

000 001 002 003 004 005 PRICEFM: FOUNDATION MODEL FOR PROBABILISTIC 006 ELECTRICITY PRICE FORECASTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Electricity price forecasting in Europe presents unique challenges due to the continent's increasingly integrated and physically interconnected power market. While recent advances in deep learning and foundation models have led to substantial improvements in general time series forecasting, most existing approaches fail to capture the complex spatial interdependencies and uncertainty inherent in electricity markets. In this paper, we address these limitations by introducing a comprehensive and up-to-date dataset across 24 European countries (38 regions), spanning from 2022-01-01 to 2025-01-01. Building on this groundwork, we propose PriceFM, a spatiotemporal foundation model that integrates graph-based inductive biases to capture spatial interdependencies across interconnected electricity markets. The model is designed for multi-region, multi-timestep, and multi-quantile probabilistic electricity price forecasting. Extensive experiments and ablation studies confirm the model's effectiveness, consistently outperforming competitive baselines and highlighting the importance of spatial context in electricity markets.

1 INTRODUCTION

The European electricity market is physically interconnected through a network of cross-border transmission lines, enabling the exchange of electricity between regions and optimizing the social welfare at the European level Lago et al. (2018). However, physical constraints, such as limited transmission capacity, can restrict electricity flow between regions and lead to zonal price differences Finck (2021), illustrated in Figure 1. These price disparities highlight the spatial nature of electricity price formation. Recent studies show that electricity price dynamics are strongly influenced by spatial interdependencies and cannot be accurately captured using region-specific models Do et al. (2024). Therefore, explicitly modeling the spatial structure of the European electricity market is essential for producing accurate price forecasts.

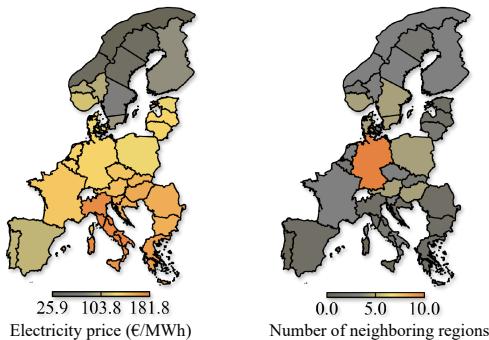


Figure 1: Spatial distribution of electricity price and number of neighboring regions. **(a)** Electricity prices for 38 European regions averaged from 2022-01-01 to 2025-01-01. A significant zonal price difference is observed between north and south regions. **(b)** Number of neighboring regions that are *directly* connected to certain region via transmission lines. For example, France (FR) and Portugal (PT) are directly connected to Spain (ES), thus the number of neighboring regions for ES is 2. The mean value across all regions is 3.4.

Most existing studies on electricity price forecasting do not explicitly model the spatial structure and focus on a single-region market, particularly Germany Muniain & Ziel (2020); Maciejowska et al. (2021); Kitsatoglou et al. (2024), as the German market is one of the largest markets in Europe. Other studies explore forecasting methods for markets such as Denmark, Finland, and Spain, also using region-specific models Ziel & Weron (2018); Gianfreda et al. (2020); Loizidis et al. (2024). More recent works explicitly model the spatial nature of the electricity price. For instance, a Graph

054 Convolutional Network (GCN) is applied to capture spatial interdependencies in the Nordic markets,
 055 such as Norway, Sweden, and Finland Yang et al. (2024). Moreover, an attention-based variant is
 056 developed to predict prices in certain European markets such as Austria, Germany, and Hungary
 057 Meng et al. (2024). However, these models cover only subsets of Europe and primarily produce
 058 point forecasts, failing to capture the uncertainty inherent in electricity prices.

059 Uncertainty modeling in electricity markets is critical, as the electricity price is strongly influenced
 060 by intermittent renewable generation and fluctuating demand Lago et al. (2021). Consequently, price
 061 forecasting should extend beyond traditional pointwise forecasting to explicitly quantify uncertainties,
 062 especially for applications involving risk-sensitive applications such as energy trading and operational
 063 planning Ziel & Steinert (2018). A comprehensive survey summarizes various probabilistic
 064 forecasting approaches based on quantile regression methods Lago et al. (2021). However, these existing
 065 methods often focus on single-region markets, thereby neglecting the rich spatial information.

066 In recent years, foundation models for time series forecasting have achieved remarkable success
 067 across diverse domains, demonstrating strong generalization capabilities by capturing complex data
 068 patterns Zhou et al. (2022); Liu et al. (2023); Nie et al. (2023); Wu et al. (2023); Wang et al. (2024),
 069 which makes them attractive candidates for electricity price forecasting. In contrast to the conventional
 070 notion of foundation models based on pretraining, these models derive their foundation
 071 from a generic architecture applicable across domains, and are trained from scratch on the target
 072 data Liang et al. (2024). However, existing models are primarily designed for general univariate or
 073 multivariate time series tasks and are not explicitly tailored to electricity markets. Moreover, some
 074 foundation models only provide pointwise forecasts and thus fail to capture the uncertainty essential
 075 for risk-aware trading decisions. Therefore, addressing the spatial interdependencies and uncertainty
 076 in electricity price forecasting necessitates a tailored foundation model.

077 To support the development of foundation models for electricity price forecasting, there is a pressing
 078 need for high-quality, large-scale, and up-to-date datasets that reflect the spatiotemporal complexity
 079 of integrated European markets. However, existing datasets are often fragmented in structure, cover
 080 only short time periods, are outdated, or focus on individual regions Lago et al. (2021). This lack of
 081 standardized data poses a significant barrier to training and evaluating foundation models.

082 In this paper, we introduce a comprehensive and up-to-date dataset and propose PriceFM, a founda-
 083 tion model that incorporates graph-based inductive biases to generate probabilistic forecasts. Similar
 084 to other time-series foundation models, PriceFM adopts a generic architecture that can be trained
 085 from scratch and applied across various markets. Our contributions are as follows:

086 Contribution

- 089 • We introduce and release a comprehensive, up-to-date dataset. To the best of our knowl-
 090 edge, this is the largest and most diverse open dataset for European electricity markets,
 091 comprising day-ahead electricity prices, day-ahead forecasts of load, solar, and wind power
 092 generation (onshore and offshore), covering 24 European countries (38 regions), spanning
 093 from 2022-01-01 to 2025-01-01.
- 094 • We propose and release the PriceFM, a novel forecasting framework that integrates prior
 095 graph knowledge derived from the spatial topology of the European electricity market.
 096 PriceFM supports joint multi-region, multi-timestep, and multi-quantile forecasting.
- 097 • We conduct experiments to evaluate the model’s performance against multiple baselines,
 098 and assess the impact of design choices through ablation studies, thereby providing both
 099 quantitative evidence of overall performance and insights into optimal configurations.

101 2 PRELIMINARY

103 The forecasting target is $\mathcal{T} = 24$ hourly prices for the delivery day $\mathcal{D} + 1$, using data available
 104 before gate closure, typically around midday on day \mathcal{D} . After midday on \mathcal{D} , the electricity prices
 105 for $\mathcal{D} + 1$ are published and known. We employ a backward-looking window of size L (e.g. $L = 24$
 106 corresponds to 24 hours from \mathcal{D}), for known electricity prices, denoted as $\mathbf{X}_{r_{in}}^{\text{price}}$. We also include
 107 forward-looking exogenous features, such as day-ahead forecasts of load, solar, and wind (onshore
 and offshore) power generation for $\mathcal{D} + 1$, denoted as $\mathbf{X}_{r_{in}}^{\text{exo}}$, made on \mathcal{D} before gate closure, as well as

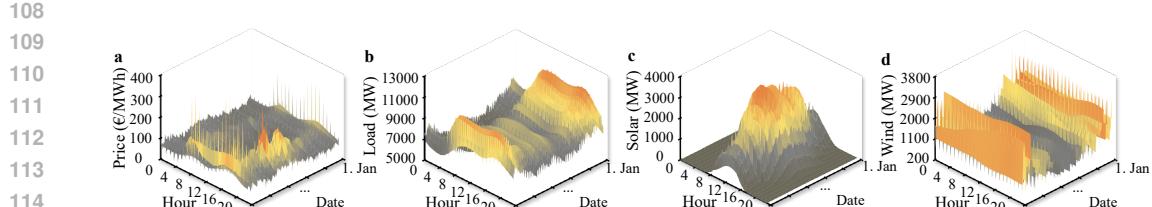


Figure 2: European-level energy data in 2024, averaged across regions. **(a)** Electricity price. Price spikes sharply during the morning and evening peak, dip around midday, and shows higher volatility in the second half of 2024. **(b)** Forecasted load. Load exhibits a double-peak each day with winter peaks substantially larger than summer. **(c)** Forecasted solar power generation. Solar is zero overnight, rises in a smooth bell curve to a strong midday maximum, then falls back to zero by dusk, and is much higher in summer. **(d)** Forecasted wind power generation (onshore and offshore). Wind lacks a daily pattern, fluctuates with high-frequency spikes, and is much higher in winter.

their historical values over L . The forecasting setup and the choice of feature set are widely used in prior works Maciejowska (2020); Uniejewski & Weron (2021); Meng et al. (2024). Importantly, this work aims to utilize multi-region inputs to produce multi-region, multi-timestep, and multi-quantile forecasts. Therefore, the input and output are defined as:

- **Input:** $\mathbf{X}_{r_{\text{in}}}^{\text{price}} \in \mathbb{R}^{L \times f_1}$ and $\mathbf{X}_{r_{\text{in}}}^{\text{exo}} \in \mathbb{R}^{(L+\mathcal{T}) \times f_2}$.
- **Output:** $\hat{y}_{r_{\text{out}}, \tau} \in \mathbb{R}^{\mathcal{T}}$

where $r_{\text{in}}, r_{\text{out}} \in \mathcal{R} = \{\text{AT}, \dots, \text{SK}\}$ (region codes, detailed in Appendix, Table 1.), $\tau \in \mathcal{Q} = \{0.1, 0.5, 0.9\}$ (quantile levels), $f_1 = 1$, and f_2 varies by region.

3 DATA

3.1 SPATIOTEMPORAL COVERAGE

Spatially, the dataset covers 24 European countries (38 regions). These regions reflect transmission zones rather than administrative boundaries. For example, DK is split into two regions: DK1 and DK2. Each is connected to different regions, resulting in distinct cross-border power flows. Temporally, the dataset spans from 2022-01-01 to 2025-01-01, providing wide temporal coverage.

3.2 FEATURE SET

The feature set includes day-ahead electricity prices, load forecasts, and solar and wind power generation forecasts (onshore and offshore). For simplicity, we refer to these features as *price*, *load*, *solar*, and *wind (onshore and offshore)*, respectively. The availability of features across regions is detailed in Appendix, Table 1. A European-level visualization of these features is shown in Figure 2.

3.3 RESOLUTION

We resample all features in an hourly resolution, as the raw data exhibit a heterogeneous temporal structure. For example, load from ES is provided at an hourly resolution before 2022-05-23 and then switches to a quarter-hourly resolution afterward; the price from AT is reported hourly, while the load is reported quarter-hourly.

3.4 MISSING VALUE

Partial features are excluded due to the high rate (above 15%) of missing values, summarized in Appendix, Table 1. For example, wind offshore from FR has a missing rate of 53.2% and is only available after 2023-08-07; load from SK has a missing rate of 16.8% and is no longer available after 2024-07-01. The features with low missing rates (below 1%) are filled using linear interpolation.

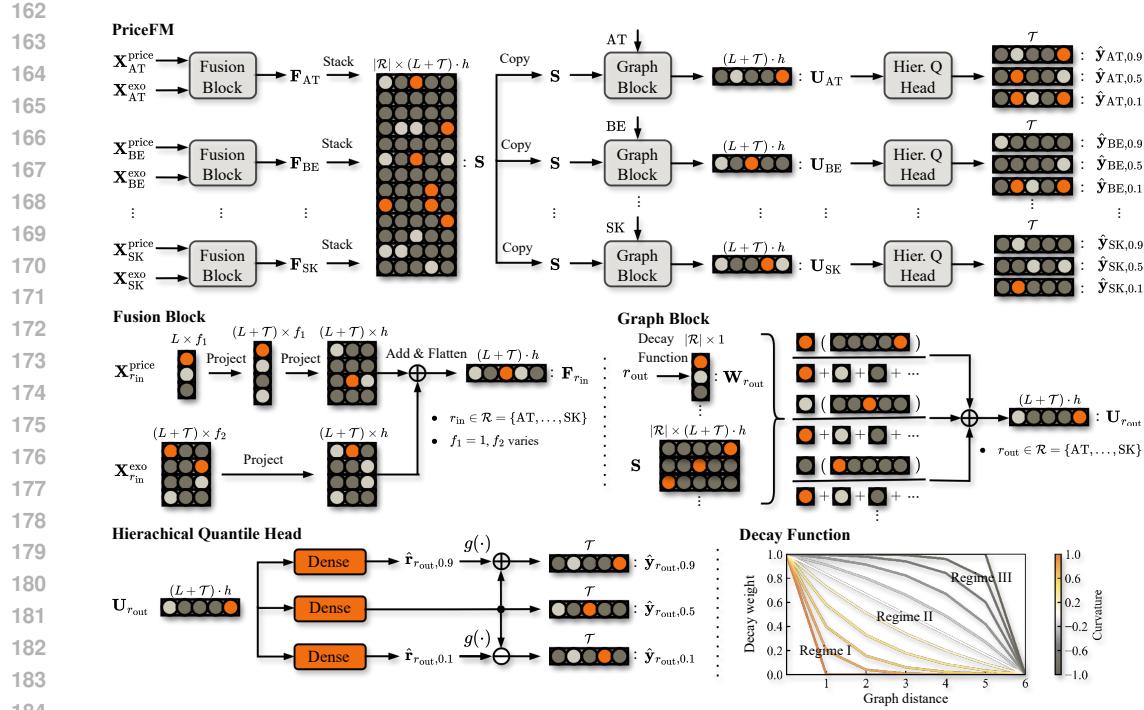


Figure 3: Structure of PriceFM. The input features $\mathbf{X}_{r_{in}}^{\text{price}}$ and $\mathbf{X}_{r_{in}}^{\text{exo}}$ are passed into a fusion block to learn regional representation $\mathbf{F}_{r_{in}}$. These regional representations are then stacked to form the spatial representation \mathbf{S} . Next, \mathbf{S} is passed to the graph block to produce the spatial representation $\mathbf{U}_{r_{out}}$. Finally, $\mathbf{U}_{r_{out}}$ is fed into hierarchical quantile heads to produce joint forecasts.

4 MODEL

PriceFM, illustrated in Figure 3, aims to produce multi-region, multi-timestep, and multi-quantile forecasts. The inputs $\mathbf{X}_{r_{in}}^{\text{price}} \in \mathbb{R}^{L \times f_1}$ and $\mathbf{X}_{r_{in}}^{\text{exo}} \in \mathbb{R}^{(L+\mathcal{T}) \times f_2}$ are described in Section *Preliminary*, introducing heterogeneity along the temporal and feature dimensions.

4.1 FUSION BLOCK

We first project the temporal dimensions by transposing and projecting $\mathbf{X}_{r_{in}}^{\text{price}}$ to length $L + \mathcal{T}$ via a dense layer with linear activation, and then transpose back and project the feature dimension of both price and exogenous features into a hidden space of dimension h via k dense layers:

$$\mathbf{X}_{r_{in}}^{\text{price}} \xrightarrow{\text{Project}} \tilde{\mathbf{X}}_{r_{in}}^{\text{price}} \in \mathbb{R}^{(L+\mathcal{T}) \times f_1}, \quad (1)$$

$$\tilde{\mathbf{X}}_{r_{in}}^{\text{price}} \xrightarrow{\text{Project}} \hat{\mathbf{X}}_{r_{in}}^{\text{price}} \in \mathbb{R}^{(L+\mathcal{T}) \times h}, \quad (2)$$

$$\mathbf{X}_{r_{in}}^{\text{exo}} \xrightarrow{\text{Project}} \hat{\mathbf{X}}_{r_{in}}^{\text{exo}} \in \mathbb{R}^{(L+\mathcal{T}) \times h}. \quad (3)$$

Next, we perform feature fusion through residual addition and flatten the fused representation to produce the regional representation $\mathbf{F}_{r_{in}}$, which encodes the backward-looking price feature and forward-looking contextual information:

$$\mathbf{F}_{r_{in}} = \text{Flatten} \left(\hat{\mathbf{X}}_{r_{in}}^{\text{price}} + \hat{\mathbf{X}}_{r_{in}}^{\text{exo}} \right) \in \mathbb{R}^{(L+\mathcal{T}) \cdot h}. \quad (4)$$

Next, the fused vectors $\mathbf{F}_{r_{in}}$ for all regions $r_{in} \in \mathcal{R}$ are stacked to form a spatial representation:

$$\mathbf{S} = \text{Stack} (\{\mathbf{F}_{r_{in}}\}_{r_{in} \in \mathcal{R}}) \in \mathbb{R}^{|\mathcal{R}| \times (L+\mathcal{T}) \cdot h}. \quad (5)$$

216 4.2 GRAPH BLOCK
217

218 We first construct *graph distance* by performing a breadth-first search (BFS) traversal on the cross-
219 border grid topology, detailed in Appendix, Table 6. For a given output region $r_{\text{out}} \in \mathcal{R}$, we define
220 the graph distance $d(r_{\text{in}}, r_{\text{out}})$ as the minimal number of transmission hops from each input region
221 r_{in} to the output region r_{out} , based on direct or indirect physical connectivity:

$$222 \quad d(r_{\text{in}}, r_{\text{out}}) = \begin{cases} 0 & \text{if } r_{\text{in}} = r_{\text{out}}, \\ 223 \quad 1 & \text{if } r_{\text{in}} \sim r_{\text{out}}, \\ 224 \quad 1 + \min_{r' \sim r_{\text{in}}} d(r', r_{\text{out}}) & \text{otherwise,} \end{cases} \quad (6)$$

225 where $r_{\text{in}} \sim r_{\text{out}}$ denotes that two regions are directly connected by a transmission line. For ex-
226 ample, let $r_{\text{out}} = \text{AT}$. Then $d(\text{AT}, \text{AT}) = 0$. The region HU is directly connected to AT , thus
227 $d(\text{HU}, \text{AT}) = 1$. SK is indirectly connected to AT via HU , yielding $d(\text{SK}, \text{AT}) = 2$.

228 Next, we introduce a graph decay mechanism to inject prior graph knowledge. Intuitively, input re-
229 gions that are topologically closer to the output region r_{out} are expected to exert a stronger influence
230 than more distant ones. To formalize this intuition, we design a *decay function* that modulates the
231 contribution of each neighboring region based on its graph distance, yielding a *decay weight*:

$$232 \quad w(d; c; D) = \begin{cases} \frac{(1 - |c|)^d - (1 - |c|)^D}{1 - (1 - |c|)^D}, & c > 0, \\ 233 \quad 1 - \frac{d}{D}, & c = 0, \\ 234 \quad \frac{(1 - |c|)^{-d} - (1 - |c|)^{-D}}{1 - (1 - |c|)^{-D}}, & c < 0, \end{cases} \quad (7)$$

235 where $w(d; c; D) \in [0, 1]$ is the decay weight, d is the graph distance, $c \in [-1, 1]$ is the curvature
236 parameter, and D is the maximum reachable distance from the output region r_{out} . As shown in
237 Figure 3, for $c > 0$ (Regime I), the decay weight drops off sharply with distance, meaning distant
238 regions contribute very little. For $c = 0$ (Regime II), the function reduces to linear decay, decreasing
239 proportionally with graph distance. For $c < 0$ (Regime III), the decay weight decreases more
240 gradually, preserving the influence of neighbors. We construct the *decay mask* as:

$$241 \quad \mathbf{W}_{r_{\text{out}}} = \begin{bmatrix} w(d(\text{AT}, r_{\text{out}}); c; D) \\ 242 \quad w(d(\text{BE}, r_{\text{out}}); c; D) \\ \vdots \\ 243 \quad w(d(\text{SK}, r_{\text{out}}); c; D) \end{bmatrix} \in \mathbb{R}^{|\mathcal{R}| \times 1}. \quad (8)$$

244 Next, the learned spatial representation \mathbf{S} is copied $|\mathcal{R}|$ times, each assigned to an output region
245 r_{out} . We inject graph knowledge into \mathbf{S} by computing the decay-weighted average representation:

$$246 \quad \mathbf{U}_{r_{\text{out}}} = \frac{\mathbf{W}_{r_{\text{out}}}^\top \mathbf{S}}{\mathbf{W}_{r_{\text{out}}}^\top \mathbf{1}}, \quad (9)$$

247 where $\mathbf{1} \in \mathbb{R}^{|\mathcal{R}| \times 1}$ is a vector of ones.

248 This operation acts as spatial regularization and eliminates the need for an exhaustive learning pro-
249 cess to determine spatial weights, as required in methods such as the attention mechanism.

261 4.3 HEAD
262

263 We design a multi-region, multi-timestep, and multi-quantile head, where the model produces joint
264 probabilistic forecasts. To prevent quantile crossing issue¹, we adopt a hierarchical quantile head Yu
265 et al. (2025). In detail, the median quantile ($\tau = 0.5$) price trajectory, which represents the full set
266 of timesteps \mathcal{T} , is predicted from $\mathbf{U}_{r_{\text{out}}}$ via a dense layer:

$$267 \quad \hat{\mathbf{y}}_{r_{\text{out}}, 0.5} = \text{Dense}(\mathbf{U}_{r_{\text{out}}}) \in \mathbb{R}^{\mathcal{T}}. \quad (10)$$

268 ¹Quantile crossing refers to the phenomenon where upper quantile predictions (e.g., 90%) fall below lower
269 quantiles (e.g., 10%), violating the monotonicity of the quantile function. Chernozhukov et al. (2010).

270 For the upper quantile ($\tau = 0.9$), a residual price trajectory $\hat{\mathbf{r}}_{r_{\text{out}}, 0.9}$ is produced from $\mathbf{U}_{r_{\text{out}}}$:

$$271 \quad \hat{\mathbf{r}}_{r_{\text{out}}, 0.9} = \text{Dense}(\mathbf{U}_{r_{\text{out}}}) \in \mathbb{R}^{\mathcal{T}}, \quad (11)$$

273 where a non-negative function $g(\cdot)$, such as absolute-value function, is applied to the price residual.
274 The upper quantile forecast is obtained by adding this non-negative residual to the median:

$$275 \quad \hat{\mathbf{y}}_{r_{\text{out}}, 0.9} = \hat{\mathbf{y}}_{r_{\text{out}}, 0.5} + g(\hat{\mathbf{r}}_{r_{\text{out}}, 0.9}). \quad (12)$$

277 For the lower quantile ($\tau = 0.1$), we compute a residual trajectory similarly:

$$278 \quad \hat{\mathbf{r}}_{r_{\text{out}}, 0.1} = \text{Dense}(\mathbf{U}_{r_{\text{out}}}) \in \mathbb{R}^{\mathcal{T}}, \quad (13)$$

280 and subtract it from the median to obtain the lower quantile prediction:

$$281 \quad \hat{\mathbf{y}}_{r_{\text{out}}, 0.1} = \hat{\mathbf{y}}_{r_{\text{out}}, 0.5} - g(\hat{\mathbf{r}}_{r_{\text{out}}, 0.1}). \quad (14)$$

282 This hierarchical design guarantees that the upper quantile prediction is greater than or equal to the
283 lower one at each time step, overcoming quantile crossing.

285 4.4 LOSS

287 We introduce the *Average Quantile Loss (AQL)* as the training objective for multi-region, multi-
288 timestep, and multi-quantile probabilistic forecasting. Let $y_{i, r_{\text{out}}, t}$ denote the ground-truth price for
289 the i -th training sample, output region r_{out} , and timestep t , and let $\hat{y}_{i, r_{\text{out}}, t, \tau}$ be the corresponding
290 predicted quantile. The AQL is computed as:

$$291 \quad \text{AQL} = \frac{1}{N |\mathcal{R}| \mathcal{T} |\mathcal{Q}|} \sum_{i=1}^N \sum_{r_{\text{out}} \in \mathcal{R}} \sum_{t=1}^{\mathcal{T}} \sum_{\tau \in \mathcal{Q}} L_{\tau}(y_{i, r_{\text{out}}, t}, \hat{y}_{i, r_{\text{out}}, t, \tau}), \quad (15)$$

294 where N is the number of samples, and the quantile loss L_{τ} is defined as:

$$295 \quad L_{\tau}(y, \hat{y}_{\tau}) = \begin{cases} \tau \cdot (y - \hat{y}_{\tau}), & \text{if } y \geq \hat{y}_{\tau}, \\ (1 - \tau) \cdot (\hat{y}_{\tau} - y), & \text{otherwise,} \end{cases} \quad (16)$$

298 where y and \hat{y} are the true and predicted values, respectively.

300 5 EXPERIMENT

302 We split the data into training (2022-01-01 to 2024-01-01), validation (2024-01-01 to 2024-07-01),
303 and testing (2024-07-01 to 2025-01-01). The choice of the testing period aims to include numerous
304 extreme prices, as illustrated in Figure 2 (a). We assess the model performance using the quantile
305 losses ($Q_{0.1}$, $Q_{0.5}$, and $Q_{0.9}$), AQL, Average Quantile Crossing Rate (AQCR), Root Mean Squared
306 Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R^2). The Diebold-
307 Mariano (DM) test is applied to determine if two models have a significant difference Diebold &
308 Mariano (2002). All metrics are explained in Appendix H. The hyperparameters are detailed in
309 Appendix E

310 5.1 MODEL COMPARISON

312 5.1.1 NAÏVE BASELINES

314 We include three seasonal naïve baselines as reference models, where only historical prices are
315 used as input: (i) **Naïve**¹ uses 24 prices from the previous day; (ii) **Naïve**² uses 24 prices averaged
316 over the past three days; (iii) **Naïve**³ uses 24 prices averaged over the past seven days. To obtain
317 probabilistic results, we compute empirical quantiles at individual levels ($\mathcal{Q} = \{0.1, 0.5, 0.9\}$) for
318 each delivery hour. The seasonal naïves are commonly used to evaluate the autoregressive strength
319 of the signal and often serve as strong baselines Ziel & Weron (2018); Lago et al. (2021).

320 The results from Table 1 show that PriceFM significantly outperforms the naïve baselines, confirmed
321 by both the probabilistic and pointwise DM tests, with all p -values < 0.05 and negative DM values.
322 Specifically, the AQL values of baselines are between 36.83% and 44.80% higher, with an AQCR of
323 0.00%, as these forecasts are directly computed from historical values. Moreover, the high RMSE
and MAE, together with the low R^2 , observed in the naïve baselines suggest limited performance.

324
 325 Table 1: Model comparison on the testing set. The symbol “–” indicates that the model does not
 326 support probabilistic forecasting by design. All metrics are reported as mean \pm standard deviation
 327 over 5 independent runs. The best results are shown in **bold**, and the second-best are underlined.
 328 The units of $Q_{0.1}$, $Q_{0.5}$, $Q_{0.9}$, AQL, RMSE, and MAE are expressed in $\text{€}/\text{MWh}$, and AQCR in %.

Model	$Q_{0.1} \downarrow$	$Q_{0.5} \downarrow$	$Q_{0.9} \downarrow$	AQL \downarrow	AQCR \downarrow	RMSE \downarrow	MAE \downarrow	$R^2 \uparrow$
Naïve ¹	5.68 \pm 0.00	14.30 \pm 0.00	8.31 \pm 0.00	9.43 \pm 0.00	0.00 \pm 0.00	46.90 \pm 0.00	28.60 \pm 0.00	0.16 \pm 0.00
Naïve ²	6.01 \pm 0.00	14.42 \pm 0.00	8.44 \pm 0.00	9.62 \pm 0.00	0.00 \pm 0.00	46.73 \pm 0.00	28.84 \pm 0.00	0.17 \pm 0.00
Naïve ³	6.65 \pm 0.00	14.58 \pm 0.00	8.71 \pm 0.00	9.98 \pm 0.00	0.00 \pm 0.00	46.73 \pm 0.00	29.15 \pm 0.00	0.17 \pm 0.00
GCN	4.81 \pm 0.16	<u>10.76\pm0.16</u>	7.11 \pm 0.33	7.56 \pm 0.15	2.19 \pm 0.76	35.75 \pm 0.60	21.53 \pm 0.33	0.51 \pm 0.02
GAT	5.08 \pm 0.31	<u>11.58\pm0.37</u>	7.90 \pm 0.40	8.18 \pm 0.29	<u>1.41\pm0.47</u>	37.63 \pm 0.62	23.15 \pm 0.75	0.44 \pm 0.01
GraphSAGE	5.20 \pm 0.13	11.27 \pm 0.23	7.39 \pm 0.35	7.95 \pm 0.18	2.79 \pm 0.56	37.09 \pm 0.81	22.53 \pm 0.46	0.47 \pm 0.02
GraphDiffusion	<u>4.80\pm0.20</u>	11.03 \pm 0.21	7.34 \pm 0.33	7.73 \pm 0.18	3.33 \pm 0.70	36.35 \pm 0.80	22.07 \pm 0.42	0.48 \pm 0.02
GraphARMA	4.87 \pm 0.07	11.10 \pm 0.22	<u>7.00\pm0.22</u>	7.66 \pm 0.16	2.05 \pm 0.65	36.15 \pm 0.59	22.21 \pm 0.44	0.49 \pm 0.02
FEDFormer	–	–	–	–	–	44.60 \pm 0.88	27.53 \pm 0.81	0.30 \pm 0.01
PatchTST	–	–	–	–	–	45.32 \pm 1.03	26.21 \pm 0.92	0.29 \pm 0.02
iTransformer	–	–	–	–	–	45.14 \pm 0.96	27.05 \pm 0.64	0.29 \pm 0.02
TimesNet	–	–	–	–	–	44.20 \pm 0.87	26.40 \pm 0.52	0.30 \pm 0.01
TimeXer	–	–	–	–	–	44.57 \pm 0.66	26.52 \pm 0.55	0.30 \pm 0.01
PriceFM	4.80\pm0.06	9.81\pm0.17	5.96\pm0.08	6.89\pm0.12	0.00\pm0.00	32.24\pm0.39	19.68\pm0.31	0.61\pm0.01

346 5.1.2 GRAPH MODELS

347
 348 We compare with multiple GNN variants: (i) **Graph Convolutional Network (GCN)** Kipf (2016),
 349 (ii) **Graph Attention Network (GAT)** Veličković et al. (2017), (iii) **GraphSAGE** Hamilton et al.
 350 (2017), (iv) **GraphDiffusion** Li et al. (2018), and (v) **GraphARMA** Bianchi et al. (2021). The
 351 adjacency matrix of these graph models is explained in Appendix F.

352 From Table 1, we observe that PriceFM outperforms all graph models, confirmed by both the proba-
 353 bilistic and pointwise DM tests, with all p -values < 0.05 and negative DM values. Notably, PriceFM
 354 reduces the AQL by between 8.86% and 15.77% and consistently achieves 0.00% AQCR compared
 355 to graph baselines. A common limitation of these graph baselines is that they lack explicit regular-
 356 ization over noisy regions and rely primarily on data-driven learning to assign spatial importance.
 357 As a result, they require large datasets to generalize. Despite our dataset spanning three years, which
 358 is considered large in the domain, the daily forecasting requirement limits the training set to only
 359 around 700 samples, making it unsuitable for such models.

363 5.1.3 TIME-SERIES FOUNDATION MODELS

364
 365 We include several time-series foundation models: (i) **FEDFormer** Zhou et al. (2022), (ii) **iTrans-**
 366 **former** Liu et al. (2023), (iii) **PatchTST** Nie et al. (2023), (iv) **TimesNet** Wu et al. (2023), and (v)
 367 **TimeXer** Wang et al. (2024), to investigate whether these pure time-series models can capture spa-
 368 tial patterns without prior graph knowledge. As these foundation models do not support graph-based
 369 input, features from all regions are concatenated along the feature dimension.

370 The results in Table 1 show that these time-series foundation models achieve similar RMSE and
 371 MAE but exhibit better explained variance, as indicated by higher R^2 , compared to the naïve base-
 372 lines. Notably, PriceFM outperforms all time-series foundation models, confirmed by the pointwise
 373 DM test, with all p -values < 0.05 and negative DM values. On average, PriceFM improves RMSE,
 374 MAE, and R^2 by 27.98%, 26.38%, and 0.31, respectively. Given the high complexity of these
 375 foundation models, the inclusion of features from noisy regions easily leads to overfitting. This ob-
 376 servation confirms that the pure time-series models struggle to recognize useful spatial patterns. In
 377 contrast, PriceFM incorporates a graph decay mechanism that acts as a spatial regularizer, thereby
 attenuating the influence of noisy regions.

Table 2: Ablation studies of different module choices: temporal configuration (rows 1–3), fusion block (rows 4–6), graph block (rows 7–9), and hierarchical quantile head (rows 10–13). The symbol \dagger marks the method used in PriceFM.

Method	Q _{0.1} ↓	Q _{0.5} ↓	Q _{0.9} ↓	AQL ↓	AQCR ↓	RMSE ↓	MAE ↓	R ² ↑
$L = 24^\dagger$	4.80±0.06	9.81±0.17	5.96±0.08	6.89±0.12	0.00±0.00	32.24±0.39	19.68±0.31	0.61±0.01
$L = 72$	<u>5.09±0.13</u>	<u>10.04±0.20</u>	<u>6.27±0.06</u>	<u>7.14±0.09</u>	<u>0.00±0.00</u>	<u>32.76±0.41</u>	<u>20.09±0.39</u>	<u>0.60±0.01</u>
$L = 168$	5.62±0.30	10.52±0.26	6.65±0.16	7.60±0.21	0.00±0.00	33.82±0.59	21.04±0.53	0.57±0.01
Res. Add [†]	4.80±0.06	9.81±0.17	5.96±0.08	6.89±0.12	0.00±0.00	32.24±0.39	19.68±0.31	0.61±0.01
Concat.	5.03±0.18	10.50±0.21	6.40±0.06	7.31±0.13	0.00±0.00	34.68±0.49	21.01±0.42	0.56±0.01
Cross-Attn	4.92±0.14	9.76±0.10	6.07±0.09	6.92±0.09	0.00±0.00	<u>32.46±0.27</u>	19.51±0.19	0.61±0.01
Decay [†]	4.80±0.06	9.81±0.17	5.96±0.08	6.89±0.12	0.00±0.00	32.24±0.39	19.68±0.31	0.61±0.01
Random	5.32±0.27	<u>10.95±0.13</u>	7.21±0.11	7.83±0.11	0.00±0.00	35.85±0.30	<u>21.89±0.25</u>	<u>0.50±0.02</u>
No Decay	5.23±0.32	11.05±0.22	6.84±0.22	7.71±0.16	0.00±0.00	<u>35.81±0.63</u>	22.11±0.44	0.50±0.02
ABS [†]	4.80±0.06	9.81±0.17	5.96±0.08	6.89±0.12	0.00±0.00	32.24±0.39	19.68±0.31	0.61±0.01
Square	4.86±0.14	9.80±0.16	6.05±0.21	6.90±0.15	0.00±0.00	<u>32.35±0.36</u>	19.59±0.33	0.61±0.01
ReLU	4.76±0.15	9.84±0.07	6.06±0.14	6.89±0.07	0.00±0.00	32.48±0.13	19.68±0.15	0.61±0.00
Standard	4.80±0.14	10.05±0.06	5.94±0.13	6.93±0.04	<u>4.10±1.28</u>	32.76±0.18	20.10±0.13	0.60±0.01

5.2 ABLATION STUDY

5.2.1 SPATIOTEMPORAL CONFIGURATIONS

- **Curvature Parameter:** Spatially, we evaluate $c \in \{-1.0, -0.8, \dots, 0.8, 1.0\}$ in increments of 0.2, ranging from weak decay to strong decay. In total, 2,090 trials are conducted to determine the optimal curvature value for each output region individually.
- **Backward-Looking Window Size:** Temporally, we compare $L \in \{24, 72, 168\}$, corresponding to one day, three days, and one week. For each window size, all other hyperparameters are re-optimized.

Spatially, Figure 4 illustrates the testing loss and the distribution of optimal curvature values across all regions. Most regions confirm spatial interdependencies ($c \neq 1.0$). Temporally, the results in Table 2 indicate that the optimal backward-looking window size is 24, potentially because information from the distant past becomes outdated.

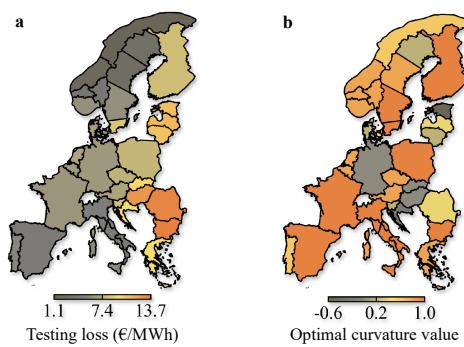


Figure 4: Spatial distribution of testing loss and curvature values. **(a)** Average quantile loss per region on the testing set. Western European regions exhibit lower losses, whereas BG, HU, and RO show particularly high losses (orange areas). **(b)** Optimal curvature value per region. Notably, BG, ES, FR, FI, and partial regions from IT and SE have a curvature value of 1.0, indicating optimal performance by excluding neighboring features.

5.2.2 FUSION BLOCK

- **Concatenation:** We replace Equation 4 by first flattening both $\hat{\mathbf{X}}_{r_{in}}^{\text{price}}$ and $\hat{\mathbf{X}}_{r_{in}}^{\text{exo}}$, and then concatenating them:

$$\mathbf{F}_{r_{in}} = \text{Concat} \left(\text{Flatten} \left(\hat{\mathbf{X}}_{r_{in}}^{\text{price}} \right), \text{Flatten} \left(\hat{\mathbf{X}}_{r_{in}}^{\text{exo}} \right) \right). \quad (17)$$

- **Cross-Attention:** We apply multi-head attention with $\hat{\mathbf{X}}_{r_{in}}^{\text{price}}$ as the query and $\hat{\mathbf{X}}_{r_{in}}^{\text{exo}}$ as both key and value to produce $\hat{\mathbf{X}}_{r_{in}}^{\text{attn}}$. The attended features are then fused back into the price

432 representation using residual addition:
 433

$$434 \quad \mathbf{F}_{r_{in}} = \text{Flatten} \left(\hat{\mathbf{X}}_{r_{in}}^{\text{price}} + \hat{\mathbf{X}}_{r_{in}}^{\text{attn}} \right). \quad (18)$$

435

436 The results in Table 2 show that replacing the residual addition with concatenation leads to 6.10%
 437 higher AQL for probabilistic prediction. Switching to cross-attention yields comparable perfor-
 438 mance to residual addition, while introducing additional model parameters. This suggests that the
 439 residual addition strikes a favorable balance between predictive performance and model simplicity.

440 5.2.3 GRAPH BLOCK
 441

- 442 • **Random Graph Decay Mask:** We replace Equation 8 with a randomly sampled vector,
 443 where each decay weight is drawn independently from a uniform distribution over $[0, 1]$,
 444 thereby removing the spatial graph prior:

$$445 \quad \mathbf{W}_{r_{out}} \sim \mathcal{U}(0, 1)^{|\mathcal{R}| \times 1}. \quad (19)$$

446

- 447 • **No Graph Decay:** We remove the decay mask, which simplifies Equation 9 to a uniform
 448 average over input regions:

$$449 \quad \mathbf{U}_{r_{out}} = \frac{\mathbf{1}^\top \mathbf{S}}{|\mathcal{R}|}, \quad (20)$$

450

451 The results in Table 2 demonstrate that randomizing or removing the graph decay mask, which
 452 discards the prior graph knowledge, leads to a significant drop in all metrics. We also observe that
 453 such results are on par with those of GNN baselines. We emphasize that relying on pure data-driven
 454 learning without an explicit decay mechanism leads to a loss of the key inductive bias, limiting the
 455 model’s performance, especially when the training data is scarce.

456 5.2.4 HIERARCHICAL QUANTILE HEAD
 457

- 458 • **Non-Negative Functions:** We replace the absolute-value function used in Equation 12 and
 459 14 with either a square function or ReLU:

$$461 \quad g(\cdot) = (\cdot)^2, \quad (21)$$

$$462 \quad g(\cdot) = \max(0, \cdot). \quad (22)$$

- 463 • **Standard Multi-Quantile Head:** The Equation 11 and 13 are skipped, and $\mathbf{U}_{r_{out}}$ is passed
 464 directly to three independent dense layers to produce quantile trajectories.

465 The results in Table 2 reveal that replacing the absolute-value function with either a square function
 466 or ReLU does not result in a noticeable change in performance, suggesting that the choice of non-
 467 negative function is flexible. Moreover, while the hierarchical quantile head achieves comparable
 468 loss to the standard multi-quantile head, the latter exhibits a mean AQCR of 4.10%, indicating that
 469 the hierarchical design mitigates quantile crossing without harming performance.

470 6 CONCLUSION
 471

472 In this paper, we introduced and released a dataset, which will benefit both the research community
 473 and the energy industry. We proposed and released PriceFM, a foundation model with a generic
 474 architecture applicable to all European electricity markets without relying on pretraining, similar
 475 to time-series foundation models used in this work. Extensive experiments and ablation studies
 476 demonstrate that PriceFM outperforms competitive baselines and highlight the importance of spatial
 477 context. By enabling more accurate and comprehensive probabilistic electricity price forecasting,
 478 our work has the potential to support better decision-making in energy trading and grid management.

479 Several directions remain for future work. First, as the current graph decay function is empirically
 480 defined, exploring alternative formulations could improve spatial representations. Second, as the
 481 transmission network evolves, model retraining may be required to account for structural changes.
 482 Third, since our dataset is sampled at an hourly resolution, we aim to extend PriceFM to support
 483 quarter-hourly forecasts, in anticipation of more European bidding zones transitioning to 15-minute
 484 markets in the coming years.

486 **Ethics Statement** We adhere to the ICLR Code of Ethics. Our study uses market and energy
 487 data from the European Network of Transmission System Operators for Electricity (ENTSO-E); no
 488 human subjects or personally identifiable information are involved. We release code and documen-
 489 tation for research purposes. We have no known conflicts of interest related to the data providers or
 490 outcomes reported.

491
 492 **Reproducibility Statement** To support reproducibility, we release well-documented code with an
 493 easy-to-use three-step pipeline, along with the code structure and usage guidelines in Appendix B.
 494 We report hardware and runtime details in Appendix C to facilitate realistic deployment of our pro-
 495 posed model. As the release and cleaning of the dataset are part of our contributions, the details are
 496 described in Section *Data* and Appendix D. Additional reproducibility details are also provided, in-
 497 cluding data scaling (Appendix G), evaluation metrics (Appendix H), hyperparameters and training
 498 procedures (Appendix E).

499
 500 **REFERENCES**

501 Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
 502 with convolutional arma filters. *IEEE transactions on pattern analysis and machine intelligence*,
 503 44(7):3496–3507, 2021.

504
 505 Victor Chernozhukov, Iván Fernández-Val, and Alfred Galichon. Quantile and probability
 506 curves without crossing. *Econometrica*, 78(3):1093–1125, 2010. doi: <https://doi.org/10.3982/ECTA7880>.

507
 508 Francis X Diebold and Robert S Mariano. Comparing predictive accuracy. *Journal of Business &*
 509 *economic statistics*, 20(1):134–144, 2002.

510
 511 Hung Xuan Do, Rabindra Nepal, Son Duy Pham, and Tooraj Jamasb. Electricity market crisis in eu-
 512 rope and cross border price effects: A quantile return connectedness analysis. *Energy Economics*,
 513 135:107633, 2024.

514
 515 Rafael Finck. Impact of flow based market coupling on the european electricity markets. In *Sus-
 516 tainability Management Forum—NachhaltigkeitsManagementForum*, volume 29, pp. 173–186.
 517 Springer, 2021.

518
 519 Angelica Gianfreda, Francesco Ravazzolo, and Luca Rossini. Comparing the forecasting perfor-
 520 mances of linear models for electricity prices with high RES penetration. *International Journal of
 521 Forecasting*, 36(3):974–986, July 2020. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2019.11.002.

522
 523 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
 524 graphs. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
 525 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Cur-
 526 ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

527
 528 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint
 529 arXiv:1609.02907*, 2016.

530
 531 Alkiviadis Kitsatoglou, Giannis Georgopoulos, Panagiotis Papadopoulos, and Herodotus
 532 Antonopoulos. An ensemble approach for enhanced Day-Ahead price forecasting in electric-
 533 ity markets. *Expert Systems with Applications*, 256:124971, December 2024. ISSN 0957-4174.
 534 doi: 10.1016/j.eswa.2024.124971.

535
 536 Jesus Lago, Fjo De Ridder, Peter Vranckx, and Bart De Schutter. Forecasting day-ahead electricity
 537 prices in europe: The importance of considering market integration. *Applied energy*, 211:890–
 538 903, 2018.

539
 540 Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, and Rafał Weron. Forecasting day-ahead electric-
 541 ity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark.
 542 *Applied Energy*, 293:116983, 2021.

540 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
 541 work: Data-driven traffic forecasting. In *International Conference on Learning Representations*,
 542 2018. URL <https://openreview.net/forum?id=SJiHXGWAZ>.

543

544 Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
 545 Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *Proceedings*
 546 *of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 6555–6565,
 547 2024.

548 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 549 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint*
 550 *arXiv:2310.06625*, 2023.

551

552 Stylianos Loizidis, Andreas Kyprianou, and George E. Georghiou. Electricity market price fore-
 553 casting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead
 554 markets. *Applied Energy*, 363:123058, June 2024. ISSN 0306-2619. doi: 10.1016/j.apenergy.
 555 2024.123058.

556 Katarzyna Maciejowska. Assessing the impact of renewable energy sources on the electricity
 557 price level and variability – a quantile regression approach. *Energy Economics*, 85:104532,
 558 2020. ISSN 0140-9883. doi: <https://doi.org/10.1016/j.eneco.2019.104532>. URL <https://www.sciencedirect.com/science/article/pii/S0140988319303275>.

559

560 Katarzyna Maciejowska, Weronika Nitka, and Tomasz Weron. Enhancing load, wind and solar
 561 generation for day-ahead forecasting of electricity prices. *Energy Economics*, 99:105273, July
 562 2021. ISSN 0140-9883. doi: 10.1016/j.eneco.2021.105273.

563

564 Anbo Meng, Jianbin Zhu, Baiping Yan, and Hao Yin. Day-ahead electricity price prediction in
 565 multi-price zones based on multi-view fusion spatio-temporal graph neural network. *Applied*
 566 *Energy*, 369:123553, 2024.

567

568 Peru Muniain and Florian Ziel. Probabilistic forecasting in day-ahead electricity markets: Simu-
 569 lating peak and off-peak prices. *International Journal of Forecasting*, 36(4):1193–1210, 2020.
 570 ISSN 0169-2070. doi: <https://doi.org/10.1016/j.ijforecast.2019.11.006>. URL <https://www.sciencedirect.com/science/article/pii/S0169207019302675>.

571

572 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 573 64 words: Long-term forecasting with transformers. In *International Conference on Learning*
 574 *Representations*, 2023.

575

576 Bartosz Uniejewski and Rafał Weron. Regularized quantile regression averaging for probabilistic
 577 electricity price forecasting. *Energy Economics*, 95:105121, March 2021. ISSN 0140-9883. doi:
 578 10.1016/j.eneco.2021.105121.

579

580 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 581 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

582

583 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yun-
 584 zhong Qiu, Jianmin Wang, and Mingsheng Long. Timexer: Empowering transform-
 585 ers for time series forecasting with exogenous variables. In A. Globerson, L. Mackey,
 586 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-
 587 ral Information Processing Systems*, volume 37, pp. 469–498. Curran Associates, Inc.,
 588 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/0113ef4642264adc2e6924a3cbbdf532-Paper-Conference.pdf.

589

590 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 591 Temporal 2d-variation modeling for general time series analysis. In *The Eleventh International*
 592 *Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=ju_Uqw3840q.

593

594 Yifan Yang, Ju'e Guo, Yi Li, and Jiandong Zhou. Forecasting day-ahead electricity prices with
 595 spatial dependence. *International Journal of Forecasting*, 40(3):1255–1270, 2024.

594 Runyao Yu, Yuchen Tao, Fabian Leimgruber, Tara Esterl, and Jochen L Cremer. Orderfusion: En-
 595 coding orderbook for end-to-end probabilistic intraday electricity price prediction. *arXiv preprint*
 596 *arXiv:2502.06830*, 2025.

597

598 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer:
 599 Frequency enhanced decomposed transformer for long-term series forecasting. In Kamalika
 600 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
 601 *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Pro-
 602 ceedings of Machine Learning Research*, pp. 27268–27286. PMLR, 17–23 Jul 2022. URL
 603 <https://proceedings.mlr.press/v162/zhou22g.html>.

604

605 Florian Ziel and Rick Steinert. Probabilistic mid- and long-term electricity price forecasting. *Re-
 606 newable and Sustainable Energy Reviews*, 94:251–266, 2018. ISSN 1364-0321. doi: <https://doi.org/10.1016/j.rser.2018.05.038>. URL <https://www.sciencedirect.com/science/article/pii/S1364032118303885>.

607

608 Florian Ziel and Rafał Weron. Day-ahead electricity price forecasting with high-dimensional
 609 structures: Univariate vs. multivariate modeling frameworks. *Energy Economics*, 70:396–420,
 610 2018. ISSN 0140-9883. doi: <https://doi.org/10.1016/j.eneco.2017.12.016>. URL <https://www.sciencedirect.com/science/article/pii/S014098831730436X>.

611

612

613

614

615 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

616

617 We employed GPT-4o to assist with grammar correction during the writing process. All LLM-
 618 generated suggestions were reviewed and edited to ensure they accurately reflect the authors' origi-
 619 nal intent. No content related to the methodology, analysis, or reference was generated by the LLM.

620

621 B CODE GUIDELINE

622

623 We open-source all code for preprocessing, modeling, and analysis. The project directory is struc-
 624 tured as follows:

625

```
626 | - PriceFM/
627 |   | - Data/
628 |   | - Figure/
629 |   | - Model/
630 |   | - Result/
631 |   | - PriceFM.py
632 |   | - Main.py
633 |   | - Tutorial.ipynb
634 |   | - README.md
```

635 where the README.md specifies the required package version. To facilitate reproducibility and
 636 accessibility, we have streamlined the entire pipeline through extensive engineering efforts into just
 637 three simple steps:

638

639 **Step 1:** Create a folder named PriceFM, along with subfolders Data, Figure, Model, and
 640 Result. Place the energy data EU_Spatiotemporal_Energy_Data.csv into Data, and
 641 place PriceFM.py inside the PriceFM folder.

642 **Step 2:** Run Main.py to process the energy data, and to train, validate, and test the PriceFM. The
 643 script PriceFM.py contains all necessary functions and classes.

644 **Step 3:** After execution, you can inspect: Figure/ for visualizations of forecasts versus true
 645 prices; Model/ for saved model weights; Result/ for evaluation metrics.

646 **Optional:** To better understand the code structure and functionality, run Tutorial.ipynb block
 647 by block.

648

C HARDWARE AND COMPUTATION

649
 650 The PriceFM is evaluated on both an NVIDIA A100 GPU and an Intel Core i7-1265U CPU, respec-
 651 tively. The NVIDIA A100 is designed for high-performance computing and deep learning work-
 652 loads, offering 80 GB of high-bandwidth memory and up to 6,912 CUDA cores. In contrast, the
 653 Intel i7-1265U is a power-efficient CPU commonly found in standard laptops. Under the training
 654 setup described in Section *Model*, the training time is approximately 4–5 minutes on the A100 GPU
 655 and 12–13 minutes on the i7 CPU. Inference time for both setups is under 10 seconds. We note that
 656 neither training nor inference time is critical for our application, as bid submissions can occur at any
 657 point before the market gate closure on a daily basis.

658

D LOOKUP TABLE AND FEATURE AVAILABILITY

659 The country-region code lookup table and the feature availability are listed in Table 1.
 660

663

E BASELINES AND HYPERPARAMETERS

664
 665 We compare the PriceFM with several spatial and temporal models. The PriceFM is optimized based
 666 on validation loss, and the hyperparameter search space is summarized in Table 2. The number of
 667 parameters of PriceFM is only 3.38M. We use the Adam optimizer with an initial learning rate of
 668 4×10^{-3} , which decays exponentially by a factor of 0.95 every 10 epochs. The batch size is 8, which
 669 introduces a slight regularization effect. The model is trained for 50 epochs, and the checkpoint with
 670 the lowest validation loss is saved.

671 The graph models, such as GCN, GAT, GraphDiff, GraphSAGE, and GraphARMA, lack an ex-
 672 plicit spatial decay mechanism guided by graph distance. GraphConv assigns uniform weights
 673 to all neighbors, ignoring spatial relevance; GraphAttn learns attention weights entirely from data
 674 without structural priors; GraphDiff uses diffusion kernels that spread information globally, but the
 675 importance of nodes is still determined through learned weights, without decay constraints; Graph-
 676 SAGE aggregates features from sampled neighbors but lacks a notion of spatial proximity; and
 677 GraphARMA applies recursive smoothing, which can propagate noise from irrelevant neighbors.
 678 As a result, these models require large datasets to recognize spatial patterns and may struggle to
 679 suppress the influence of noisy regions. The hyperparameters are optimized based on validation
 680 loss, and the search space is summarized in Table 3. All spatial models require an adjacency matrix
 681 as input, detailed in Appendix F. Notably, these optimized spatial models contain more than 10M
 682 parameters.

683 FEDFormer, iTransformer, PatchTST, TimesNet, and TimeXer have demonstrated strong perfor-
 684 mance in general time-series forecasting tasks. FEDFormer, iTransformer, PatchTST, and TimeXer
 685 are Transformer-based architectures, while TimesNet is CNN-based. However, these models are
 686 not designed for graph forecasting tasks and may require large-scale data to implicitly learn spatial
 687 dependencies. The hyperparameters are optimized based on validation loss, and the search space
 688 is summarized in Table 4. Notably, the number of parameters of these optimized temporal mod-
 689 els ranges from 4.96M to 10.31M, and they are limited to single-region prediction. As a result,
 690 38 separate models must be trained for each output region, since they are not designed to support
 691 multi-region forecasting.

692

F ADJACENCY MATRIX

693
 694 We model the European market as a graph $G = (\mathcal{R}, \mathcal{E})$, where each node $r \in \mathcal{R}$ is a bidding zone
 695 and edges indicate direct power flow via cross-border interconnections. This spatial topology is
 696 detailed in Table 6. Let $\mathcal{N}(r)$ denote the set of directly connected neighbors of r , excluding r itself.
 697 The binary adjacency matrix $A \in \{0, 1\}^{|\mathcal{R}| \times |\mathcal{R}|}$ is defined by

$$698 \quad A_{r,s} = \begin{cases} 1, & \text{if } s \in \mathcal{N}(r), \\ 0, & \text{otherwise,} \end{cases} \quad r, s \in \mathcal{R}. \quad (23)$$

700 For GNN layers, self-loops can be added via $\tilde{A} = A + I$.
 701

Table 1: Lookup table and feature availability across European regions. ✓ indicates that the feature is available. (✓) denotes partial availability, and the feature is excluded from this study due to the high rate of missing values.

Country	Region Code	Price	Load	Solar	Wind (Onshore)	Wind (Offshore)
Austria	AT	✓	✓	✓	✓	
Belgium	BE	✓	✓	✓	✓	
Bulgaria	BG	✓	✓	✓	✓	
Czech Republic	CZ	✓	✓	✓		
Germany, Luxembourg	DE-LU	✓	✓	✓	✓	✓
Denmark	DK1	✓	✓	✓	✓	✓
Denmark	DK2	✓	✓	✓	✓	✓
Estonia	EE	✓	✓	✓	✓	
Spain	ES	✓	✓	✓	✓	
Finland	FI	✓	✓	✓	✓	
France	FR	✓	✓	✓	✓	(✓)
Greece	GR	✓	✓	✓	✓	
Croatia	HR	✓	✓	✓	✓	
Hungary	HU	✓	✓	✓	✓	
Italy	IT-CALA	✓	✓	✓	✓	
Italy	IT-CNOR	✓	✓	✓	✓	
Italy	IT-CSUD	✓	✓	✓	✓	
Italy	IT-NORD	✓	✓	✓	✓	
Italy	IT-SARD	✓	✓	✓	✓	
Italy	IT-SICI	✓	✓	✓	✓	
Italy	IT-SUD	✓	✓	✓	✓	
Lithuania	LT	✓	✓	✓	✓	
Latvia	LV	✓	✓	(✓)	✓	
Netherlands	NL	✓	✓	✓	✓	
Norway	NO1	✓	✓		✓	
Norway	NO2	✓	✓		✓	
Norway	NO3	✓	✓		✓	
Norway	NO4	✓	✓		✓	
Norway	NO5	✓	✓		✓	
Poland	PL	✓	✓	✓	✓	
Portugal	PT	✓	✓	✓	✓	
Romania	RO	✓	✓	✓	✓	
Sweden	SE1	✓	✓	✓	✓	
Sweden	SE2	✓	✓	✓	✓	
Sweden	SE3	✓	✓	✓	✓	
Sweden	SE4	✓	✓	✓	✓	
Slovenia	SI	✓	✓	✓		
Slovakia	SK	✓	(✓)	✓	✓	

G DATA SCALING

To normalize the data while being robust to extreme values, we employ a `RobustScaler` fitted on the training data, using the `Scikit-Learn` implementation. The fitted scaler is then used to transform validation and testing data.

Table 2: Hyperparameter search space for PriceFM.

Model	Search Space
PriceFM	hidden_size: {12, 24, 48} layers: {2, 3, 4} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50

Table 3: Hyperparameter search space for spatial models.

Model	Search Space
GCN	hidden_size: {32, 128, 512} layers: {2, 3, 4} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50
GAT	hidden_size: {32, 128, 512} layers: {2, 3, 4} n_heads: {2, 4, 8} batch_size: {8, 32, 128} dropout: {0.1, 0.3, 0.5} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50
GraphSAGE	hidden_size: {32, 128, 512} layers: {2, 3, 4} aggregate: {mean, max, sum} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50
GraphDiff	diff_steps: {2, 4, 6} hidden_size: {32, 128, 512} layers: {2, 3, 4} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50
GraphARMA	hidden_size: {32, 128, 512} layers: {2, 3, 4} order: {1, 2, 4} iteration: {1, 2, 4} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50

H METRICS

H.1 QUANTILE LOSS AT INDIVIDUAL LEVELS

We compute quantile loss separately for each target quantile:

$$Q_\tau = \frac{1}{N|\mathcal{R}|\mathcal{T}} \sum_{i=1}^N \sum_{r_{\text{out}} \in \mathcal{R}} \sum_{t=1}^{\mathcal{T}} L_\tau(y_{i,r_{\text{out}},t}, \hat{y}_{i,r_{\text{out}},t,\tau}), \quad (24)$$

810

811

Table 4: Hyperparameter search space for time-series foundation models.

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

854 where $\tau \in \{0.1, 0.5, 0.9\}$.

855

856

857 H.2 AVERAGE QUANTILE LOSS (AQL)

858

859

AQL represents the average quantile loss across all quantiles, as described in Section *Model*.

860

861

H.3 AVERAGE QUANTILE CROSSING RATE (AQCR)

862

863

AQCR captures the proportion of forecasted distributions that violate quantile monotonicity, i.e., when a lower quantile is predicted to be greater than a higher one. For each sample, the quantile

Model	Search Space
FEDFormer	hidden_size: {32, 128, 512} conv_hidden_size: {32, 128, 512} e_layers: {2, 3, 4} n_heads: {2, 4, 8} dropout: {0.1, 0.3, 0.5} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50
iTransformer	hidden_size: {32, 128, 512} e_layers: {2, 3, 4} d_ff: {512, 1024, 2048} n_heads: {2, 4, 8} dropout: {0.1, 0.3, 0.5} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50
PatchTST	hidden_size: {32, 128, 512} e_layers: {2, 3, 4} n_heads: {2, 4, 8} dropout: {0.1, 0.3, 0.5} patch_len: {4, 6, 12} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50
TimesNet	hidden_size: {32, 128, 512} conv_hidden_size: {32, 128, 512} e_layers: {2, 3, 4} dropout: {0.1, 0.3, 0.5} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} Epochs: 50
TimeXer	hidden_size: {32, 128, 512} e_layers: {2, 3, 4} n_heads: {2, 4, 8} d_ff: {512, 1024, 2048} dropout: {0.1, 0.3, 0.5} batch_size: {8, 32, 128} learning_rate: {4e-4, 1e-3, 4e-3} epochs: 50

864 crossing indicator is defined as:
 865

$$866 \quad 867 \quad C_{i,r,t} = \mathbb{I} \left(\max_{\tau_l < \tau_u} (\hat{y}_{i,r,t,\tau_l} - \hat{y}_{i,r,t,\tau_u}) > 0 \right) \quad (25)$$

868 where $\mathbb{I}(\cdot)$ is an indicator function that returns 1 if any quantile pair fulfills the condition inside and
 869 0 otherwise.
 870

871 We compute the AQCR as:

$$872 \quad 873 \quad \text{AQCR} = \frac{1}{N |\mathcal{R}| \mathcal{T}} \sum_{i=1}^N \sum_{r \in \mathcal{R}} \sum_{t=1}^{\mathcal{T}} C_{i,r,t}. \quad (26)$$

875 A lower AQCR indicates fewer quantile crossing violations and thus reflects more reliable proba-
 876 bilistic forecasts.
 877

878 H.4 ROOT MEAN SQUARED ERROR (RMSE)

880 We compute RMSE within each region, then average over all regions:

$$882 \quad 883 \quad \text{RMSE}_r = \sqrt{\frac{1}{N \mathcal{T}} \sum_{i=1}^N \sum_{t=1}^{\mathcal{T}} (y_{i,r,t} - \hat{y}_{i,r,t,0.5})^2}, \quad (27)$$

$$885 \quad 886 \quad \text{RMSE} = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \text{RMSE}_r. \quad (28)$$

888 H.5 MEAN ABSOLUTE ERROR (MAE)

889 Same procedure as RMSE, but using absolute error:

$$892 \quad 893 \quad \text{MAE}_r = \frac{1}{N \mathcal{T}} \sum_{i=1}^N \sum_{t=1}^{\mathcal{T}} |y_{i,r,t} - \hat{y}_{i,r,t,0.5}|, \quad (29)$$

$$895 \quad 896 \quad \text{MAE} = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \text{MAE}_r. \quad (30)$$

898 H.6 COEFFICIENT OF DETERMINATION

900 We compute the Coefficient of Determination (R^2) for each region and average across all regions:

$$902 \quad 903 \quad R^2_r = 1 - \frac{\sum_{i=1}^N \sum_{t=1}^{\mathcal{T}} (y_{i,r,t} - \hat{y}_{i,r,t,0.5})^2}{\sum_{i=1}^N \sum_{t=1}^{\mathcal{T}} (y_{i,r,t} - \bar{y}_r)^2}, \quad (31)$$

$$905 \quad 906 \quad \bar{y}_r = \frac{1}{N \mathcal{T}} \sum_{i=1}^N \sum_{t=1}^{\mathcal{T}} y_{i,r,t}, \quad (32)$$

$$908 \quad 909 \quad R^2 = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} R^2_r. \quad (33)$$

911 H.7 DIEBOLD & MARIANO (DM) TEST

913 To assess whether differences in forecasting performance are statistically significant, we apply the
 914 DM test. We compute the loss differential at each prediction instance.

915 For probabilistic forecasts, we compute the loss differential at each quantile $\tau \in \mathcal{Q}$ between two
 916 models $l \in \{1, 2\}$:

$$917 \quad d_{i,r,t,\tau} = L_{\tau} \left(y_{i,r,t}, \hat{y}_{i,r,t,\tau}^{(1)} \right) - L_{\tau} \left(y_{i,r,t}, \hat{y}_{i,r,t,\tau}^{(2)} \right). \quad (34)$$

918 For point forecasts, the loss differential between two models is computed for each sample, region,
 919 and timestep as:

$$920 \quad 921 \quad 922 \quad d_{i,r,t} = \left| y_{i,r,t} - \hat{y}_{i,r,t}^{(1)} \right| - \left| y_{i,r,t} - \hat{y}_{i,r,t}^{(2)} \right|. \quad (35)$$

923 The DM test statistic is then calculated as:

$$924 \quad 925 \quad \text{DM} = \frac{\bar{d}}{\hat{\sigma}_d / \sqrt{M}}, \quad (36)$$

$$926 \quad 927 \quad \bar{d} = \frac{1}{M} \sum_{j=1}^M d_j, \quad (37)$$

929 where $M = N \cdot |\mathcal{R}| \cdot |\mathcal{T}| \cdot |\mathcal{Q}|$ for probabilistic forecasts, and $M = N \cdot |\mathcal{R}| \cdot |\mathcal{T}|$ for point forecasts.
 930 The index j enumerates all prediction instances across dimensions, and $\hat{\sigma}_d$ is the sample standard
 931 deviation of $\{d_j\}_{j=1}^M$. We compute a p -value; if $p < 0.05$ and the DM value is positive (negative),
 932 then we report that model 2 (model 1) significantly outperforms the other in Section *Experiment*.
 933 The rules are summarized in Table 5.

934
 935 Table 5: Interpretation of DM test outcomes.
 936

937 Condition	938 Interpretation	939 Conclusion
$938 \quad p < 0.05, \text{DM} > 0$	Statistically significant	Model 2 is better
$939 \quad p < 0.05, \text{DM} < 0$	Statistically significant	Model 1 is better
$940 \quad p \geq 0.05$	Not statistically significant	–

972
973
974
975
976
977
978
979
980
981

Table 6: Direct neighbors by region and neighbor count.

Region Code	Direct Neighbors	Count
AT	CZ, DE-LU, HU, IT-NORD, SI	5
BE	DE-LU, FR, NL	3
BG	GR, RO	2
CZ	AT, DE-LU, PL, SK	4
DE-LU	AT, BE, CZ, DK1, DK2, FR, NL, NO2, PL, SE4	10
DK1	DE-LU, DK2, NL, NO2, SE3	5
DK2	DE-LU, DK1, SE4	3
EE	FI, LV	2
ES	FR, PT	2
FI	EE, NO4, SE1, SE3	4
FR	BE, DE-LU, ES, IT-NORD	4
GR	BG, IT-SUD	2
HR	HU, SI	2
HU	AT, HR, RO, SI, SK	5
IT-CALA	IT-SICI, IT-SUD	2
IT-CNOR	IT-CSUD, IT-NORD	2
IT-CSUD	IT-CNOR, IT-SARD, IT-SUD	3
IT-NORD	AT, FR, IT-CNOR, SI	4
IT-SARD	IT-CSUD	1
IT-SICI	IT-CALA	1
IT-SUD	GR, IT-CALA, IT-CSUD	3
LT	LV, PL, SE4	3
LV	EE, LT	2
NL	BE, DK1, DE-LU, NO2	4
NO1	NO2, NO3, NO5, SE3	4
NO2	DE-LU, DK1, NL, NO1, NO5	5
NO3	NO1, NO4, NO5, SE2	4
NO4	FI, NO3, SE1, SE2	4
NO5	NO1, NO2, NO3	3
PL	CZ, DE-LU, LT, SE4, SK	5
PT	ES	1
RO	BG, HU	2
SE1	FI, NO4, SE2	3
SE2	NO3, NO4, SE1, SE3	4
SE3	DK1, FI, NO1, SE2, SE4	5
SE4	DE-LU, DK2, LT, PL, SE3	5
SI	AT, HR, HU, IT-NORD	4
SK	CZ, HU, PL	3

1019
1020
1021
1022
1023
1024
1025