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ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities across vari-
ous domains, but their potential for solving combinatorial optimization problems
remains largely unexplored. In this paper, we investigate the applicability of
LLMs to the Job Shop Scheduling Problem (JSSP), a classic NP-hard challenge.
We introduce Starjob, the first large-scale supervised dataset for JSSP, comprising
130,000 instances with natural language representations designed specifically for
training LLMs. Leveraging this dataset, we fine-tune a Llama-3.1 8B model us-
ing the resource-efficient RsSLoRA method to create an end-to-end scheduler. Our
evaluation on standard benchmarks demonstrates that this LLM-based method sur-
passes traditional Priority Dispatching Rules (PDRs) and achieves significant per-
formance gains over foundational neural approaches like L2D and RASCL, with
an average gap improvement of 17.36% on DMU and 7.85% on Taillard bench-
marks relative to L2D. These results highlight the untapped potential of fine-tuned
LLMs in combinatorial optimization, establishing a new direction for developing
interactive and high-performance scheduling systems.

1 INTRODUCTION

Despite their success in natural language processing, Large Language Models (LLMs) have not been
traditionally considered strong candidates for solving computationally intensive problems. Their ap-
plicability to NP-hard combinatorial optimization problems is often viewed as limited, a perception
reinforced by the scarcity of empirical evidence showing LL.Ms outperforming specialized methods
like reinforcement learning in these domains. Furthermore, the propensity of LLMs to “halluci-
nate” can lead to infeasible solutions, making their direct application unreliable. Consequently, the
systematic exploration of fine-tuned LL.Ms for hard combinatorial problems has remained limited.

In this paper, we challenge this prevailing view by demonstrating that representation is the key to un-
locking the scheduling capabilities of LLMs. We present the first fine-tuned LLM for the Job Shop
Scheduling Problem (JSSP). Our results show that when trained on a properly structured, text-based
representation of the problem, an LLM can not only generate feasible schedules but also outper-
form classic Priority Dispatching Rules (PDRs) and foundational dedicated neural methods that first
surpassed them (e.g., L2D [Zhang et al.| (2020) and RASCLIklassov et al.| (2023))). These findings
suggest that with appropriate data representation and fine-tuning, LLMs can become a competitive
new paradigm for combinatorial optimization, complementing existing specialized solvers.

JSSP is a fundamental optimization problem with critical applications in manufacturing and lo-
gistics, where jobs must be scheduled on machines to minimize metrics like makespan (C,q44)-
While traditional methods face scalability challenges, modern Al techniques, particularly reinforce-
ment learning and Graph Neural Networks (GNNs), have offered promising data-driven alternatives
Zhang et al.| (2020); (Corsini et al.| (2024). Concurrently, LLMs have been explored for tasks in-
volving structured reasoning, such as graph analysis [Huang et al.| (2022); |Chen et al.| (2024b) and
planning |Valmeekam et al.| (2022). However, their application to the explicit, constraint-heavy do-
main of scheduling remains largely unexplored.

This work bridges that gap. We are the first to employ a fine-tuned LLM for end-to-end JSSP
scheduling. To enable this, we introduce Starjo a novel supervised dataset where JSSP instances

'"https://github.com/starjob42/Starjob


https://github.com/starjob42/Starjob

Under review as a conference paper at ICLR 2026

and their solutions are framed in natural language. By fine-tuning a Llama model with the RsLoRA
method [Kalajdzievski| (2023) on this dataset, we demonstrate on the well-known Taillard Taillard
(1993) and DMU |Demirkol et al.|(1998) benchmarks that our approach finds high-quality solutions,
surpassing both classic PDRs and the L2D neural baseline.

Our contributions are:

* We introduce Starjob, the first supervised dataset with 130,000 instances designed to train
LLMs for JSSP using a structured natural language format.

* We present the first end-to-end JSSP scheduler based on a fine-tuned LLM, demonstrating
its ability to reason over complex constraints using the Starjob dataset and the RsLoRA
method.

* We conduct a rigorous evaluation against four PDRs and neural methods L2D and RASCL,
showing our model’s superior performance and generalization, particularly on large-scale
instances with up to 1000 operations.

* Our LLM-based approach unlocks a new modality of interaction: users can query the
scheduler in natural language to understand scheduling constraints or solution character-
istics, significantly enhancing transparency and usability, as presented in Listing

It is important to note that while our approach demonstrates competitive performance against sev-
eral established baselines, we do not claim to have developed the absolute best scheduler for JSSP.
Rather, this work represents the first systematic application of LLMs to end-to-end large JSSP in-
stances, establishing a foundation for future research at the intersection of natural language process-
ing and combinatorial optimization.

2 RELATED WORK

JSSP with more than two machines is proven to be NP-hard |Garey et al.| (1976). As a result, find-
ing exact solutions for JSSP is generally infeasible, leading to the widespread use of heuristic and
approximate methods for practical efficiency (Cebi et al.| (2020). Traditional approaches to solving
JSSP have primarily relied on search and inference techniques developed by the constraint program-
ming community [Beck et al.| (2010). These techniques effectively leverage constraints to define
the relationships and limitations between jobs and resources, enabling efficient exploration of feasi-
ble solution spaces and the identification of optimal or near-optimal schedules/Nowicki & Smutnicki
(2005). A widely used heuristic method in real-world scheduling systems is the Priority Dispatching
Rule (PDR) [Zahmani et al.| (2015). PDRs are simple and effective, although designing an efficient
PDR is time-consuming and requires extensive domain knowledge.

Recently, approaches utilizing Deep Learning and Neural Networks have gained attention for finding
promising solutions to the JSSP |[Bonetta et al.| (2023); |[Zhang et al.| (2020); [Corsini et al.| (2024).
These methods can be broadly categorized into supervised learning and reinforcement learning (RL).
Current research in deep reinforcement learning (DRL) is actively focused on developing advanced
methods to tackle JSSP. Existing DRL methods typically represent JSSP as a Markov Decision
Process (MDP) and learn a policy network based on DRL techniquesZhang et al.[(2020).

Large language models (LLMs) are now being applied to a wider range of tasks beyond language
processing, in areas like robotics and planning Huang et al.| (2022). While there are currently no
papers that directly address the scheduling of Job Shop Scheduling Problems (JSSP) using LLMs,
some notable works explore the potential of LLMs in mathematical reasoning and programming
Chen et al.| (2023); [Wei et al.| (2022); |Ahn et al.| (2024); [Yang et al.| (2023). Optimization using
LLMs has gained significant interest in recent years, with several works exploring their capabilities
across various domains |Yang et al.|(2023)). The ability of LLMs to understand and generate natural
language has opened new possibilities for optimization tasks that were traditionally solved using
derivative-based algorithms or heuristic methods [Yang et al.| (2023). (Chen et al.| (2023)) evaluated
LLMs’ performance in mathematical problem-solving and introduced "Program of Thoughts” (PoT)
prompting. Unlike Chain of Thoughts (CoT) Wei et al.|(2022), which combines reasoning and com-
putation, PoT generates reasoning as code statements and delegates computation to an interpreter.
Ahn et al.[(2024)) surveys mathematical problems and datasets studied with LL.Ms, analyzing their
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strengths and weaknesses. [Frieder et al.| (2024) examines LLMs’ impact on mathematicians, ex-
ploring their role in research, education, problem-solving, and proof generation, offering a balanced
view of their capabilities. Recent works Yang et al.| (2023) explore LLMs as optimizers, using
prompts to refine solutions iteratively. Case studies on linear regression and the traveling salesman
problem show LLLMs can produce high-quality solutions, sometimes matching heuristic algorithms
in small-scale scenarios. Explorations into using LLMs for graph learning tasks have yielded notable
approaches. [Huang et al.| (2022)) noted that LLMs exhibit some initial graph reasoning capabilities,
but their performance decreases with problem complexity, [Huang et al.| (2022) introduced prompt-
ing strategies to improve LLMs graph reasoning. |Valmeekam et al.| (2022) developed a benchmark
for assessing the planning and reasoning abilities of LLMs. More recently, |Chen et al.| (2024b)) ex-
amined the use of LLMs for graph node classification tasks. |Chen et al.| (2024a) presents LLMs
as enhancers for GNNs and as direct predictors from graph structures. [Zhao et al.| (2024) proposed
GRAPHTEXT, which translates graphs to natural language for training-free reasoning, often rivaling
GNNs. While LLMs show promise in graph tasks, their use in scheduling is still largely unexplored.

3 PRELIMINARIES

We consider the classical JSSP, which is defined as follows. Given N7 jobs and /N;; machines, each
job J; is comprised of an ordered sequence of operations (O;1, . .., O;y, ). Each operation O;; must
be processed on a designated machine m;; for a processing time p;;. The scheduling variables S;;
denote the start time of operation O;;.

The JSSP is governed by two principal constraints: (i) Precedence constraints require that each
operation starts only after the completion of its predecessor within the same job, i.e., S; j4+1 >
Sij + pij; and (ii) Resource constraints ensure that no two operations assigned to the same machine
overlap in time, i.e., for any pair O;;, Oy, such that m;; = my,

[Sij, Sij + pij) N [Skt, St + pri) = 0.

The objective is to minimize the makespan, defined as the maximum completion time across all
operations:
C’max = H}%X{Sm +plj}

4 DATASET CONSTRUCTION AND REPRESENTATION

The use of LLMs for combinatorial optimization requires translating traditional mathematical rep-
resentations into natural language encodings that maintain the problem structure for language-based
processing. We present a methodology for representing JSSP instances as structured natural lan-
guage, mapping the conventional matrix-based form (see Listing|1) into explicit descriptions of all
constraints and requirements. This mapping is defined as a deterministic, bijective transformation
T : P — L, where P denotes the space of standard JSSP instances and £ the corresponding space
of natural language descriptions.

Listing 1: Example: Natural language encoding of a JSSP instance with N; = 3 and Nj; = 3.

Optimize the schedule for 3 jobs (J0, Jl1, J2) across 3 machines (
MO, M1, M2) to minimize the makespan. Each machine can process
only one job at a time and jobs are non-preemptive.

JO0: MO:105, M1:29, M2:213
Jl: M0:193, M1:18, M2:213
J2: M0:78, M1l:74, M2:221

For a JSSP instance with N; jobs and N, machines, we construct a natural language encoding that
systematically specifies:

1. The problem dimensions (N; X Nps)
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2. The operational constraints (non-preemption, machine exclusivity)
3. The sequential processing requirements for each job

4. The corresponding processing durations

This encoding establishes a bijective mapping between mathematical and linguistic representations,
preserving all information required for solution generation while rendering the problem interpretable
to language models. As illustrated in Listing[I] the natural language encoding presents the problem
parameters in a clear, structured format that delineates job requirements across machines.

4.1 CORPUS GENERATION FOR MODEL TRAINING

To facilitate effective learning of the mapping between problem instances and their solutions, we
constructed a comprehensive corpus of JSSP instances and their corresponding optimal or near-
optimal solutions. The corpus encompasses approximately 130,000 random JSSP instances span-
ning dimensions from 2 x 2 to 20 x 20, supplemented by ~1,000 larger and asymmetric instances to
enhance generalization capabilities across problem scales. Operation durations were sampled from
a uniform distribution ranging from 5 to 500 time units, ensuring comprehensive coverage of the
solution space and robustness to varying temporal constraints. The testing dataset is out of distribu-
tion dataset from the trainng dataset. We conduct evaluations on the TAI Taillard| (1993)) and DMU
Demirkol et al.| (1998) benchmark sets, which are entirely held out from the training phase.

For solution generation, each instance was processed using Google’s OR-Tools optimization
framework with parameters configured to balance computational efficiency and solution qual-
ity. The solver was allocated a 300-second time limit with 42 parallel workers utilizing the
AUTOMATIC_SEARCH strategy, providing near-optimal solutions even for larger problem instances.
For problems exceeding 10 x 10 dimensions, we acknowledge potential suboptimality due to com-
putational constraints while maintaining solution feasibility.

The solution encoding adopts a structured natural language format, specifically designed to guide
the autoregressive nature of the LLMs. Each entry in the solution sequence (see Listing 2) details a
job-machine assignment along with its explicit start time, duration, and resulting completion time.
Notably, the use of summation notation (e.g., “J2-M0: 0+78 — 78”) forces the model to compute
the current makespan incrementally, based on the start time and duration, while taking into account
the completion times of all previously scheduled operations.

This stepwise representation leverages the LLM’s autoregressive generation process, requiring it
to ’think” about the current scheduling decision by explicitly calculating and verifying the timing
constraints before proceeding to the next operation. The format ensures that each scheduling step
is conditioned on the already constructed partial schedule, thus embedding temporal dependencies
and constraint satisfaction directly into the generation process.

Listing 2: Consistent schedule with correct job precedence and operation durations for a JSSP in-
stance with V; = 3 jobs and Nj; = 3 machines. The values after ”-;” denote operation completion
times. The makespan is the maximum of these, i.e., 488.

Solution :

J2-MO: 0+78 —> 78,
J1-M2: 0+193 —> 193,
JO-MO: 78+105 —> 183,
JO-M1: 183429 —> 212,
J2-M2: 193+74 —> 267,
J1-M1: 212+18 —> 230,
J1-MO: 230+213 —> 443,
J2-M1: 267+221 —> 488,
JO-M2: 267+213 —> 480

Empirical results (see Table [3) show that this explicit, computation-driven format significantly en-
hances the feasibility of generated solutions compared to formats omitting intermediate calculations.
By prompting the model to perform and record intermediate makespan computations, the approach
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enables real-time constraint checking and more effective optimization, reducing the frequency of
infeasible schedules.

5 METHODOLOGY

We propose a novel method for solving JSSP by fine-tuning large language models with natural
language representations of scheduling problems and solutions. Our framework, based on Meta-
Llama-3.1-8B-Instruct (4-bit quantized), reframes JSSP as a sequence generation task and operates
in two phases: (1) fine-tuning the model on problem-solution pairs using rsLoRA, and (2) generating
and selecting optimal schedules for new instances. By expressing both problems and solutions
in natural language, our approach leverages pre-trained knowledge and learns scheduling-specific
patterns efficiently.

5.1 TRAINING METHODOLOGY

We fine-tune the model using rsLoRA Hu et al.|(2022), an approach that replaces the standard scaling
factor 2 with a stabilized \/g , which enables the use of higher ranks without causing gradient col-
lapse and ensures more stable training dynamics. The model is initialized with pre-trained weights
6o, which remain frozen throughout the process, while only the low-rank adaptation matrices U and
V' are updated to minimize the negative log-likelihood loss on tokenized problem-solution pairs.
Training is conducted over 2 epoch with a learning rate of 2 x 10~%, LoRA rank r = 64, scaling
factor a = 64, and a batch size of 16, utilizing a single Nvidia RTX A6000 GPU (48GB memory),
with the training process taking approximately 70 hours and utilizing around 30GB of GPU RAM,
highlighting the resource requirements for this procedure. Alpaca training template format is used
during the training as described in Appendix Listings

Algorithm 1: LLM Fine-Tuning for JSSP with rsLoRA
Input: Problem instance £, in natural language, Fine-tuned LLM with parameters

0 =0y + .UV , Number of candidate solutions S
Initialize low-rank matrices U, V € R%*"
Define rank-stabilized factor v, =

TV
for epoch =1 to E do ‘
for each batch {(LS”, s}, cDdo
Tokenize each problem £ and solution s(?)

Construct inputs with problems Ez(,i) as context

Set targets as tokenized solutions s(*) = {wgz), e w(T?}
Compute effective parameters: § = 0 + v, UV T

Forward pass: Compute probabilities p(w;|w<, E,(,Z); 0)
Compute NLL loss: £ = — Zle Zthl logp(wiz) \wgz, ES); 0)
Compute gradients Vi £ and Vi L

Update U <+~ U —nVy L

Update V <V —nVy L

| Evaluate model performance on validation set

Result: Fine-tuned model parameters § = 0y + v, UV T

5.2 INFERENCE AND SOLUTION SELECTION

At inference time (Algorithm [2), we employ a generate-and-select strategy. For each problem in-
stance, the model produces multiple candidate solutions through temperature-controlled sampling.
Each candidate undergoes rigorous feasibility checking to ensure satisfaction of all JSSP constraints,
including job precedence, machine exclusivity, and non-preemption requirements. From the set of
feasible solutions, we select the one with the minimum makespan.
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The feasibility check validates that: (1) each job’s operations are scheduled in the correct sequence,
(2) no machine processes multiple jobs simultaneously, (3) each operation has the correct processing
time, and (4) all operations are scheduled exactly once. This comprehensive validation ensures that
all solutions adhere to the fundamental constraints of the JSSP problem domain.

Algorithm 2: LLM-Based JSSP Solution Generation and Selection

Input: Problem instance £, in natural language, Fine-tuned LLM with parameters
0 =06g+~U VT Number of candidate solutions S, temperature 7

Initialize empty set of feasible solutions SI <

fori=1to S do

Generate candidate solution s; ~ LLMg(L,, )

Parse solution s; to extract job-machine assignments and timings

validprecedence < Check job operation precedence constraints

validexclusivity < Check machine exclusivity constraints

validiming <~ Check correct processing times

validcompleteness <— Check all operations are scheduled once

if Validprecedence A Validexclusivity A Validziming A Validcompletenesx then

L Compute makespan M (s;)

Add to feasible set: S + SJ U {s;}

if SI # () then
L return s* = argmin s M(s) // Best solution by makespan
P

else
L return ’No feasible solution found”

6 VALIDATION, BASELINE METHODS, AND EMPIRICAL ANALYSIS

We evaluated our end-to-end LLM-based job shop scheduler using the standard Taillard |[Taillard
(1993)) and DMU |Demirkol et al.| (1998) benchmarks, comparing it to both traditional heuristics
and state-of-the-art learning-based methods. As the first application of LLMs for end-to-end JSSP
solution generation, we benchmarked our model against L2D |Zhang et al.|(2020)—an early neural
approach that outperforms classic priority dispatching rules (PDRs) such as SPT, MWKR, MOPNR,
and FDD/MWKR. L2D leverages a graph neural network and PPO |Schulman et al.| (2017) for gen-
eralization. Additionally, we compared our method with RASCLB |Iklassov et al.| (2023), a state-
of-the-art reinforcement learning approach designed for cross-instance generalization. Here, “B”
denotes the “base” learning method in Iklassov et al.|(2023), which combines an RL-based method
with TLSTM and set2set modules. RASCLB is trained on larger instances (30x20) with a sample
size of 20. Its reverse LSTM |[Hochreiter & Schmidhuber| (1997) component receives static, multidi-
mensional embeddings for all operations in a job .J;, propagating information backward from the last
operation to the current one. For all experiments, inference was performed with a context length of
40,000 tokens (the maximum number of tokens the model can process in a single input sequence) us-
ing default sampling settings and .S = 20 samples per instance, with default temperature parameter
of 1. Both training and inference used 4-bit quantization for memory efficiency, requiring about
30GB of GPU memory on an NVIDIA A6000. Our largest evaluated instance (23,000 tokens) fits
comfortably within this window. For faster inference, we converted the model to the 11lama. cpp
format |Gerganov| (2023), achieving 102.22 tokens/sec on an RTX A6000 (48GB), as reported by
Dai et al. [Dai| (2024). Notably, inference time scales with token sequence length rather than problem
complexity; processing our largest instance (22,224 tokens) within the 40,000-token window took
about 217 seconds per sample, regardless of task type.

6.1 PERFORMANCE METRICS AND COMPARATIVE RESULTS

Performance on each benchmark was evaluated using the Percentage Gap (PG), defined as:

M,
PG = 100><( alg _ 1>,
ub
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where M, is the makespan produced by the algorithm, and My, is the best-known or optimal
makespan. Lower PG values correspond to solutions closer to the best-known objective. Tables
[I] and [2] present the gap percentages of the fine-tuned Llama model compared to L2D and other
methods (SPT, MWKR, FDD/WKR, MOPNR) on Tai and DMU datasets. Benchmark solutions are
available aﬂ an<ﬂ Across instances ranging from 15 jobs and 15 machines to 50 jobs and 20 ma-
chines, the fine-tuned Llama 3.1 consistently outperforms all other methods. On larger instances (50
jobs, 20 machines, 1000 nodes), Llama achieves a 24.32% gap, surpassing L2D (26.40%). The aver-
age gap for fine-tuned Llama (21.69%) is significantly lower than SPT (60.57%), MWKR (55.29%),
FDD/WKR (46.77%), MOPNR (42.99%), and L2D (29.54%). On the DMU benchmark with 50
jobs and 15 machines, fine-tuned Llama (22.14%) again outperforms all methods, including L2D
(37.50%). SPT consistently has the highest gap (often above 60%), reflecting its inability to han-
dle complex constraints. MWKR and FDD/WKR, while more sophisticated, remain outperformed
by learning-based approaches due to their myopic decision processes. Notably, our method shows
average improvements over the dedicated model RASCLB of 13.41% on the Taillard dataset (see
Table[T) and comparableresult on the DMU dataset (see Table [2).

6.2 ABLATION STUDY

To understand the impact of key components, we conducted an ablation study focusing on our Star-
job data representation and the model size. As shown in Table [3] the our proposed summation
format significantly increases the percentage of feasible solutions produced by the Llama 8B model
compared to the standard matrix format, not involving summation operations, which is familiar to
the LLM from pretraining|Bordt et al.|(2024). Despite this familiarity, Starjob yields markedly better
feasibility. The Llama 1B model, in contrast, failed on this task, highlighting the necessity of larger
models for high-quality scheduling.

Listing 3: An interactive session where the LLM explains the primary scheduling bottleneck.

Example: Interactive Query with the Starjob-LLM

User:
Looking at the 3x3 problem instance, what was the main bottle-
neck that made it hard to solve?

Starjob-LLM:

The primary bottleneck was Machine 2 (M2). All three jobs
required this machine for long processing times, creating a
highly contended resource.

The sequential processing on M2 (J1-M2 — J2-M2 — J0-M2)
formed the critical path, which ultimately determined the fi-
nal makespan of 488. Any improvement to the schedule would
need to resolve this contention on Machine 2.

7 CONCLUSION

This work served as a test to see whether LLMs could generate any feasible solutions for NP-hard
combinatorial optimization, rather than to claim the best scheduler. We showed that, with the right
data representation, LLLMs can indeed act as effective schedulers. To this end, we introduced Star-
job, a large supervised dataset for the Job Shop Scheduling Problem (JSSP) in structured natural
language, and fine-tuned a Llama 8B model using resource-efficient methods. While our goal was
not to surpass specialized schedulers, our LLM-based approach still outperformed traditional Pri-
ority Dispatching Rules and even some dedicated neural baselines on standard benchmarks. These
findings highlight the potential of LLMs for combinatorial optimization, and suggest promising di-
rections for more interpretable and interactive scheduling systems in the future.

Zhttp://optimizizer.com/TA.php
*http://jobshop.3jjvh.nl/
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8 LIMITATIONS AND FUTURE WORK

While our model’s performance is dependent on the Starjob dataset and constrained by the LLM’s
context window, it provides high-quality heuristic solutions. Future work will focus on developing
hybrid solvers that combine our approach with traditional optimization methods for further refine-
ment. We also plan to explicitly integrate Graph Neural Networks (GNNs) into the LLM latent
space via cross-attention to better capture relational structure, and to investigate the impact of full
fine-tuning and larger LLMs for additional performance gains.

Table 1: Comparison of different methods on the TAI dataset (sampling budget = 20). Lower values
indicate schedules closer to the optimal solution, representing better performance. * indicates the
best result according to the Percentage Gap. Classic JSSP heuristics (FDD/WKR, MOPNR, MWKR,
SPT) are described in Appendix@ L2D, RASCLB, and LLM-FT-Ours are neural methods.

15x15 20x15 20x20 30x15 30x20 50x15 50x20 Average

Method

FDD/WKR 47.45 50.57 47.57 45.01 56.30 37.72 42.80 46.77
MOPNR 44.98 47.97 43.68 45.59 48.23 31.25 39.24 42.99

MWKR 56.74 60.65 55.60 52.61 63.93 41.90 55.62 55.29

SPT 54.64 65.24 64.11 61.61 66.03 51.37 61.00 60.57

L2D 2595 4+ 337  30.03 £ 3.90 31.60 + 4.11 33.02 + 429  33.62 £ 437  26.15 4+ 340 2640 £ 343  29.54 + 384
RASCLB 20.59 + 247 2531 £ 3.04 2547 £3.06 2727 £3.27 3040 + 3.65 20.69 + 2.48 2640 + 3.17  25.16 £+ 3.02

LLM-FT-Ours  19.34 + 1.93* 18.00 + 1.80* 21.11 + 2.11* 21.44 + 2.14* 30.05 £ 3.00%* 17.57 + 1.76% 24.32 + 2.43* 21.69 + 2.17*

Table 2: Comparison of different methods on the DMU dataset (sampling budget = 60). Lower
values indicate schedules closer to the optimal solution, representing better performance. * indicates
the best result according to the Percentage Gap. Classic JSSP heuristics (FDD/WKR, MOPNR,
MWKR, SPT) are described in Appendix E L2D, RASCLB, and LLM-FT-Ours are neural methods.

20x15 20x20 30x15 30x20 40x15 40x20 50x15 Average

Method

FDD/WKR 53.58 52.51 54.12 60.08 50.76 55.52 37.58 52.02
MOPNR 49.17 45.18 47.14 51.97 43.23 49.22 31.73 45.38
MWKR 62.14 58.16 60.96 63.15 52.40 61.09 43.23 57.30

SPT 64.12 64.55 62.57 65.92 55.89 62.99 47.83 60.55

L2D 38.95 £ 5.06 37.74 £ 491 41.86 £ 544 3948 £+ 5.13 36.68 £+ 4.77 41.18 £ 5.35 26.60 + 3.46 37.50 £+ 4.88
RASCLB 19.66 + 2.36 15.98 + 1.92 16.35 + 1.96 23.00 £+ 2.76 17.89 + 2.15 26.42 + 3.17 21.84 + 2.62 20.16 + 2.42

LLM-FT-Ours  19.20 + 1.92%* 20.16 & 2.02 22.11 £ 2.21 21.82 £ 2.18% 17.24 + 1.72% 23.61 £ 2.36* 16.85 + 1.69* 20.14 £ 2.01*

Table 3: Ablation study comparing our Starjob representation against the standard Matrix format,
and the Llama 8B model against Llama 1B model. Average Feasibility (%) indicates the percentage
of valid solutions generated, where higher values are better. Our proposed format dramatically
increases feasibility. The complete failure of the Llama 1B model highlights the task’s complexity,
while the Llama 8B model using Starjob consistently produces high-quality schedules. Feasibility
and time for Llama 1B model are marked as N/A where not available.

Problem Size Without Summation (%) With Summation (%) Avg. Time (s) (8B)

1B 8B 1B 8B
5x5 N/A ~8.0 N/A ~9.5 6.1
8x8 N/A ~8.0 N/A ~10.5 7.2
10x10 N/A ~1.0 N/A ~12.1 2.6
12x12 N/A ~4.0 N/A ~39.6 14.3
15x15 N/A ~1.0 N/A ~14.4 22.5
20%20 N/A ~1.5 N/A ~17.4 15.1
30x30 N/A N/A N/A ~30.5 18.3
50%20 N/A ~1.0 N/A ~14.6 22.0
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A APPENDIX
B TRAINING DETAILS

MODEL OVERVIEW

The model being fine-tuned is LLaMA 3.1, an 8 billion parameter model from MetaAll (2024a),
using a 4-bit quantized version to reduce memory usage. Finetuning was conducted using Stabilized
Low-Rank Adaptation (RsLoRA) with rank = 64 to introduce learnable parameters specifically in

11


https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2312.03732
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=dbcWzalk6G
https://openreview.net/forum?id=dbcWzalk6G

Under review as a conference paper at ICLR 2026

targeted layers. Kalajdzievski (2023) Compared to LoraHu et al.|(2022) RsLoRa improves the sta-
bility of training by modifying the rank during adaptationKalajdzievski| (2023). The target modules
include:
target_ modules = {gq_proj, k.proj, v.proj, o_proj,
gate_proj, up-proj, downproj} (1)

The LoRA-specific parameters are configured as follows:

e Rank (r): 64

* LoRA Alpha (a): 64
* LoRA Dropout: 0

* Bias: none

This resulted in number of trainable parameters = 167,772,160 or 2 % of the entire Llama 8B
model’s parameters.

QUANTIZATION AND MEMORY EFFICIENCY

The model is loaded in 4-bit precision to reduce memory consumption. Gradient checkpointing is
enabled using the unsloth |Al (2024b) method, to fit longer sequences by saving memory. This
reduces the VRAM usage by approximately 30%, enabling larger batch sizes.

TRAINING PARAMETERS

The fine-tuning process is controlled by the following parameters:

* Batch size per device: 4

* Gradient accumulation steps: 4

* Max sequence length: 40,000 tokens

¢ Number of epochs: 2

* Warmup steps: 5

* Learning rate: 2 x 1074

* Optimizer: AdamW with 8-bit precision
¢ Weight decay: 0.01

* Learning rate scheduler: Linear decay
* FP16 precision: True

Listing 1: Prompt format used during training.

alpaca_prompt = """Below is an instruction that describes a task,
paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:

{}

### Input:
{}

### Response:
{}"""

12
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Figure 2: Train loss of Llama 8B 4bt model on Starjob dataset
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Figure 3: Eval Loss of Llama 8B 4bt model on Starjob dataset

DATA AND DATASET SPLITTING

The dataset used for training is a local version of the proposed Starjob dataset, and it is split into
98% training and 2% evaluation:

train : eval = 98% : 2%

The prompts are formatted using a predefined Alpaca-style template, which ensures the model is
trained on instruction-following tasks.

EVALUATION AND SAVING STRATEGY

The best model was loaded at the end of training based on the evaluation loss:

Metric for Best Model = Evaluation Loss

13
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Total number of saved models is limited to 50 to prevent excessive memory usage.

GPU UTILIZATION

The training process takes place on Nvidia A6000 GPU with 48GB of memory. Training took
around 70 hours and required 30GB of GPU RAM.

C GENERAL STATISTICS ABOUT DATASET

The dataset comprises 130,000 randomly generated JSSP instances with solutions in natural lan-
guage, provided in . json format with the following columns:

* num_jobs (int64): 12 unique values.
* num_machines (int64): 12 unique values.

* instruction (object): 130,000 unique values. Initial problem description detailing jobs
and machines.

* input (object): 130,000 unique values. Problem description formatted for LLM.
* output (object): 130,000 unique values. Solution in LLM format.

* matrix (object): 130,000 unique values. OR-Tool makespan and solution in matrix for-
mat.

The output column serves as the target or label column, providing the solution to the JSSP problem
in natural language and the associated makespan.

65000

Average Makespan
Standard Deviation

5000 r0.8
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1=
o

Makespan
w
]
=1
S
Standard Deviation
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Job-Machine Combinations
Figure 4: Makespan metrics across different job-machine combinations. The x-axis represents the

combinations of jobs and machines (e.g., a 3-2 instance refers to 3 jobs and 2 machines), the right
y-axis shows the standard deviation, while the left y-axis shows the makespan values.
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Table 4: Comparison of PDRs against L2D against Finetuned Llama on Starjob dataset and the
average Gaps on Tai Benchmark Dataset. The lower the value, the closer the schedule is to the
optimal solution, thus representing better performance. BFL* indicates best from literature.

J M Instance SPT MWKR FDD/WKR MOPNR L2D BFL* Llama-FT-Ours

15 15 Ta0l 1872 (52.1%) 1786 (45.1%) 1841 (49.6%) 1864 (51.4%) 1443 (17.2%) 1231.0% 1453.0 (18.0%)
15 15 Ta02 1709 (37.4%) 1944 (56.3%) 1895 (52.3%) 1680 (35.0%) 1544 (24.1%) 1244.0%  1440.0 (15.8%)
15 15 Ta03 2009 (64.9%) 1947 (59.9%) 1914 (57.1%) 1558 (27.9%) 1440 (182%) 1218.0% 1521.0 (24.9%)
15 15 Ta04 1825 (53.3%) 1694 (44.2%) 1653 (40.7%) 1755 (49.4%) 1637 (39.3%) 1175.0% 1387.0 (18.0%)
15 15 Ta05 2044 (67.0%) 1892 (54.6%) 1787 (46.0%) 1605 (31.1%) 1619 (32.3%) 1224.0% 1461.0 (19.4%)
15 15 Ta06 1771 (43.1%) 1976 (59.6%) 1748 (41.2%) 1815 (46.6%) 1601 (29.3%) 1238.0% 1499.0 (21.1%)
15 15 Ta07 2016 (64.3%) 1961 (59.8%) 1660 (35.3%) 1884 (53.5%) 1568 (27.8%) 1227.0% 1473.0 (20.0%)
15 15 Ta08 1654 (35.9%) 1803 (482%) 1839 (51.1%) 1839 (51.1%) 1468 (20.6%) 1217.0+ 1475.0 (21.2%)
15 15 Ta09 1962 (54.0%) 2215 (73.9%) 1848 (45.1%) 2002 (57.1%) 1627 (27.7%) 1274.0%  1534.0 (20.4%)
15 15 Talo 2164 (74.4%) 2057 (65.8%) 1937 (56.1%) 1821 (46.7%) 1527 (23.0%) 1241.0% 1465.0 (18.0%)
20 15 Tall 2212 (63.0%) 2117 (56.0%) 2101 (54.8%) 2030 (49.6%) 1794 (32.2%) 1357.0% 1691.0 (24.6%)
20 15 Tal2 2414 (76.6%) 2213 (61.9%) 2034 (48.8%) 2117 (54.9%) 1805 (32.0%) 1367.0% 1677.0 (22.7%)
20 15 Tal3 2346 (74.7%) 2026 (50.9%) 2141 (59.4%) 1979 (47.4%) 1932 (43.9%) 1343.0% 1749.0 (30.2%)
20 15 Tald 2190 (56.8%) 2164 (60.9%) 1841 (36.9%) 2036 (S1.4%) 1664 (23.7%) 1345.0%  1660.0 (23.4%)
20 15 Tals 2163 (61.5%) 2180 (62.6%) 2187 (63.3%) 1939 (44.8%) 1730 (29.2%) 1339.0% 1770.0 (32.2%)
20 15 Tal6 2032 (64.1%) 2528 (85.9%) 1926 (41.6%) 1980 (45.6%) 1710 (25.7%) 1360.0%+ 1731.0 (27.3%)
20 15 Tal? 2185 (49.5%) 2015 (37.8%) 2093 (43.2%) 2211 (51.2%) 1897 (29.8%) 1462.0%  1846.0 (26.3%)
20 15 Tal$ 2267 (62.4%) 2275 (63.0%) 2064 (47.9%) 1981 (44.9%) 1794 (28.5%) 1396.0% 1706.0 (22.2%)
20 15 Tal9 2238 (68.0%) 2201 (65.2%) 1958 (47.0%) 1899 (42.6%) 1682 (26.3%) 1332.0%  1685.0 (26.5%)
20 15 Ta20 2370 (75.8%) 2188 (62.3%) 2195 (62.8%) 1986 (47.3%) 1739 (29.0%) 1348.0%  1802.0 (33.7%)
20 20 Ta2l 2836 (72.7%) 2622 (59.7%) 2455 (49.5%) 2320 (41.3%) 2252 (37.1%) 1642.0% 2077.0 (26.5%)
20 20 Ta22 2672 (67.0%) 2554 (59.6%) 2177 (36.1%) 2415 (50.9%) 2102 (31.4%) 1600.0% 2443.0 (52.7%)
20 20 Ta23 2397 (53.9%) 2408 (54.7%) 2514 (61.5%) 2194 (40.9%) 2085 (33.9%) 1557.0% 2086.0 (34.0%)
20 20 Ta24 2787 (69.5%) 2553 (55.3%) 2391 (45.4%) 2250 (36.9%) 2200 (33.8%) 1644.0% 2135.0 (29.9%)
20 20 Ta25 2513 (57.6%) 2582 (61.0%) 2267 (42.1%) 2146 (43.4%) 2201 (38.0%) 1595.0% 2304 (44.4%)

20 20 Ta26 2649 (61.2%) 2506 (52.5%) 2484 (60.9%) 2284 (S0.9%) 2176 (32.4%) 1643.0% 2195.0 (33.6%)
20 20 Ta27 2707 (61.1%) 2768 (64.8%) 2514 (49.6%) 2298 (36.8%) 2132 (26.9%) 1680.0% 2172.0 (29.3%)
20 20 Ta28 2654 (65.0%) 2370 (47.8%) 2330 (45.0%) 2259 (40.4%) 2146 (33.9%) 1603.0% 2088.0 (30.3%)
20 20 Ta29 2681 (65.0%) 2399 (47.6%) 2322 (37.4%) 2367 (45.7%) 1952 (20.1%) 1625.0% 2209 (35.9%)

20 20 Ta30 2662 (68.1%) 2424 (53.0%) 2348 (48.2%) 2370 (49.6%) 2035 (28.5%) 1584.0% 2038.0 (28.7%)

Table 5: Comparison of PDRs against L2D against Finetuned Llama on Starjob dataset and the
average Gaps on DMU Benchmark Dataset. The lower the value, the closer the schedule is to the
optimal solution, thus representing better performance. BFL* indicates best from literature.

J M Instance SPT MWKR FDD/WKR MOPNR L2D BFL*  Llama-FT-Ours

20 15 DmuOl 4516 (76.2%) 3988 (55.6%) 3535 (37.9%) 3882 (51.5%) 3323 (29.7%) 2563.0% 3064 (19.5%)
20 15 Dmu02 4593 (69.7%) 4555 (68.3%) 3847 (42.2%) 3884 (43.5%) 3630 (34.1%) 2706.0% 3233 (19.5%)
20 15 Dmu03 4438 (62.5%) 4117 (50.8%) 4063 (48.8%) 3979 (45.7%) 3660 (34.0%) 2731.0% 3296 (20.7%)
20 15 Dmu04 4533 (69.8%) 3995 (49.7%) 4160 (55.9%) 4079 (52.8%) 3816 (43.0%) 2669.0% 3299 (23.6%)
20 15 Dmu0S 4420 (60.8%) 4977 (81.0%) 4238 (54.2%) 4116 (49.7%) 3897 (41.8%) 2749.0% 3458 (25.8%)
20 15 Dmudl 5283 (62.7%) 5377 (65.5%) 5187(59.7%) 5070 (56.1%) 4316 (32.9%) 3248.0% 4137 (27.4%)
20 15 Dmud2 5354 (57.9%) 6076 (79.2%) 5583 (64.7%) 4976 (46.8%) 4858 (43.3%) 3390.0% 4169 (23.0%)
20 15 Dmu43 5328 (54.8%) 4938 (43.5%) 5086 (47.8%) 5012 (45.7%) 4887 (42.0%) 3441.0% 4634 (34.7%)
20 15 Dmudd 5745 (64.7%) 5630 (61.4%) 5550 (59.1%) 5213 (49.5%) SIS1 (47.7%) 3488.0% 4429 (27.0%)
20 15 Dmud5 5305 (62.1%) 5446 (66.4%) 5414 (65.5%) 4921 (50.4%) 4615 (41.0%) 3272.0% 4423 (35.2%)
20 20 Dmu06 6230 (92.0%) 5556 (71.3%) 5258 (62.1%) 4747 (46.3%) 4358 (34.3%) 3244.0% 4173 (28.6%)
20 20 Dmu07 5619 (84.5%) 4636 (52.2%) 4789 (57.2%) 4367 (43.4%) 3671 (20.5%) 3046.0% 3821 (25.4%)
20 20 Dmu08 5239 (64.3%) 5078 (59.3%) 4817 (51.1%) 4480 (40.5%) 4048 (27.0%) 3188.0% 3982 (24.9%)
20 20 Dmu09 4874 (57.6%) 4519 (46.2%) 4675 (512%) 4519 (46.2%) 4482 (45.0%) 3092.0% 4376 (41.5%)
20 20 Dmul0 4808 (61.1%) 4963 (66.3%) 4149 (39.0%) 4133 (38.5%) 4021 (34.8%) 2984.0% 3853 (29.1%)
20 20 Dmud6 6403 (58.7%) 6168 (52.9%) 5778 (432%) 6136 (52.1%) 5876 (45.6%) 4035.0% 5447 (35.0%)
20 20 Dmud7 6015 (52.7%) 6130 (55.6%) 6058 (53.8%) 5908 (50.0%) ST71 (46.5%) 3939.0% 4899 (24.4%)
20 20 Dmu48 5345 (42.0%) 5701 (51.5%) 5887 (56.4%) 5384 (43.1%) 5034 (33.8%) 3763.0% 4854 (29.0%)
20 20 Dmud9 6072 (63.7%) 6089 (64.1%) 5807 (56.5%) 5469 (47.4%) S470 (47.4%) 3710.0% 4674 (26.0%)
20 20 DmuS0 6300 (68.9%) 6050 (62.2%) 5764 (54.6%) 5380 (44.3%) 5314 (42.5%) 3729.0% 4515 (21.1%)
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### Response:
<|endoftext |>The schedule can be optimized using the NEH algorithm. Here is the optimized schedule:

Machine 1: Jo, 32, 35, 37, 19, J11, J13, J15, J17, J19
Machine 33, 36, 18, J10, J12, J14, J16, J18, 120
Machine 121, 123, 327, 129, 131,

Machine 4: 122, 124, 128, 130, 132,

Machine J19, J21, 125, 127, 129,

Machine 320, 322, 126, 128, 130,

Machine 121, 323, 325, 327, 329, 331,

Machine 8: J10, J22, J24, J26, J28, 130, 132, J34, 36, 138
Machine 9: J11, J23, J25, J27, J29, 331, 133, 135, J37, 139
Machine J12, 324, 12 J30, 132, 134, 136, J38, Jao
Machine 11: J13, 25, 12 131, 333, 335, 337, 339,
Machine 14, 126, 132, 334, 136, 338, Jde,
Machine J15, 327, 329, 333, 335, 337, 339, 141,
Machine J16, 128, 130, 134, 336, 338, 140, 142,
Machine 317, 329, 331, 3135, 337, 339, 141, 143,
Machine J3e, J32, 136, 138, 140, 142, 144,
Machine J31, 133, 137, 339, 341, 143, 145,
Machine 18: 132, 134, 138, 140, 142, 144, 146,
Machine 133, 135, 139, 341, 143, 145, 147,
Machine 322, 134, 336, J40, 142, 144, 146, 148,

This schedule minimizes the makespan by assigning the jobs to machines in a way that maximizes the utilization of each machine and mi

nimizes the idle time between jobs. The schedule can be further improved by considering other optimization criteria, such as minimizi
ng the maximum completion time of any machine. However, this schedule provides a good starting point for further optimization. |<|end
oftext|>## Step 1: Understand the problem and the input data.

The problem is to optimize the schedule for 100 jobs (denoted as J) across 20 machines (denoted as M) to minimize the makespan, which

is the completion time of the last operation in the schedule. Each M can process only one J at a time, and once started, J cannot be
interrupted.

## Step 2: Read and understand the input data.
The input data consists of 100 jobs, each represented by a
noted as JO to J99, and the machines are denoted as M1 to M

list of machines and their corresponding processing times. The jobs are de
20.

## Step 3: Choose an optimization algorithm.

The NEH (Non-Enumerative Heuristic) algorithm is a popular choice for solving the flow shop scheduling problem. It works by iterative
ly constructing a feasible schedule and improving it through a series of exchanges.

Figure 5: Zero Shot inference on LLama 8B 4bt
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D DETAILS OF THE BASELINES

In this section, we show how the baseline PDRs compute the priority index for the operations. We
begin by introducing the notations used in these rules, summarized as follows:

Z;j + the priority index of operation O;;,

n; : the number of operations for job J;,

Re; : the release time of job J; (here we assume Re; = 0 for all J;,
i.e. all jobs are available in the beginning, but in general
the jobs could have different release times),

p;j : the processing time of operation O;;.
Based on the above notations, the decision principles for each baseline are given below:

 Shortest Processing Time (SPT):
min Zz j = Dij-

* Most Work Remaining (MWKR):
max Z;; = Zpik'
k=1

¢ Minimum ratio of Flow Due Date to Most Work Remaining (FDD/MWKR):

Re; + Z';izl Dik

min Zij = .
Zkzl Pik

* Most Operations Remaining (MOPNR):

HlaXZij = N, —j+1

D.1 L2D: MDP FORMULATION AND GNN-BASED PoLICY

Markov Decision Process. [Zhang et al.| (2020) models a JSSP instance as an MDP, where each
step ¢ selects one eligible operation to schedule. The partial schedule at time ¢ is represented by a
disjunctive graph G(t) = (O,C U D, (t), D(t)), whose arcs encode machine-ordering constraints.
The state s; specifies (i) which operations are already scheduled and (ii) estimated completion times
for each operation. An action a; picks the next operation to schedule, leading to an updated graph
G(t + 1) and state s¢11. The reward R(a¢, s¢) = H(s;) — H(s¢+1) is the change in a lower bound
of the makespan H (-); maximizing the sum of such rewards (with discount v = 1) is equivalent to
minimizing the final makespan. A policy m(a; | s;) outputs a probability distribution over eligible
actions.

Graph Neural Network (GNN). L2D uses a Graph Isomorphism Network (GIN) to learn graph-
structured representations. Given a graph G = (V, E), GIN updates each node embedding th“)
iteratively:

h(E) = MLng((l +eM)pED 4 Y hSﬁ*l)). 2)

u €N (v)

After K iterations, a global embedding hg is obtained by pooling node embeddings, e.g. average-
pooling. For action selection, each operation embedding h((ft() is concatenated with hg and passed
through an MLP to produce a score; a softmax over these scores yields the policy distribution 7g.

During training, a PPO-based Schulman et al.| (2017) actor-critic approach is used, where the critic
vy shares the GIN backbone but includes an additional MLP to estimate cumulative rewards.
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