = γ0. Based on that, we define the sentence xk
z = (x, γxz

len(xx)+1, . . . , γ
xz

k ), and let it have
the label yxz

k = γxz

k+1, where k ∈ {len(x), . . . , len(xz)}.

Now we construct a set Sn:

Sn = {(xk
z , y

xz

k )∥xz ∈ Sss, k ∈ {len(x), len(x) + 1, . . . , len(xz)}}.
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We make the following operation on Sn until it stops: If there exists a
((xa)

k
z , y

(xa)z
k ), ((xb)

k
z , y

(xb)z
k ) ∈ Sn such that (xa)

k
z = (xb)

k
z but y(xa)z,k ̸= y(xb)z,k for

some k and len(xa) < len(xb), then remove ((xa)
k
z , y

(xa)z
k ) from Sn.

Second, we show that Sn will be a language. It suffices to show that after doing such an operation,
we can ensure that for any (x1, y1), (x2, y2) ∈ Sn, y1 ̸= y2 implies x1 ̸= x2.

We just need to show that, if (xi, yi) ∈ Sn where i = 1, 2 satisfy y1 ̸= y2 but x1 = x2, the
operation will not stop. To show that, we just need to prove that if (xa)

k
z = (xb)

k
z is valid but

y
(xa)z
k ̸= y

(xb)z
k for some xa ̸= xb and k, then there must be len(xa) ̸= len(xb). If not, we have

xa = (x1)[len(xa)] = (x1)[len(xb)] = xb where x1 = (xa)
k
z , which is a contradiction with xa ̸= xb.

Finally, we show Sn is a language that can be memorized by a no-CoT-transformer.

To prove this, we need only to show that Sn satisfies the condition in Theorem 4.1. For any given
i, if there exists a (xk

z , y
xz

k ) ∈ Sn such that typ(xk
z) = {γi}, by the definition of Sx, there must be

k = len(x). Hence, we have xk
z = x. Then considering (c1) of the definition of Sss, we have that

yxz

k are the same for any xk
z satisfied typ(xk

z) = γi. This result implies that Sn satisfies the condition
in Theorem 4.1.

Moreover, consider that Sn has at most O(L|S|) samples in it and length L+ 2 for each sentence in
it, so such a transformer has width O(T ), depth O(NL2⌈ln2(NTL)L2/q⌉) and heads O(T ).

Part Three: Prove the result.

Assume that F is a no-CoT-transformer that can memorize Sn. We will show that F can memorize S
as a CoT-transformer, which can directly prove Theorem 4.4.

Step One:

For any (x, y) ∈ S such that we do not remove any (xk
z , y

xz

k ) from Sn, where k ∈
{len(x), . . . , len(xz)}. We show that F̂cot(x) = y.

Because we do not remove any (xk
z , y

xz

k ) from Sn (k ∈ {len(x), . . . , len(xz)}) from Sn, there must
be F̂ (xk

z) = yxz

k , and consider that sentence (xk
z , y

xz

k ) = xk+1
z and yxz

len(xz)
= γ0, so the CoT of

F when input x is (γxz
j )

len(xz)+1
j=len(x)+1, and γx

j = xz[j] if and only if j ≤ len(z), and γxz

len(xz)+1 = γ0

meaning stop. Then by the definition of γxz
j , we know that the symbol before γ0 is y, so F̂cot(x) = y.

We get the result.

Step Two:

For any (x, y) ∈ S such that we have removed some (xk
z , y

z
k) from Sn, we show that F̂cot(x) = y.

If not, let (x, y) ∈ S be the sentence of maximum length such that F̂cot(x) ̸= y.

Let km be the minimum value such that (xkm
z , yxz

km
) has been removed from Sn. Then let (x1, y1) ∈ S

be the maximum length sentence such that (x1)
km
z = xkm

z . Because (xkm
z , yxz

km
) has been removed

from Sn, so there exists at least one (x0, y0) ∈ S such that xkm
z = (x0)

km
z and len(x0) > len(x), so

we have x1 ̸= x and len(x1) > len(x). Now we will show that F̂cot(x1) = F̂cot(x) and y = y1, so
we have F̂cot(x1) ̸= y1, which is a contradiction to the maximum of len(x).

Firstly, we show that there must be y = y1. Considering that (xz)[len(x1)] = x1 and len(x1) > len(x),
by the definition of Sx, we know that y = y1.

Secondly, by the minimum of km, similar to step one, we know that the first km − len(x) step
CoT of F when input x is (yxz

len(x), y
xz

len(x)+1, . . . , y
xz

km−1) = (γxz

len(x)+1, γ
xz

len(x)+2, . . . , γ
xz

km
). Con-

sidering that km ≥ len(x1) and (x1)
k
z = xk

z for any k ≤ km, so by the minimum of km, we know
that the first km − len(x1) step CoT of F when input x1 is (y

(x1)z
len(x1)

, y
(x1)z
len(x1)+1, . . . , y

(x1)z
km−1) =

(γxz

len(x1)+1, γ
xz

len(x1)+2, . . . , γ
xz

km
).

It is easy to see that

(x, γz
len(x)+1, γ

z
len(x)+2, . . . , γ

z
km

) = (x1, γ
z
len(x1)+1, γ

z
len(x1)+2, . . . , γ

z
km

),
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which implies that x adding the first km − len(x) steps of CoT is equal to x1 adding the first
km − len(x1) steps CoT, according to the definition of CoT-transformer, there must be F̂cot(x1) =

F̂cot(x).

Second, we prove the necessity of the condition.

Proof. We will show that, if the conditions are not satisfied, then such a language cannot be memo-
rized by any CoT-transformer.

Part One.

Firstly, we show that when Sx = ϕ for some (x, y) ∈ S, S cannot be memorized by any CoT-
transformer.

If not, let S be memorized by a CoT-transformer F . Then we can obtain a CoT for such an x and
write the CoT as (x, γi1 , γi2 , . . . , γin , y, γ0).

Then we prove that (x, γi1 , γi2 , . . . , γin , y) ∈ Sx, which is in contradiction to Sx = ϕ and thus prove
the result.

We just need to verify that (1), (2), (3) in the definition of Sx are correct.

First, it is easy to see that (1) in the definition of Sx is correct.

For (2), if (2) is not correct, then |typ(x, γi1)| = 1. By Proposition 4.3, we know that
F̂ ((x, γi1)) = F̂ (x) = γi1 , so γi2 = γi1 . Similar to any γik where k ∈ [n]. So we have
y = γi1 = F((x, γi1 , γi2 , . . . , γin)) = F((x, γi1 , γi2 , . . . , γin , y)) = γ0, but based on the defi-
nition of γ0, there must be γ0 ̸= y, which is contradictory.

For (3), if for some (x1, y1) ∈ S such that x1 = (x, γi1 , γi2 , . . . , γim) for some m ≥ 1, then by the
definition of CoT-transformer, we have F̂ (x1) = F̂ (x), so there must be y1 = y. So we prove the
result.

Part two.

We show that if ∩(x,y)∈S:typ(x)={γk}S
1
x = ϕ for some γk ∈ Γ which satisfies {(x, y) ∈ S : typ(x) =

{γk}} ≠ ϕ, Then S cannot be memorized by a CoT-transformer.

By Proposition 4.3, we know that for any sentences (x1, y1), (x2, y2) ∈ S such that typ(x1) =
typ(x2) = {γk}, the output of F(x1) and F(x2) are the same, which implies that if S can be
memorized by a CoT-transformer, the first symbol in CoT is the same for F when input x1 or x2.
Considering the arbitrariness of x1 and x2, the above result implies that ∩(x,y)∈S:typ(x)={γk}S

1
x ̸= ∅,

so we can obtain the result.

D.2 Proof of Proposition 4.5

Proof. We first prove (1) in the proposition. We show that if the set of the last elements of all
sentences in S is a proper subset of Γ, that is, {x[len(x)] : (x, y) ∈ S} ⫋ Γ, then S satisfies the
conditions in Theorem 4.4.

Part 1.1. We need a simple result: Let γi ∈ S/{x[len(x)] : (x, y) ∈ S}, and γi(L) =
(γi, γi, γi . . . , γi) be a sentence with length L and all symbols in it are γi. Then for any (x, y) ∈ S
and z ∈ 2Γ, there must be xz = (x, γi(L), z, y) ∈ Sx.

To prove the above result, we just need to verify the three conditions in the definition of Sx.

Condition (1) in the definition of Sx is clearly valid.

For condition (2) in the definition of Sx, because γi /∈ {x[len(x)] : (x, y) ∈ S}, so (xz)[len(x)+1] > 1.

For condition (3) in the definition of Sx. If len(x1) > len(x), considering that len(x1) ≤ L, the last
symbol in (xz)[len(x1)] is γi which must not be the last symbol in x1. So (xz)[len(x1)] ̸= x1 for any
len(x1) > len(x), implying condition (3).

Part 1.2. Now we can prove (1) in the proposition. We just need to verify the conditions in Theorem
4.4.
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Firstly, by the result in Part 1.1, we know that Sx ̸= ϕ for any (x, y) ∈ S.

Secondly, for any γj such that {(x, y) ∈ S : typ(x) = γj} ̸= ∅, we have γj ∈ {x[len(x)] : (x, y) ∈
S}, so j ̸= i where i is defined in Part 1.1. Then we know that γi ∈ ∩(x,y)∈S,typ(x)=γj

S1
x by Part

1.1. This proves (1).

We now prove (2) in the proposition. We show that if len(x) = L for all (x, y) ∈ S, then S satisfies
the conditions in Theorem 4.4.

Part 2.1. We need a simple result: for any (x, y) ∈ S, if γi ̸= x[len(x)], then for any z ∈ 2Γ, there
must be xz = (x, γi, z, y) ∈ Sx. In fact, by definition of Sx, this is obvious.

Part 2.2. Now we can prove (2) in the proposition. We just need to verify the conditions in Theorem
4.4.

Firstly, by the result in Part 2.1, we know that Sx ̸= ϕ for any (x, y) ∈ S.

Secondly, for any γj such that {(x, y) ∈ S : typ(x) = γj} ≠ ∅, we just need to take i ̸= j, then we
know that γi ∈ ∩(x,y)∈S,typ(x)=γj

S1
x by Part 2.1. This proves (2).

E Proofs of results in Section 4.3

E.1 Proof for Proposition 4.7

We just need to verify the conditions in Theorems 4.1 and 4.4 for language LCP.

Proof. It is easy to see that (2) and (3) in Proposition 4.7 can directly lead to (1), so we just need to
prove (2) and (3) of Proposition 4.7.

For no-CoT-transformer.

For LCP=1
n , we consider the sentence xi = (γ1, γ1, . . . , γ1) where len(xi) = i. It is easy to see

that xi and xi+1 have different labels by the definition of LCP, but typ(xi) = typ(xi+1) = {γ1}.
So LCP=1

n does not satisfy the conditions in Theorem 4.1, and cannot be memorized by no-CoT-
transformer.

For LCP>1
n . It is easy to see that (x, y) ∈ LCP>1

n implies |typ(x)| > 2, so LCP>1
n satisfies the

conditions in Theorem 4.1, and can be memorized by no-CoT-transformer.

For CoT-transformer.

For LCP=1
n and (x, y) ∈ LCP=1

n , let typ(x) = γx. It is easy to check that (x, γi, xcot, y) ∈ Sx

for any γi ̸= γx and xcot ∈ 2Γ. So LCP=1
n satisfies the conditions in Theorem 4.4, and can be

memorized by CoT-transformer.

For LCP>1
n and (x, y) ∈ LCP>1

n such that len(x) < n. If xz = (x, γi, xcot, y) ∈ Sx for some
γi ∈ Γ and xcot ∈ 2Γ, then by the fact ((x, γi), y1) ∈ LCPn, we have (xz)[len(x)]+1 = (x, γi) but
y1 ̸= y, which is contradictory with the definition of Sx. So LCP>1

n does not satisfy the conditions
in Theorem 4.4, and cannot be memorized by CoT-transformer.

E.2 Proof of Proposition 4.8

This proof also follows the proof of Theorem 4.1.

Proof. The proof has five parts. And we still define sx,i as that in the proof of Theorem 4.1.

Part One: The Embedding.

We will embed in the following way:

The basic symbols γi will embed in (vi1, v
i
2, . . . , v

i
T , 0) ∈ {0, 1}4T+⌈log2L⌉ where vij = (0, 0, 1, 1)

when j ̸= i, and vii = (0, 1, 0, 1).

The position embedding for n-th position is (0, 0, . . . , 0, n2) ∈ {0, 1}4T+⌈log2L⌉, where n2 ∈
{0, 1}⌈log2L⌉ is the binary representation of n, such as when n = 11, the n2 = (0, 0, . . . , 0, 1, 0, 1, 1).
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Hence, the input sentence x satisfying len(x) = n will be embedded in a vector Vx ∈
{0, 1}n×(4T+⌈log2 L⌉).

Parts Two, Three, Four.

In these three parts, we do the operation for the first 4T columns in Vx the same as that in the proof
of Theorem 4.1, and keep the value of the last ⌈log2L⌉ columns unchanged through these parts.

Similar to that in Part Four in the proof of Theorem 4.1, we show that for any (x, yx), (z, yz), we can
obtain a different vector for x and z.

If x and z do not satisfy typ(x) = typ(z) = {γl} for some l ∈ [T ], then we consider the first 4T
columns and follow the proof in part four in the proof of Theorem 4.1.

If x and z satisfy typ(x) = typ(z) = {γl} for some l ∈ [T ], then there must be len(x) ̸= len(z), so
we consider the last ⌈log2 L⌉-th columns. Based on the definition of the position embedding, we
know that the ⌈log2 L⌉-th columns in the last row of the embedding matrix of x and z are different,
and the L∞ norm of the difference between them is at least 1. Since the last ⌈log2 L⌉-th columns are
unchanged through these parts, we obtain the result.

Part Five.

Quite similar to Part Five in the proof of Theorem 4.1.

E.3 Proof for Proposition 4.10

Proof. We will show that, if |typ(x)| > 1 for any (x, y) ∈ S and the conditions in Theorem 4.4
are not satisfied, then such a language cannot be memorized by any CoT-transformer with position
encoding.

Because |typ(x)| > 1 for any (x, y) ∈ S, we need only to show that if Sx = ϕ for some (x, y) ∈ S,
then S cannot be memorized by any CoT-transformer with position encoding.

If not, assume that S can be memorized by a CoT-transformer F with position encoding. Then we
can obtain a CoT for such x, written as (x, γi1 , γi2 , . . . , γin , y, γ0).

Then we prove that (x, γi1 , γi2 , . . . , γin , y) ∈ Sx, which is a contradiction to Sx = ϕ and we prove
the result.

We just need to verify (1), (2), (3) in the definition of Sx are true.

First, it is easy to see that (1) in the definition of Sx is true.

For (2), because |typ(x)| > 1, so it obviously stands.

For (3), for some (x1, y1) ∈ S such that x1 = (x, γi1 , γi2 , . . . , γim) for some n ≥ m ≥ 1, even
with position encoding, we have F(x1) = F ((x, γi1 , γi2 , . . . , γim)), so by the definition of CoT-
transformer, we have F̂ (x1) = F̂ (x), so there must be y1 = y. So we prove the result.

F Proofs of results in Section 5

F.1 Proof for Theorem 5.1

Proof. Let LN = [logT N ] + 1 which satisfies TLN ≥ N , because N,T ≥ 3, so [logT N ] + 1 ≤
2 lnN . We can arbitrarily select the sentence N with length LN . By Corollary 4.2 and Proposition
4.5, we know that the language composed of these sentences with arbitrary labels must meet the
conditions of Theorem 4.1 and Theorem 4.4. It is easy to see that for these N sentences, there exist
TN different situations to assign labels to them. Hence TN different languages can be created by
these N sentences. We will show that at least one of these languages requires a no-CoT-transformer
(CoT-transformer) with at least N lnT

6q parameters to memorize it, which is what we want.

It is easy to see that for a transformer with not more than P parameters, its width, head, and
depth are all smaller than P , so for any T ≥ 3 there exist at most P 3 pairs of W,D,H such that
para(W,D,H, T ) ≤ P . Hence, for any W,D,H such that para(W,D,H, T ) ≤ P , considering that
each parameter has precision q, we have that each parameter has at most 102q different choices. So,
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there exist at most (102q)P different transformers in Hq
W,D,H (or Hq

W,D,H,cot for CoT transformer).
So, there exist at most P 3(102q)P situations for a no-CoT transformer (or CoT transformer) with P
parameters and precision q.

So to memorize all these TN languages created by such N sentences, at least TN different trans-
formers are required. So, if each of these languages can be memorized by a no-CoT-transformer
(CoT-transformer) with not more than P parameters, there must be TN ≤ P 3(102q)P , which implies
N lnT ≤ 3 lnP + 2qP ln 10 ≤ 6qP (q ≥ 3 is used here). The theorem is proved.

F.2 Proof of Proposition 5.3

F.2.1 Proof of Proposition 5.3 for no-CoT transformers

In this section, we give the proof of Proposition 5.3 for no-CoT transformers.

We give an easy lemma at first.
Lemma F.1. If {ai}ni=1, {bi}ni=1 ⊂ R+ satisfy that:

(1) for any i ̸= j, we have |ai − aj | ≥ 1, |bi − bj | ≥ 1 and

(2) for any i, j ∈ [n], we have |bi − aj | ≥ 1 when ai ̸= bj .

Then it holds | 1∑n
i=1 eai

− 1∑n
i=1 ebi

| ≥ 1
(
∑n

i=1 eai )(
∑n

i=1 ebi )
.

Proof. Just need to prove that
∑n

i=1 e
ai −

∑n
i=1 e

bi > 1. Without loss of generality, let ai ≥ ai+1

and bi ≥ bi+1. Assume k ∈ [n] is the minimum such that ak ̸= bk, and let ak > bk. Then we have
that:

∑n
i=1 e

ai −
∑n

i=1 e
bi ≥ eak −

∑n
i=k e

bi ≥ eak − ebk−n+k+1 en−k−1
e−1 > eak(1− 1/(e− 1)) >

e− e/(e− 1) > 1, which is what we want.

We now prove Proposition 5.3 for no-CoT transformers.

Proof. We follow the proof of Theorem 4.1. And we still define sx,i as that in the proof of Theorem
4.1.

Part One: Embedding

This is the same as Part One in the proof of Theorem 4.1.

Part Two: Use the three layers to calculate the position value.

This is the same as Part two in the proof of Theorem 4.1. But because there exists no precision
limitation for the transformer, we just need three layers.

Part Three.

Define the set Vj = {V 10α

a (sx,i, j)}(x,y)∈S,i∈[T ] where j ∈ [L] and V = ∪j∈[L]Vj . Let A ∈ R+

satisfy |Ax−Az| > 1 for any x, z ∈ V .

In this proof, we define matrix M3(x) which has the same size as M2(x) as: the (4i− 3)-th column
of M3 is A(M2(x))4i−2, where (M2(x))4i−2 is the (4i − 2)-th column of M2(x); other columns
are the same as M2(x). It is easy to see that a hidden layer with width O(1) is enough to calculate
M3(x) by M2(x).

Next, we use an FNN f1 : R → R to map 0 and 1 to 1, but other values in V to 0. It is easy to see
that such a network f1 need only the O(1) layers and O(1) width.

Based on such FNN f1 and M3(x), we define a matrix M4(x) which has the same size as M3(x)
as: the (4i− 1)-th column of M4(x) is f1((M3)4i−2), where (M3)4i−2 is the (4i− 2)-th column of
M3(x); other columns are the same as M3(x).

Then by Lemma B.2, we can use a transformer with width O(1) and depth O(1) to obtain M4(x) by
M3(x).

Part Four.

In this part, we use two hidden layers to obtain a vector by M4(x), which is different from x.
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In this layer, this attention layer has T heads, and in the i-th head, Qi ∈ R4T×4T and the (4i, 4i− 3)-
th weight of Qi is 1, and others are 0; Ki = I and Vi ∈ {0, 1}4T×4T and the (4i − 1, 4i − 1)-th
weights of Vi are 1 and others are 0.

The residual layer uses W ∈ {0, 1}4T×4T which is defined as: for i ∈ [T ], (4i−2, 4i−2)-th weights
of W is 1, others are 0. The FNN layer is 0.

Let the last row for the output of this layer be Ml(x) when input x with length n to the transformer,
then based on the definition of M4(x), we have that:

(1) The (4i− 2)-th weight of Ml(x) is V 10α

a (sx,i, n).

(2) The (4i− 1)-th weight of Ml(x) is
∑n

j=1 eAV 10α
a (sx,i,j)f1(V

10α

a (sx,i,j))∑n
j=1 eAV 10α

a (sx,i,j)
.

We will prove that for all (x, y), (z, yz) ∈ S that do not satisfy typ(x) = typ(z) = γl for some
l ∈ [T ], we have ||Ml(x)−Ml(z)||∞ > 0.

When typ(x) = typ(z), the proof is similar to the proof of Theorem 4.1.

When len(x) ̸= len(z) and typ(x) > 2, the proof is similar to the proof of Theorem 4.1.

When len(x) = len(z) and typ(x) > 2, let i ∈ [T ] satisfy sx,i ̸= sz,i. If V 10α

a (sx,i, len(x)) ̸=
V 10α

a (sz,i, len(z)), then we have the same result as before; if not, by Lemma C.2, we know that
there exist the same number of 1 or 0 in {V 10α

a (sx,i, j)}len(z)j=1 and {V 10α

a (sz,i, j)}len(z)j=1 . Based on
the definition of f1, we know that

n∑
j=1

eAV 10α

a (sx,i,j)f1(V
10α

a (sx,i, j)) =

n∑
j=1

eAV 10α

a (sz,i,j)f1(V
10α

a (sz,i, j)) ̸= 0.

Hence, based on Lemmas F.1 C.1 and C.2, and considering the definition of A, we know that
| 1∑n

j=1 eAV 10α
a (sx,i,j)

− 1∑n
j=1 eAV 10α

a (sz,i,j)
| > 0, so we prove the result.

Part Five. Quite similar to Part Five in the proof of Theorem 4.1. But because there exists no
precision limit on the transformer, we just need O(N) layers as shown in Lemma C.8.

F.2.2 Proof of Proposition 5.3 for CoT transformers

In this section, we give the proof of Proposition 5.3 for CoT transformers.

Proof. The proof is based on the proof of Theorem 4.4.

Part One.

We need only to change the definition of Sss.

For each (x, y) ∈ S, we put an xz ∈ Sx satisfying the following conditions into set Sss = {xz :
(x, y) ∈ S}:

(c1) for any k, the symbols xz[len(x) + 1] are the same for all (x, y) ∈ S such that typ(x) = {γk};

(c2) len(xz)− len(x) ≤ N + 1.

We just need to consider (c2).

For a (x, y) ∈ S such that |typ(x)| > 1. Let xz ∈ Sx and len(xz) be the minimum. If len(xz) −
len(x) > N , then there exists a len(x) < l < len(z) such that there exists no (z, yz) ∈ S such that
yz ̸= y and len(z) = l.

So we consider a sentence xl = ((xz)[l−1], y). It is easy to check that xl ∈ Sx and len(xl) < len(xz)
which are contradictory to the minimum of len(xz). So len(xz)− len(x) ≤ N .

For a (x, y) ∈ S such that typ(x) = {γi}. By the condition of Theorem 4.4, let γj ∈
∩(x,y)∈S,typ(x)={γi}S

1
x.

Then we let xz ∈ Sx satisfy that xz[len(x) + 1] = γj and len(xz) be the minimum. Similar to the
above, we can show that len(xz)− (len(x) + 1) ≤ N . So we get the result.
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Parts two and three. These two parts are similar to the proof of Theorem 4.4. Considering that the
Sn constructed by Sss defined in Part One has at most O(N2) samples in it, and using the result in
Section F.2.1, we prove the result.

F.3 Proof of Theorem 5.4

F.3.1 Proof of Theorem 5.4 for no-CoT-transformers

Firstly, we define the following language.

Let Γ = {γ1, γ2}, and Si be a sub-language of LCP with 2 samples (xi
j , y

i
j) where j ∈ {1, 2} in it.

We define that xi
1 is a sentence with length i+ 1, and the i-th element of xi

1 is γ2, the other elements
are γ1; the xi

2 only contains γ1 with length i; the labels are decided by LCP.

Now we can prove Theorem 5.4 for no-CoT-transformers, we show that for any q and P , there exists
an i such that Si cannot be memorized by any transformer in Hq

P,P,P .

Proof. Assuming that for a pair of P, q, each i ∈ Z+, Si can be memorized by a non-CoT transformer
in Hq

P,P,P , we can derive contradictions.

First, let F(x)i be the i-th weight of F(x), then let minF∈Hq
P,P,P

|I(F (γ1)1 = F (γ1)2)+(F (γ1)1−
F (γ1)2)| = ϵ. Following the proof of Theorem 5.1, we know that there exist finite varieties of
different transformers in Hq

P,P,P , so ϵ > 0.

If Si is memorized by F ∈ Hq
P,P,P , then by Proposition 4.3, we have F(xi

2) = F (γ1) for any
i ∈ Z+, so |F(xi

2)1 −F(xi
2)2| = |F (γ1)1 − F (γ1)2| ≥ ϵ.

We will prove that for any given transformer F ∈ Hq
P,P,P , it holds ||F (xi

1) − F (xi
2)||1 → 0

when i → ∞.

If ||F(xi
1)−F(xi

2)||1 → 0 when i → ∞ for any given F ∈ Hq
P,P,P , then because there exist finite

varieties of different transformers in Hq
P,P,P . So there exists an i satisfying that ||F(xi

1)−F(xi
2)||1 <

ϵ/3 for any F ∈ Hq
P,P,P , which implies

F(xi
1)1 −F(xi

1)2 ≥F(xi
2)1 − |F(xi

2)1 −F(xi
1)1| − (F(xi

2)2 + |F(xi
2)2 −F(xi

1)2|)
≥F(xi

2)1 −F(xi
2)2 − 2ϵ/3.

Similarly, it holds F(xi
2)1 − F(xi

2)2 + 2ϵ/3 ≥ F(xi
1)1 − F(xi

1)2. Since |F(xi
2)1 − F(xi

2)2| ≥ ϵ,
any F ∈ Hq

P,P,P will give the same label of xi
1 and xi

2. Considering that xi
2 and xi

1 have different
lengths, by the definition of LCP language, they have different labels. This is contradictory to the
assumption and directly gets the result we want.

To show that, we need three parts, assume F is a transformer in Hq
P,P,P . Let || · ||1,∞ be the maximum

L1 norm of the row in a matrix.

Part One: For any j, in the j-th hidden layer Fj of F , the first i− 1 rows of Fj(x
i
1) and Fj(x

i
2)

are equal to that j-th hidden layer in F(γ1).

This can be proved by using Lemma B.1 and Proposition 4.3.

Part Two: For any i, j and x ∈ Si, in the j-th hidden layer Fj of F , ||Fj(x)||1,∞ ≤ MP,q,j ,
where MP,q,j is a value that does not rely on i but only depends on P, q, j.

In the j-th hidden layer, if the input z of the j-th hidden layer, which is also the output of the (i−1)-th
hidden layer, satisfies that each row has the L1 norm not more than A, then we can show that the
output norm of the j-th hidden layer also depends only on A and P, q. To show that, we just need to
consider the attention layer, FNN and the residual layer respectively.

In the attention layer ATT(z) =
∑P

i=1 softmax(zQiViz
T +M)zKi, since the L1 norm of each row

of softmax(zQiViz
T +M) is 1, and we limited the precision of the transformer, it holds that each

parameter in Ki is not more than 10q . So we can show that each row of ATT(z) will have a L1 norm
no more than P (A× P 2 × 10q).
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Upon the residual layer zw, similar to before, each row has a L1 norm of not more than A×P 2×10q .

In the FNN layer FNN(z+ATT(z)), each row of Z+ATT(z) goes through two transformer matrices,
so the L1 norm of each row has at most O((P 210q)2||z+ATT(z)||1,∞). ||·||1,∞ means the maximum
L1 norm of the row in a matrix.

Adding them, the L1 norm for each row of the output of the j-th hidden layer is at most
O(P (10qP 2)3A).

If we take A = MP,q,j−1, then we know that MP,q,j ≤ O(P (10qP 2)3MP,q,j−1). Considering that
the input of the first hidden layer is only bound by P and q, we have the result.

Part Three: For any j, in the j-th hidden layer F j of F , ||(F j(xi
1))i+1 − F j(xi

2)i|| → 0 when
i → ∞. This directly leads to our result.

To be convenient, we write F j(xi
1) as f(j, 1, i) and F j(xi

2) as f(j, 2, i), and fk(∗, ∗, ∗) means the
k-row of f(∗, ∗, ∗). And let ||f i+1(j − 1, 1, i)− f i(j − 1, 2, i)||1 = η(j − 1, i)

For convenience, we define the input of the first hidden layer as the output of the 0-th hidden layer
(i.e., j = 0) here. Consider that for any i ∈ Z+, the i+ 1 row of x1

i and the i row of x2
i are the same,

so η(0, i) = 0 for the first hidden layer. We will prove that, if η(j − 1, i) satisfies η(j − 1, i) = 0
when i → ∞, then η(j, i) also tends to 0 when i → ∞.

Note that f(j, 1, i) can be calculated as: f(j − 1, 1, i)Wj−1 + ATT(f(j − 1, 1, i)) + FNN(f(j −
1, 1, i)Wj−1 + ATT(f(j − 1, 1, i))).

Firstly, for the residual layer, we have ||(f i+1(j−1, 1, i)−f i(j−1, 2, i))Wj−1||1 ≤ 10qP 2||f i+1(j−
1, 1, i)−f i(j−1, 2, i)||1 = 10qP 2η(j−1, i). Based on the assumption of η(j−1, i), when i → ∞,
it holds ||(f i+1(j − 1, 1, i)− f i(j − 1, 2, i))Wj−1||1 → 0.

Secondly, by part one and Proposition 4.3, the first i − 1 rows of f(j − 1, 1, i) and all rows
of f(j − 1, 2, i) are the same as F j−1(γ1). So in a head of attention layer in Fj , written as
softmax(XQVXT )XK, we have that:

(softmax(f(j − 1, 1, i)QV f(j − 1, 1, i)T +M)f(j − 1, 1, i))i+1

= (i−1)esfi(j−1,2,i)
(i−1)es+ev+ew + evfi(j−1,1,i)

(i−1)es+ev+ew + ewfi+1(j−1,1,i)
(i−1)es+ev+ew ,

where s = f i+1(j−1, 1, i)QV (f i−1(j−1, 1, i))T , v = f i+1(j−1, 1, i)QV (f i(j−1, 1, i))T , w =
f i+1(j − 1, 1, i)QV (f i+1(j − 1, 1, i))T .

Considering that (softmax(f(j − 1, 2, i)QiVif(j − 1, 2, i)T )f(j − 1, 2, i))i = f i(j − 1, 2, i), let
−(softmax(f(j − 1, 2, i)QV f(j − 1, 2, i)T )f(j − 1, 2, i))i + (softmax(f(j − 1, 1, i)QV f(j −
1, 1, i)T )f(j − 1, 1, i))i+1 = c(i), we have that:

c(i) = (i−1)esfi(j−1,2,i)
(i−1)es+ev+ew + evfi(j−1,1,i)

(i−1)es+ev+ew + ewfi+1(j−1,1,i)
(i−1)es+ev+ew − f i(j − 1, 2, i)

= −(ev+ew)fi(j−1,2,i)
(i−1)es+ev+ew + evfi(j−1,1,i)

(i−1)es+ev+ew + ewfi+1(j−1,1,i)
(i−1)es+ev+ew

Consider that the transformer has precision q and part two, so we have ev+ew

(i−1)es+ev+ew ≤
2e

M2
P,q,j−1P2102q

2e
M2

P,q,j−1
P2102q

+(i−1)e
−M2

P,q,j−1
P2102q

, similar to ev

(i−1)es+ev+ew and ew

(i−1)es+ev+ew . Hence, by

part two, we have that ||c(i)||1 ≤ O(MP,q,j−1
e
P2102qM2

P,q,j−1

2e
P2102qM2

P,q,j−1+(i−1)e
−P2102qM2

P,q,j−1
), which tends

to 0 when i → ∞. And for the whole attention layer with P heads and matrix K, we have
(ATT(f(j − 1, 1, i)))i+1 − (ATT((j − 1, 2, i)))i ≤ 10qP 3||c(i)||1, which is a value that tends to 0
when i → ∞.

Finally, about the FNN layer, similar to Part two, for any given two vectors x1 and x2, we have that
FNN(x1) − FNN(x2) ≤ O((10qp2)2||x1 − x2||1). Consider that we have proved that ||f i+1(j −
1, 1, i)Wj−1−f i(j−1, 2, i)Wj−1||1 → 0 and (ATT(f(j−1, 1, i)))i+1−(ATT((j−1, 2, i)))i → 0
when i → ∞, so it holds FNN(f i+1(j − 1, 1, i)Wj−1 + (ATT(f(j − 1, 1, i)))i+1)− FNN(f i(j −
1, 2, i)Wj−1 + (ATT(f(j − 1, 2, i)))i) → 0 when i → ∞.

Adding the results of such three parts in the j-th hidden layer, we can obtain the result.
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F.3.2 Proof of Theorem 5.4 for CoT-transformers

For the CoT-transformer, we consider the following example.

Let Γ = {γ1, γ2, γ3, γ4}, and S′
i a sub-language of LCP with 10 samples (xi

j , y
i
j) where j ∈ [10] in

it. We define that:

(1) xi
1 is a sentence with length i and all elements in xi

1 are γ1;

(2) xi
j (j = 2, 3, 4) is a sentence of length i+ 1 and the first i elements of xi

1 are γ1, the last one is
γj−1;

(3) xi
j (j = 5, 6, 7) is a sentence of length i+ 2 and the first i elements of xi

1 are γ1, the (i+ 1)-th
element is γ4, and the last is γj−3;

(4) xi
j (j = 8, 9, 10) is a sentence with length i+3 and the first i elements of xi

1 are γ1, the (i+1)-th
element is γ4, the (i+ 2)-th element is γ1, and the last one is {γ1, γ2, γ4}, respectively.

Their labels are decided by LCP. Then we can prove Theorem 5.4 for CoT-transformers. We show
that for any q and P , there exists an i such that S′

i cannot be memorized by any transformer in
Hq

P,P,P,cot.

Proof. Assume that for a pair of P, q, such that any i ∈ Z+, S′
i can be memorized by F ∈ Hq

P,P,P,cot,
we can derive contradictions.

Firstly, if S′
i can be memorized by an F ∈ Hq

P,P,P,cot, we can show that the CoT created by F(xi
1)

is (γ4, γ1, γ3, . . . ) for any i ∈ Z+.

Let the first symbol of the CoT created by F(xi
1) be γj . If j ∈ [3], then it holds (xi

1, γj) = xi
j+1,

which implies F((xi
1, γj)) = F (xi

j+1), so that F will give the same label to xi
1 and xi

j+1. Because
xi
1 and xi

j+1 have different lengths, based on the definition of LCP, they must have different labels.
This is contradictory to F memorizes S′

i. So, we have proved that the first symbol of CoT created
by F(xi

1) is not γ1, γ2, γ3. Thus, the first symbol of the CoT created by F(xi
1) is γ4. For the

second and third symbols in CoT, in a similar way, we can show that the CoT created by F(xi
1) is

(γ4, γ1, γ3, . . . ).

Secondly, by the definition of CoT-transformers and such CoT, we know that F̂ (xi
1) = γ4 and

F̂ ((xi
1, γ4, γ1)) = γ3. Moreover, because xi

1 is a sentence with length i and all elements in xi
1 are

γ1, so by the Proposition 4.3, we have F̂ ((xi
1, γ1)) = F̂ (xi

1) = γ4, which implies F can memorize
{((xi

1, γ1), γ4), ((x
i
1, γ4, γ1), γ3)} as a no-CoT-transformer.

Therefore, based on the assumption, we can deduce that for any i, the language
{((xi

1, γ1), γ4), ((x
i
1, γ4, γ1), γ3)} can be memorized by a F ∈ Hq

P,P,P,cot. So, similar to the proof
of no-CoT-transformers, we prove the result.

F.4 Proof of Corollary 6.1

Let Si be defined as in Section F.3.1, and Sa = ∪i∈Z+
S2i ⊂ LCP. Let S′

i be defined as in Section
F.3.2, and S′

a = ∪i∈Z+S
′
4i ⊂ LCP. It is easy to check that Sa(S′

a) satisfies the conditions in Theorem
4.1(4.4).

Proof. 1. For no-CoT-transformer. If a no-CoT-transformer F can memorize Sa, then we can
prove that the result within two parts, which is similar to the proof of Theorem 5.4.

Part One: For any x2i
2 ∈ Sa, there exists an ϵ > 0 such that |F(x2i

2 )1 − F(x2i
2 )2| ≥ ϵ for any

i ∈ Z+.

By Lemma 4.3, |F(x2i
2 )1 − F(x2i

2 )2| = |F (γ1)1 − F (γ1)2| for any i ∈ Z+. If F (γ1)1 = F (γ1)2,
then F cannot memorize x2i

2 , which is a contradiction with F can memorize Sa. So there exists an
ϵ ∈ R+ such that ϵ = |F (γ1)1 − F (γ1)2| = |F(x2i

2 )1 −F(x2i
2 )2| for any i ∈ Z+.
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Part Two: We have ||F(x2i
1 ) − F(x2i

2 )||1 → 0 when i → ∞, which leads to our result. Consider
that the value of parameters in F has an upper bound and a lower bound, so the proof of this part is
similar to that in the proof of Theorem 5.4, and we omit it.

2. For CoT-transformer. If a CoT-transformer F can memorize S′
a, similar to that in the proof of

Theorem 5.4, for any x4i
1 ∈ S′

a, we know that the CoT created by F(x4i
1 ) is (γ4, γ1, γ3, . . . ) for any

i ∈ Z+, which implies that F can memorize {((x4i
1 , γ1), γ4), ((x

4i
1 , γ4, γ1), γ3)} for any i ∈ Z+ as

a no-CoT-transformer. So, similar to before, we can obtain the result.

F.5 Proof of Proposition 6.3

By Theorems 4.1 and 4.4, (1) in the proposition is apparent. So, we just need to find a sentence in
Arithp such that no-CoT- or CoT-transformers can solve it with confidence c.

Note that for Arithp, γi = i when i ∈ [p], γp+1 is the symbol =.

F.5.1 Proof of Proposition 6.3 for no-CoT transformers

Proof. Let Ci be the sentence ′1 + 1 + 1 + · · · + 1′ in Arithp,n, where there exist i 1s in it. It is
easy to see that Ci has label i mod p. We will show that, for any no-CoT-transformer F , F cannot
memorize some of these sentences with confidence c.

Let F be a no-CoT-transformer and F l be the l-th hidden layer of F .

Firstly, we show that there exists a vector C such that ||F(Ci)− C||2 → 0 when i → ∞.

Assume that the output of Fk when input Ci to the transformer can be written as lk(i), and lkj (i)

means the j-th row of lk(i).

Assume that Fk can be written as

F1(x) = xwk +

H∑
j=1

softmax(xQk
jV

k
j xT +M)xKk

j

+ FNN(xwk +

H∑
j=1

softmax(xQk
jV

k
j xT +M)xKk

j ).

We first consider F1. Let v+ be the embedding vector of symbol + and let v1 be the em-
bedding vector of symbol 1. We have that: l12i−2(i) = v+w

1 +
∑H

j=1
esj v++etj v1

esj+etj
K1

j +

FNN(v+w +
∑H

j=1
esj v++etj v1

esj+etj
K1

j ), where sj = v+Q
1
jV

1
j v

T
+ and tj = v+Q

1
jV

1
j v

T
1 . And we have

l12i−1(i) = v1w +
∑H

j=1
(i−1)e

s′j v++ie
t′j v1

(i−1)es
′
i+iet

′
i

Kj + FNN(v1w +
∑H

j=1
(i−1)e

s′j v++ie
t′j v1

(i−1)e
s′
j+ie

t′
j

Kj), where

s′j = v1Q
1
jV

1
j v

T
+ and t′j = v1QjVjv

T
1 .

It is easy to see that l12i−2(i) does not depend on i, and l12i−1(i) satisfies l12i−1(i) → v1w +∑ e
s′j v++e

t′j v1

es
′
i+et

′
i

K1
j + FNN(v1w +

∑ e
s′j v++e

t′j v1

e
s′
j+e

t′
j

K1
j ) when i → ∞.

By the above result, we can see that the last two rows of l1(i) converge to a vector separately when
i → ∞. Then we will show that if lk−1

2i−2(i) and lk−1
2i−1(i) satisfy that converge to a vector separately

when i → ∞, it also stands for lk2i−2(i) and lk2i−1(i).

For Fk, we have that: lk2i−2(i) = lk−1
2i−2(i)w

k +
∑H

j=1

∑2i−2
p=1 e

sip(j)
lk−1
p (i)∑2i−2

p=1 e
sip(j)

Kk
j + FNN(lk−1

2i−2(i)w
k +∑H

j=1

∑2i−2
p=1 e

sip(j)
lk−1
p (i)∑2i−2

p=1 e
sip(j)

Kk
j ), where sip(j) = lk−1

2i−2(i)Q
k
jV

k
j (lk−1

p (i))T .

We will show that lk2i−2(i) will converge to a vector, similar for lk2i−1(i), so we can prove our
conclusion.
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Firstly, without loss of generality, assume that limi→∞ lk−1
2i−2(i) = vec1 and limi→∞ lk−1

2i−1(i) = vec2.

Secondly, by Lemma B.1, we have lk−1
p (i) = lk−1

p ([p+2
2 ]) when i ≥ [p+2

2 ],

so
∑H

j=1

∑2i−2
p=1 e

sip(j)
lk−1
p (i)∑2i−2

p=1 e
sip(j)

Kk
j =

∑H
j=1

∑2i−2
p=1 e

sip(j)
lk−1
p ([ p+2

2 ])∑2i−2
p=1 e

sip(j)
Kk

j and sip(j) =

lk−1
2i−2(i)Q

k
jV

k
j (lk−1

p (i))T = lk−1
2i−2(i)Q

k
jV

k
j (lk−1

p ([p+2
2 ]))T .

Note that si2p(j) = lk−1
2i−2(i)QjVj(l

k−1
2p (p+1))T tends to tj1 = vec1QjVj(vec1)

T when p, i → ∞ and
si2p+1(j) = lk−1

2i−2(i)QjVj(l
k−1
2p+1(p+ 1))T tends to tj2 = vec1QjVj(vec2)

T when i, p → ∞. Using

Lemma F.2, we have that limi→∞

∑2i−2
p=1 e

sip(j)
lk−1
p ([ p+2

2 ])∑2i−2
p=1 e

sip(j)
= et

j
1vec1+et

j
2vec2

et
j
1+et

j
2

. So limi→∞ lk2i−2(i) =

vec1w
k +

∑H
j=1

et
j
1vec1+et

j
2vec2

et
j
1+et

j
2

Kk
j + FNN(vec1w

k +
∑H

j=1
et

j
1vec1+et

j
2vec2

et
j
1+et

j
2

Kk
j ), and we get the

result.

Finally, considering that the output of the transformer is only dependent on the the last row in the last
hidden layer (i.e. lL2i−1(i) when input Ci to the transformer), which has a limitation when i → ∞.
So, we know that F(Ci) has a limitation when i → ∞.

Secondly, we prove the result.

Let C[k] be the k-th weight of C. Then if C[k] > C[j] for some k, j ∈ [p], then by the above result
F(Ci) → C when i → ∞, there exists an i0 such that for any i > i0, it holds (F (Ci))k > (F (Ci))j .
We take an i1 such that i1 mod p = j and i1 > i0. Then we have that F will not give Ci1 the
correct label j, because (F (Ci1))k > (F (Ci1))j , which implies F cannot memorize the Arithp,n.

If C[1] = C[2] = C[3] = . . . C[P ], then there exists an i0 such that when i > i0, we have
|(F (Ci))k − C[k]| < c/2, which implies that |(F (Ci))k − (F (Ci))j | < c for any i > i0 and k ̸= j,
so F cannot memorize Arithp,n with confidence c.

The above proof needs the following lemma.

Lemma F.2. If a sequence of positive real numbers {xi} satisfies that limp→∞ x2p = a > 0 and
limp→∞ x2p+1 = b > 0, and a sequence of vectors {zi} satisfies that limp→∞ z2p = vc and

limp→∞ z2p+1 = vd, then limp→∞

∑p
j=1 xjzj∑p
j=1 xj

= (avc + bvd)/(a+ b).

Proof. Assume that i(ϵ) satisfies that if p > i(ϵ), then |x2p−a| < ϵ, |x2p+1−b| < ϵ, ||y2p−vc||2 < ϵ
and ||y2p+1 − vd||2 < ϵ.

Then we have that:
∑p

j=1 xjyj∑p
j=1 xj

=
∑i(ϵ)−1

j=1 xjyj∑p
j=1 xj

+
∑p

j=i(ϵ)
xjyj∑p

j=i(ϵ)
xj

∑p
j=i(ϵ)

xj∑p
j=1 xj

.

Firstly, it is easy to see that for any given ϵ, when p → ∞, we have
∑i(ϵ)−1

j=1 xjyj∑p
j=1 xj

→ 0, because

a, b > 0, and
∑p

j=i(ϵ)
xj∑p

j=1 xj
→ 1 also because the a, b > 0.

Secondly, we show that
∑p

j=i(ϵ)
xjyj∑p

j=i(ϵ)
xj

→ (avc + bvd)/(a+ b) when ϵ → 0 and p− i(ϵ) → ∞, which

can directly prove our result.

We consider the
∑p

j=i(ϵ)
xjyj∑p

j=i(ϵ)
xj

−
vc

∑p
j=i(ϵ),j|2=0

xj∑p
j=i(ϵ)

xj
−

vd
∑p

j=i(ϵ),j|2=1
xj∑p

j=i(ϵ)
xj

at first. We have that:

||
∑p

j=i(ϵ)
xjyj∑p

j=i(ϵ)
xj

−
vc

∑p
j=i(ϵ),j|2=0

xj∑p
j=i(ϵ)

xj
−

vd
∑p

j=i(ϵ),j|2=1
xj∑p

j=i(ϵ)
xj

||2

= ||
∑p

j=i(ϵ),j|2=0
xj(yj−vc)+

∑p
j=i(ϵ),j|2=1

xj(yj−vd)∑p
j=i(ϵ)

xj
||2

≤
∑p

j=i(ϵ),j|2=0
xjϵ+

∑p
j=i(ϵ),j|2=1

xjϵ∑p
j=i(ϵ)

xj

= ϵ.
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So
∑p

j=i(ϵ)
xjyj∑p

j=i(ϵ)
xj

→
vc

∑p
j=i(ϵ),j|2=0

xj∑p
j=i(ϵ)

xj
+

vd
∑p

j=i(ϵ),j|2=1
xj∑p

j=i(ϵ)
xj

when ϵ → 0.

Hence, we show that we have
∑p

j=i(ϵ),j|2=0
xj∑p

j=i(ϵ)
xj

= a
a+b when ϵ → 0 and p− i(ϵ) → ∞.

Because vp
1 (a−ϵ)

vp
1 (a+ϵ)+vp

2 (b+ϵ)
≤

∑p
j=i(ϵ),j|2=0

xj∑p
j=i(ϵ)

xj
≤ vp

1 (a+ϵ)

vp
1 (a−ϵ)+vp

2 (b−ϵ)
, where vp1 (vp2 ) is the number of even

(odd) in [i(ϵ), p]. It is easy to see that when ϵ → 0 and p− i(ϵ) → ∞, we have vp
1 (a−ϵ)

vp
1 (a+ϵ)+vp

2 (b+ϵ)
→

a/(a+ b) and vp
1 (a+ϵ)

vp
1 (a−ϵ)+vp

2 (b−ϵ)
→ a/(a+ b). By the squeeze theorem, we get the result.

Similarly,
∑p

j=i(ϵ),j|2=1
xj∑p

j=i(ϵ)
xj

= b
a+b when ϵ → 0 and p− i(ϵ) → ∞.

Combining the above results, we have

limϵ→0,p−i(ϵ)→∞

∑p
j=i(ϵ)

xjyj∑p
j=i(ϵ)

xj

= limϵ→0,p−i(ϵ)→∞
vc

∑p
j=i(ϵ),j|2=0

xj∑p
j=i(ϵ)

xj
+

vd
∑p

j=i(ϵ),j|2=1
xj∑p

j=i(ϵ)
xj

= avc+bvd
a+b

So we get the result.

F.5.2 Proof of Proposition 6.3 for CoT-transformers

Proof. Let Cj
i be the sentence 1 + 1 + 1 + · · ·+ 1 + j in Arithp,n, where there exist i 1s in it and

j ∈ [p]. It is easy to see that, Cj
i has label (i+j) mod p. We will show that, for any CoT-transformer

F , F cannot give some of such sentences a correct CoT with confidence c.

Assume that F is a CoT-transformer and can solve the Arithp with confidence c.

First, similar to the above subsection, we know that for such transformers F and j, when i → ∞, it
holds F(Cj

i ) → C(j) for a vector C(j).

So, if F can solve Arithp with confidence c, there must be (C(j))[p + 1] > (C(j))[t] for any
t ̸= p+ 1. If (C(j))[p+ 1] ≤ (C(j))[t] for some t ̸= p+ 1, then the symbol = will not appear at
the start of the CoT with confidence c for the F(Cj

i ).

Second, we consider the CoT of F(Ci), where Ci is defined in Section F.5.1.

From the definition of transformers, we know that if F can solve Arithp, then F(Ci) must output
= at the beginning of CoT. Now we consider the output of F((Ci,=)). Similarly to the preceding
subsection, we know that there exists a vector C such that F((Ci,=)) → C when i → ∞.

Because F can solve Arithp with confidence c, so as to meet the basic expression of the four
arithmetic operations, the symbol ′ =′ must be followed by a number in [p], so we know there exists a
t ∈ [p] such that C[t] > C[j] when j ̸= t and j ∈ [p+ 7]. If not, similar to the above section, we can
show that F cannot get the correct CoT for Ci with confidence c, which contradicts the assumption.

Then there exists an i0 such that when i > i0, F̂((Ci,=)) = t.

Third, we consider F(Ct
i ) and F((Ci,=, t)). These are two sequences whose lengths are the same,

which only differ at the penultimate symbols, one being + and the other one being =. Then, because
the parameters of F have the upper bound and lower bound, similar to that shown in Section F.3,
there must be ||F((Ct

i )) − F((Ci,=, t))||2 → 0 when i → ∞. In part one, we showed that when
i → ∞, we have (F(Ct

i ))p+1 > (F(Ct
i ))j for any j ̸= p+ 1. So by the above results, there must

be (F((Ci,=, t)))p+1 > (F((Ci,=, t)))j for any j ̸= p + 1 when i → ∞, which implies that
F((Ci,=, t)) will output the symbol = and create CoT (=, t,=, . . . ) for Ci.

Now we know that the CoT of Ci must have the form (=, t,=, . . . ) when i → ∞. If i satisfies that i
mod p ̸= t, then it is not a correct CoT to solve Ci, which is a contradiction to the fact that F can
solve Arithp. So we prove the result.
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G Impact Statement

We have theoretically demonstrated the power of CoT in the memorization capabilities of transformers.
Our research does not include conclusions that have negative effects on the community.
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