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Abstract

Recent zero-shot evaluations have highlighted001
important limitations in the abilities of lan-002
guage models (LMs) to perform meaning ex-003
traction. However, it is now well known that004
LMs can demonstrate radical improvements005
in the presence of experimental contexts such006
as in-context examples and instructions. How007
well does this translate to previously studied008
meaning-sensitive tasks? We present a case-009
study on the extent to which experimental con-010
texts can improve LMs’ robustness in perform-011
ing property inheritance—predicting seman-012
tic properties of novel concepts, a task that013
they have been previously shown to fail on.014
Upon carefully controlling the nature of the015
in-context examples and the instructions, our016
work reveals that they can indeed lead to non-017
trivial property inheritance behavior in LMs.018
However, this ability is inconsistent: with a019
minimal reformulation of the task, some LMs020
were found to pick up on shallow, non-semantic021
heuristics from their inputs, suggesting that the022
computational principles of semantic property023
inference are yet to be mastered by LMs. Our024
code will be available at (future-url).025

1 Introduction026

Carefully controlled behavioral analyses on027

meaning-sensitive tasks have revealed holes in the028

ability of language models (LMs) to demonstrate029

robust meaning extraction and use (Pandia and030

Ettinger, 2021; Elazar et al., 2021; Schuster and031

Linzen, 2022; Misra et al., 2023; Kim and Schuster,032

2023, i.a). However, since a large subset of these033

investigations uses zero-shot evaluation as the pri-034

mary methodology, there are growing concerns that035

they do not paint a complete picture of LMs’ abili-036

ties (Lampinen, 2022; Sinclair et al., 2022; Sinha037

et al., 2023). Conclusions that LMs lack a par-038

ticular ability may be overhasty if it turns out the039

ability is easily accessed through in-context learn-040

ing, different question formulations, or particular041

A wug is a robin.
A dax is a penguin.
Therefore, a wug can fly

COMPS

{Instruction}

A wug is a robin.
A dax is a penguin.
Q: Which of them can
fly? A: wug 

COMPS- QA

{Instruction}

A toma is a beaver. A bova is a gorilla. Therefore,
a toma/bova has a flat tail.

A toma is a gorilla. A bova is a beaver. Therefore,
a toma/bova has a flat tail.

Heuristic works (FIRST-CORRECT)

Heuristic doesn't work (RECENT-CORRECT)

A toma is a beaver. A bova is a gorilla. Q: Which
of them has a flat tail? A: toma/bova

A toma is a gorilla. A bova is a beaver. Q: Which
of them has a flat tail? A: toma/bova

Heuristic works (FIRST-CORRECT)

Heuristic doesn't work (RECENT-CORRECT)

Figure 1: We prompt LMs with in-context examples that
are compatible with both: robust property inheritance,
as well as position-based heuristics. At test time, we
evaluate LMs on cases where the heuristics support
desirable behavior and on cases where they do not.

instructions (Lampinen, 2022; Wei et al., 2022). 042

Our focus in this paper is a particularly challeng- 043

ing dataset for meaning-sensitive behavior: COMPS 044

(Misra et al., 2023), a dataset of minimal pair sen- 045

tences that tests the ability of LMs on property 046

knowledge of concepts (a beaver/gorilla has a flat 047

tail) and their inheritance for novel concepts (a wug 048

is a beaver/gorilla. therefore a wug has a flat tail). 049

Contemporary LMs failed miserably on the hard- 050

est subset of the COMPS stimuli, the examples of 051

which contain two novel concepts (WUG vs. DAX), 052

where only one of them inherits the target property 053

(has a flat tail): 054

(1) A wug is a beaver. A dax is a gorilla. There- 055

fore, a wug/dax has a flat tail. 056

Given the success of LMs on a wide variety of 057

complicated tasks, their utter failure on this seem- 058

ingly straightforward task remains puzzling. Here, 059

we systematically explore COMPS on five modern 060

LMs ranging from 1.5–13B parameters, varying 061

(a) whether models are evaluated zero-shot or with 062

multiple examples and (b) whether or not instruc- 063
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tions are present.064

Unlike other minimal-pair datasets, using065

COMPS in an in-context learning setting is non-066

trivial (and thus potentially informative). This is be-067

cause the task can be solved using a position-based068

heuristic. For example, in one subset of COMPS,069

the target property is always attached to the first070

novel concept—like in (1). Importantly, models’071

failures on COMPS were shown to be in part a result072

of models’ tendencies towards heuristic behavior:073

the performance of LMs is particularly bad when074

the distractor (a dax is a gorilla) is recent—i.e., au-075

toregressive LMs show a recency bias in attributing076

properties to novel concepts. In that sense, COMPS077

follows a rich body of work in which tasks are set078

up in a manner that two types of generalization079

mechanisms can lead to the same prediction, but080

only one of which is desirable (McCoy et al., 2019,081

2020; Warstadt et al., 2020b; Mueller et al., 2022;082

Si et al., 2023).083

We find that experimental contexts, as opera-084

tionalized using in-context examples and instruc-085

tions, can in fact demonstrate robust improvements086

in LMs’ property inheritance behavior as measured087

by the stimuli in COMPS. However, this improve-088

ment comes with a caveat: With a minimal refor-089

mulation of COMPS into a QA task, where there is a090

direct link between the LMs’ output space and the091

features of the input that control the heuristic, LMs092

show a strong preference towards the heuristic, and093

are therefore at chance. This discrepancy suggests094

that the improvements on the original task do not095

necessarily indicate that the models have success-096

fully mastered the reasoning ability required to097

perform property inheritance, which remains a key098

challenge for them.099

2 Methodology100

Dataset We use the most difficult subset of101

the COMPS dataset (Misra et al., 2023)—COMPS-102

WUGS-DIST—for our experiments. This dataset103

contains 13,828 sentence pairs of the form similar104

to (1), constructed using 152 animal concepts and105

991 properties.106

Stimuli re-design We take a number of steps to107

minimize noise from other (likely uninterpretable)108

heuristics beyond the ones we have set out to target.109

First, we enforce that the concepts and properties110

that appear in the in-context examples are disjoint111

from ones that are used in tests. To this end, we112

sample 50 concepts and their relevant properties113

and reserve it for our in-context examples, leav- 114

ing the rest to be sampled for our test set. We 115

also enforce this constraint for our novel concepts— 116

i.e., all in-context examples contain different nonce 117

words, and the collection of nonce words for the 118

in-context examples and the test set is disjoint. Fur- 119

thermore, we counterbalance the nonce words in 120

the test set in a manner that having a bias towards 121

one of them would lead to chance performance. We 122

additionally also use multiple different sets of in- 123

context examples, to add variability and to ensure 124

that the results are not only due to one particular 125

choice of in-context examples. In total, we use 126

10 different in-context learning example sets, each 127

containing 6 different COMPS stimuli. For our test 128

set, we use a constant set of 256 unique pairs sam- 129

pled from our pool of stimuli containing unused 130

concepts and properties. 131

Heuristics Our most important design decision 132

is to consider two distinct sets of stimuli—each sep- 133

arately making available the two types of heuristics 134

that the LMs could rely upon: FIRST-CORRECT and 135

RECENT-CORRECT, where the property is inherited 136

by the first and the most recent novel concept, re- 137

spectively. That is, for the same set of in-context 138

examples, we have a version where the first con- 139

cept is correct like in (1), and one where the most 140

recent concept is correct: 141

(2) A wug is a gorilla. A dax is a beaver. There- 142

fore, a wug/dax has a flat tail. 143

For each type of in-context stimuli, we similarly 144

have two versions of test stimuli: one that is con- 145

sistent with the target heuristic, and one that is not. 146

That is, a test example that is consistent with the 147

FIRST-CORRECT heuristic will also have its first 148

concept be the one that inherits the property in 149

question, while one which is inconsistent will have 150

the most recent concept be the inheritor of the prop- 151

erty. Therefore, a model that shows a preference 152

for a given heuristic will succeed only on one test 153

set and succumb on the other, while a model that is 154

robust to the heuristics will succeed on both. 155

Reformulation into QA The original COMPS 156

stimuli test for property inheritance using declar- 157

ative statements, where models are tested for the 158

log-probability they asign to the property (has a 159

flat tail) given either of the two concepts (wug vs. 160

dax). Here we additionally consider an alternate 161

formulation of COMPS as a question answering task 162
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(COMPS-QA), where we make the property explicit163

in the prompt to the model and instead ask which164

of the two concepts possesses it:165

(3) A wug is a beaver. A dax is a gorilla. Ques-166

tion: Which one of them has a flat tail? An-167

swer: wug/dax168

Since the shallow heuristics we consider are con-169

trolled by the relative ordering of the novel con-170

cepts, this formulation of the task directly allows171

us to link the models’ output space (the novel con-172

cepts) to the heuristics (positions).173

Testing setup For the original COMPS setting we174

follow Misra et al. (2023) and compare the log-175

probability of the property phrase given the correct176

vs. the incorrect prefix. For COMPS-QA however,177

since we have a constant prefix (same premises and178

question), we evaluate the relative log-probability179

of the two novel concepts, only one of which is180

the correct answer. Accuracy in both cases is the181

proportion of cases the correct surface form was182

assigned relatively higher log-probability. Since183

we use pairwise comparisons throughout, chance184

performance is 50%.185

Instructions We consider four different kinds of186

instruction templates, with varying levels of de-187

tail (see appendix B) per formulation (COMPS and188

COMPS-QA). In our experiments we report results189

on the instruction that gives the best average per-190

formance for a given model.191

LMs tested We evaluated 5 different open-source192

LMs, all of which are decoder-only, and were ac-193

cessed using the huggingface hub (Wolf et al.,194

2020): GPT-2 XL (Radford et al., 2019); OPT-195

6.7b (Zhang et al., 2022); Llama-2 (we used the196

7b and the 13b versions; Touvron et al., 2023); and197

Mistral-7b (Jiang et al., 2023). Details about the198

models can be found in the appendix.199

3 Analyses and Results200

We evaluate on COMPS and COMPS-QA, with and201

without instructions. In each case, we progressively202

supply 0 through 6 in-context examples, allowing203

us to track the dynamics of the models’ perfor-204

mance with an increasing amount of demonstra-205

tions. Together with our separate types of test sets206

and heuristics encoded in the in-context examples,207

along with five different instruction settings (four208

with and one without) we run 2420 experiments209

per LM. We hypothesize that LMs would be more 210

sensitive to the positional heuristics in COMPS-QA 211

because of the clear link between their output space 212

and the relative position of the novel concepts—the 213

feature that controls our target heuristics. 214

Figure 2 shows accuracies of the tested LMs on 215

our four different COMPS settings as a function 216

of the number of in-context examples provided to 217

them, for both: cases where the heuristics are 218

consistent with success on the test set, and cases 219

where they are not. We also show an additional 220

curve denoting the average performance across the 221

two types of test sets to paint an overall picture of 222

the models’ performance. In this figure, the extent 223

to which a model relies on heuristic is indicated by 224

the gap between the dotted ( ) and the dashed (▲) 225

lines. A model that is robust to the heuristics will 226

have curves of both colors rise above chance, with 227

no gap between the two, while one that is prone to 228

using heuristics will have its dotted ( ) curve be 229

substantially greater than its dashed (▲) curve. 230

Experimental context can improve attribution 231

of properties to concepts... On COMPS, mod- 232

els unsurprisingly start off at chance performance 233

on average, corroborating the previous findings of 234

Misra et al. (2023). However, in the presence of in- 235

context examples and instructions, they are able to 236

improve monotonically as the number of in-context 237

examples increases. It is worth noting Llama-2- 238

13b does occasionally show a slight preference for 239

heuristics in the absence of instructions (e.g., 84% 240

vs. 62% when prompted with 2 examples). An 241

intermediate conclusion that we draw here is that 242

LMs can indeed demonstrate non-trivial property 243

inheritance on observing a few examples that re- 244

flect that behavior. 245

...but not the attribution of concepts to prop- 246

erties While experimental context seems to aid 247

models in attributing properties to the right concept 248

in context, the same does not hold on COMPS-QA. 249

Similar to COMPS, models start off at chance perfor- 250

mance on average with a zero-shot set up, however, 251

unlike in the case of COMPS, LMs seem to consis- 252

tently prefer the heuristics available in the prompt, 253

showing worse than chance performance on cases 254

where the test set does not follow the heuristic. This 255

is most apparent for GPT-2 XL, OPT6.7b, and 256

Llama-2-7b—here the gap between the accuracy 257

for cases where heuristics support performance on 258

the test set and the accuracy for cases where they 259

do not almost always worsens with an increase in 260
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Figure 2: Overall results from our experiments testing LMs on COMPS and COMPS-QA using in-context examples,
with and without instructions. Results are aggregated across both heuristics: FIRST-CORRECT and RECENT-
CORRECT. Error bars are over different sets of in-context examples. Figures 3 and 4 show fine-grained results.

the number of exemplars, on average. This is espe-261

cially notable for OPT6.7b, which attains perfect262

performance on cases where the heuristics match263

up with the test set and at the same time it is close264

to 0% on cases where they do not. A notable ex-265

ception to this trend is Mistral-7b, which seems266

to be resilient to the spurious heuristics, showing a267

net-positive improvement from the zero-shot case,268

especially in the presence of instructions. Never-269

theless in the absence of instructions, it too shows270

a slight preference for position-based heuristics—271

e.g., its accuracy with 6 in-context exemplars when272

the heuristics support success on the test set and273

when they do not is 82% and 65%, respectively.274

Our results suggest that LMs are more likely275

to show behavior that is compatible with the use276

of positional heuristics when their output space277

(choice between the two novel concepts) has a clear278

connection with positional artifacts in their input279

(relative ordering of the novel concepts). This is280

consistent with our hypothesis in about 8 out of 10281

cases. When this link is not clear and models must282

instead predict likely properties given a novel con-283

cept (i.e., in COMPS), instructions and in-context284

examples do seem to lead to robust performance.285

It is important to note that instructions alone do286

not always account for the observed improvement—287

LMs’ performance on zero-shot settings are consis- 288

tently still at chance in all cases, suggesting that it is 289

the in-context examples that critically alter models’ 290

output distribution to support desirable property 291

inference behavior. 292

4 Conclusion 293

We investigated the extent to which in-context 294

examples and instructions—key components that 295

drive impressive performance in contemporary 296

LMs—can overcome important limitations of LMs 297

at tests that have poked holes in their ability to ex- 298

tract conceptual meaning from text. As a case study, 299

we analyzed how well such experimental contexts 300

can improve LM abilities to perform property in- 301

heritance (Murphy, 2002; Misra et al., 2023) in 302

context—binding of novel concepts to existing con- 303

cepts, and endowing them with valid property infer- 304

ences as a result. Our findings suggest that mastery 305

of this ability has yet to be robustly achieved, and 306

that LMs in general are still prone to using shal- 307

lower patterns in their context (when available) 308

rather than systematically extracting conceptual 309

meaning. At the same time, exploring precisely 310

what makes Mistral less susceptible to heuristics 311

will be useful to design more robust LMs, which 312

we leave for future work. 313
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5 Limitations314

Single dataset A clear limitation of this work315

is that it exclusively focuses on a single dataset:316

COMPS (Misra et al., 2023). So, a question that317

arises here is to what extent are our findings local-318

ized to the chosen dataset vs. meaning-sensitive319

evaluations in general. This would require a further320

non-trivial, non-straightforward amount of work,321

since: 1) different meaning sensitive evaluations322

focus on different (though equally useful) opera-323

tionalizations of meaning; and more importantly324

2) not all prior work in this area focuses on a stan-325

dardized and well-defined usage of heuristics that326

is directly transferable to the experimental setup327

we have used in this work (following McCoy et al.,328

2019, 2020; Warstadt et al., 2020b; Mueller et al.,329

2022; Si et al., 2023). Nevertheless, we do hope330

that our work contributes to the larger-scale vi-331

sion of carefully benchmarking different types of332

meaning extraction abilities in LMs in a controlled333

manner.334

Lack of mechanistic insight Our work continues335

the long-standing precedent of using carefully con-336

structed behavioral experiments to conclude about337

the competence of LMs (Linzen et al., 2016; Gulor-338

dava et al., 2018; Futrell et al., 2019; Ettinger, 2020;339

Warstadt et al., 2020a) However, recent works have340

made impressive strides in localizing the kinds of341

computations that give rise to the observed behav-342

ior in LMs (Hanna et al., 2023; Wang et al., 2023,343

i.a.) Therefore, it is entirely possible that our con-344

clusions about the precise nature of computations345

carried out by LMs can be greatly strengthened346

when supplemented by the methods developed in347

these aforementioned works.348

Single Language Finally, this work only focuses349

on property inheritance problems stated in the En-350

glish language. This does little to contribute to-351

wards diversity in NLP research.352
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A Dataset and implementation details539

Our experiments use the stimuli from COMPS, re-540

leased with an Apache 2.0 License by Misra et al.541

(2023), but with a modification that involves chang-542

ing of the nonce words to obey the constraint that543

the in-context examples all have different nonce544

word pairs. To this end, we use the following nonce-545

words:546

• In-context examples: wug, dax, fep, zek,547

blick, toma, kiki, glorp, bova, zup, tufa, flib548

(counter-balanced)549

• Test examples: gek, wif (counter-balanced)550

A.1 Methodological details551

Following COMPS, as well as the precedent set by a552

number of previous minimal pair analyses (Linzen553

et al., 2016; Gulordava et al., 2018; Futrell et al.,554

2019; Wilcox et al., 2019; Warstadt et al., 2020a;555

Hu et al., 2020), we use a forced choice task to eval-556

uate our LM subjects. Like in COMPS, we compare557

the log-probability of the property phrase (here, has558

a flat tail) given the choice of left contexts (which559

indicate whether the right vs. the wrong concept560

has the property). For example, we measure:561

logPθ(has a flat tail ∣ a gek is a beaver. a wif is a562

gorilla. therefore, a gek/wif),563

and for COMPS-QA, we compare the relative proba-564

bilities of the two novel concepts given a fixed left565

prefix which contains a question about the property.566

For example, we measure:567

logPθ(gek/wif ∣ a gek is a beaver. a wif is a gorilla.568

Question: Which one of them has a569

flat tail? Answer:)570

In both cases above, gek is the concept that should571

inherit the property. While these examples show572

the zero-shot case, cases with in-context examples573

and instructions simply add more context to the574

prefix, therefore the surface form of the output575

space remains the same regardless of the number of576

in-context examples or the presence of instructions.577

Log-probabilities for all models were accessed 578

using minicons (Misra, 2022),1 a library that 579

wraps around transformers (Wolf et al., 2020) by 580

huggingface, and is written in pytorch. For our ex- 581

periments with Llama-13B, we quantize the model 582

to 4-bits in order to fit it onto a single GPU. All 583

experiments were run on a cluster with 4 NVIDIA 584

A40 GPUs, though each individual experiment on 585

a model was computed on a single A40 GPU. 586

A.2 Model Metadata 587

Table 1 shows the LMs used in this work, along 588

with their total parameters, tokens encountered dur- 589

ing training, and vocabulary size. 590

B Instructions 591

Tables 2, 3, 4, 5 show our instruction templates. 592

C Fine-grained results 593

While Figure 2 shows results aggregated over both 594

types of heuristics that we have used in this work, 595

we additionally display finer-grained, heuristics- 596

wise results in this section. Again, in each of these 597

plots, the extent to which a model relies on heuristic 598

is indicated by the gap between the dotted ( ) and 599

the dashed (▲) lines. This is now separately shown 600

for each of our heuristics. Figure 3 shows results 601

on COMPS with and without instructions for both 602

the heuristics, and similarly Figure 4 shows results 603

on COMPS-QA with and without instructions for 604

both the heuristics. 605

1
https://github.com/kanishkamisra/minicons
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(b) COMPS with Instructions

Figure 3: Fine-grained results on COMPS as a function of the number of in-context examples (with and without
instructions).
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Figure 4: Fine-grained results on COMPS-QA as a function of the number of in-context examples (with and without
instructions).

9



Model Params Pre-training Tokens Vocab size

GPT-2 XL 1.5B 8B 50,257
OPT-6.7b 6.7B 180B 50,272
Llama-2-7b 7B 2T 32,000
Llama-2-13b 13B 2T 32,000
Mistral-7b 7B ? 32,000

Table 1: Overview of the LMs used in this work. ‘?’ indicates that the given value was not made available in the
LM’s release.

COMPS version Instruction Template

COMPS Given a pair of statements that introduce novel entities as types of real world
animals, write a true statement about the properties of the novel entities:

{exemplars} (omitted in zero-shot)
{test-stimulus}

COMPS-QA Given a pair of statements that introduce novel entities as types of real world
animals, answer the question that follows:

{exemplars} (omitted in zero-shot)
{test-stimulus}

Table 2: Instructions for COMPS and COMPS-QA with instruction type: “minimal”

COMPS version Instruction Template

COMPS Some aliens have come to earth, and it turns out they have their own language for
talking about our animals here on Earth. Your job is to help the aliens learn about
our Earthling animals by giving them some information about the animals.

Let’s get started:
{exemplars} (omitted in zero-shot)
{test-stimulus}

COMPS-QA Some aliens have come to earth, and it turns out they have their own language for
talking about our animals here on Earth. Your job is to help the aliens learn about
our Earthling animals by answering some questions about them.

Let’s get started:
{exemplars} (omitted in zero-shot)
{test-stimulus}

Table 3: Instructions for COMPS and COMPS-QA with instruction type: “aliens”
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COMPS version No. of shots Instruction Template

COMPS
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. Your task is to make a conclusion about the properties of one
of the entities by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals, followed by another statement that attributes a
property to one of the entities introduced in the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Your task is to make a conclu-
sion about the properties of one of the entities by reasoning over the premise
statements.
{test_stimulus}

COMPS-QA
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world objects. The statements are followed by a question that asks which
novel entity in the premise can a specific property can be attributed to. Answer the
question by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals. The statements are followed by a question that
asks which novel entity in the premise can a specific property can be attributed
to, and the answer to the question, obtained by reasoning over the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Answer the question that fol-
lows.
{test_stimulus}

Table 4: Instructions for COMPS and COMPS-QA with instruction type: “Detailed-1”
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COMPS version No. of shots Instruction Template

COMPS
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. Your task is to write a true statement about the properties
of the novel entities.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals, followed by another statement that attributes a
property to one of the entities introduced in the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Your task is to write a true
statement about the properties of the novel entities.
{test_stimulus}

COMPS-QA
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. The statements are followed by a question that asks which
of the introduced entities a specific property can be attributed to. Answer the
question by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals. The statements are followed by a question
that asks which of the introduced entities a specific property can be attributed
to, and the answer to the question, obtained by reasoning over the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Answer the question that fol-
lows.
{test_stimulus}

Table 5: Instructions for COMPS and COMPS-QA with instruction type: “Detailed-2”
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