
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STARJOB: DATASET FOR LLM-DRIVEN JOB SHOP
SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities across vari-
ous domains, but their potential for solving combinatorial optimization problems
remains largely unexplored. In this paper, we investigate the applicability of
LLMs to the Job Shop Scheduling Problem (JSSP), a classic NP-hard challenge.
We introduce Starjob, the first large-scale supervised dataset for JSSP, comprising
130,000 instances with natural language representations designed specifically for
training LLMs. Leveraging this dataset, we fine-tune a Llama-3.1 8B model us-
ing the resource-efficient RsLoRA method to create an end-to-end scheduler. Our
evaluation on standard benchmarks demonstrates that this LLM-based method sur-
passes traditional Priority Dispatching Rules (PDRs) and achieves significant per-
formance gains over foundational neural approaches like L2D and RASCL, with
an average gap improvement of 17.36% on DMU and 7.85% on Taillard bench-
marks relative to L2D. These results highlight the untapped potential of fine-tuned
LLMs in combinatorial optimization, establishing a new direction for developing
interactive and high-performance scheduling systems.

1 INTRODUCTION

Despite their success in natural language processing, Large Language Models (LLMs) have not been
traditionally considered strong candidates for solving computationally intensive problems. Their ap-
plicability to NP-hard combinatorial optimization problems is often viewed as limited, a perception
reinforced by the scarcity of empirical evidence showing LLMs outperforming specialized methods
like reinforcement learning in these domains. Furthermore, the propensity of LLMs to ”halluci-
nate” can lead to infeasible solutions, making their direct application unreliable. Consequently, the
systematic exploration of fine-tuned LLMs for hard combinatorial problems has remained limited.

In this paper, we challenge this prevailing view by demonstrating that representation is the key to un-
locking the scheduling capabilities of LLMs. We present the first fine-tuned LLM for the Job Shop
Scheduling Problem (JSSP). Our results show that when trained on a properly structured, text-based
representation of the problem, an LLM can not only generate feasible schedules but also outper-
form classic Priority Dispatching Rules (PDRs) and foundational dedicated neural methods that first
surpassed them (e.g., L2D Zhang et al. (2020) and RASCLIklassov et al. (2023)). These findings
suggest that with appropriate data representation and fine-tuning, LLMs can become a competitive
new paradigm for combinatorial optimization, complementing existing specialized solvers.

JSSP is a fundamental optimization problem with critical applications in manufacturing and lo-
gistics, where jobs must be scheduled on machines to minimize metrics like makespan (Cmax).
While traditional methods face scalability challenges, modern AI techniques, particularly reinforce-
ment learning and Graph Neural Networks (GNNs), have offered promising data-driven alternatives
Zhang et al. (2020); Corsini et al. (2024). Concurrently, LLMs have been explored for tasks in-
volving structured reasoning, such as graph analysis Huang et al. (2022); Chen et al. (2024b) and
planning Valmeekam et al. (2022). However, their application to the explicit, constraint-heavy do-
main of scheduling remains largely unexplored.

This work bridges that gap. We are the first to employ a fine-tuned LLM for end-to-end JSSP
scheduling. To enable this, we introduce Starjob1, a novel supervised dataset where JSSP instances

1https://github.com/starjob42/Starjob

1

https://github.com/starjob42/Starjob

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and their solutions are framed in natural language. By fine-tuning a Llama model with the RsLoRA
method Kalajdzievski (2023) on this dataset, we demonstrate on the well-known Taillard Taillard
(1993) and DMU Demirkol et al. (1998) benchmarks that our approach finds high-quality solutions,
surpassing both classic PDRs and the L2D neural baseline.

Our contributions are:

• We introduce Starjob, the first supervised dataset with 130,000 instances designed to train
LLMs for JSSP using a structured natural language format.

• We present the first end-to-end JSSP scheduler based on a fine-tuned LLM, demonstrating
its ability to reason over complex constraints using the Starjob dataset and the RsLoRA
method.

• We conduct a rigorous evaluation against four PDRs and neural methods L2D and RASCL,
showing our model’s superior performance and generalization, particularly on large-scale
instances with up to 1000 operations.

• Our LLM-based approach unlocks a new modality of interaction: users can query the
scheduler in natural language to understand scheduling constraints or solution character-
istics, significantly enhancing transparency and usability, as presented in Listing 3.

It is important to note that while our approach demonstrates competitive performance against sev-
eral established baselines, we do not claim to have developed the absolute best scheduler for JSSP.
Rather, this work represents the first systematic application of LLMs to end-to-end large JSSP in-
stances, establishing a foundation for future research at the intersection of natural language process-
ing and combinatorial optimization.

2 RELATED WORK

JSSP with more than two machines is proven to be NP-hard Garey et al. (1976). As a result, find-
ing exact solutions for JSSP is generally infeasible, leading to the widespread use of heuristic and
approximate methods for practical efficiency Cebi et al. (2020). Traditional approaches to solving
JSSP have primarily relied on search and inference techniques developed by the constraint program-
ming community Beck et al. (2010). These techniques effectively leverage constraints to define
the relationships and limitations between jobs and resources, enabling efficient exploration of feasi-
ble solution spaces and the identification of optimal or near-optimal schedules Nowicki & Smutnicki
(2005). A widely used heuristic method in real-world scheduling systems is the Priority Dispatching
Rule (PDR) Zahmani et al. (2015). PDRs are simple and effective, although designing an efficient
PDR is time-consuming and requires extensive domain knowledge.

Recently, approaches utilizing Deep Learning and Neural Networks have gained attention for finding
promising solutions to the JSSP Bonetta et al. (2023); Zhang et al. (2020); Corsini et al. (2024).
These methods can be broadly categorized into supervised learning and reinforcement learning (RL).
Current research in deep reinforcement learning (DRL) is actively focused on developing advanced
methods to tackle JSSP. Existing DRL methods typically represent JSSP as a Markov Decision
Process (MDP) and learn a policy network based on DRL techniquesZhang et al. (2020).

Large language models (LLMs) are now being applied to a wider range of tasks beyond language
processing, in areas like robotics and planning Huang et al. (2022). While there are currently no
papers that directly address the scheduling of Job Shop Scheduling Problems (JSSP) using LLMs,
some notable works explore the potential of LLMs in mathematical reasoning and programming
Chen et al. (2023); Wei et al. (2022); Ahn et al. (2024); Yang et al. (2023). Optimization using
LLMs has gained significant interest in recent years, with several works exploring their capabilities
across various domains Yang et al. (2023). The ability of LLMs to understand and generate natural
language has opened new possibilities for optimization tasks that were traditionally solved using
derivative-based algorithms or heuristic methods Yang et al. (2023). Chen et al. (2023) evaluated
LLMs’ performance in mathematical problem-solving and introduced ”Program of Thoughts” (PoT)
prompting. Unlike Chain of Thoughts (CoT) Wei et al. (2022), which combines reasoning and com-
putation, PoT generates reasoning as code statements and delegates computation to an interpreter.
Ahn et al. (2024) surveys mathematical problems and datasets studied with LLMs, analyzing their

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

strengths and weaknesses. Frieder et al. (2024) examines LLMs’ impact on mathematicians, ex-
ploring their role in research, education, problem-solving, and proof generation, offering a balanced
view of their capabilities. Recent works Yang et al. (2023) explore LLMs as optimizers, using
prompts to refine solutions iteratively. Case studies on linear regression and the traveling salesman
problem show LLMs can produce high-quality solutions, sometimes matching heuristic algorithms
in small-scale scenarios. Explorations into using LLMs for graph learning tasks have yielded notable
approaches. Huang et al. (2022) noted that LLMs exhibit some initial graph reasoning capabilities,
but their performance decreases with problem complexity, Huang et al. (2022) introduced prompt-
ing strategies to improve LLMs graph reasoning. Valmeekam et al. (2022) developed a benchmark
for assessing the planning and reasoning abilities of LLMs. More recently, Chen et al. (2024b) ex-
amined the use of LLMs for graph node classification tasks. Chen et al. (2024a) presents LLMs
as enhancers for GNNs and as direct predictors from graph structures. Zhao et al. (2024) proposed
GRAPHTEXT, which translates graphs to natural language for training-free reasoning, often rivaling
GNNs. While LLMs show promise in graph tasks, their use in scheduling is still largely unexplored.

3 PRELIMINARIES

We consider the classical JSSP, which is defined as follows. Given NJ jobs and NM machines, each
job Ji is comprised of an ordered sequence of operations (Oi1, . . . , Oini

). Each operation Oij must
be processed on a designated machine mij for a processing time pij . The scheduling variables Sij

denote the start time of operation Oij .

The JSSP is governed by two principal constraints: (i) Precedence constraints require that each
operation starts only after the completion of its predecessor within the same job, i.e., Si,j+1 ≥
Sij + pij ; and (ii) Resource constraints ensure that no two operations assigned to the same machine
overlap in time, i.e., for any pair Oij , Okl such that mij = mkl,

[Sij , Sij + pij) ∩ [Skl, Skl + pkl) = ∅.

The objective is to minimize the makespan, defined as the maximum completion time across all
operations:

Cmax = max
i,j
{Sij + pij}.

4 DATASET CONSTRUCTION AND REPRESENTATION

The use of LLMs for combinatorial optimization requires translating traditional mathematical rep-
resentations into natural language encodings that maintain the problem structure for language-based
processing. We present a methodology for representing JSSP instances as structured natural lan-
guage, mapping the conventional matrix-based form (see Listing 1) into explicit descriptions of all
constraints and requirements. This mapping is defined as a deterministic, bijective transformation
T : P → L, where P denotes the space of standard JSSP instances and L the corresponding space
of natural language descriptions.

Listing 1: Example: Natural language encoding of a JSSP instance with NJ = 3 and NM = 3.

Optimize the schedule for 3 jobs (J0, J1, J2) across 3 machines (
M0, M1, M2) to minimize the makespan. Each machine can process
only one job at a time and jobs are non-preemptive.

J0: M0:105, M1:29, M2:213
J1: M0:193, M1:18, M2:213
J2: M0:78, M1:74, M2:221

For a JSSP instance with NJ jobs and NM machines, we construct a natural language encoding that
systematically specifies:

1. The problem dimensions (NJ ×NM)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. The operational constraints (non-preemption, machine exclusivity)
3. The sequential processing requirements for each job
4. The corresponding processing durations

This encoding establishes a bijective mapping between mathematical and linguistic representations,
preserving all information required for solution generation while rendering the problem interpretable
to language models. As illustrated in Listing 1, the natural language encoding presents the problem
parameters in a clear, structured format that delineates job requirements across machines.

4.1 CORPUS GENERATION FOR MODEL TRAINING

To facilitate effective learning of the mapping between problem instances and their solutions, we
constructed a comprehensive corpus of JSSP instances and their corresponding optimal or near-
optimal solutions. The corpus encompasses approximately 130,000 random JSSP instances span-
ning dimensions from 2×2 to 20×20, supplemented by∼1,000 larger and asymmetric instances to
enhance generalization capabilities across problem scales. Operation durations were sampled from
a uniform distribution ranging from 5 to 500 time units, ensuring comprehensive coverage of the
solution space and robustness to varying temporal constraints. The testing dataset is out of distribu-
tion dataset from the trainng dataset. We conduct evaluations on the TAI Taillard (1993) and DMU
Demirkol et al. (1998) benchmark sets, which are entirely held out from the training phase.

For solution generation, each instance was processed using Google’s OR-Tools optimization
framework with parameters configured to balance computational efficiency and solution qual-
ity. The solver was allocated a 300-second time limit with 42 parallel workers utilizing the
AUTOMATIC SEARCH strategy, providing near-optimal solutions even for larger problem instances.
For problems exceeding 10× 10 dimensions, we acknowledge potential suboptimality due to com-
putational constraints while maintaining solution feasibility.

The solution encoding adopts a structured natural language format, specifically designed to guide
the autoregressive nature of the LLMs. Each entry in the solution sequence (see Listing 2) details a
job-machine assignment along with its explicit start time, duration, and resulting completion time.
Notably, the use of summation notation (e.g., “J2-M0: 0+78 → 78”) forces the model to compute
the current makespan incrementally, based on the start time and duration, while taking into account
the completion times of all previously scheduled operations.

This stepwise representation leverages the LLM’s autoregressive generation process, requiring it
to ”think” about the current scheduling decision by explicitly calculating and verifying the timing
constraints before proceeding to the next operation. The format ensures that each scheduling step
is conditioned on the already constructed partial schedule, thus embedding temporal dependencies
and constraint satisfaction directly into the generation process.

Listing 2: Consistent schedule with correct job precedence and operation durations for a JSSP in-
stance with NJ = 3 jobs and NM = 3 machines. The values after ”-¿” denote operation completion
times. The makespan is the maximum of these, i.e., 488.

S o l u t i o n :
J2 −M0: 0+78 −> 78 ,
J1 −M2: 0+193 −> 193 ,
J0 −M0: 78+105 −> 183 ,
J0 −M1: 183+29 −> 212 ,
J2 −M2: 193+74 −> 267 ,
J1 −M1: 212+18 −> 230 ,
J1 −M0: 230+213 −> 443 ,
J2 −M1: 267+221 −> 488 ,
J0 −M2: 267+213 −> 480

Empirical results (see Table 3) show that this explicit, computation-driven format significantly en-
hances the feasibility of generated solutions compared to formats omitting intermediate calculations.
By prompting the model to perform and record intermediate makespan computations, the approach

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

enables real-time constraint checking and more effective optimization, reducing the frequency of
infeasible schedules.

5 METHODOLOGY

We propose a novel method for solving JSSP by fine-tuning large language models with natural
language representations of scheduling problems and solutions. Our framework, based on Meta-
Llama-3.1-8B-Instruct (4-bit quantized), reframes JSSP as a sequence generation task and operates
in two phases: (1) fine-tuning the model on problem-solution pairs using rsLoRA, and (2) generating
and selecting optimal schedules for new instances. By expressing both problems and solutions
in natural language, our approach leverages pre-trained knowledge and learns scheduling-specific
patterns efficiently.

5.1 TRAINING METHODOLOGY

We fine-tune the model using rsLoRA Hu et al. (2022), an approach that replaces the standard scaling
factor α

r with a stabilized
√

α
r , which enables the use of higher ranks without causing gradient col-

lapse and ensures more stable training dynamics. The model is initialized with pre-trained weights
θ0, which remain frozen throughout the process, while only the low-rank adaptation matrices U and
V are updated to minimize the negative log-likelihood loss on tokenized problem-solution pairs.
Training is conducted over 2 epoch with a learning rate of 2 × 10−4, LoRA rank r = 64, scaling
factor α = 64, and a batch size of 16, utilizing a single Nvidia RTX A6000 GPU (48GB memory),
with the training process taking approximately 70 hours and utilizing around 30GB of GPU RAM,
highlighting the resource requirements for this procedure. Alpaca training template format is used
during the training as described in Appendix Listings 1.

Algorithm 1: LLM Fine-Tuning for JSSP with rsLoRA
Input: Problem instance Lp in natural language, Fine-tuned LLM with parameters

θ = θ0 + γrUV ⊤ , Number of candidate solutions S
1 Initialize low-rank matrices U, V ∈ Rd×r

2 Define rank-stabilized factor γr = α√
r

3 for epoch = 1 to E do
4 for each batch {(L(i)

p , s(i))}Bi=1 ⊂ D do
5 Tokenize each problem L(i)

p and solution s(i)

6 Construct inputs with problems L(i)
p as context

7 Set targets as tokenized solutions s(i) = {w(i)
1 , . . . , w

(i)
Ti
}

8 Compute effective parameters: θ = θ0 + γrUV ⊤

9 Forward pass: Compute probabilities p(wt|w<t,L(i)
p ; θ)

10 Compute NLL loss: L = −
∑B

i=1

∑Ti

t=1 log p(w
(i)
t |w

(i)
<t,L

(i)
p ; θ)

11 Compute gradients ∇UL and ∇V L
12 Update U ← U − η∇UL
13 Update V ← V − η∇V L
14 Evaluate model performance on validation set

Result: Fine-tuned model parameters θ = θ0 + γrUV ⊤

5.2 INFERENCE AND SOLUTION SELECTION

At inference time (Algorithm 2), we employ a generate-and-select strategy. For each problem in-
stance, the model produces multiple candidate solutions through temperature-controlled sampling.
Each candidate undergoes rigorous feasibility checking to ensure satisfaction of all JSSP constraints,
including job precedence, machine exclusivity, and non-preemption requirements. From the set of
feasible solutions, we select the one with the minimum makespan.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The feasibility check validates that: (1) each job’s operations are scheduled in the correct sequence,
(2) no machine processes multiple jobs simultaneously, (3) each operation has the correct processing
time, and (4) all operations are scheduled exactly once. This comprehensive validation ensures that
all solutions adhere to the fundamental constraints of the JSSP problem domain.

Algorithm 2: LLM-Based JSSP Solution Generation and Selection
Input: Problem instance Lp in natural language, Fine-tuned LLM with parameters

θ = θ0 + γrUV ⊤ ,Number of candidate solutions S, temperature τ
1 Initialize empty set of feasible solutions Sfp ← ∅
2 for i = 1 to S do
3 Generate candidate solution si ∼ LLMθ(Lp, τ)
4 Parse solution si to extract job-machine assignments and timings
5 validprecedence ← Check job operation precedence constraints
6 validexclusivity ← Check machine exclusivity constraints
7 validtiming ← Check correct processing times
8 validcompleteness ← Check all operations are scheduled once
9 if validprecedence ∧ validexclusivity ∧ validtiming ∧ validcompleteness then

10 Compute makespan M(si)

11 Add to feasible set: Sfp ← Sfp ∪ {si}

12 if Sfp ̸= ∅ then
13 return s∗ = argmins∈Sf

p
M(s) // Best solution by makespan

14 else
15 return ”No feasible solution found”

6 VALIDATION, BASELINE METHODS, AND EMPIRICAL ANALYSIS

We evaluated our end-to-end LLM-based job shop scheduler using the standard Taillard Taillard
(1993) and DMU Demirkol et al. (1998) benchmarks, comparing it to both traditional heuristics
and state-of-the-art learning-based methods. As the first application of LLMs for end-to-end JSSP
solution generation, we benchmarked our model against L2D Zhang et al. (2020)—an early neural
approach that outperforms classic priority dispatching rules (PDRs) such as SPT, MWKR, MOPNR,
and FDD/MWKR. L2D leverages a graph neural network and PPO Schulman et al. (2017) for gen-
eralization. Additionally, we compared our method with RASCLB Iklassov et al. (2023), a state-
of-the-art reinforcement learning approach designed for cross-instance generalization. Here, “B”
denotes the “base” learning method in Iklassov et al. (2023), which combines an RL-based method
with rLSTM and set2set modules. RASCLB is trained on larger instances (30x20) with a sample
size of 20. Its reverse LSTM Hochreiter & Schmidhuber (1997) component receives static, multidi-
mensional embeddings for all operations in a job Ji, propagating information backward from the last
operation to the current one. For all experiments, inference was performed with a context length of
40,000 tokens (the maximum number of tokens the model can process in a single input sequence) us-
ing default sampling settings and S = 20 samples per instance, with default temperature parameter
of 1. Both training and inference used 4-bit quantization for memory efficiency, requiring about
30GB of GPU memory on an NVIDIA A6000. Our largest evaluated instance (23,000 tokens) fits
comfortably within this window. For faster inference, we converted the model to the llama.cpp
format Gerganov (2023), achieving 102.22 tokens/sec on an RTX A6000 (48GB), as reported by
Dai et al. Dai (2024). Notably, inference time scales with token sequence length rather than problem
complexity; processing our largest instance (22,224 tokens) within the 40,000-token window took
about 217 seconds per sample, regardless of task type.

6.1 PERFORMANCE METRICS AND COMPARATIVE RESULTS

Performance on each benchmark was evaluated using the Percentage Gap (PG), defined as:

PG = 100×
(
Malg

Mub
− 1

)
,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where Malg is the makespan produced by the algorithm, and Mub is the best-known or optimal
makespan. Lower PG values correspond to solutions closer to the best-known objective. Tables
1 and 2 present the gap percentages of the fine-tuned Llama model compared to L2D and other
methods (SPT, MWKR, FDD/WKR, MOPNR) on Tai and DMU datasets. Benchmark solutions are
available at2 and3. Across instances ranging from 15 jobs and 15 machines to 50 jobs and 20 ma-
chines, the fine-tuned Llama 3.1 consistently outperforms all other methods. On larger instances (50
jobs, 20 machines, 1000 nodes), Llama achieves a 24.32% gap, surpassing L2D (26.40%). The aver-
age gap for fine-tuned Llama (21.69%) is significantly lower than SPT (60.57%), MWKR (55.29%),
FDD/WKR (46.77%), MOPNR (42.99%), and L2D (29.54%). On the DMU benchmark with 50
jobs and 15 machines, fine-tuned Llama (22.14%) again outperforms all methods, including L2D
(37.50%). SPT consistently has the highest gap (often above 60%), reflecting its inability to han-
dle complex constraints. MWKR and FDD/WKR, while more sophisticated, remain outperformed
by learning-based approaches due to their myopic decision processes. Notably, our method shows
average improvements over the dedicated model RASCLB of 13.41% on the Taillard dataset (see
Table 1) and comparableresult on the DMU dataset (see Table 2).

6.2 ABLATION STUDY

To understand the impact of key components, we conducted an ablation study focusing on our Star-
job data representation and the model size. As shown in Table 3, the our proposed summation
format significantly increases the percentage of feasible solutions produced by the Llama 8B model
compared to the standard matrix format, not involving summation operations, which is familiar to
the LLM from pretraining Bordt et al. (2024). Despite this familiarity, Starjob yields markedly better
feasibility. The Llama 1B model, in contrast, failed on this task, highlighting the necessity of larger
models for high-quality scheduling.

Listing 3: An interactive session where the LLM explains the primary scheduling bottleneck.

Example: Interactive Query with the Starjob-LLM

User:
Looking at the 3x3 problem instance, what was the main bottle-
neck that made it hard to solve?

Starjob-LLM:
The primary bottleneck was Machine 2 (M2). All three jobs
required this machine for long processing times, creating a
highly contended resource.
The sequential processing on M2 (J1-M2 → J2-M2 → J0-M2)
formed the critical path, which ultimately determined the fi-
nal makespan of 488. Any improvement to the schedule would
need to resolve this contention on Machine 2.

7 CONCLUSION

This work served as a test to see whether LLMs could generate any feasible solutions for NP-hard
combinatorial optimization, rather than to claim the best scheduler. We showed that, with the right
data representation, LLMs can indeed act as effective schedulers. To this end, we introduced Star-
job, a large supervised dataset for the Job Shop Scheduling Problem (JSSP) in structured natural
language, and fine-tuned a Llama 8B model using resource-efficient methods. While our goal was
not to surpass specialized schedulers, our LLM-based approach still outperformed traditional Pri-
ority Dispatching Rules and even some dedicated neural baselines on standard benchmarks. These
findings highlight the potential of LLMs for combinatorial optimization, and suggest promising di-
rections for more interpretable and interactive scheduling systems in the future.

2http://optimizizer.com/TA.php
3http://jobshop.jjvh.nl/

7

http://optimizizer.com/TA.php
http://jobshop.jjvh.nl/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

8 LIMITATIONS AND FUTURE WORK

While our model’s performance is dependent on the Starjob dataset and constrained by the LLM’s
context window, it provides high-quality heuristic solutions. Future work will focus on developing
hybrid solvers that combine our approach with traditional optimization methods for further refine-
ment. We also plan to explicitly integrate Graph Neural Networks (GNNs) into the LLM latent
space via cross-attention to better capture relational structure, and to investigate the impact of full
fine-tuning and larger LLMs for additional performance gains.

Table 1: Comparison of different methods on the TAI dataset (sampling budget = 20). Lower values
indicate schedules closer to the optimal solution, representing better performance. * indicates the
best result according to the Percentage Gap. Classic JSSP heuristics (FDD/WKR, MOPNR, MWKR,
SPT) are described in Appendix D. L2D, RASCLB, and LLM-FT-Ours are neural methods.

15x15 20x15 20x20 30x15 30x20 50x15 50x20 Average
Method

FDD/WKR 47.45 50.57 47.57 45.01 56.30 37.72 42.80 46.77
MOPNR 44.98 47.97 43.68 45.59 48.23 31.25 39.24 42.99
MWKR 56.74 60.65 55.60 52.61 63.93 41.90 55.62 55.29
SPT 54.64 65.24 64.11 61.61 66.03 51.37 61.00 60.57
L2D 25.95 ± 3.37 30.03 ± 3.90 31.60 ± 4.11 33.02 ± 4.29 33.62 ± 4.37 26.15 ± 3.40 26.40 ± 3.43 29.54 ± 3.84
RASCLB 20.59 ± 2.47 25.31 ± 3.04 25.47 ± 3.06 27.27 ± 3.27 30.40 ± 3.65 20.69 ± 2.48 26.40 ± 3.17 25.16 ± 3.02
LLM-FT-Ours 19.34 ± 1.93* 18.00 ± 1.80* 21.11 ± 2.11* 21.44 ± 2.14* 30.05 ± 3.00* 17.57 ± 1.76* 24.32 ± 2.43* 21.69 ± 2.17*

Table 2: Comparison of different methods on the DMU dataset (sampling budget = 60). Lower
values indicate schedules closer to the optimal solution, representing better performance. * indicates
the best result according to the Percentage Gap. Classic JSSP heuristics (FDD/WKR, MOPNR,
MWKR, SPT) are described in Appendix D. L2D, RASCLB, and LLM-FT-Ours are neural methods.

20x15 20x20 30x15 30x20 40x15 40x20 50x15 Average
Method

FDD/WKR 53.58 52.51 54.12 60.08 50.76 55.52 37.58 52.02
MOPNR 49.17 45.18 47.14 51.97 43.23 49.22 31.73 45.38
MWKR 62.14 58.16 60.96 63.15 52.40 61.09 43.23 57.30
SPT 64.12 64.55 62.57 65.92 55.89 62.99 47.83 60.55
L2D 38.95 ± 5.06 37.74 ± 4.91 41.86 ± 5.44 39.48 ± 5.13 36.68 ± 4.77 41.18 ± 5.35 26.60 ± 3.46 37.50 ± 4.88
RASCLB 19.66 ± 2.36 15.98 ± 1.92 16.35 ± 1.96 23.00 ± 2.76 17.89 ± 2.15 26.42 ± 3.17 21.84 ± 2.62 20.16 ± 2.42
LLM-FT-Ours 19.20 ± 1.92* 20.16 ± 2.02 22.11 ± 2.21 21.82 ± 2.18* 17.24 ± 1.72* 23.61 ± 2.36* 16.85 ± 1.69* 20.14 ± 2.01*

Table 3: Ablation study comparing our Starjob representation against the standard Matrix format,
and the Llama 8B model against Llama 1B model. Average Feasibility (%) indicates the percentage
of valid solutions generated, where higher values are better. Our proposed format dramatically
increases feasibility. The complete failure of the Llama 1B model highlights the task’s complexity,
while the Llama 8B model using Starjob consistently produces high-quality schedules. Feasibility
and time for Llama 1B model are marked as N/A where not available.

Problem Size Without Summation (%) With Summation (%) Avg. Time (s) (8B)
1B 8B 1B 8B

5×5 N/A ∼8.0 N/A ∼9.5 6.1
8×8 N/A ∼8.0 N/A ∼10.5 7.2
10×10 N/A ∼1.0 N/A ∼12.1 2.6
12×12 N/A ∼4.0 N/A ∼39.6 14.3
15×15 N/A ∼1.0 N/A ∼14.4 22.5
20×20 N/A ∼1.5 N/A ∼17.4 15.1
30×30 N/A N/A N/A ∼30.5 18.3
50×20 N/A ∼1.0 N/A ∼14.6 22.0

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ta
21

Ta
22

Ta
23

Ta
24

Ta
25

Ta
26

Ta
27

Ta
28

Ta
29

Ta
30

Instance

20

30

40

50

60

70

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=20.0, M=20.0

Ta
31

Ta
32

Ta
33

Ta
34

Ta
35

Ta
36

Ta
37

Ta
38

Ta
39

Ta
40

Instance

20

30

40

50

60

70

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=30.0, M=15.0

Ta
41

Ta
42

Ta
43

Ta
44

Ta
45

Ta
46

Ta
47

Ta
48

Ta
49

Ta
50

Instance

20

30

40

50

60

70

80

90

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=30.0, M=20.0

Ta
51

Ta
52

Ta
53

Ta
54

Ta
55

Ta
56

Ta
57

Ta
58

Ta
59

Ta
60

Instance

10

20

30

40

50

60

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=50.0, M=15.0

Ta
63

Ta
64

Ta
65

Ta
66

Ta
68

Instance

20

30

40

50

60

70

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=50.0, M=20.0

Methods
SPT
MWKR
FDD/WKR
MOPNR
L2D
LLM-FT-Ours

(a) TAI benchmark

Dmu1
1

Dmu1
2

Dmu1
3

Dmu1
4

Dmu1
5

Dmu5
1

Dmu5
2

Dmu5
3

Dmu5
4

Dmu5
5

Instance

20

30

40

50

60

70

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=30.0, M=15.0

Dmu1
6

Dmu1
7

Dmu1
8

Dmu1
9

Dmu2
0

Dmu5
6

Dmu5
7

Dmu5
8

Dmu5
9

Dmu6
0

Instance

20

30

40

50

60

70

80

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=30.0, M=20.0

Dmu2
1

Dmu2
2

Dmu2
3

Dmu2
4

Dmu2
5

Dmu6
1

Dmu6
2

Dmu6
4

Dmu6
5

Instance

10

20

30

40

50

60

70

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=40.0, M=15.0

Dmu2
6

Dmu2
7

Dmu2
8

Dmu2
9

Dmu3
0

Dmu6
6

Dmu6
7

Dmu6
8

Dmu6
9

Dmu7
0

Instance

20

30

40

50

60

70

80

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=40.0, M=20.0

Dmu3
1

Dmu3
2

Dmu3
3

Dmu3
4

Dmu3
5

Dmu7
3

Instance

10

20

30

40

50

60

G
ap

 P
er

ce
nt

ag
e

(%
)

Gap for J=50.0, M=15.0

Methods
SPT
MWKR
FDD/WKR
MOPNR
L2D
LLM-FT-Ours

(b) DMU benchmark

Figure 1: Comparison of different methods on TAI Taillard (1993) and DMU Demirkol et al. (1998).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Neele Falk, Sara Papi, and Mike
Zhang (eds.), Proceedings of the 18th Conference of the European Chapter of the Association
for Computational Linguistics: Student Research Workshop, pp. 225–237, St. Julian’s, Malta,
March 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.eacl-srw.17.

Meta AI. Llama 3 model card, 2024a. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md. Accessed: 2024-08-10.

Unsloth AI. Unsloth: Accelerated fine-tuning for large language models, 2024b. URL https:
//github.com/unslothai/unsloth. Accessed: 2024-11-19.

J. Christopher Beck, T. K. Feng, and Jean-Paul Watson. Combining constraint programming and
local search for job-shop scheduling. INFORMS Journal on Computing, 23(1):1–14, 2010.

Giovanni Bonetta, Davide Zago, Rossella Cancelliere, and Andrea Grosso. Job shop scheduling via
deep reinforcement learning: a sequence to sequence approach. Not Specified, Aug 2023.

Sebastian Bordt, Harsha Nori, Vanessa Rodrigues, Besmira Nushi, and Rich Caruana. Elephants
never forget: Memorization and learning of tabular data in large language models, 2024. URL
https://arxiv.org/abs/2404.06209.

Ceren Cebi, Enes Atac, and Ozgur Koray Sahingoz. Job shop scheduling problem and solution
algorithms: A review. In 2020 11th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pp. 1–7, 2020. doi: 10.1109/ICCCNT49239.2020.9225581.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=YfZ4ZPt8zd.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models
(llms) in learning on graphs, 2024a.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models
(llms) in learning on graphs, 2024b. URL https://arxiv.org/abs/2307.03393.

Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling the job
shop scheduling problem. In Self-Labeling the Job Shop Scheduling Problem. Arxiv, 2024.

Xiongjie Dai. Gpu-benchmarks-on-llm-inference. https://github.com/XiongjieDai/
GPU-Benchmarks-on-LLM-Inference, 2024. Accessed: 2024-11-26.

Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems. Euro-
pean Journal of Operational Research, 109(1):137–141, 1998.

Simon Frieder, Julius Berner, Philipp Petersen, and Thomas Lukasiewicz. Large language models
for mathematicians, 2024.

Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

Georgi Gerganov. llama.cpp: Llm inference in c/c++. https://github.com/ggerganov/
llama.cpp, 2023. Accessed: 2024-11-26.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

10

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
https://arxiv.org/abs/2404.06209
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2307.03393
https://github.com/XiongjieDai/GPU-Benchmarks-on-LLM-Inference
https://github.com/XiongjieDai/GPU-Benchmarks-on-LLM-Inference
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In Proceedings of the Interna-
tional Conference on Machine Learning. PMLR, 2022. *equal advising.

Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa de Retana, and Martin Takáč. On the
study of curriculum learning for inferring dispatching policies on the job shop scheduling. In Pro-
ceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI),
pp. 5350–5358, 2023. doi: 10.24963/ijcai.2023/594.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora, 2023. URL
https://arxiv.org/abs/2312.03732.

Eugeniusz Nowicki and Czeslaw Smutnicki. An advanced tabu search algorithm for the job shop
problem. Journal of Scheduling, 8(2):145–159, 2005. doi: 10.1007/s10951-005-6364-5.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Re-
search, 64(2):278–285, 1993.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan: A benchmark for llms on planning and reasoning about change.
In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022. URL https:
//openreview.net/forum?id=wUU-7XTL5XO.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. Google Research, Brain Team, 2022.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Mohamed Habib Zahmani, Baghdad Atmani, Abdelghani Bekrar, and Nassima Aissani. Multiple
priority dispatching rules for the job shop scheduling problem. In 3rd International Conference
on Control, Engineering Information Technology (CEIT’2015), Tlemcen, Algeria, 2015. doi:
10.1109/CEIT.2015.7232991.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Chi Xu. Learning to
dispatch for job shop scheduling via deep reinforcement learning. In 34th Conference on Neural
Information Processing Systems (NeurIPS), 2020.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M. Bronstein, Zhaocheng Zhu,
and Jian Tang. Graphtext: Graph learning in text space, 2024. URL https://openreview.
net/forum?id=dbcWzalk6G.

A APPENDIX

B TRAINING DETAILS

MODEL OVERVIEW

The model being fine-tuned is LLaMA 3.1, an 8 billion parameter model from MetaAI (2024a),
using a 4-bit quantized version to reduce memory usage. Finetuning was conducted using Stabilized
Low-Rank Adaptation (RsLoRA) with rank r = 64 to introduce learnable parameters specifically in

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2312.03732
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=dbcWzalk6G
https://openreview.net/forum?id=dbcWzalk6G

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

targeted layers. Kalajdzievski (2023) Compared to LoraHu et al. (2022) RsLoRa improves the sta-
bility of training by modifying the rank during adaptationKalajdzievski (2023). The target modules
include:

target modules = {q proj, k proj, v proj, o proj,

gate proj, up proj, down proj} (1)

The LoRA-specific parameters are configured as follows:

• Rank (r): 64

• LoRA Alpha (α): 64

• LoRA Dropout: 0

• Bias: none

This resulted in number of trainable parameters = 167, 772, 160 or 2 % of the entire Llama 8B
model’s parameters.

QUANTIZATION AND MEMORY EFFICIENCY

The model is loaded in 4-bit precision to reduce memory consumption. Gradient checkpointing is
enabled using the unsloth AI (2024b) method, to fit longer sequences by saving memory. This
reduces the VRAM usage by approximately 30%, enabling larger batch sizes.

TRAINING PARAMETERS

The fine-tuning process is controlled by the following parameters:

• Batch size per device: 4

• Gradient accumulation steps: 4

• Max sequence length: 40,000 tokens

• Number of epochs: 2

• Warmup steps: 5

• Learning rate: 2× 10−4

• Optimizer: AdamW with 8-bit precision

• Weight decay: 0.01

• Learning rate scheduler: Linear decay

• FP16 precision:True

Listing 1: Prompt format used during training.
alpaca_prompt = """Below is an instruction that describes a task,
paired with an input that provides further context.
Write a response that appropriately completes the request.

Instruction:
{}

Input:
{}

Response:
{}"""

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 2: Train loss of Llama 8B 4bt model on Starjob dataset

Figure 3: Eval Loss of Llama 8B 4bt model on Starjob dataset

DATA AND DATASET SPLITTING

The dataset used for training is a local version of the proposed Starjob dataset, and it is split into
98% training and 2% evaluation:

train : eval = 98% : 2%

The prompts are formatted using a predefined Alpaca-style template, which ensures the model is
trained on instruction-following tasks.

EVALUATION AND SAVING STRATEGY

The best model was loaded at the end of training based on the evaluation loss:

Metric for Best Model = Evaluation Loss

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Total number of saved models is limited to 50 to prevent excessive memory usage.

GPU UTILIZATION

The training process takes place on Nvidia A6000 GPU with 48GB of memory. Training took
around 70 hours and required 30GB of GPU RAM.

C GENERAL STATISTICS ABOUT DATASET

The dataset comprises 130,000 randomly generated JSSP instances with solutions in natural lan-
guage, provided in .json format with the following columns:

• num jobs (int64): 12 unique values.
• num machines (int64): 12 unique values.
• instruction (object): 130,000 unique values. Initial problem description detailing jobs

and machines.
• input (object): 130,000 unique values. Problem description formatted for LLM.
• output (object): 130,000 unique values. Solution in LLM format.
• matrix (object): 130,000 unique values. OR-Tool makespan and solution in matrix for-

mat.

The output column serves as the target or label column, providing the solution to the JSSP problem
in natural language and the associated makespan.

Figure 4: Makespan metrics across different job-machine combinations. The x-axis represents the
combinations of jobs and machines (e.g., a 3-2 instance refers to 3 jobs and 2 machines), the right
y-axis shows the standard deviation, while the left y-axis shows the makespan values.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Comparison of PDRs against L2D against Finetuned Llama on Starjob dataset and the
average Gaps on Tai Benchmark Dataset. The lower the value, the closer the schedule is to the
optimal solution, thus representing better performance. BFL* indicates best from literature.

J M Instance SPT MWKR FDD/WKR MOPNR L2D BFL* Llama-FT-Ours

15 15 Ta01 1872 (52.1%) 1786 (45.1%) 1841 (49.6%) 1864 (51.4%) 1443 (17.2%) 1231.0* 1453.0 (18.0%)
15 15 Ta02 1709 (37.4%) 1944 (56.3%) 1895 (52.3%) 1680 (35.0%) 1544 (24.1%) 1244.0* 1440.0 (15.8%)
15 15 Ta03 2009 (64.9%) 1947 (59.9%) 1914 (57.1%) 1558 (27.9%) 1440 (18.2%) 1218.0* 1521.0 (24.9%)
15 15 Ta04 1825 (53.3%) 1694 (44.2%) 1653 (40.7%) 1755 (49.4%) 1637 (39.3%) 1175.0* 1387.0 (18.0%)
15 15 Ta05 2044 (67.0%) 1892 (54.6%) 1787 (46.0%) 1605 (31.1%) 1619 (32.3%) 1224.0* 1461.0 (19.4%)
15 15 Ta06 1771 (43.1%) 1976 (59.6%) 1748 (41.2%) 1815 (46.6%) 1601 (29.3%) 1238.0* 1499.0 (21.1%)
15 15 Ta07 2016 (64.3%) 1961 (59.8%) 1660 (35.3%) 1884 (53.5%) 1568 (27.8%) 1227.0* 1473.0 (20.0%)
15 15 Ta08 1654 (35.9%) 1803 (48.2%) 1839 (51.1%) 1839 (51.1%) 1468 (20.6%) 1217.0* 1475.0 (21.2%)
15 15 Ta09 1962 (54.0%) 2215 (73.9%) 1848 (45.1%) 2002 (57.1%) 1627 (27.7%) 1274.0* 1534.0 (20.4%)
15 15 Ta10 2164 (74.4%) 2057 (65.8%) 1937 (56.1%) 1821 (46.7%) 1527 (23.0%) 1241.0* 1465.0 (18.0%)
20 15 Ta11 2212 (63.0%) 2117 (56.0%) 2101 (54.8%) 2030 (49.6%) 1794 (32.2%) 1357.0* 1691.0 (24.6%)
20 15 Ta12 2414 (76.6%) 2213 (61.9%) 2034 (48.8%) 2117 (54.9%) 1805 (32.0%) 1367.0* 1677.0 (22.7%)
20 15 Ta13 2346 (74.7%) 2026 (50.9%) 2141 (59.4%) 1979 (47.4%) 1932 (43.9%) 1343.0* 1749.0 (30.2%)
20 15 Ta14 2190 (56.8%) 2164 (60.9%) 1841 (36.9%) 2036 (51.4%) 1664 (23.7%) 1345.0* 1660.0 (23.4%)
20 15 Ta15 2163 (61.5%) 2180 (62.6%) 2187 (63.3%) 1939 (44.8%) 1730 (29.2%) 1339.0* 1770.0 (32.2%)
20 15 Ta16 2232 (64.1%) 2528 (85.9%) 1926 (41.6%) 1980 (45.6%) 1710 (25.7%) 1360.0* 1731.0 (27.3%)
20 15 Ta17 2185 (49.5%) 2015 (37.8%) 2093 (43.2%) 2211 (51.2%) 1897 (29.8%) 1462.0* 1846.0 (26.3%)
20 15 Ta18 2267 (62.4%) 2275 (63.0%) 2064 (47.9%) 1981 (44.9%) 1794 (28.5%) 1396.0* 1706.0 (22.2%)
20 15 Ta19 2238 (68.0%) 2201 (65.2%) 1958 (47.0%) 1899 (42.6%) 1682 (26.3%) 1332.0* 1685.0 (26.5%)
20 15 Ta20 2370 (75.8%) 2188 (62.3%) 2195 (62.8%) 1986 (47.3%) 1739 (29.0%) 1348.0* 1802.0 (33.7%)
20 20 Ta21 2836 (72.7%) 2622 (59.7%) 2455 (49.5%) 2320 (41.3%) 2252 (37.1%) 1642.0* 2077.0 (26.5%)
20 20 Ta22 2672 (67.0%) 2554 (59.6%) 2177 (36.1%) 2415 (50.9%) 2102 (31.4%) 1600.0* 2443.0 (52.7%)
20 20 Ta23 2397 (53.9%) 2408 (54.7%) 2514 (61.5%) 2194 (40.9%) 2085 (33.9%) 1557.0* 2086.0 (34.0%)
20 20 Ta24 2787 (69.5%) 2553 (55.3%) 2391 (45.4%) 2250 (36.9%) 2200 (33.8%) 1644.0* 2135.0 (29.9%)
20 20 Ta25 2513 (57.6%) 2582 (61.0%) 2267 (42.1%) 2146 (43.4%) 2201 (38.0%) 1595.0* 2304 (44.4%)
20 20 Ta26 2649 (61.2%) 2506 (52.5%) 2484 (60.9%) 2284 (50.9%) 2176 (32.4%) 1643.0* 2195.0 (33.6%)
20 20 Ta27 2707 (61.1%) 2768 (64.8%) 2514 (49.6%) 2298 (36.8%) 2132 (26.9%) 1680.0* 2172.0 (29.3%)
20 20 Ta28 2654 (65.0%) 2370 (47.8%) 2330 (45.0%) 2259 (40.4%) 2146 (33.9%) 1603.0* 2088.0 (30.3%)
20 20 Ta29 2681 (65.0%) 2399 (47.6%) 2322 (37.4%) 2367 (45.7%) 1952 (20.1%) 1625.0* 2209 (35.9%)
20 20 Ta30 2662 (68.1%) 2424 (53.0%) 2348 (48.2%) 2370 (49.6%) 2035 (28.5%) 1584.0* 2038.0 (28.7%)

Table 5: Comparison of PDRs against L2D against Finetuned Llama on Starjob dataset and the
average Gaps on DMU Benchmark Dataset. The lower the value, the closer the schedule is to the
optimal solution, thus representing better performance. BFL* indicates best from literature.

J M Instance SPT MWKR FDD/WKR MOPNR L2D BFL* Llama-FT-Ours

20 15 Dmu01 4516 (76.2%) 3988 (55.6%) 3535 (37.9%) 3882 (51.5%) 3323 (29.7%) 2563.0* 3064 (19.5%)
20 15 Dmu02 4593 (69.7%) 4555 (68.3%) 3847 (42.2%) 3884 (43.5%) 3630 (34.1%) 2706.0* 3233 (19.5%)
20 15 Dmu03 4438 (62.5%) 4117 (50.8%) 4063 (48.8%) 3979 (45.7%) 3660 (34.0%) 2731.0* 3296 (20.7%)
20 15 Dmu04 4533 (69.8%) 3995 (49.7%) 4160 (55.9%) 4079 (52.8%) 3816 (43.0%) 2669.0* 3299 (23.6%)
20 15 Dmu05 4420 (60.8%) 4977 (81.0%) 4238 (54.2%) 4116 (49.7%) 3897 (41.8%) 2749.0* 3458 (25.8%)
20 15 Dmu41 5283 (62.7%) 5377 (65.5%) 5187 (59.7%) 5070 (56.1%) 4316 (32.9%) 3248.0* 4137 (27.4%)
20 15 Dmu42 5354 (57.9%) 6076 (79.2%) 5583 (64.7%) 4976 (46.8%) 4858 (43.3%) 3390.0* 4169 (23.0%)
20 15 Dmu43 5328 (54.8%) 4938 (43.5%) 5086 (47.8%) 5012 (45.7%) 4887 (42.0%) 3441.0* 4634 (34.7%)
20 15 Dmu44 5745 (64.7%) 5630 (61.4%) 5550 (59.1%) 5213 (49.5%) 5151 (47.7%) 3488.0* 4429 (27.0%)
20 15 Dmu45 5305 (62.1%) 5446 (66.4%) 5414 (65.5%) 4921 (50.4%) 4615 (41.0%) 3272.0* 4423 (35.2%)
20 20 Dmu06 6230 (92.0%) 5556 (71.3%) 5258 (62.1%) 4747 (46.3%) 4358 (34.3%) 3244.0* 4173 (28.6%)
20 20 Dmu07 5619 (84.5%) 4636 (52.2%) 4789 (57.2%) 4367 (43.4%) 3671 (20.5%) 3046.0* 3821 (25.4%)
20 20 Dmu08 5239 (64.3%) 5078 (59.3%) 4817 (51.1%) 4480 (40.5%) 4048 (27.0%) 3188.0* 3982 (24.9%)
20 20 Dmu09 4874 (57.6%) 4519 (46.2%) 4675 (51.2%) 4519 (46.2%) 4482 (45.0%) 3092.0* 4376 (41.5%)
20 20 Dmu10 4808 (61.1%) 4963 (66.3%) 4149 (39.0%) 4133 (38.5%) 4021 (34.8%) 2984.0* 3853 (29.1%)
20 20 Dmu46 6403 (58.7%) 6168 (52.9%) 5778 (43.2%) 6136 (52.1%) 5876 (45.6%) 4035.0* 5447 (35.0%)
20 20 Dmu47 6015 (52.7%) 6130 (55.6%) 6058 (53.8%) 5908 (50.0%) 5771 (46.5%) 3939.0* 4899 (24.4%)
20 20 Dmu48 5345 (42.0%) 5701 (51.5%) 5887 (56.4%) 5384 (43.1%) 5034 (33.8%) 3763.0* 4854 (29.0%)
20 20 Dmu49 6072 (63.7%) 6089 (64.1%) 5807 (56.5%) 5469 (47.4%) 5470 (47.4%) 3710.0* 4674 (26.0%)
20 20 Dmu50 6300 (68.9%) 6050 (62.2%) 5764 (54.6%) 5380 (44.3%) 5314 (42.5%) 3729.0* 4515 (21.1%)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Zero Shot inference on LLama 8B 4bt

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D DETAILS OF THE BASELINES

In this section, we show how the baseline PDRs compute the priority index for the operations. We
begin by introducing the notations used in these rules, summarized as follows:

Zij : the priority index of operation Oij ,

ni : the number of operations for job Ji,

Rei : the release time of job Ji
(
here we assume Rei = 0 for all Ji,

i.e. all jobs are available in the beginning, but in general

the jobs could have different release times
)
,

pij : the processing time of operation Oij .

Based on the above notations, the decision principles for each baseline are given below:

• Shortest Processing Time (SPT):

minZij = pij .

• Most Work Remaining (MWKR):

maxZij =

ni∑
k=1

pik.

• Minimum ratio of Flow Due Date to Most Work Remaining (FDD/MWKR):

minZij =
Rei +

∑j
k=1 pik∑ni

k=1 pik
.

• Most Operations Remaining (MOPNR):

maxZij = ni − j + 1.

D.1 L2D: MDP FORMULATION AND GNN-BASED POLICY

Markov Decision Process. Zhang et al. (2020) models a JSSP instance as an MDP, where each
step t selects one eligible operation to schedule. The partial schedule at time t is represented by a
disjunctive graph G(t) = (O, C ∪ Du(t),D(t)), whose arcs encode machine-ordering constraints.
The state st specifies (i) which operations are already scheduled and (ii) estimated completion times
for each operation. An action at picks the next operation to schedule, leading to an updated graph
G(t+ 1) and state st+1. The reward R(at, st) = H(st)−H(st+1) is the change in a lower bound
of the makespan H(·); maximizing the sum of such rewards (with discount γ = 1) is equivalent to
minimizing the final makespan. A policy π(at | st) outputs a probability distribution over eligible
actions.

Graph Neural Network (GNN). L2D uses a Graph Isomorphism Network (GIN) to learn graph-
structured representations. Given a graph G = (V,E), GIN updates each node embedding h

(k)
v

iteratively:
h(k)
v = MLPθk

((
1 + ϵ(k)

)
h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
. (2)

After K iterations, a global embedding hG is obtained by pooling node embeddings, e.g. average-
pooling. For action selection, each operation embedding h

(K)
at is concatenated with hG and passed

through an MLP to produce a score; a softmax over these scores yields the policy distribution πθ.
During training, a PPO-based Schulman et al. (2017) actor-critic approach is used, where the critic
vϕ shares the GIN backbone but includes an additional MLP to estimate cumulative rewards.

17

	Introduction
	Related Work
	Preliminaries
	Dataset Construction and Representation
	Corpus Generation for Model Training

	Methodology
	Training Methodology
	Inference and Solution Selection

	Validation, Baseline Methods, and Empirical Analysis
	Performance Metrics and Comparative Results
	Ablation Study

	Conclusion
	Limitations and Future Work
	Appendix
	Training Details
	General Statistics about dataset
	Details of the Baselines
	L2D: MDP Formulation and GNN-Based Policy

