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Abstract

This paper presents a general methodology for deriving information-theoretic gener-
alization bounds for learning algorithms. The main technical tool is a probabilistic
decorrelation lemma based on a change of measure and a relaxation of Young’s
inequality in Lψp

Orlicz spaces. Using the decorrelation lemma in combination
with other techniques, such as symmetrization, couplings, and chaining in the space
of probability measures, we obtain new upper bounds on the generalization error,
both in expectation and in high probability, and recover as special cases many of
the existing generalization bounds, including the ones based on mutual information,
conditional mutual information, stochastic chaining, and PAC-Bayes inequalities.
In addition, the Fernique–Talagrand upper bound on the expected supremum of a
subgaussian process emerges as a special case.

1 Introduction

The generalization error of a learning algorithm is a useful proxy for evaluating the performance of the
learned model on previously unseen data. Formally, it is defined as the expected (absolute) difference
between the population risk and the empirical risk of the hypothesis returned by the algorithm. One
of the classical methods for estimating the generalization error is via uniform convergence of various
empirical processes indexed by the hypothesis class [1, 2]. For example, in the analysis of Empirical
Risk Minimization, one can estimate the expected generalization error via Rademacher averages,
which can be bounded from above using chaining techniques [3].

However, the bounds based on uniform convergence are often too pessimistic and may even become
vacuous when the hypothesis space is extremely large, a typical situation with deep neural net models.
For this reason, it is preferable to obtain algorithm-dependent generalization bounds that take into
account the joint distribution of the training samples and of the output hypothesis. In this context,
one capitalizes on the intuition that the generalization ability of a learning algorithm should be
related to the amount of information the output hypothesis reveals about the training data. This idea,
which has origins in the work on PAC-Bayes methods [4, 5], is the basis of the growing literature on
information-theoretic generalization bounds, first proposed in [6] and further devoloped in [7–16]
and many other works.

In fact, it is possible to effectively combine the information-theoretic approach with the classical
framework based on various measures of complexity of the hypothesis class: One can use chaining
techniques to successively approximate the hypothesis class by simpler model classes, which can then
be analyzed using information-theoretic tools. This methodology, again originating in the PAC-Bayes
literature [17], has been developed recently in [18–21]. Our goal in this work is to develop these
ideas further by giving a unified framework for information-theoretic generalization bounds, from
which many of the existing results emerge as special cases.
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1.1 The main idea, informally

The main idea behind our framework is surprisingly simple. We first give an abstract description
and then show how it can be particularized to various settings of interest. Let (Xt)t∈T be a centered
(zero-mean) stochastic process defined on a probability space (Ω,A,P) and indexed by the elements
of some set T . Let Q be a Markov kernel from Ω to T , i.e., a measurable mapping taking each ω ∈ Ω
to a probability measure Q(·|ω) on T . Together, P and Q define a probability measure P⊗Q on the
product space Ω× T . The mathematical object we would like to study is the expected value

〈P⊗Q,X〉 :=

∫
Ω×T

Xt(ω)Q(dt|ω).P(dω).

For example, assuming that there exists a measurable map τ∗ : Ω→ T , such that

Xτ∗(ω)(ω) = sup
t∈T

Xt(ω), P− a.s. (1)

we can take Q(A|ω) := 1{τ∗(ω)∈A} for all measurable subsets A of T . Then

〈P⊗Q,X〉 = E
[

sup
t∈T

Xt

]
is the expected supremum of Xt, the central object of study in the theory of generic chaining,
where (T, d) is a metric space and increments Xu −Xv are “stochastically small” relative to d(u, v).
Alternatively, consider a statistical learning problem with instance space Z , hypothesis spaceW , and
loss function ` :W ×Z → R+. Let PZ be the (unknown) probability law of the problem instances
in Z . Then we could take Ω = Zn, P = P⊗nZ , T =W , and

Xw =
1

n

n∑
i=1

(
L(w)− `(w,Zi)

)
,

where L(w) := EZ∼PZ
[`(w,Z)] is the population risk of w. Let Q be a (randomized) learning

algorithm that associates to each sample S = (Z1, . . . , Zn) ∼ P a probability measure Q(·|S) on the
hypothesis spaceW . Then

〈P⊗Q,X〉 = E
[ 1

n

n∑
i=1

(
L(W )− `(W,Zi)

)]
is the expected generalization error of Q. In either case, we can proceed to analyze 〈P⊗Q,X〉 via a
combination of the following two steps:

• Decorrelation — We can remove the correlations encoded in P⊗Q by choosing a convenient
product measure P⊗ µ on Ω× T , so that (roughly)

〈P⊗Q,X〉 .
√
D(P⊗Q‖P⊗ µ) + Error

provided the process (Xt)t∈T is regular enough for the error term to be small. Here, we
use the relative entropy (or information divergence) D(·‖·) to illustrate the key idea with a
minimum of detail; the precise description is given in Section 3.

• Chaining in the space of measures — Since the process (Xt)t∈T is centered and P⊗ µ is
a product measure, we automatically have 〈P⊗ µ,X〉 = 0 even though 〈P⊗Q,X〉 6= 0.
We can therefore interpolate between P⊗Q and P⊗ µ along a (possibly infinite) sequence
Q0, Q1, . . . , QK of Markov kernels, such that P⊗QK = P⊗Q, P⊗Q0 = P⊗ µ, and the
differences 〈P⊗Qk, X〉 − 〈P⊗Qk−1, X〉 are suitably small. Telescoping, we get

〈P⊗Q,X〉 =

K∑
k=1

(
〈P⊗Qk, X〉 − 〈P⊗Qk−1, X〉

)
.

For each k, we then apply the decorrelation procedure to the increment process (Xu −
Xv)u,v∈T , with P as before and with a suitably chosen family of couplings of Qk(·|ω)
and Qk−1(·|ω). This step can be combined effectively with other techniques, such as
symmetrization.
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2 Preliminaries

Basic definitions. All measurable spaces in this paper are assumed to be standard Borel spaces.
The set of all Borel probability measures on a space X will be denoted by P(X ). A Markov kernel
from (X ,A) to (Y,B) is a mapping PY |X : B × X → [0, 1], such that PY |X=x(·) := PY |X(·|x) is
an element of P(Y) for every x ∈ X and the map x 7→ PY |X=x(B) is measurable for every B ∈ B.
The set of all such Markov kernels will be denoted byM(Y|X ).

The product of PX ∈ P(X ) and PY |X ∈M(Y|X ) is the probability measure PX ⊗PY |X ∈ P(X ×
Y) defined on product setsA×B ⊆ X×Y by (PX⊗PY |X)(A×B) :=

∫
A
PY |X=x(B)PX(dx) and

then extended to all Borel subsets of X × Y by countable additivity. This defines a joint probability
law for a random element (X,Y ) of X × Y , so that PX is the marginal law of X , PY |X is the
conditional law of Y given X , and PY (·) =

∫
X PY |X=x(·)PX(dx) is the marginal law of Y . The

product measure PX ⊗ PY , under which X and Y are independent, is a special case of this if we
interpret PY as a trivial Markov kernel with PY |X=x = PY for all x.

A coupling of µ ∈ P(X ) and ν ∈ P(Y) is a probability measure P ∈ P(X × Y), such that
P (· × Y) = µ(·) and P (X × ·) = ν(·). We will denote the set of all couplings of µ and ν by
Π(µ, ν). Let the space X ∪ Y be equipped with a metric d, and let Pp, for p ≥ 1, denote the
space of all probability measures ρ on X ∪ Y , for which there exists some z0 ∈ X ∪ Y such
that

∫
X∪Y d(z, z0)pρ(dz) < ∞. Then the p-Wasserstein distance between µ ∈ P(X ) ∩ Pp and

ν ∈ P(Y) ∩ Pp is given by

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
d(x, y)pπ(dx, dy)

)1/p

(see [22, 23] for details).

Lp and Lψp
spaces. The Lp(µ) norms of f : X → R, for µ ∈ P(X ) and p ≥ 1, are defined as

‖f‖Lp(µ) :=
(∫
X
|f |p dµ

)1/p

whenever the expectation on the right-hand side exists. We will often use the linear functional notation
for expectations, i.e., 〈µ, f〉 =

∫
X f dµ.

For p ≥ 1, define the function ψp : R+ → R+ by ψp(x) := exp(xp) − 1. Its inverse is given by

ψ−1
p (x) =

(
log(x+1)

)1/p
, where log will always denote natural logarithms. Some useful properties

of these two functions are collected in Appendix A of Supplementary Material. The function ψp
arises in the context of controlling the tail behavior of random variables (see [1, 24, 25] for details).
The Orlicz ψp-norm of a real-valued random variable X is defined as

‖X‖ψp
:= inf

{
c > 0 : E

[
ψp

( |X|
c

)]
≤ 1
}
,

and the tails of X satisfy P[|X| ≥ u] ≤ Ke−Cu
p

for all u ≥ 0 and some K,C > 0 if and only if
‖X‖ψp

< ∞. The Orlicz space Lψp
is the space of all random variables X with ‖X‖ψp

< ∞. In
particular, if X is σ-subgaussian, i.e., P[|X| ≥ u] ≤ 2e−u

2/2σ2

for all u ≥ 0, then ‖X‖ψ2
≤
√

6σ;
conversely, every X ∈ Lψ2

is σ-subgaussian with σ ≤ c‖X‖ψ2
for some absolute constant c > 0.

Information-theoretic quantities. The relative entropy (or information divergence) D(µ‖ν) be-
tween two probability measures µ, ν on the same space X is defined as

D(µ‖ν) :=
〈
µ, log

dµ

dν

〉
if µ� ν (i.e., µ is absolutely continuous w.r.t. ν), and D(µ‖ν) := +∞ otherwise. The following
inequality will be useful (proofs of all results are in Appendix B of the Supplementary Material):
Proposition 1. If µ� ν, then for any p ≥ 1〈

µ, ψ−1
p

(dµ

dν

)〉
≤
(
D(µ‖ν) + 1

)1/p
.
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The conditional divergence between PV |U , QV |U ∈M(V|U) given PU ∈ P(U) is defined by

D(PV |U‖QV |U |PU ) := D(PU ⊗ PV |U‖PU ⊗QV |U ).

The mutual information I(X;Y ) := D(PY |X‖PY |PX) and conditional mutual information
I(X;Y |Z) := D(PY |XZ‖PY |Z |PXZ) are special cases of the above definition, and the identities

D(PY |X‖QY |PX) = I(X;Y ) +D(PY ‖QY ) (2)

D(PY |XZ‖QY |Z |PXZ) = I(X;Y |Z) +D(PY |Z‖QY |Z |PZ). (3)

hold whenever all the quantities are finite. See, e.g., [26] for details.

3 The decorrelation lemma

All of our subsequent developments make use of the following decorrelation lemma:

Lemma 1. Let µ, ν be two probability measures on a space X such that µ� ν, and let f, g : X →
R+ be two nonnegative measurable functions. Then the following inequalities hold:

〈µ, fg〉 ≤ 21/p
〈
µ, fψ−1

p

(dµ

dν

)〉
+ 〈ν, fψp(g)〉 (4)

and

〈µ, fg〉 ≤ 21/p‖f‖L2(ν) + 41/p
〈
µ, fψ−1

p

(dµ

dν

)〉
+ 41/p‖f‖L1(µ)

(
log〈ν, exp(gp)〉

)1/p
. (5)

The proof makes extensive use of various properties of ψp and ψ−1
p . In particular, Eq. (4) is a

relaxation of the Young-type inequality xy ≤ ψ∗p(x) + ψp(y), where ψ∗p(x) := supy≥0(xy− ψp(y))
is the (one-sided) Lengendre–Fenchel conjugate of ψp. (We refer the reader to [13] for another use of
duality in Orlicz spaces in the context of generalization bounds.)

Every use of Lemma 1 in the sequel will be an instance of the following scheme: Let PX ∈ P(X ),
QY ∈ P(Y), and PY |X ∈ M(Y|X ) be given, such that PY |X=x � QY for all x ∈ X . Let
(X,Y, Ȳ ) be a random element of X × Y × Y with joint law PX ⊗ PY |X ⊗ QY ; in particular, Ȳ
is independent of (X,Y ). Furthermore, let f : Y → R+ and g : X × Y → R+ be given, such
that E[ψp(g(X, y))] ≤ 1 for all y ∈ Y . Then, applying Lemma 1 conditionally on X = x with
µ = PY |X=x, ν = QY , f , and g(x, ·), and then taking expectations w.r.t. PX , we obtain

E[f(Y )g(X,Y )] ≤ 21/pE

[
f(Y )ψ−1

p

(
dPY |X

dQY
(Y )

)]
+ E[f(Ȳ )].

In specific cases, the quantity on the right-hand side can be further upper-bounded in terms of the
information divergences D(PY |X‖QY ) using Proposition 1.

4 Some estimates for the absolute generalization error

We adopt the usual set-up for the analysis of (possibly randomized) learning algorithms and their
generalization error. Let an instance space Z , a hypothesis spaceW , and a nonnegative loss function
` :W ×Z → R+ be given. A learning algorithm is a Markov kernel PW |S from the product space
Zn intoW , which takes as input an n-tuple S = (Z1, . . . , Zn) of i.i.d. random elements of Z with
unknown marginal probability law PZ and generates a random element W of W . We define the
empirical risk and the expected (or population) risk of each w ∈ W by

Ln(w) := 〈Pn, `(w, ·)〉 =
1

n

n∑
i=1

`(w,Zi), L(w) := 〈PZ , `(w, ·)〉 = E[`(w,Z)]

where Pn is the empirical distribution of S, and the pointwise generalization error by

gen(w, S) := L(w)− Ln(w).
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It will also be convenient to introduce an auxiliary n-tuple S′ = (Z ′1, . . . , Z
′
n) ∼ P⊗nZ , which is

independent of (S,W ) ∼ P⊗nZ ⊗ PW |S . We will use S̃ to denote the pair (S′, S) and write L′n(w)
for the empirical risk of w on S′.

As a first illustration of our general approach, we show that it can be used to recover some existing
results on the generalization error, including the bounds of Xu and Raginsky [7] involving the
mutual information and the bounds of Steinke and Zakynthinou [10] involving the conditional mutual
infornation. We start with the following estimate on the expected value of |gen(W,S)|:
Theorem 1. Assume the random variables `(w,Z), w ∈ W , are σ-subgaussian when Z ∼ PZ . Let
a learning algorithm PW |S be given. Then, for any QW ∈ P(W),

E[|gen(W,S)|] ≤
√

12σ2

n

(
E

[
ψ−1

2

(
dPW |S

dQW

)]
+ 1

)
, (6)

where the expectation on both sides is w.r.t. PS ⊗ PW |S = P⊗nZ ⊗ PW |S .

The key step in the proof is to apply the decorrelation lemma, conditionally on S, to µ = PW |S ,
ν = QW , f(w) = σ

√
6/n, and g(w) = |gen(w,S)|

σ
√

6/n
. The same subgaussianity assumption was

also made by Xu and Raginsky [7]. Minimizing the right-hand side of (6) over QW , we recover
their generalization bound up to a multiplicative constant and an extra O(1/

√
n) term (which is

unavoidable since we are bounding the expected absolute generalization error):
Corollary 1. Under the assumptions of Theorem 1,

E[|gen(W,S)|] ≤
√

24σ2

n

(
I(W ;S) + 4

)
. (7)

A notable shortcoming of Theorem 1 and Corollary 1 is that they yield vacuous bounds whenever the
mutual information I(W ;S) is infinite, which will be the case, e.g., when the marginal probability
laws PZ and PW are nonatomic (i.e., assign zero mass to singletons) and the learning algorithm
is deterministic. To remove this drawback, we will use an elegant auxiliary randomization device
introduced by Steinke and Zakynthinou [10].

Let ε = (ε1, . . . , εn) be an n-tuple of i.i.d. Rademacher random variables, i.e., P[εi = ±1] = 1/2,
independent of S̃. For each i let Z̃1

i := Zi and Z̃−1
i := Z ′i and let P̄ = P̄S̃εW be the joint probability

law of (S̃, ε,W ), such that P̄S̃ε = PS̃ ⊗ Pε and P̄W |S̃ε := PW |S̃ε where Sε := (Z̃ε11 , . . . , Z̃εnn ).
In other words, under P̄ , S̃ and ε are independent and have their respective marginal distributions,
while W is generated by feeding the learning algorithm PW |S with the tuple S̃ε. Consequently, W is
independent of S̃−ε = (Z̃−ε11 , . . . , Z̃−εnn ). Then, letting P be the joint law of (S̃,W ), we have

EP [|gen(W,S)|] = EP
∣∣EP [L′n(W )− Ln(W )|S,W ]

∣∣
≤ EP |L′n(W )− Ln(W )|

= EP̄

∣∣∣ 1
n

n∑
i=1

(
`(W, Z̃−εii )− `(W, Z̃εii )

)∣∣∣
= EP̄

∣∣∣ 1
n

n∑
i=1

εi

(
`(W,Z ′i)− `(W,Zi)

)∣∣∣.
Thus, all the analysis can be carried out w.r.t. P̄ , as in the following:
Theorem 2. Assume there exists a function ∆ : Z × Z → R+, such that |`(w, z) − `(w, z′)| ≤
∆(z, z′) for all w ∈ W and z, z′ ∈ Z . Then for any Markov kernel QW |S̃ with access to S̃ but not to
ε we have

EP [|gen(W,S)|] ≤
√

12

n
EP̄

[
‖∆(S̃)‖`2

(
ψ−1

2

(
dP̄W |S̃ε

dQW |S̃

)
+ 1

)]
, (8)

where ‖∆(s̃)‖`2 :=
(∑n

i=1 ∆(zi, z
′
i)

2
)1/2

.
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The same assumption on ` was also made in [10]. Optimizing over QW |S̃ , we can recover their
Theorem 5.1 (again, up to a multiplicative constant and a O(1/

√
n) fluctuation term):

Corollary 2. Under the assumptions of Theorem 2,

EP [|gen(W,S)|] ≤
√

24

n
E[∆2(Z,Z ′)]

(
I(W ; ε|S̃) + 4

)
, (9)

where Z and Z ′ are independent samples from PZ and where the conditional mutual information is
computed w.r.t. P̄ .

The main advantage of using conditional mutual information is that it never exceeds n log 2 (of
course, the bound is only useful if I(W ; ε|S̃) = o(n)).

5 Estimates using couplings

We now turn to the analysis of E[gen(W,S)] using couplings. The starting point is the following
observation: With (S′, S,W ) be constructed as before, consider the quantities

L̃n(w) := L′n(w)− Ln(w) ≡ 1

n

n∑
i=1

(
`(w,Z ′i)− `(w,Zi)

)
.

Then, using the fact that 〈PS̃ ⊗QW , L̃n〉 = 0 for any QW ∈ P(W), we have

E[gen(W,S)] = 〈PS̃ ⊗ PW |S , L̃n〉 − 〈PS̃ ⊗QW , L̃n〉

=

∫
Z×Z

PS̃(ds̃)
(
〈PW |S=s, L̃n〉 − 〈QW , L̃n〉

)
. (10)

This suggests the idea of introducing, for each s ∈ Zn, a coupling of PW |S=s and QW , i.e., a
probability law PUV |S=s for a random element (U, V ) ofW ×W with marginals PU = PW |S=s

and PV = QW . We then have the following:

Theorem 3. For u, v ∈ W and s̃ = (s, s′) ∈ Zn ×Zn, define

σ2(u, v, s̃) :=

n∑
i=1

((
`(u, z′i)− `(v, z′i)

)
−
(
`(u, zi)− `(v, zi)

))2

. (11)

Then, for any QW ∈ P(W), any family of couplings PUV |S=s ∈ Π(PW |S=s, QW ) depending
measurably on s ∈ Zn, and any µUV ∈ P(W ×W),

E[gen(W,S)] ≤
√

24

n
E

[
σ(U, V, S̃)ψ−1

2

(
dPUV |S

dµUV

)
+

√
E[σ2(Ū , V̄ , S̃)|S̃]

]
, (12)

where the expectation on the right-hand side is w.r.t. the joint law of (U, V, Ū , V̄ , S̃), under which
(S,U, V ) are distributed according to PS ⊗ PUV |S , (Ū , V̄ ) are distributed according to µUV inde-
pendently of (U, V, S), and S′ is distributed according to PS independently of everything else.

The proof makes essential use of symmetrization using an auxiliary n-tuple ε of i.i.d. Rademacher
random variables, which allows us to apply Lemma 1 conditionally on S̃.

The coupling-based formulation looks rather complicated compared to the setting of Section 4.
However, being able to choose not just the “prior” QW , but also the couplings PUV |S of PW |S and
QW and the reference measure µUV , allows us to overcome some of the shortcomings of the set-up
of Section 4. Consider, for example, the case when the learning algorithm ignores the data, i.e.,
PW |S = PW . Then we can choose QW = PW , PUV |S(du,dv) = PW (du)⊗ δu(dv), where δu is
the Dirac measure concentrated on the point u, and µUV = PUV (since the latter does not depend on
S). With these choices, U = V and Ū = V̄ almost surely, so the right-hand side of (12) is identically
zero. By contrast, the bounds of Theorems 1 and 2 always include an additional O(1/

√
n) term even

when W and S̃ are independent.
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Moreover, Theorem 3 can be used to recover the bounds of Theorems 1 and 2 up to multiplicative
constants. For example, to recover Theorem 1, we apply Theorem 3 with PUV |S = PW |S ⊗QW ,
µUV = QW ⊗QW , and with an estimate on σ(U, V, S̃) based on the subgaussianity of `(w,Z).

For a more manageable bound that will be useful later, let us define the following for u, v ∈ W:

dS,`(u, v) :=

(
1

n

n∑
i=1

(
`(u, Zi)− `(v, Zi)

)2)1/2

≡ ‖`(u, ·)− `(v, ·)‖L2(Pn)

d`(u, v) :=

(
E
[(
`(u, Z)− `(v, Z)

)2])1/2

≡ ‖`(u, ·)− `(v, ·)‖L2(PZ),

Corollary 3. Under the assumptions of Theorem 3,

E[gen(W,S)] ≤
√

48

n
E

[(
d`(U, V ) + dS,`(U, V )

)
ψ−1

2

(
dPUV |S

dµUV

)
+ d`(Ū , V̄ )

]
.

6 Refined estimates via chaining in the space of measures

We now combine the use of couplings as in Section 5 with a chaining argument. The basic idea
is as follows: Instead of coupling PW |S with QW directly, we interpolate between them using a
(possibly infinite) sequence of Markov kernels P 0

W |S , P
1
W |S , . . . , P

K
W |S , such that P 0

W |S = QW and
PKW |S = PW |S (or limk→∞ P kW |S = PW |S in an appropriate sense, e.g., weakly for each S, if the
sequence is infinite). Given any such sequence, we telescope the terms in (10) as follows:

E[gen(W,S)] =

∫
Z×Z

PS̃(ds̃)

K∑
k=1

(
〈P kW |S=s, L̃n〉 − 〈P

k−1
W |S=s, L̃n〉

)
.

For each k, we can now choose a family of random couplings PWkWk−1|S ∈ Π(P kW |S , P
k−1
W |S)

and a deterministic probability measure ρWkWk−1
∈ P(W ×W). The following is an immediate

consequence of applying Corollary 3 to each summand:
Theorem 4. Let PW |S , QW , PWkWk−1|S , and ρWkWk−1

be given as above. Then

E[gen(W,S)]

≤
√

48

n

K∑
k=1

E

[(
d`(Wk,Wk−1) + dS,`(Wk,Wk−1)

)
ψ−1

2

(
dPWkWk−1|S

dρWkWk−1

)
+ d`(W̄k, W̄k−1)

]
,

where in the kth term on the right-hand side (S,Wk,Wk−1) are jointly distributed according to
PS ⊗ PWkWk−1|S and (W̄k, W̄k−1) are jointly distributed according to ρWkWk−1

.

Apart from Theorem 1, we have been imposing only minimal assumptions on ` and then using
symmetrization to construct various subgaussian random variables conditionally on W and S̃. For
the next series of results, we will assume something more, namely that (W, d) is a metric space and
that the following holds for the centered loss ¯̀(w, z) := `(w, z)−E[`(w,Z)]:∥∥∥∥∥

n∑
i=1

(¯̀(u, Zi)− ¯̀(v, Zi))

∥∥∥∥∥
ψ2

≤
√
nd(u, v), ∀u, v ∈ W. (13)

In other words, the centered empirical process 1√
n

∑n
i=1

¯̀(w,Zi) indexed by the elements of (W, d)

is a subgaussian process [1–3].
Theorem 5. Assume (13). Then

E[gen(W,S)] ≤
√

2

n

K∑
k=1

E

[
d(Wk,Wk−1)ψ−1

2

(
dPWkWk−1|S

dρWkWk−1

)
+ d(W̄k, W̄k−1)

]
(14)

As a byproduct, we recover the stochastic chaining bounds of Zhou et al. [20] (which, in turn, subsume
the bounds of Asadi et al. [18]):
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Corollary 4. Let PZ and PW |S be given, and let PW be the marginal law ofW . Let
(
PWk|S

)
k≥0

be a

sequence of Markov kernels satisfying the following conditions: (i) PW0|S = PW ; (ii) PWk|S
k→∞−−−−→

PW |S; (iii) for every k ≥ 1, S −W −Wk −Wk−1 is a Markov chain. Then

E[gen(W,S)] ≤
√

2

n

∞∑
k=1

E
[
d(Wk,Wk−1)

(√
D(PS|Wk

‖PS) + 1
)]

(15)

≤
√

2

n

∞∑
k=1

√
E[d2(Wk,Wk−1)](

√
I(Wk;S) + 2). (16)

Finally, we give an estimate based on 2-Wasserstein distances (cf. Section 2 for definitions and
notation). Let W2(·, ·) be the 2-Wasserstein distance on P2(W) induced by the metric d onW . A
(constant-speed) geodesic connecting two probability measures P,Q ∈ P2(W) is a continuous path
[0, 1] 3 t 7→ ρt ∈ P2(W), such that ρ0 = P , ρ1 = Q, and W2(ρs, ρt) = (t − s)W2(P,Q) for all
0 ≤ s ≤ t ≤ 1 [22, 23]. Then we have the following corollary of Theorem 5:
Corollary 5. Let PZ and PW |S be given, and let PW be the marginal law of W . With respect to
2-Wasserstein distance, let (PWk|S)0≤k≤K be some points on the constant-speed geodesic (ρt)t∈[0,1]

with endpoints ρ0 = PW0|S = PW |S and ρ1 = PWK |S = PW (where K may be infinite), i.e., there
exist some t0 = 0 < t1 < · · · < tk < · · · < tK = 1, such that PWk|S = ρtk for k = 0, 1, . . . . For
each k let PWkWk−1|S be the optimal coupling between the neighboring points PWk−1|S and PWk|S ,
i.e., the one that achieves W2(PWk−1|S , PWk|S). Then

E[gen(W,S)]

≤
√

2

n

(
2E[W2(PW |S , PW )] +

K∑
k=1

E
[
W2(PWk|S , PWk−1|S)

√
D(PWkWk−1|S ||PWkWk−1

)
])
.

(17)

Observe that the first term on the right-hand side of (17) is the expected 2-Wasserstein distance
between the posterior PW |S and the prior PW , while the second term is a sum of “divergence
weighted” Wasserstein distances. Also note that the form of the second term is in the spirit of
the Dudley entropy integral [1–3], where the Wasserstein distance corresponds to the radius of the
covering ball and the square root of the divergence corresponds to square root of the metric entropy.
We should also point out that the result in Corollary 5 does not require Lipschitz continuity of the
loss function `(w, z) w.r.t. the hypothesis w ∈ W , except in a weaker stochastic sense as in (13), in
contrast to some existing works that obtain generalization bounds using Wasserstein distances [27,28].

7 Tail estimates

Next, we turn to high-probability tail estimates on gen(W,S). We start with the followoing simple
observation: Assume `(w,Z) is σ-subgaussian for all w ∈ W when Z ∼ PZ . Then, for any
QW ∈ P(W) such that PW |S=s � QW for all s ∈ Zn, we have

E

[
exp

(
gen2(W,S)

6σ2/n
− log

(
1 +

dPW |S

dQW
(W )

))]
≤ E

[
exp

(
gen2(W̄ , S)

6σ2/n

)]
≤ 1

with W̄ ∼ QW independent of (S,W ). Thus, by Markov’s inequality, for any 0 < δ < 1,

P

[
|gen(W,S)| > σ

√
6

n

(
ψ−1

2

(dPW |S

dQW
(W )

)
+

√
log

1

δ

)]
≤ δ.

In other words, |gen(W,S)| . σ√
n
ψ−1

2

(dPW |S
dQW

)
with high PSW -probability. Similar observations

are made by Hellström and Durisi [9] with QW = PW , giving high-probability bounds of the form

|gen(W,S)| .
√

σ2D(PW |S‖PW )

n . Generalization bounds in terms of the divergence D(PW |S‖PW )

are also common in the PAC-Bayes literature [4, 5]. Moreover, using the inequality (5) in Lemma 1,
we can give high PS-probability bounds on the conditional expectation

〈PW |S , |gen(W,S)|〉 = 〈PW |S , |L(W )− Ln(W )|〉.
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Theorem 6. Assume `(w,Z) is σ-subgaussian for all w when Z ∼ PZ . Then, for any QW ∈ P(W),
the following holds with PS-probability of at least 1− δ:

〈PW |S , |gen(W,S)|〉 ≤
√

24σ2

n

(〈
PW |S , ψ

−1
2

(dPW |S

dQW

)〉
+ 1 +

√
log

2

δ

)
.

Another type of result that appears frequently in the literature on PAC-Bayes methods pertains to
so-called transductive bounds, i.e., inequalities for the difference between

〈P ′n ⊗ PW |S , `〉 − 〈P ′n ⊗QW , `〉 ≡
1

n

n∑
i=1

E[`(W,Z ′i)− `(W̄ , Z ′i)|S̃],

and

〈Pn ⊗ PW |S , `〉 − 〈Pn ⊗QW , `〉 ≡
1

n

n∑
i=1

E[`(W,Zi)− `(W̄ , Zi)|S̃],

where QW is some fixed “prior” and where W̄ ∼ QW is independent of (S′, S,W ). Using our
techniques, we can give the following general transductive bound:
Theorem 7. Let PW |S and QW be given and take any (PWkWk−1|S)Kk=1 and (ρWkWk−1

)Kk=1 as in
Theorem 4. Also, let p = (p1, p2, . . . ) be a strictly positive probability distribution on N. Then the
following holds with PS̃-probability at least 1− δ:(

〈P ′n ⊗ PW |S , `〉 − 〈P ′n ⊗QW , `〉
)
−
(
〈Pn ⊗ PW |S , `〉 − 〈Pn ⊗QW , `〉

)
≤
√

96

n

K∑
k=1

(√
〈ρWkWk−1

, d2
S̃,`
〉+

〈
PWkWk−1|S , dS̃,`ψ

−1
2

(dPWkWk−1|S

dρWkWk−1

)〉
+
〈
PWkWk−1|S , dS̃,`

〉√
log

2

pkδ

)
,

where

d2
S̃,`

(u, v) :=
1

2n

n∑
i=1

((
`(u, Zi)− `(v, Zi)

)2
+
(
`(u, Z ′i)− `(v, Z ′i)

)2)
.

This result subsumes some existing transductive PAC-Bayes estimates, such as Theorem 2 of Audibert
and Bousquet [17]. Let us briefly explain how we can recover this result from Theorem 7. Assume
thatW is countable and let (Ak) be an increasing sequence of finite partitions ofW withA0 = {W}.
For each k and eachw ∈ W , letAk(w) be the unique set inAk containingw. Choose a representative
point in each A ∈ Ak and letWk denote the set of all such representatives, withW0 = {w0}. Take
PW∞|S = PW |S and PW0

= QW = δw0
. Now, for each k ≥ 0, we take PWk|S as the projection of

PW |S ontoWk, i.e., the finite mixture

PWk|S :=
∑
w∈Wk

PW |S(Ak(w))δw.

Moreover, given some “prior” π ∈ P(W), we can construct a sequence (πk)∞k=0 of probability
measures with π∞ = π and π0 = δw0 , such that πk is a projection of π ontoWk. Now observe that,
for each k, S −W∞ −Wk −Wk−1 is a Markov chain. Indeed, if we know PWk|S , then we can
construct PW`|S for any ` < k without knowledge of S. With these ingredients in place, let us choose
PWkWk−1|S = PWk−1|Wk

⊗PWk|S and ρWkWk−1
= πk ⊗PWk−1|Wk

. Then, using Cauchy–Schwarz
and Jensen, we conclude that the following holds with PS̃-probability at least 1− δ:(

〈P ′n ⊗ PW |S , `〉 − 〈P ′n ⊗ δw0
, `〉
)
−
(
〈Pn ⊗ PW |S , `〉 − 〈Pn ⊗ δw0

, `〉
)

≤
√

96

n

∞∑
k=1

(√
〈πk ⊗ PWk−1|Wk

, d2
S̃,`
〉

+

√
2〈PWk|S ⊗ PWk−1|Wk

, d2
S̃,`
〉
(
D(PWk|S‖πk) + log

2e

pkδ

))
.

This recovers [17, Thm. 2] up to an extra term that scales like 1√
n

∑
k

√
〈πk ⊗ PWk−1|Wk

, d2
S̃,`
〉.
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8 The Fernique–Talagrand bound

As a bonus, we show that a combination of decorrelation and chaining in the space of measures can
be used to recover the upper bounds of Fernique [29] and Talagrand [30] on the expected supremum
of a stochastic process in terms of majorizing measures (see Eq. (19) below and also [31, 32]).

For simplicity, let (T, d) be a finite metric space with diam(T ) = sup{d(u, v) : u, v ∈ T} <∞. Let
B(t, r) denote the ball of radius r ≥ 0 centered at t ∈ T , i.e., B(t, r) := {u ∈ T : d(u, t) ≤ r}. Let
(Xt)t∈T be a centered stochastic process defined on some probability space (Ω,A,P) and satisfying

E

[
ψp

(
|Xu −Xv|
d(u, v)

)]
≤ 1, ∀u, v ∈ T (18)

for some p ≥ 1. Then we can obtain the following result using chaining in the space of measures and
decorrelation estimates:
Theorem 8. Let τ be a random element of T , i.e., a measurable map τ : Ω → T with marginal
probability law ν. Then for any µ ∈ P(T ) we have

E[Xτ ] . diam(T ) +

∫
T

∫ diam(T )

0

(
log

1

µ(B(t, ε))

)1/p

dε ν(dt).

Applying Theorem 8 to τ∗ defined in (1) and then minimizing over µ, we recover a Fernique–
Talagrand type bound on the expected supremum of Xt:

E
[

sup
t∈T

Xt

]
= E[Xτ∗ ] . diam(T ) + inf

µ∈P(T )
sup
t∈T

∫ diam(T )

0

(
log

1

µ(B(t, ε))

)1/p

dε. (19)

9 Conclusion and future work

In this paper, we have presented a unified framework for information-theoretic generalization bounds
based on a combination of two key ideas (decorrelation and chaining in the space of measures).
However, our method has certain limitations, which we plan to address in future work. For example,
it would be desirable to cover the case of processes satisfying Bernstein-type (mixed ψ1 and ψ2)
increment conditions. It would also be of interest to see whether there are any connections to the
convex-analytic approach of Lugosi and Neu [33]. Finally, since our method seamlessly interpolates
between Fernique–Talagrand type bounds and information-theoretic bounds, we plan to use it
to further develop the ideas of Hodgkinson et al. [21], who were the first to combine these two
complementary approaches to analyze the generalization capabilities of iterative learning algorithms.
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A Some elementary facts

We first list some useful inequalities for ψp and ψ−1
p . Note that the estimates may not be the sharpest,

but they suffice for our needs.
Proposition A.2. For p ≥ 1 and x ≥ 0, let ψp(x) = exp(xp)−1 and let ψ−1

p (x) = (log(x+1))1/p

be its inverse. Then we have the following:

(i) ψ2
p(x/21/p) ≤ ψp(x).

(ii) xψp(x/41/p) ≤ 21/pψp(x/2
1/p).

(iii) for x ≥ 0 and q ≥ 1, ψ−1
p (xq) ≤ q1/pψ−1

p (x).

(iv) For x ≥ 1, ψ−1
p (x) ≤ (log(x))1/p + 1.

Proof.

(i) For any x ≥ 0,

ψp(x) = exp(xp)− 1 = (exp(xp/2)− 1)(exp(xp/2) + 1) ≥ (exp(xp/2)− 1)2

= ψ2
p(x/21/p).

(ii) We only need to consider the case x ≥ 1 since otherwise the inequality is obvious. Since
y ≤ 2(exp(y/4) + 1) for all y ≥ 1, we have

x ≤ 21/p(exp(xp/4) + 1)1/p ≤ 21/p(exp(xp/4p) + 1) ≤ 21/p(exp(xp/4) + 1).

Then

xψp(x/4
1/p) = x(exp(xp/4)− 1)

≤ 21/p(exp(xp/4) + 1)(exp(xp/4)− 1)

= 21/p(exp(xp/2)− 1)

= 21/pψp(x/2
1/p).

(iii) Since x ≥ 0 and q ≥ 1,

ψ−1
p (xq) = (log(1 + xq))1/p ≤ (log(1 + x)q)1/p = q1/pψ−1

p (x).

(iv) When x ≥ 1,

ex ≥ x+ 1 =⇒ log x+ 1 ≥ log(x+ 1) =⇒ log1/p(x) + 1 ≥ ψ−1
p (x).

The following simple result is for converting between sums and integrals:
Proposition A.3. For any r ≥ 2, K ∈ N, and a continuous nonincreasing f : (0,+∞)→ (0,+∞),
we have

K∑
k=1

r−kf(r−k) ≤ r
∫ 1

0

f(ε) dε ≤ r2
∞∑
k=0

r−kf(r−k) (A.1)

Proof. Using the monotonicity of f , we have
K∑
k=1

r−kf(r−k) ≤
K∑
k=1

r−k(r − 1)f(r−k) ≤ r
K∑
k=1

∫ r−k

r−k−1

f(ε) dε

≤ r
∫ 1

0

f(ε)dε ≤ r
∞∑
k=0

∫ r−k+1

r−k

f(ε) dε ≤ r2
∞∑
k=0

r−kf(r−k).
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B Omitted proofs

B.1 Proofs for Section 2

Proof of Proposition 1. It follows from the inequality x log(x+ 1) ≤ x log x+ 1, x ≥ 0, that

dµ

dν
log
(dµ

dν
+ 1
)
≤ dµ

dν
log

dµ

dν
+ 1.

Using this and Jensen’s inequality, we get〈
µ, ψ−1

p

(dµ

dν

)〉
=
〈
µ,
(

log
(dµ

dν
+ 1
))1/p〉

≤
(〈
µ, log

(dµ

dν
+ 1
)〉)1/p

=
(〈
ν,

dµ

dν
log
(dµ

dν
+ 1
)〉)1/p

≤
(〈
ν,

dµ

dν
log

dµ

dν

〉
+ 1
)1/p

=
(
D(µ‖ν) + 1

)1/p
.

B.2 Proofs for Section 3

Proof of Lemma 1. To prove (4), we start with the Young-type inequality

xy ≤ ψ∗p(x) + ψp(y), x, y ≥ 0

where

ψ∗p(x) := sup
y≥0

(
xy − ψp(y)

)
is the (one-sided) Legendre–Fenchel conjugate of ψp. While a closed-form expression for ψ∗p is not
available, we claim that we can bound it from above as ψ∗p(x) ≤ 21/pxψ−1

p (x), resulting in

xy ≤ 21/pxψ−1
p (x) + ψp(y). (B.1)

To establish the claim, we write

sup
y≥0

(
xy − ψp(y)

)
= sup

y≥0

(
xy − (ey

p/2 − 1)(ey
p/2 + 1)

)
and consider two cases:

• if y ≤ 21/pψ−1
p (x), then

xy − (ey
p/2 − 1)(ey

p/2 + 1) ≤ 21/pxψ−1
p (x).

• if y > 21/pψ−1
p (x), then

xy − (ey
p/2 − 1)(ey

p/2 + 1) ≤ (ey
p/2 − 1)(y − (ey

p/2 + 1)) ≤ 0.

Applying (B.1) with x = dµ
dν and y = g gives

g
dµ

dν
≤ 21/p dµ

dν
ψ−1
p

(dµ

dν

)
+ ψp(g),

so that

〈µ, fg〉 =
〈
ν, fg

dµ

dν

〉
≤
〈
ν,
(

21/pf
dµ

dν
ψ−1
p

(dµ

dν

)
+ fψp(g)

)〉
= 21/p

〈
µ, fψ−1

p

(dµ

dν

)〉
+ 〈ν, fψp(g)〉.
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To prove (5), define the event

E :=

{
dµ

dν
≥ exp(gp/4)− 1

〈ν, exp(gp)〉

}
.

Then, since 〈ν, exp(gp)〉 ≥ 1,∫
E

fg dµ ≤ 41/p

∫
f
(

log
(dµ

dν
〈ν, exp(gp)〉+ 1

))1/p

dµ

≤ 41/p

∫
f
(

log
(dµ

dν
+ 1
)

+ log〈ν, exp(gp)〉
)1/p

dµ

≤ 41/p

∫
f
(

log
(dµ

dν
+ 1
))1/p

dµ+ 41/p

∫
f dµ ·

(
log〈ν, exp(gp)〉

)1/p

= 41/p
〈
µ, fψ−1

p

(dµ

dν

)〉
+ 41/p‖f‖L1(µ)

(
log〈ν, exp(gp)〉

)1/p
.

On the other hand, ∫
Ec

fg dµ ≤
∫
fg

exp(gp/4)− 1

〈ν, exp(gp)〉
dν

≤ 21/p

∫
f

exp(gp/2)

〈ν, exp(gp)〉
dν

≤ 21/p‖f‖L2(ν),

where the first inequality is by the definition of E, the second inequality follows from Proposi-
tion A.2(ii), and the third inequality is by Cauchy–Schwarz. Putting everything together, we get
(5).

B.3 Proofs for Section 4

Proof of Theorem 1. It follows from the independence of Z1, . . . , Zn that gen(w, S) is (σ/
√
n)-

subgaussian, so

E

[
ψ2

(
|gen(w, S)|
σ
√

6/n

)]
≤ 1, ∀w ∈ W. (B.2)

Using Lemma 1 with µ = PW |S , ν = QW , f(w) = σ
√

6/n, and g(w) = |gen(w,S)|
σ
√

6/n
, we have

〈PW |S , |gen(·, S)|〉 ≤
√

12σ2

n

(〈
PW |S , ψ

−1
2

(
dPW |S

dQW

)〉
+

〈
QW , ψ2

(
|gen(·, S|
σ
√

6/n

)〉)
.

Taking expectations of both sides w.r.t. PS and using Fubini’s theorem and (B.2), we get (6).

Proof of Corollary 1. Applying Proposition 1 conditionally on S gives〈
PW |S , ψ

−1
2

(dPW |S

dQW

)〉
≤
√
D(PW |S‖QW ) + 1,

where the divergence D(PW |S‖QW ), being a function of S, is a random variable. Substituting
this into (6) and using Jensen’s inequality, the definition of conditional divergence, and

√
a+ b ≤√

a+
√
b ≤

√
2(a+ b), we get

E[|gen(W,S)|] ≤
√

24σ2

n

(
D(PW |S‖QW |PS) + 4

)
.

Taking the infimum of both sides w.r.t. QW and using (2), we get (7).
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Proof of Theorem 2. For each fixed (w, s̃), the random variable δ(w, s̃, ε) := |
∑n
i=1 εi(`(w, z

′
i)−

`(w, zi))| is σ(w, s̃)-subgaussian, where σ(w, s̃) :=
(∑n

i=1(`(w, z′i)− `(w, zi))2)1/2. Thus,

Eε[ζ(w, s̃, ε)] := Eε

[
ψ2

(
δ(w, s̃, ε)√

6σ(w, s̃)

)]
≤ 1, ∀(w, s̃). (B.3)

Applying Lemma 1 conditionally on (S̃, ε) with µ = P̄W |S̃ε, ν = QW |S̃ , f(w) = σ(w, S̃), g(w) =

ζ(w, S̃, ε), we obtain〈
P̄W |S̃ε, σ(·, S̃)ζ(·, S̃, ε)

〉
≤
√

2

〈
P̄W |S̃ε, σ(·, S̃)ψ−1

2

(
dP̄W |S̃,ε

dQW |S̃

)〉
+
〈
QW |S̃ , σ(·, S̃)ψ2(ζ(·, S̃, ε))

〉

≤
√

2‖∆(S̃)‖`2

〈P̄W |S̃ε, ψ−1
2

(
dP̄W |S̃,ε

dQW |S̃

)〉
+
〈
QW |S̃ , ψ2(ζ(·, S̃, ε))

〉 .

Taking expectations of both sides w.r.t. S̃ and ε, then using Fubini’s theorem, (B.3), and the inequality
EP [|gen(W,S)|] ≤ 1

nEP̄ [δ(W, S̃, ε)], we obtain (8).

Proof of Corollary 2. For any QW |S̃ , using Proposition 1, Cauchy–Schwarz, and the independence
of (Z ′i, Zi), we have

EP̄

[
‖∆(S̃)‖`2ψ−1

2

(
dP̄W |S̃,ε

dQW |S̃

)]
≤
√
EP̄ [‖∆(S̃)‖2`2 ]

(
D(P̄W |S̃ε‖QW |S̃ |P̄S̃ε) + 1

)
=
√
nE[∆(Z,Z ′)2]

(
D(P̄W |S̃ε‖QW |S̃ |P̄S̃ε) + 1

)
.

Substituting this estimate into (8), taking the infimum of both sides w.r.t. QW |S̃ , and using (3), we
get (9).

B.4 Proofs for Section 5

Proof of Theorem 3. Let
δ(u, v, z, z′) :=

(
`(u, z′)− `(v, z′)

)
−
(
`(u, z)− `(v, z)

)
,

δ(u, v, s̃) :=

n∑
i=1

δ(u, v, zi, z
′
i),

ζ(u, v, s̃) :=
|δ(u, v, s̃)|√
6σ(u, v, s̃)

.

For each fixed (u, v) ∈ W2, δ(u, v, Zi, Z ′i), 1 ≤ i ≤ n, are i.i.d. symmetric random variables.
Therefore, introducing a tuple ε = (ε1, . . . , εn) of i.i.d. Rademacher random variables indepen-
dent of everything else and using the fact that the joint distributions of

(
δ(u, v, Zi, Z

′
i)
)n
i=1

and(
εiδ(u, v, Zi, Z

′
i)
)n
i=1

are the same, we see that

E[ψ2(ζ(u, v, S̃))] = ES̃Eε

[
ψ2

(
|
∑n
i=1 εiδ(u, v, Zi, Z

′
i)|√

6σ(u, v, S̃)

)]
≤ 1,

where the inequality follows from the fact that, conditionally on S and S′, the random variables∑n
i=1 εiδ(u, v, Zi, Z

′
i) are σ(u, v, S̃)-subgaussian.

Now, given QW ∈ P(W) and a family of couplings PUV |S=s ∈ Π(PW |S=s, QW ), it follows from
the above definitions and from (10) that

E[gen(W,S)] ≤ 1

n
E[|δ(U, V, S̃)|] =

√
6

n
E[σ(U, V, S̃)ζ(U, V, S̃)]. (B.4)
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Picking any ρUV ∈ P(W ×W) such that PUV |S=s � ρUV for all s ∈ Zn and applying Lemma 1,
we get

〈PUV |S , σ(·, S̃)ζ(·, S̃)〉

≤ 2

〈
PUV |S , σ(·, S̃)ψ−1

2

(
dPUV |S

dρUV

)〉
+
√

2

〈
ρUV , σ(·, S̃)ψ2

(
ζ(·, S̃)√

2

)〉
.

Using the inequality ψ2
2(x/
√

2) ≤ ψ2(x) (see Proposition A.2(i)), Cauchy–Schwarz, and (B.4), we
have

E

[
σ(u, v, S̃)ψ2

(
ζ(u, v, S̃)√

2

)]
≤
√
E[σ2(u, v, S̃)], ∀(u, v) ∈ W ×W.

Putting everything together and taking expectations w.r.t. S and S′, we obtain (12).

Proof of Corollary 3. For σ defined in Theorem 3, we have

σ2(u, v, S̃) ≤ 2

n∑
i=1

((
`(u, Z ′i)− `(v, Z ′i)

)2
+
(
`(u, Zi)− `(v, Zi)

)2)
.

Taking conditional expectations given U, V, S and using Jensen’s inequality gives

E[σ(U, V, S̃)|U, V, S] ≤
√
E[σ2(U, V, S̃)|U, V, S]

≤
√

2n
(
d`(U, V ) + dS,`(U, V )

)
.

An analogous argument gives√
E[σ2(Ū , V̄ , S̃)|Ū , V̄ ] ≤ 2

√
nd`(Ū , V̄ ).

Substituting these estimates into (12) gives the desired result.

B.5 Proofs for Section 6

Proof of Theorem 5. Using the definition of ¯̀, we have

E[gen(W,S)] =
1

n

K∑
k=1

E

[
n∑
i=1

(
¯̀(Wk, Zi)− ¯̀(Wk−1, Zi)

)]
.

Applyng Lemma 1 conditionally on S with f(u, v) = d(u, v), g(u, v) =
|
∑n

i=1(¯̀(u,,Zi)−¯̀(v,Zi))|√
nd(u,v)

,
µ = PWkWk−1|S and ν = ρWkWk−1

, taking expectations w.r.t. PS , and using (13) gives the desired
result.

Proof of Corollary 4. For each k ≥ 1, let ρWkWk−1
= PWkWk−1

. Then

dPWkWk−1|S

dPWkWk−1

=
dPWkWk−1S

d(PWkWk−1
⊗ PS)

=
dPS|WkWk−1

dPS
=

dPS|Wk

dPS
,

where we have made use of Bayes’ rule and the fact that S ⊥⊥Wk−1|Wk. Using this in (14) together
with Proposition 1 gives (15). An application of Cauchy–Schwarz and Jensen gives (16).

Proof of Corollary 5. For each k ≥ 1, let ρWkWk−1
= PWkWk−1

. Notice that, by disintegration
and the choice of couplings,

E[d(W̄k, W̄k−1)] = E
[ ∫

d(u, v)PWkWk−1|S(du,dv)
]
≤ E[W2(PWk|S , PWk−1|S)],

where we have used the fact that W2(·, ·) dominates W1(·, ·) [23]. Since PWk|S are points on the
geodesic connecting PW |S and PW , we have

K∑
k=1

W2(PWk|S , PWk−1|S) =

K∑
k=1

(tk − tk−1)W2(PW |S , PW ) = W2(PW |S , PW ).

Using this together with Cauchy-Schwarz and Proposition 1, we obtain (17).
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B.6 Proofs for Section 7

Proof of Theorem 6. Applying (5) conditionally on S with f(w) = σ
√

6/n, g(w) = |gen(w,S)|
σ
√

6/n
,

µ = PW |S , and ν = QW , we have
〈PW |S , |gen(W,S)|〉

≤
√

24σ2

n

(
1 +

〈
PW |S , ψ

−1
2

(dPW |S

dQW

)〉
+

(
log

〈
QW , exp

(gen2(·, S)

6σ2/n

)〉)1/2)
.

Since `(w, S) is (σ/
√
n)-subgaussian for all w, Markov’s inequality gives, for any 0 < δ < 1,

P

[〈
QW , exp

(gen2(·, S)

6σ2/n

)〉
>

2

δ

]
≤ δ

2

〈
PS ⊗QW , exp

(gen2(·, ·)
6σ2/n

)〉
≤ δ,

which concludes the proof.

Proof of Theorem 7. The argument is almost identical to the proof of Theorem 3, with the
difference that (5) is used for decorrelation.

To lighten the notation, let πSk := PWkWk−1|S and ρk := ρWkWk−1
. Use the same definitions of

δ, σ, ζ as in the proof of Theorem 3. Then, applying (5) with f(·) = σ(·, S̃), g(·) = ζ(·, S̃), µ = πSk ,
ν = ρk, we have

〈πSk , σ(·, S̃)ζ(·, S̃)〉 ≤
√

2‖σ(·, S̃)‖L2(ρk) + 2
〈
πSk , σ(·, S̃)ψ−1

2

(dπSk
dρk

)〉
+ 2‖σ(·, S̃)‖L1(πS

k )

√
log〈ρk, exp

(
ζ2(·, S̃)

)
〉.

By Markov’s inequality and the union bound, for any 0 < δ < 1,

P
[
∃k s.t.

〈
ρk, exp

(
ζ2(·, S̃)

)〉
>

2

pkδ

]
≤
∑
k

pkδ

2

〈
PS̃ ⊗ ρk, exp

(
ζ2(·, ·)

)〉
≤ δ.

Using this together with the estimate σ(·, S̃) ≤ 2
√
ndS̃,`(·) yields the result in the statement.

B.7 Proofs for Section 8

Proof of Theorem 8. Without loss of generality, we assume diam(T ) = 1. Let Q be the Markov
kernel from Ω to T defined by Q(·|ω) = δτ(ω)(·); in particular, ν(·) =

∫
Ω
P(dω)Q(·|ω).

Fix some r ≥ 2. For each k ≥ 0 and each t ∈ T , let Bk(t) := B(t, r−k). Since T is finite, there
exists some K ∈ N, such that BK(t) = {t} for all t ∈ T . Let µ ∈ P(T ) be given. Define the
following sequence of Markov kernels from Ω to T :

Qk(·|ω) :=
µ(· ∩Bk(τ(ω)))

µ(Bk(τ(ω)))
, k = 0, . . . ,K.

Observe that Q0 = µ and QK = Q. Then, since

〈P⊗ µ,X〉 =

∫
Ω×T

P(dω)µ(dt)Xt(ω) =

∫
T

µ(dt)E[Xt] = 0,

we can write
E[Xτ ] = 〈P⊗Q,X〉 − 〈P⊗ µ,X〉

= 〈P⊗QK , X〉 − 〈P⊗Q0, X〉

=

K∑
k=1

〈P⊗Qk − P⊗Qk−1, X〉

=

K∑
k=1

∫
Ω

(∫
T

Xt(ω)Qk(dt|ω)−
∫
T

Xt(ω)Qk−1(dt|ω)

)
P(dω)

≤
K∑
k=1

∫
Ω

∫
T×T

|Xu(ω)−Xv(ω)|Qk(du|ω)Qk−1(dv|ω)P(dω).
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Applying (4) conditionally on ω with

f(u, v) = 1Bk(τ(ω))(u)1Bk−1(τ(ω))(v)d(u, v),

g(u, v) =
|Xu(ω)−Xv(ω)|

d(u, v)
,

µ(du,dv) = Qk(du|ω)⊗Qk−1(dv|ω),

ν(du,dv) = µ(du)⊗ µ(dv),

and using the fact that Qk(·|ω) is supported on Bk(τ(ω)) and Bk(τ(ω)) ⊆ Bk−1(τ(ω)), we have∫
T×T

|Xu(ω)−Xv(ω)|Qk(du|ω)Qk−1(dv|ω)

≤ 21/pr−k+1ψ−1
p

(
1

µ(Bk(τ(ω)))2

)
+ r−k+1

∫
T×T

ψp

(
|Xu(ω)−Xv(ω)|

d(u, v)

)
µ(du)µ(dv)

≤ 22/pr−k+1ψ−1
p

(
1

µ(Bk(τ(ω)))

)
+ r−k+1

∫
T×T

ψp

(
|Xu(ω)−Xv(ω)|

d(u, v)

)
µ(du)µ(dv),

where the first term in the last step is due to Proposition A.2(iii). Then, using the increment condition
and Proposition A.3, we have

E[Xτ ] ≤ 22/p
K∑
k=1

r−k+1

∫
T

ψ−1
p

(
1

µ(B(t, r−k))

)
ν(dt) +

K∑
k=1

r−k+1

≤ 1 + 22/pr2

∫
T

∫ 1

0

ψ−1
p

(
1

µ(B(t, ε))

)
dε ν(dt).

Since 1/µ(B(t, ε)) ≥ 1, we can apply Proposition A.2(iv) to obtain the inequality

E[Xτ ] ≤ 22/pr2

(
2 +

∫
T

∫ 1

0

(
log

1

µ(B(t, ε))

)1/p

dε ν(dt)

)
.

We can now take r = 2 to get the desired result when diam(T ) = 1; the general finite-diameter case
follows by straightforward rescaling.
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