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Localization Distillation for Object Detection
Zhaohui Zheng, Rongguang Ye, Qibin Hou , Member, IEEE, Dongwei Ren , Member, IEEE, Ping Wang ,

Wangmeng Zuo , Senior Member, IEEE, and Ming-Ming Cheng , Senior Member, IEEE

Abstract—Previous knowledge distillation (KD) methods for ob-
ject detection mostly focus on feature imitation instead of mim-
icking the prediction logits due to its inefficiency in distilling the
localization information. In this paper, we investigate whether
logit mimicking always lags behind feature imitation. Towards
this goal, we first present a novel localization distillation (LD)
method which can efficiently transfer the localization knowledge
from the teacher to the student. Second, we introduce the concept
of valuable localization region that can aid to selectively distill
the classification and localization knowledge for a certain region.
Combining these two new components, for the first time, we show
that logit mimicking can outperform feature imitation and the
absence of localization distillation is a critical reason for why logit
mimicking under-performs for years. The thorough studies exhibit
the great potential of logit mimicking that can significantly alleviate
the localization ambiguity, learn robust feature representation, and
ease the training difficulty in the early stage. We also provide the
theoretical connection between the proposed LD and the classifi-
cation KD, that they share the equivalent optimization effect. Our
distillation scheme is simple as well as effective and can be easily
applied to both dense horizontal object detectors and rotated object
detectors. Extensive experiments on the MS COCO, PASCAL
VOC, and DOTA benchmarks demonstrate that our method can
achieve considerable AP improvement without any sacrifice on
the inference speed. Our source code and pretrained models are
publicly available at https://github.com/HikariTJU/LD.

Index Terms—Knowledge distillation, localization distillation,
object detection, rotated object detection.

I. INTRODUCTION

A S A model compression technology, knowledge distilla-
tion (KD) [24], [58] has been an efficient technique in

learning compact models to mitigate the computational burden.
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Fig. 1. Existing KD pipelines for object detection. 1© Logit Mimicking:
classification KD in [24]. 2© Feature Imitation: recent popular methods distill
intermediate features based on various distillation regions, which usually need
adaptive layers to align the size of the student’s feature map. 3© Pseudo BBox
Regression: treating teachers’ predicted bounding boxes as additional regression
targets [6], [60].

It has been widely validated to be useful for boosting the
performance of small-sized student networks by transferring
the generalized knowledge captured by large-sized teacher net-
works [24], [29], [31], [58], [63], [78]. Speaking of KD in object
detection, there are mainly three popular KD pipelines as shown
in Fig. 1. Logit mimicking [24], also known as classification
KD, is originally designed for image classification, where the
KD process operates on the logits of the teacher-student pair.
Feature imitation, motivated by the pioneer work FitNet [58],
aims to enforce the consistency of the feature representations be-
tween the teacher-student pair. The last one, namely the pseudo
bounding box regression, uses the predicted bounding boxes
from the teacher as an addition supervision to the bounding box
prediction branch of the student.

Among these methods, the original logit mimicking tech-
nique [24] for classification is often inefficient as it only trans-
fers the classification knowledge while neglects the importance
of localization knowledge distillation. Therefore, existent KD
methods for object detection mostly focus on feature imitation,
and demonstrate that distilling the feature representations is
more advantageous than distilling the logits [30], [66], [81].
We summarize three crucial reasons for this phenomenon: First
of all, the effectiveness of logit mimicking partially relies on
the number of classes which may vary in different application
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Fig. 2. Bottom edge for “elephant” and right edge for “surfboard” are
ambiguous to locate.

scenarios [66]. Second, the logit mimicking can only be applied
to the classification head, which cannot distill the localization
information. At last, in the framework of multi-task learning, fea-
ture imitation can transfer the hybrid knowledge of classification
and localization which can benefit the downstream classification
and localization tasks.

In this work, we examine the aforementioned common belief
in object detection KD, and challenge whether feature imitation
always stays ahead of logit mimicking? For this purpose, we
firstly present a simple yet effective localization distillation (LD)
method which is inspired by an interesting observation that the
bounding box distributions generated by the teacher [38], [51]
can serve as a strong supervision to the student detector. The
bounding box distribution [38], [51] is originally designed to
model the real distributions of bounding boxes, an efficient way
to solve the localization ambiguity as shown in Fig. 2. With the
discretized probability distribution representations, the localizer
can reflect the localization ambiguity by the flatness and sharp-
ness of the distribution, which is not held in the conventional
Dirac delta representation of bounding boxes [42], [53], [56],
[62]. This allows our LD to efficiently transfer richer localization
knowledge from the teacher to the student than using pseudo
bounding box regression (right part in Fig. 1).

Combining the proposed LD and the classification KD yields
a unified KD method based on a pure logit mimicking framework
for both the classification branch and the localization branch. As
logit mimicking enables us to separately distill the classification
knowledge and the localization one, we found that these two
sub-tasks favor different distillation regions. Motivated by this,
we introduce the concept of valuable localization region (VLR)
and propose to conduct distillation in a selective region distilla-
tion manner. We will show the advantage of using VLR in our
distillation framework in the experiment section.

Furthermore, we comprehensively discuss the technical de-
tails of LD and elaborate on the behavior of logit mimick-
ing and feature imitation. Intriguingly, we observe that logit
mimicking can outperform feature imitation for the first time,
which indicates that the absence of localization distillation is
actually the key reason why logit mimicking under-performs
in object detection for years. Another observation is that we
find the reason why logit mimicking works is not because
of the consistency of the feature representations between the
teacher-student pair. Conversely, the student learns significantly
different feature representations from the teacher’s in terms of

the ln distance and linear correlation. We also observe that if the
student is trained with feature imitation, it tends to produce a
sharp AP score landscape in the feature subspace, and aggravates
the training difficulty in the early training stage.

The above observations reflect the great potentials of logit
mimicking over feature imitation:

1) being able to separately transfer different types of knowl-
edge,

2) learning more robust feature representations, and
3) easing the training difficulty.
Our method is simple and can be easily equipped with in both

horizontal and rotated object detectors to improve their perfor-
mance without introducing any inference overhead. Extensive
experiments on MS COCO show that without bells and whistles,
we can lift the AP score of the strong baseline GFocal [38] with
ResNet-50-FPN backbone from 40.1 to 42.1, and AP75 from
43.1 to 45.6. Our best model using ResNeXt-101-32x4d-DCN
backbone can achieve a single-scale test of 50.5 AP, which
surpasses all existing detectors under the same backbone, neck,
and test settings. PyTorch [49] and Jittor [26] version of the
source code and pretrained models are publicly available at
https://github.com/HikariTJU/LD.

The main contributions of this paper are four-fold:
1) We present a novel localization distillation method that

greatly improve the distillation efficiency of logit mim-
icking in object detection.

2) We provide exploratory experiments and analysis for the
behavior of logit mimicking and feature imitation. To our
best knowledge, this is the first work revealing the great
potential of logit mimicking over feature imitation.

3) We present a selective region distillation based on the
newly introduced valuable localization region to better
distill the student detector.

4) We extend our LD to a rotated version so that it can be
applied to arbitrary-oriented object detection.

This paper is a substantial extension of its previous conference
version [87]. In particular, (a) We provide theoretical connection
for the proposed LD and the classification KD that they share the
equivalent optimization effects; (b) We conduct more detailed
and insightful analysis for logit mimicking and feature imitation,
including the different characteristics of the learned feature
representations and logits, and the training difficulty of feature
imitation; (c) We extend the original LD to a more generic
version, namely rotated LD, which can distill arbitrary-oriented
object detectors.

II. RELATED WORK

A. Knowledge Distillation

Knowledge distillation [2], [24], [46], [48], [59], [78], as
a hot research topic, has been deeply studied recently. The
fundamental idea is to use a well-performed large-sized teacher
network to transfer the captured knowledge to the small-sized
student network. Logit mimicking, a.k.a. classification KD, was
first introduced by Hinton et al. [24], where the logit outputs
of the student classifier are supervised by those of the teacher
classifier. Later, FitNet [58] extends the teacher-student learning
framework by mimicking the intermediate-level hints from the
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hidden layers of the teacher model. Knowledge distillation was
first applied to object detection in [6], where the hint learning,
classification KD, and pseudo bounding box regression were
simultaneously used for multi-class object detection. However,
an object detector requires not only precise classification ability,
but also strong localization ability. The absence of localization
knowledge distillation limits the performance of the conven-
tional KD method.

To tackle the above issue, many feature imitation methods
have been developed, most of which focus on where to distill and
loss function weighting. Among these, Li et al. [36] proposed
to mimic the features within the region proposal for Faster
R-CNN. Wang et al. [66] imitated the fine-grained features on
close anchor box locations. Recently, Dai et al. [10] introduced
the General Instance Selection Module to mimic deep features
within the discriminative patches between teacher-student pairs.
DeFeat [19] leverages different loss weights when conducting
feature imitation on the object regions and the background
region. There are also various feature imitation methods from the
perspective of weighted imitation loss, including Gaussian mask
weighted [60], feature richness weighted [88], and prediction-
guided imitation loss [34]. Unlike the aforementioned methods,
our work introduces localization distillation and demonstrate
that logit mimicking can outperform feature imitation for KD in
object detection.

B. Object Localization

Object localization is a fundamental issue in object detec-
tion [18], [33], [44], [64], [65], [73], [74], [75], [80], [93].
Bounding box regression is the most popular way so far for
localization in object detection [13], [21], [42], [53], [56],
where the Dirac delta distribution representation has been used
for years. R-CNN series [4], [47], [56], [79] adopt multiple
regression stages to refine the detection results, while YOLO
series [3], [53], [54], [55], SSD series [14], [42], [89], and
FCOS series [38], [62] adopt one-stage regression. In [57], [77],
[85], [86], IoU-based loss functions are proposed to improve the
localization quality of bounding boxes. Recently, bounding box
representation has evolved from Dirac delta distribution [42],
[53], [56] to Gaussian distribution [9], [23], and further to
probability distribution [38], [51]. The probability distribution
of bounding boxes is more comprehensive for describing the
uncertainty of bounding boxes, and has been validated to be the
most advanced bounding box representation so far.

C. Localization Quality Estimation

As the name suggests, Localization Quality Estimation (LQE)
predicts a score that measures the localization quality of the
bounding boxes predicted by the detector. LQE is usually used
to cooperate with the classification task during training [37],
i.e., enhancing the consistency between classification and lo-
calization. It can also be applied in joint decision-making dur-
ing post-processing [28], [53], [62], which considers both the
classification score and LQE when performing NMS. Early
research can be dated to YOLOv1 [53], where the predicted
object confidence is used to penalize the classification score.

Then, box/mask IoU [27], [28] and box/polar centerness [62],
[69] are proposed to model the uncertainty of detections in object
detection and instance segmentation, respectively. For bounding
box representation, Softer-NMS [23] and Gaussian YOLOv3 [9]
predict variances for each edge of the bounding boxes. LQE is
a preliminary approach to model localization ambiguity.

D. Arbitrary-Oriented Object Detection

Driven by the success of object detection, rotated object de-
tection has become a hot topic in computer vision recently [90].
The mainstream rotated object detectors, such as RRPN [45],
generate rotated proposals based on Faster R-CNN [56], while
Rotated-RetinaNet [40] directly predicts an additional rotated
angle based on RetinaNet. To address the boundary disconti-
nuity and square-like problems, SCRDet [74] and RSDet [50]
propose IoU-smooth L1 loss and modulated loss respectively
for attaining smoother boundary loss, and CSL [72] proposes to
use angle classification instead of angle regression.

Different from the horizontal bounding box regression which
can easily leverage the IoU-based losses (e.g., GIoU [57],
DIoU [85], and CIoU [86]) to enhance localization ability, the
Skew IoU loss for rotated bounding box regression is quite
difficult to implement due to the complexity of the backward
propagation in existing deep learning libraries [1], [26], [49].
PIoU loss [8] approximates the Skew IoU by accumulating the
pixels of the intersection and union of two rotated bounding
boxes. GWD [73] and KLD [75] model the rotated bounding
boxes via the 2D Gaussian Distribution representation and pro-
pose to use the Gaussian Wasserstein distance and KL diver-
gence to simulate the Skew IoU loss, respectively. More recently,
based on the 2D Gaussian distribution representation of rotated
bounding boxes, Yang et al. [76] proposed the KFIoU loss by
exploiting the Kalman filter formulation to mimic the Skew
IoU in the trend level. To sum up, the rotated regression-based
detectors are still dominating this task owing to their simplicity
and strong performance.

III. APPROACH

To begin with, we revisit the knowledge distillation back-
ground, including logit mimicking and feature imitation. Next,
we describe our simple yet effective localization distillation
(LD) and explain how to apply LD for rotated object detec-
tion. Then, we analyze the property of the proposed LD loss,
especially the theoretical connection to the classification KD. In
addition, we also introduces the concept of valuable localization
region for better distilling the localization knowledge in our
framework. Finally, we describe the selective region distillation
based on the newly introduced valuable localization region and
give the optimization objective.

A. Preliminaries

In the KD pipeline of object detection, the input image is fed
into two object detectors, i.e., the student detector and the frozen
teacher detector. The distillation process forces the outputs of the
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Fig. 3. Illustration of localization distillation (LD) for an edge e ∈ B. Only the localization branch is visualized here. S(·, τ) is the generalized SoftMax function
with temperature τ . For a given detector, we first switch the bounding box representation to probability distribution. Then, we determine where to distill via region
weighting on the main distillation region and the valuable localization region. Finally, we calculate the LD loss between two probability distributions predicted by
the teacher and the student.

student to mimic those of the teacher. There are two mainstream
paradigms of KD methods in object detection.

Logit mimicking: The logit mimicking (LM) is first developed
for image classification [24], in which the student model can be
improved by mimicking the soft output of the teacher classifier.
Let zS , zT ∈ RW×H×C be the logits predicted by the student
and the teacher, respectively. W and H represent the output size
of the logit maps. C denotes the number of classes. These logits
are then transformed into probability distributions pτ and qτ

by using the generalized SoftMax function. We can train the
network by minimizing the loss:

L = LCE + λLKD (1)

= H(p, g) + λH(pτ , qτ ), (2)

where p is the predicted probability vectors, g = {0, 1}n is
the one-hot ground-truth label, H is the cross-entropy loss,
and λ balances the two loss terms. For object detection, the
distillation can be carried out on some pre-defined distillation
region R.

Feature imitation. Recently, it has been found that feature
imitation (FI), which aims to transfer knowledge by imitating
the deep features between teacher-student pairs, works better
than the classification KD [58], [66]. Mathematically, the feature
imitation procedure can be formulated as:

LFI =
1

|R|
∑

r∈R
||M̃S(r)−MT (r)||2, (3)

where R is the imitation region, and | · | is the cardinality of the
region. Note that an adaptive layer is needed to transform the
size of student’s feature map MS to be the same as the teacher’s
MT , so that M̃S ,MT ∈ RW×H×D.

Bounding box representation: For a given bounding
box B, the conventional representations have two forms,
i.e., {δx, δy, δw, δh} (encoding the coordinate mappings of the
central point, the width and the height from the anchor box to the
ground-truth box) [42], [53], [56] and {t, b, l, r} (the distances
from the sampled point to the top, bottom, left, and right edges)
[62]. These two forms actually follow the Dirac delta distribution
that only focuses on the ground-truth locations but cannot model

the ambiguity of bounding boxes as shown in Fig. 2. This is also
clearly demonstrated in some previous works [23], [38].

B. Localization Distillation

In this subsection, we present localization distillation (LD),
a new way to enhance the distillation efficiency for object
detection. Our LD is evolved from the view of probability
distribution representation of bounding boxes (anchor free [38]
and anchor-based [51]), which is originally designed for generic
object detection and carries abundant localization information.
The working principle of our LD can be seen in Fig. 3. The
procedure is the same to both anchor-based and anchor-free
detectors.

Given an object detector, we follow [38], [51] to convert
the bounding box representation from a quaternary represen-
tation to a probability distribution. Let e ∈ B be one of the
regression variables of bounding box, whose regression range
is [emin, emax]. The bounding box distribution quantizes the
continuous regression range into a uniform discretized vari-
able e = [e0, e1, . . . , en] ∈ Rn+1 with n sub-intervals, where
e0 = emin and en = emax. The localization head predicts n+ 1
logits z = {z0, z1, . . . , zn}, corresponding to the endpoints of
the subintervals {e0, e1, . . . , en}. Each edge of the given bound-
ing box can be represented as a probability distribution by using
the SoftMax function. For the number of the subinterval n, we
follow the settings of GFocal [38], and a recommended choice
of n is 8 ∼ 16. Different from [38], [51], we transform zS

and zT into the probability distributions pτ and qτ using the
generalized SoftMax function S(·, τ). Note that when τ = 1,
it is equivalent to the original SoftMax function. When τ → 0,
it tends to be a Dirac delta distribution. When τ → ∞, it will
be a uniform distribution. Empirically, τ > 1 is set to soften
the distribution, making the bounding box distribution carry
more information. The localization distillation for measuring
the similarity between the two probability vectors pτ , qτ ∈ Rn

for one of the bounding box representation e is attained by:

Le
LD = H(pτ , qτ ) (4)

= H(S(zS , τ),S(zT , τ)). (5)
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Then, LD for all the four edges of some bounding box B can be
formulated as:

LLD(BS ,BT ) =
∑

e∈B
Le

LD, (6)

where BS ,BT are the predicted bounding boxes of the student
and the teacher, respectively.

C. Rotated LD

Our LD can also be flexibly used to distill rotated bounding
box detectors. Parametric regression is the most popular manner
in the classical dense regression-based rotated object detec-
tion [71], [73], [74], [75]. B = {δx, δy, δw, δh, δθ} is commonly
used to represent a rotated bounding box, where δθ denotes the
encoded rotated angle. To conduct rotated localization distil-
lation, we firstly generate the lower and upper bounds of the
regression range [emin, emax], where e ∈ B.

Note that the rotated angle prediction δθ usually has a differ-
ent regression range from δx, δy, δw, δh. Thus, different lower
and upper bounds of regression ranges are set for them. In
practice, [emin, emax] ⊂ [−5, 5] will be an acceptable choice.
Then, we convert the rotated bounding box to rotated bounding
box distributions, as Section III-B describes. Finally, the LD
loss is calculated according to (6) for the rotated bounding box
distributions.

D. Property of LD

We can see that our LD holds the formulation of the standard
logit mimicking. The question one may ask is: Does LD also
inherit the property of the classification KD, especially for
the optimization process? Different from the classification task
where a unique integer is treated as the ground-truth label,
the ground-truth label of the localization task is a float point
number e∗, whose value, for instance, is ranged in an interval
[ei, ei+1]. In the following, we show an important property of
LD, demonstrating that it can inherit the optimization effects
held by the classification KD.

Proposition 1: Let s be the student’s predicted probability
vector, and u1, u2 are two constants with u1 + u2 = 1. Then,
we have:

1) If p, q are two classification probability vectors, LD effect
on the linear combination l = u1p+ u2q is equal to the
linear combination of KD effects on p, q;

2) If l is a localization probability vector, LD effect on l is
equal to two KD effects on its decomposition p and q.

The above two share the same expression,

∂LDl
i = u1∂KDp

i + u2∂KDq
i , (7)

where ∂KDp
i denotes the derivatives of the KD loss of two

probabilities s,p w.r.t. a given logit zi, and ∂LDp
i likewise for

the LD loss.
The proof can be found in the supplementary materials. Propo-

sition 1 provides the theoretical connection between LD and
the classification KD. It shows that the optimization effects of
LD on a float point number localization problem is functionally
equivalent to two KD effects on the integer position classification

Algorithm 1: Valuable Localization Region.

Require: A set of anchor boxes Ba = {Ba
i } and a set of

ground truth boxes Bgt = {Bgt
j }, 1 � i � I , 1 � j � J .

Positive threshold αpos of label assignment.
Ensure: V = {vij}I×J , vij ∈ {0, 1} encodes final
location of VLR, where 1 denotes VLR and 0 indicates
ignore.
1: Compute DIoU matrix X = {xij}I×J with

xij = DIoU(Ba
i ,Bgt

j ).
2: αvl = γαpos.
3: Select locations with V = {αvl � X � αpos}.
4: return V

problems. Therefore, as a direct corollary of [61], LD holds
the gradient rescaling to the distribution focal loss (DFL) [38]
w.r.t. the relative prediction confidence at two near positions. For
the details, we refer to the supplementary materials.

E. Valuable Localization Region

Previous works mostly force the deep features of the student to
mimic those of the teacher by minimizing the l2 loss. However,
a straightforward question arises: Should we use the whole
imitation regions without discrimination to distill the hybrid
knowledge? According to our observation, the answer is no.
In this subsection, we describe the valuable localization region
(VLR) to further improve the distillation efficiency, which we
believe will be a promising way to train better student detectors.

Specifically, the distillation region is divided into two parts,
the main distillation region and the valuable localization region.
The main distillation region is intuitively determined by label
assignment, i.e., the positive locations of the detection head. The
valuable localization region can be obtained by Algorithm 1.
First, we calculate the DIoU [85] matrix X between all the
anchor boxes Ba and the ground-truth boxes Bgt. Then, we
set the lower bound of DIoU to be αvl = γαpos, where αpos is
the positive IoU threshold of label assignment. The VLR can be
defined as V = {αvl � X � αpos}. Our method has only one
hyperparameter γ � 1, which controls the range of the VLRs.
When γ = 0, all the locations whose DIoUs between the preset
anchor boxes and the GT boxes satisfy 0 � xij � αpos will
be determined as VLRs. When γ → 1, the VLR will gradually
shrink to empty. Here we use DIoU [85] since it gives higher
priority to the locations close to the center of the object.

Similar to label assignment, our method assigns attributes
to each location across multi-level FPN. In this way, some of
locations outside the GT boxes will also be considered. So,
we can actually view the VLR as an outward extension of the
main distillation region. Note that for anchor-free detectors, like
FCOS, we can use the preset anchors on feature maps and do
not change its regression form, so that the localization learning
maintains to be the anchor-free type. While for anchor-based
detectors which usually set multiple anchors per location, we
unfold the anchor boxes to calculate the DIoU matrix, and then
assign their attributes.
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F. Selective Region Distillation

Given the above descriptions, the total loss of logit mimicking
for training the student S can be represented as:

L = λ0Lcls(CS , Cgt) + λ1Lreg(BS ,Bgt) + λ2LDFL(BS ,Bgt)

+ λ3IMainLLD(BS ,BT ) + λ4IVLLLD(BS ,BT )

+ λ5IMainLKD(CS , CT ) + λ6IVLLKD(CS , CT ), (8)

where the first three terms are exactly the same to the classifica-
tion and bounding box regression branches for any regression-
based detector, i.e., Lcls is the classification loss, Lreg is the
bounding box regression loss and LDFL is the distribution focal
loss [38]. IMain and IVL are the distillation masks for the main
distillation region and the valuable localization region, respec-
tively. LKD is the KD loss [24], CS as well as CT denote the
classification head output logits of the student and the teacher,
respectively, and Cgt is the ground-truth class label.

All the distillation losses will be weighted by the same weight
factors according to their types. More clearly, the weight factor
of the LD loss follows that of the bbox regression term and the
weight factor of the KD loss follows that of the classification
term. Also, it is worth mentioning that the DFL loss term can
be disabled since LD loss has sufficient guidance ability. In
addition, we can enable or disable the four types of distillation
losses so as to distill the student in different regions selectively.

IV. EXPERIMENT

In this section, we conduct comprehensive ablation studies
and analysis to demonstrate the superiority of the proposed
LD and distillation scheme on the challenging large-scale MS
COCO [41] benchmark, PASCAL VOC [12], and aerial image
DOTA dataset [68].

A. Experiment Setup

MS COCO: The train2017 (118 K images) is utilized for
training and val2017 (5 K images) is used for validation. We
also obtain the evaluation results on MS COCO test-dev 2019
(20 K images) by submitting to the COCO server. The exper-
iments are conducted under the mmDetection [7] framework.
Unless otherwise stated, we use ResNet [22] with FPN [39]
as our backbone and neck networks, and the FCOS-style [62]
anchor-free head for classification and localization. The training
schedule for ablation experiments is set to single-scale 1×mode
(12 epochs). For other training and testing hyper-parameters, we
follow exactly the GFocal [38] protocol, including QFL loss for
classification and GIoU loss for bbox regression, etc. We use
the standard COCO-style measurement, i.e., average precision
(AP), for evaluation. All the baseline models are retrained by
adopting the same settings so as to fairly compare them with our
LD.

PASCAL VOC: We also provide experimental results on
another popular object detection benchmark, i.e., PASCAL
VOC [12]. We use the VOC 07+12 training protocol, i.e., the
union of VOC 2007 trainval set and VOC 2012 trainval set
(16551 images) for training, and VOC 2007 test set (4952

images) for evaluation. The initial learning rate is 0.01 and the
total training epochs are set to 4. The learning rate decreases
by a factor of 10 after the 3 rd epoch. For comprehensively
evaluating the localization performance, the average precision
(AP) along with 5 mAP across different IoU thresholds are
reported, i.e., AP50, AP60, AP70, AP80 and AP90.

DOTA. As for the evaluation of rotated LD, we report the de-
tection results on the classic aerial image dataset DOTA [68]. We
follow the standard mmRotate [90] training and testing protocol.
The train set and validation set consist of 1403 images and 468
images, respectively, which are randomly selected in literature.
These huge images are cropped into smaller subimages with
shape 600× 600, which is in line with the cropping protocol
in official implementation. In practice, we obtain about 15,700
training and 5,300 validation patches. Unless otherwise stated,
all the hyper-parameters follow the default settings of mmRotate
for a fair comparison. We report results in terms of AP and 5
mAPs under different IoU thresholds, which is consistent with
PASCAL VOC. Due to the memory limitation, the teachers are
ResNet-34 FPN with 2× training schedule (24 epochs), and
the students are ResNet-18 FPN with 1× training schedule (12
epochs).

B. Ablation Study

Temperature τ in LD: Our LD introduces a hyper-parameter,
i.e.,the temperature τ . Table I(a) reports the results of LD with
various temperatures, where the teacher model is ResNet-101
with AP 44.7 and the student model is ResNet-50. Here, only
the main distillation region is adopted. Compared to the first row
in Table I(a), different temperatures consistently lead to better
results. In this paper, we simply set the temperature in LD as
τ = 10, which is fixed in all the other experiments.

LD vs . Pseudo BBox Regression: The teacher bounded
regression (TBR) loss [6] is a preliminary attempt to enhance the
student on the localization head, i.e., the pseudo bbox regression
in Fig. 1, which is represented as:

LTBR = λLreg(Bs,Bgt), if �2(Bs,Bgt) + ε > �2(Bt,Bgt),

(9)
where Bs and Bt denote the predicted boxes of student and
teacher respectively, Bgt denotes the ground truth boxes, ε is a
predefined margin, andLreg represents the GIoU loss [57]. Here,
only the main distillation region is adopted. From Table I(b), we
can see that the TBR loss does yield performance gains (+0.4
AP and +0.7 AP75) when using proper threshold ε = 0.1 in (9).
However, it uses the coarse bbox representation, which does not
contain any localization uncertainty information of the detector,
leading to sub-optimal results. On the contrary, our LD directly
produces 41.1 AP and 44.9 AP75, since it utilizes the probability
distribution of bounding boxes which contains rich localization
knowledge.

Various γ in VLR: The newly introduced VLR has the param-
eter γ which controls the range of VLR. As shown in Table I(c),
AP is stable when γ ranges from 0 to 0.5. The variation in AP
in this range is around 0.1. As γ increases, the VLR gradually
shrinks to empty. The performance also gradually drops to 41.1,
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TABLE I
ABLATIONS. WE SHOW ABLATION EXPERIMENTS FOR LD AND VLR ON MS COCO VAL2017

TABLE II
EVALUATION OF SELECTIVE REGION DISTILLATION FOR KD AND OUR LD.
THE TEACHER-STUDENT PAIR IS RESNET-101→RESNET-50 FOR COCO, AND

RESNET-101→RESNET-18 FOR VOC 07+12

i.e., conducting LD on the main distillation region only. The
sensitivity analysis experiments on the parameter γ indicate that
conducting LD on the VLR has a positive effect on performance.
In the rest experiments, we set γ to 0.25 for simplicity.

Selective Region Distillation: There are several interesting ob-
servations regarding the roles of KD and LD and their preferred
regions. We report the relevant ablation study results in Table II,
where “Main” means that the logit mimicking is conducted on
the main distillation region, i.e., the positive locations of label
assignment, and ”VLR” denotes the valuable localization region.
For MS COCO, it can be seen that conducting “Main LD,” “VLR
LD,” and “Main KD” all benefits the student’s performance.
This indicates that the main distillation regions contain the
valuable knowledge for both classification and localization and
the classification KD benefits less compared to LD. Then, we
impose the classification KD on a larger range, i.e., the VLR.
However, we observe that further incorporating “VLR KD”
yields no improvement (the last two rows of Table II). This
is the main reason why we adopt the proposed selective region
distillation for COCO.

Next, we check the roles of KD and LD on PASCAL VOC.
Table II shows that it is beneficial to transfer the localization
knowledge to both the main distillation region and the VLR.
However, due to the different knowledge distribution patterns, it
shows a similar degradation of the classification KD. Comparing
the 3 rd row and the 4th row of Table II, “Main KD” leads to a
performance drop, while “VLR KD” produces a positive effect
to the student. This indicates that the selective region distillation
can take the advantages of both KD and LD on their respective
favorable regions.

TABLE III
QUANTITATIVE RESULTS OF LD FOR LIGHTWEIGHT DETECTORS. THE TEACHER

IS RESNET-101. THE RESULTS ARE REPORTED ON MS COCO VAL2017

TABLE IV
QUANTITATIVE RESULTS OF LD ON VARIOUS POPULAR DENSE OBJECT

DETECTORS. THE TEACHER IS RESNET-101 AND THE STUDENT IS RESNET-50.
THE RESULTS ARE REPORTED ON MS COCO VAL2017

LD for Lightweight Detectors: Table III reports the results
of our distillation scheme (“Main LD + VLR LD + Main KD”
on COCO), where a series of lightweight students are distilled,
including ResNet-18, ResNet-34, and ResNet-50. For all given
students, our LD can stably improve the detection performance
without any bells and whistles. From these results, we can
see that our LD improves the students ResNet-18, ResNet-34,
ResNet-50 by +1.7, +2.1, +2.0 in AP, and +2.2, +2.4, +2.5 in
AP75, respectively.

Application to Other Dense Object Detectors: Our LD can
be flexibly applied to other dense object detectors, includ-
ing either anchor-based or anchor-free types. We employ LD
with the divide-and-conquer distillation scheme to several re-
cently popular detectors, such as RetinaNet [40] (anchor-
based), FCOS [62] (anchor-free) and ATSS [83] (anchor-based).
According to the results in Table IV, we can see that our
LD can consistently improve the baselines by around 2 AP
scores.

Arbitrary-Oriented Object Detectors: As a direct extension
of our LD, the rotated bounding box requires an additional

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on May 22,2024 at 05:56:12 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: LOCALIZATION DISTILLATION FOR OBJECT DETECTION 10077

TABLE V
QUANTITATIVE RESULTS OF ROTATED LD ON THE POPULAR

ARBITRARY-ORIENTED OBJECT DETECTORS. THE TEACHER IS RESNET-34 AND

THE STUDENT IS RESNET-18. THE RESULTS ARE REPORTED ON THE

VALIDATION SET OF DOTA-V1.0

probability distribution, i.e., the rotated angle distribution. We
make the necessary and minimum modification to two arbitrary-
oriented object detectors, 1) the foundation of dense regression-
based rotated detector—Rotated-RetinaNet [40] and 2) the re-
cently popular 2D Gaussian distribution modeling detector—
GWD [73]. We follow the mmRotate [90] training and testing
protocols. We use ResNet-34 as the teacher and ResNet-18 as
the student for GPU memory saving. The results are reported on
the validation set of DOTA-v1.0 [68].

The results have been shown in Table V, which demonstrates
that our LD can also be successfully applied to rotated object
detectors and attain considerable improvement in aerial im-
age detection. Particularly, we obtain impressive improvements
for the mAP under more rigorous IoU thresholds, e.g., AP70,
AP80, AP90. This shows the excellent compatibility of our LD,
which can be applied to not only horizontal bounding boxes
but also the rotated ones. In addition, it is worth mentioning
that our LD does not rely on the representations of bound-
ing boxes and the optimization way of modeling (IoU-based
loss for horizontal bounding box prediction [57], [85] and
2D Gaussian modeling for rotated bounding box prediction
[73]).

C. Logit Mimicking V.s. Feature Imitation.

Thus far, we have validated the effectiveness of our LD and
the selective region distillation in distilling different types of
object detectors. The proposed LD along with the classification
KD provides a unified logit mimicking framework. It naturally
raises several interesting questions:
� In terms of detection performance, how does logit mimick-

ing perform compared to feature imitation? Does feature
imitation stay ahead of logit mimicking?

� What are the characteristics of these two different distilla-
tion techniques? Are the deep feature representations and
logits learned different?

In this subsection, we shall provide answers to the above
questions.

Quantitative Comparison on Numerical Results: We first
compare our proposed LD with several state-of-the-art feature
imitation methods. We adopt the selective region distillation,
i.e., performing KD and LD on the main distillation region,
and performing LD on the VLR. Since modern detectors are
usually equipped with FPN [39], following previous works [10],
[19], [66], we re-implement their methods and impose all the
feature imitations on multi-level FPN for a fair comparison.

TABLE VI
LOGIT MIMICKING Vs . FEATURE IMITATION. “OURS” MEANS WE USE THE

SELECTIVE REGION DISTILLATION, I.E., “MAIN LD + VLR LD + MAIN KD”.
“*” DENOTES WE REMOVE THE “MAIN KD”. THE TEACHER IS RESNET-101

AND THE STUDENT IS RESNET-50 [22]. THE RESULTS ARE REPORTED ON MS
COCO VAL2017

Here, “FitNets” [58] distills the whole feature maps. “DeFeat”
[19] means the loss weights of feature imitation outside the GT
boxes are larger than those inside the GT boxes. “Fine-Grained”
[66] distills the deep features on the close anchor box locations.
“GI Imitation” [10] selects the distillation regions according to
the discriminative predictions of the student and the teacher.
“Inside GT Box” means we select the ground-truth boxes with
the same stride on the FPN layers as the feature imitation regions.
“Main Region” means we imitate the features within the main
distillation region.

From Table VI, we can see that distillation within the whole
feature maps attains +0.6 AP gains. By setting a larger loss
weight for the locations outside the GT boxes (DeFeat [19]),
the performance is slightly better than that using the same loss
weight for all locations. Fine-Grained [66] focusing on the
locations near GT boxes, produces 41.1 AP, which is comparable
to the results of feature imitation using the Main Region. GI
imitation [10] searches the discriminative patches for feature
imitation and gains 41.5 AP. Due to the large gap in predictions
between student and teacher, the imitation regions may appear
anywhere.

Despite the notable improvements of these feature imitation
methods, they do not explicitly consider the knowledge distri-
bution patterns. On the contrary, our method can transfer the
knowledge via a selective region distillation, which directly
produces 42.1 AP. It is worth noting that our method operates
on logits instead of deep features, indicating that our LD is
a critical component for logit mimicking to outperform the
feature imitation. Moreover, our method is orthogonal to the
aforementioned feature imitation methods. Table VI shows that
with these feature imitation methods, our performance can be
further improved. Particularly, with GI imitation, we improve
the strong GFocal baseline by +2.3 AP and +3.1 AP75.
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Fig. 4. Visual comparisons of SOTA feature imitation and our LD. We show
the average L1 error of classification scores and box probability distributions
between teacher and student at the P4, P5, P6 and P7 FPN levels. The teacher
is ResNet-101 and the student is ResNet-50. The results are evaluated on MS
COCO val2017.

Teacher-Student Error Comparison: We first check the aver-
age teacher-student errors of the classification scores and the box
probability distributions, as shown in Fig 4. One can see that the
Fine-Grained feature imitation [66] and GI imitation [10] reduce
the two errors as expected, since the classification knowledge
and localization knowledge are mixed on feature maps. Our
“Main LD” and “Main LD + VLR LD” have comparable or
larger classification score average errors than Fine-Grained [66]
and GI imitation [10] but lower box probability distribution
average errors. This indicates that these two settings with only
LD can significantly reduce the box probability distribution
distance between the teacher and the student but they cannot
reduce this error for the classification head. If we impose the
classification KD on the main distillation region, yielding “Main
LD + VLR LD + Main KD,” both the classification score average
error and the box probability distribution average error can be
reduced.

We also visualize the L1 error summation of the localization
head logits between the student and the teacher for each location
at the P5 and P6 FPN levels. As shown in Fig. 5, comparing to
“Without Distillation,” we can see that the GI imitation [10] does
decrease the localization discrepancy between the teacher and
the student. Notice that we particularly choose a model (“Main
LD + VLR LD”) with slightly better AP performance than GI
imitation for visualization. Our method can clearly reduce this
error and alleviate the localization ambiguity.

In Fig. 6, we plot the average errors between the student
and the teacher in terms of deep feature, class logit and bbox
logit, respectively. It can be seen that these three types of errors
show an almost consistent trend as the test resolution changes.
Interestingly, we find that even though the logit mimicking can
shrink the errors of both the bbox logits and the classification
ones, it learns complete different feature representations from
the teacher’s. From the left side of Fig. 6, our method enlarges
the distance between the student’s feature representations and
those of the teacher. Moreover, Table VII shows that the logit
mimicking produces a nearly zero Pearson correlation coeffi-
cient for the feature representations between the teacher-student
pair. This indicates that if the student is only trained with logit
mimicking, it produces a far different and nonlinearly correlated
feature representation to teacher’s. Be that as it may, we can still
attain well-performed logits for good generalization. The last
column of Table VII and Fig. 6 show that the logit mimicking

TABLE VII
THE AVERAGE PEARSON CORRELATION COEFFICIENT BETWEEN THE

TEACHER-STUDENT PAIR. ’GI’: GI IMITATION. ’OURS’: OUR LOGIT MIMICKING

SCHEME WITH THE SELECTIVE REGION DISTILLATION. THE RESULTS ARE

EVALUATED ON MS COCO VAL2017

is able to approach the teacher’s logits not only in distance but
also in linear correlation.

AP Landscape: Distilling an object detector from either the
feature level or the logit level is a high-dimensional non-convex
optimization problem, which is easy in practice but hard in
theory. To better understand the behavior of logit mimicking and
feature imitation, we present a new visualization method, termed
AP landscape, which is especially designed for object detection
to observe the AP changes caused by minute perturbations in the
learnt feature representations. A canonical approach was taken
in [35], who studied the loss surface visualization by linearly
interpolating the parameters of two networks.

In our visualization, we are particularly curious about the
empirical characterization of the feature representations and how
they affect the final performance. Considering two feature repre-
sentationsMf ,Ml which are learnt by the detectors trained with
feature imitation and logit mimicking, respectively, we visualize
the AP landscapes within the 2D projected space Mf ⊕Ml. We
use two scalar parameters α and β to obtain a new feature repre-
sentation by using the weighted sum M(α, β) = αMf + βMl.
Note that when α = 0 and β = 1, it represents that the feature
representations are predicted by the logit mimicking method
and inversely the feature imitation when α = 1 and β = 0.
Then, we feed M(α, β) to the downstream heads and plot
the final AP score. Due to the computational burden, we set
α, β ∈ [−0.5, 1.5] to visualize the 2D AP landscapes.

From Fig. 7, we see that logit mimicking learns robust fea-
ture representations, i.e., the red pentagram at (0,1), which is
surrounded by a flat and well-performed region of AP score.
Second, we observe that the GI imitation produces a much
sharper AP landscape than logit mimicking. We attribute the
landscape sharpness of the GI imitation to the hard l2 loss
supervision. In this case, it is hard for the student to imitate
the high-level and advanced feature representations from the
teacher, which corresponds to a heavy detector with a longer
training schedule and higher accuracy. On the contrary, the logit
mimicking gives the feature representations much more liberty
to learn, leading to a better generalization. As shown in Fig. 8,
logit mimicking can also reduce the optimization difficulty in
the early training stage, while feature imitation converges slower
and has a poor generalization in the early training stage.

Summary: Based on the above results and observations, we
can draw the following conclusions:
� Logit mimicking can outperform feature imitation in object

detection when the localization knowledge distillation is
explicitly distilled.
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Fig. 5. Visual comparisons between the state-of-the-art feature imitation and our LD. We show the per-location L1 error summation of the localization head
logits between the teacher and the student as the P5 (first row) and P6 (second row) FPN levels. The teacher is ResNet-101 and the student is ResNet-50. We can
see that compared to the GI imitation [10], our method (“Main LD + VLR LD”) can significantly reduce the errors for almost all the locations. Darker is better.
Best viewed in color.

Fig. 6. Average teacher-student error on (left) deep feature representation, (middle) class logits, and (right) bbox logits. “Ours” denotes “Main LD + VLR LD +
Main KD”. The curves are evaluated on MS COCO val2017.

Fig. 7. The 2D contour plots of AP landscapes in feature subspace. The AP
landscapes are evaluated on MS COCO val2017.

� Feature imitation can increase the consistency of the feature
representations between the teacher-student pair, but come
some drawbacks such as less feature robustness and slow

training convergence. Logit mimicking with the selective
region distillation can significantly increase the consis-
tency of the logits between the teacher-student pair, keep
the learning liberty of features, and thereby speed up train-
ing process and benefit the KD performance more. This
indicates that the consistency of feature representations
between the teacher-student pair is not the crucial factor
of improving the KD performance.

D. Comparison With the State-of-The-Arts

We compare our LD with the state-of-the-art dense object
detectors by using our LD to further boost GFocalV2 [37]. For
COCO val2017, since most previous works use ResNet-50-FPN
backbone with the single-scale 1× training schedule (12 epochs)
for validation, we also report the results under this setting for a
fair comparison. For COCO test-dev 2019, following a previous
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Fig. 8. The average precision (AP) during the early training stage. The feature
imitation significantly slows down the convergence and gets a sub-optimal
generalization. Logit mimicking (Ours) can reduce the training difficulty in the
early training stage.

TABLE VIII
COMPARISON WITH STATE-OF-THE-ART METHODS ON COCO VAL2017 AND

TEST-DEV2019. TS: TRANING SCHEDULE. ’1×’: SINGLE-SCALE TRAINING 12
EPOCHS. ’2×’: MULTI-SCALE TRAINING 24 EPOCHS

work [37], the LD models with the 1333× [480 : 960] multi-
scale2× training schedule (24 epochs) are included. The training
is carried on a machine node with 8 GPUs with a batch size of
2 per GPU and initial learning rate 0.01 for a fair comparison.
During inference, single-scale testing ([1333× 800] resolution)

is adopted. For different students ResNet-50, ResNet-101 and
ResNeXt-101-32x4d-DCN [70], [94], we also choose differ-
ent networks ResNet-101, ResNet-101-DCN and Res2Net-101-
DCN [16] as their teachers, respectively.

Table VIII reports the quantitative results. It can be seen that
our LD improves the AP score of the SOTA GFocalV2 by +1.6
and the AP75 score by +1.8 when using the ResNet-50-FPN
backbone. When using the ResNet-101-FPN and ResNeXt-
101-32x4d-DCN with multi-scale 2× training, we achieve the
highest AP scores, 47.1 and 50.5, which outperform all ex-
isting dense object detectors under the same backbone, neck
and test settings. More importantly, our LD does not introduce
any additional network parameters or computational overhead
and hence can guarantee exactly the same inference speed as
GFocalV2.

V. CONCLUSION

In this article, we propose a flexible localization distillation
for dense object detection and a selective region distillation
based on a new valuable localization region. We show that 1)
logit mimicking can be better than feature imitation; and 2) the
selective region distillation for transferring the classification and
localization knowledge is important when distilling object detec-
tors. We hope our method could provide new research intuitions
for the object detection community to develop better distillation
strategies. In the future, the applications of LD to sparse object
detectors (DETR [5] series), the heterogeneous detector pairs,
and other relevant fields, e.g., instance segmentation, object
tracking and 3D object detection, warrant further research. Be-
sides, since our LD shares the equivalent optimization effect
to classification KD, some improved KD methods may also
bring gain to LD, e.g., Relational KD [48], Self-KD [15], [82],
Teacher Assistant KD [46], and Decoupled KD [84], etc. Cross
architecture distillation using recent state-of-the-art classifica-
tion models [11], [20], [25], [43], [67] as teachers is also an
interesting direction to explore.
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