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ABSTRACT

Electricity price forecasting in Europe presents unique challenges due to the conti-
nent’s increasingly integrated and physically interconnected power market. While
recent advances in deep learning and foundation models have led to substantial
improvements in general time series forecasting, most existing approaches fail to
capture the complex spatial interdependencies and uncertainty inherent in electric-
ity markets. In this paper, we address these limitations by introducing a compre-
hensive and up-to-date dataset across 24 European countries (38 regions), span-
ning from 2022-01-01 to 2025-01-01. Building on this groundwork, we propose
PriceFM, a spatiotemporal foundation model that integrates graph-based inductive
biases to capture spatial interdependencies across interconnected electricity mar-
kets. The model is designed for multi-region, multi-timestep, and multi-quantile
probabilistic electricity price forecasting. Extensive experiments and ablation
studies confirm the model’s effectiveness, consistently outperforming competitive
baselines and highlighting the importance of spatial context in electricity markets.

1 INTRODUCTION

The European electricity market is physically interconnected through a network of cross-border
transmission lines, enabling the exchange of electricity between regions and optimizing the social
welfare at the European level Lago et al. (2018). However, physical constraints, such as limited
transmission capacity, can restrict electricity flow between regions and lead to zonal price differences
Finck (2021), illustrated in Figure 1. These price disparities highlight the spatial nature of electricity
price formation. Recent studies show that electricity price dynamics are strongly influenced by
spatial interdependencies and cannot be accurately captured using region-specific models Do et al.
(2024). Therefore, explicitly modeling the spatial structure of the European electricity market is
essential for producing accurate price forecasts.

Electricity price (€/MWh) Number of neighboring regions

Figure 1: Spatial distribution of electricity price
and number of neighboring regions. (a) Elec-
tricity prices for 38 European regions averaged
from 2022-01-01 to 2025-01-01. A significant
zonal price difference is observed between north
and south regions. (b) Number of neighboring re-
gions that are directly connected to certain region
via transmission lines. For example, France (FR)
and Portugal (PT) are directly connected to Spain
(ES), thus the number of neighboring regions for
ES is 2. The mean value across all regions is 3.4.

Most existing studies on electricity price forecasting do not explicitly model the spatial structure and
focus on a single-region market, particularly Germany Muniain & Ziel (2020); Maciejowska et al.
(2021); Kitsatoglou et al. (2024), as the German market is one of the largest markets in Europe.
Other studies explore forecasting methods for markets such as Denmark, Finland, and Spain, also
using region-specific models Ziel & Weron (2018); Gianfreda et al. (2020); Loizidis et al. (2024).
More recent works explicitly model the spatial nature of the electricity price. For instance, a Graph
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Convolutional Network (GCN) is applied to capture spatial interdependencies in the Nordic markets,
such as Norway, Sweden, and Finland Yang et al. (2024). Moreover, an attention-based variant is
developed to predict prices in certain European markets such as Austria, Germany, and Hungary
Meng et al. (2024). However, these models cover only subsets of Europe and primarily produce
point forecasts, failing to capture the uncertainty inherent in electricity prices.

Uncertainty modeling in electricity markets is critical, as the electricity price is strongly influenced
by intermittent renewable generation and fluctuating demand Lago et al. (2021). Consequently, price
forecasting should extend beyond traditional pointwise forecasting to explicitly quantify uncertain-
ties, especially for applications involving risk-sensitive applications such as energy trading and oper-
ational planning Ziel & Steinert (2018). A comprehensive survey summarizes various probabilistic
forecasting approaches based on quantile regression methods Lago et al. (2021). However, these ex-
isting methods often focus on single-region markets, thereby neglecting the rich spatial information.

In recent years, foundation models for time series forecasting have achieved remarkable success
across diverse domains, demonstrating strong generalization capabilities by capturing complex data
patterns Zhou et al. (2022); Liu et al. (2023); Nie et al. (2023); Wu et al. (2023); Wang et al. (2024),
which makes them attractive candidates for electricity price forecasting. In contrast to the con-
ventional notion of foundation models based on pretraining, these models derive their foundation
from a generic architecture applicable across domains, and are trained from scratch on the target
data Liang et al. (2024). However, existing models are primarily designed for general univariate or
multivariate time series tasks and are not explicitly tailored to electricity markets. Moreover, some
foundation models only provide pointwise forecasts and thus fail to capture the uncertainty essential
for risk-aware trading decisions. Therefore, addressing the spatial interdependencies and uncertainty
in electricity price forecasting necessitates a tailored foundation model.

To support the development of foundation models for electricity price forecasting, there is a pressing
need for high-quality, large-scale, and up-to-date datasets that reflect the spatiotemporal complexity
of integrated European markets. However, existing datasets are often fragmented in structure, cover
only short time periods, are outdated, or focus on individual regions Lago et al. (2021). This lack of
standardized data poses a significant barrier to training and evaluating foundation models.

In this paper, we introduce a comprehensive and up-to-date dataset and propose PriceFM, a founda-
tion model that incorporates graph-based inductive biases to generate probabilistic forecasts. Similar
to other time-series foundation models, PriceFM adopts a generic architecture that can be trained
from scratch and applied across various markets. Our contributions are as follows:

Contribution

• We introduce and release a comprehensive, up-to-date dataset. To the best of our knowl-
edge, this is the largest and most diverse open dataset for European electricity markets,
comprising day-ahead electricity prices, day-ahead forecasts of load, solar, and wind power
generation (onshore and offshore), covering 24 European countries (38 regions), spanning
from 2022-01-01 to 2025-01-01.

• We propose and release the PriceFM, a novel forecasting framework that integrates prior
graph knowledge derived from the spatial topology of the European electricity market.
PriceFM supports joint multi-region, multi-timestep, and multi-quantile forecasting.

• We conduct experiments to evaluate the model’s performance against multiple baselines,
and assess the impact of design choices through ablation studies, thereby providing both
quantitative evidence of overall performance and insights into optimal configurations.

2 PRELIMINARY

The forecasting target is T = 24 hourly prices for the delivery day D + 1, using data available
before gate closure, typically around midday on day D. After midday on D, the electricity prices
for D+1 are published and known. We employ a backward-looking window of size L (e.g. L = 24
corresponds to 24 hours from D), for known electricity prices, denoted as Xprice

rin . We also include
forward-looking exogenous features, such as day-ahead forecasts of load, solar, and wind (onshore
and offshore) power generation for D+1, denoted as Xexo

rin , made on D before gate closure, as well as
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Figure 2: European-level energy data in 2024, averaged across regions. (a) Electricity price. Price
spikes sharply during the morning and evening peak, dip around midday, and shows higher volatil-
ity in the second half of 2024. (b) Forecasted load. Load exhibits a double-peak each day with
winter peaks substantially larger than summer. (c) Forecasted solar power generation. Solar is zero
overnight, rises in a smooth bell curve to a strong midday maximum, then falls back to zero by dusk,
and is much higher in summer. (d) Forecasted wind power generation (onshore and offshore). Wind
lacks a daily pattern, fluctuates with high-frequency spikes, and is much higher in winter.

their historical values over L. The forecasting setup and the choice of feature set are widely used in
prior works Maciejowska (2020); Uniejewski & Weron (2021); Meng et al. (2024). Importantly, this
work aims to utilize multi-region inputs to produce multi-region, multi-timestep, and multi-quantile
forecasts. Therefore, the input and output are defined as:

• Input: Xprice
rin ∈ RL×f1 and Xexo

rin ∈ R(L+T )×f2 .

• Output: ŷrout,τ ∈ RT

where rin, rout ∈ R = {AT, . . . ,SK} (region codes, detailed in Appendix, Table 1.), τ ∈ Q =
{0.1, 0.5, 0.9} (quantile levels), f1 = 1, and f2 varies by region.

3 DATA

3.1 SPATIOTEMPORAL COVERAGE

Spatially, the dataset covers 24 European countries (38 regions). These regions reflect transmis-
sion zones rather than administrative boundaries. For example, DK is split into two regions: DK1
and DK2. Each is connected to different regions, resulting in distinct cross-border power flows.
Temporally, the dataset spans from 2022-01-01 to 2025-01-01, providing wide temporal coverage.

3.2 FEATURE SET

The feature set includes day-ahead electricity prices, load forecasts, and solar and wind power gen-
eration forecasts (onshore and offshore). For simplicity, we refer to these features as price, load,
solar, and wind (onshore and offshore), respectively. The availability of features across regions is
detailed in Appendix, Table 1. A European-level visualization of these features is shown in Figure 2.

3.3 RESOLUTION

We resample all features in an hourly resolution, as the raw data exhibit a heterogeneous temporal
structure. For example, load from ES is provided at an hourly resolution before 2022-05-23 and
then switches to a quarter-hourly resolution afterward; the price from AT is reported hourly, while
the load is reported quarter-hourly.

3.4 MISSING VALUE

Partial features are excluded due to the high rate (above 15%) of missing values, summarized in
Appendix, Table 1. For example, wind offshore from FR has a missing rate of 53.2% and is only
available after 2023-08-07; load from SK has a missing rate of 16.8% and is no longer available after
2024-07-01. The features with low missing rates (below 1%) are filled using linear interpolation.
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Figure 3: Structure of PriceFM. The input features Xprice
rin and Xexo

rin are passed into a fusion block
to learn regional representation Frin . These regional representations are then stacked to form the
spatial representation S. Next, S is passed to the graph block to produce the spatial representation
Urout

. Finally, Urout
is fed into hierarchical quantile heads to produce joint forecasts.

4 MODEL

PriceFM, illustrated in Figure 3, aims to produce multi-region, multi-timestep, and multi-quantile
forecasts. The inputs Xprice

rin ∈ RL×f1 and Xexo
rin ∈ R(L+T )×f2 are described in Section Preliminary,

introducing heterogeneity along the temporal and feature dimensions.

4.1 FUSION BLOCK

We first project the temporal dimensions by transposing and projecting Xprice
rin to length L+ T via a

dense layer with linear activation, and then transpose back and project the feature dimension of both
price and exogenous features into a hidden space of dimension h via k dense layers:

Xprice
rin

Project−−−−→ X̃price
rin ∈ R(L+T )×f1 , (1)

X̃price
rin

Project−−−−→ X̂price
rin ∈ R(L+T )×h, (2)

Xexo
rin

Project−−−−→ X̂exo
rin ∈ R(L+T )×h. (3)

Next, we perform feature fusion through residual addition and flatten the fused representation to
produce the regional representation Frin , which encodes the backward-looking price feature and
forward-looking contextual information:

Frin = Flatten
(
X̂price

rin + X̂exo
rin

)
∈ R(L+T )·h. (4)

Next, the fused vectors Frin for all regions rin ∈ R are stacked to form a spatial representation:

S = Stack ({Frin}rin∈R) ∈ R|R|×(L+T )·h. (5)
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4.2 GRAPH BLOCK

We first construct graph distance by performing a breadth-first search (BFS) traversal on the cross-
border grid topology, detailed in Appendix, Table 6. For a given output region rout ∈ R, we define
the graph distance d(rin, rout) as the minimal number of transmission hops from each input region
rin to the output region rout, based on direct or indirect physical connectivity:

d(rin, rout) =


0 if rin = rout,

1 if rin ∼ rout,

1 + min
r′∼rin

d(r′, rout) otherwise,
(6)

where rin ∼ rout denotes that two regions are directly connected by a transmission line. For ex-
ample, let rout = AT. Then d(AT,AT) = 0. The region HU is directly connected to AT, thus
d(HU,AT) = 1. SK is indirectly connected to AT via HU, yielding d(SK,AT) = 2.

Next, we introduce a graph decay mechanism to inject prior graph knowledge. Intuitively, input re-
gions that are topologically closer to the output region rout are expected to exert a stronger influence
than more distant ones. To formalize this intuition, we design a decay function that modulates the
contribution of each neighboring region based on its graph distance, yielding a decay weight:

w(d; c;D) =



(1− |c|)d − (1− |c|)D

1− (1− |c|)D
, c > 0,

1− d

D
, c = 0,

(1− |c|)−d − (1− |c|)−D

1− (1− |c|)−D
, c < 0,

(7)

where w(d; c;D) ∈ [0, 1] is the decay weight, d is the graph distance, c ∈ [−1, 1] is the curvature
parameter, and D is the maximum reachable distance from the output region rout. As shown in
Figure 3, for c > 0 (Regime I), the decay weight drops off sharply with distance, meaning distant
regions contribute very little. For c = 0 (Regime II), the function reduces to linear decay, decreasing
proportionally with graph distance. For c < 0 (Regime III), the decay weight decreases more
gradually, preserving the influence of neighbors. We construct the decay mask as:

Wrout =


w(d(AT, rout); c;D)
w(d(BE, rout); c;D)

...
w(d(SK, rout); c;D)

 ∈ R|R|×1. (8)

Next, the learned spatial representation S is copied |R| times, each assigned to an output region
rout. We inject graph knowledge into S by computing the decay-weighted average representation:

Urout =
W⊤

routS

W⊤
rout1

, (9)

where 1 ∈ R|R|×1 is a vector of ones.

This operation acts as spatial regularization and eliminates the need for an exhaustive learning pro-
cess to determine spatial weights, as required in methods such as the attention mechanism.

4.3 HEAD

We design a multi-region, multi-timestep, and multi-quantile head, where the model produces joint
probabilistic forecasts. To prevent quantile crossing issue1, we adopt a hierarchical quantile head Yu
et al. (2025). In detail, the median quantile (τ = 0.5) price trajectory, which represents the full set
of timesteps T , is predicted from Urout via a dense layer:

ŷrout,0.5 = Dense(Urout) ∈ RT . (10)

1Quantile crossing refers to the phenomenon where upper quantile predictions (e.g., 90%) fall below lower
quantiles (e.g., 10%), violating the monotonicity of the quantile function. Chernozhukov et al. (2010).
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For the upper quantile (τ = 0.9), a residual price trajectory r̂rout,0.9 is produced from Urout :

r̂rout,0.9 = Dense(Urout) ∈ RT , (11)

where a non-negative function g(·), such as absolute-value function, is applied to the price residual.
The upper quantile forecast is obtained by adding this non-negative residual to the median:

ŷrout,0.9 = ŷrout,0.5 + g(r̂rout,0.9). (12)

For the lower quantile (τ = 0.1), we compute a residual trajectory similarly:

r̂rout,0.1 = Dense(Urout) ∈ RT , (13)

and subtract it from the median to obtain the lower quantile prediction:

ŷrout,0.1 = ŷrout,0.5 − g(r̂rout,0.1). (14)

This hierarchical design guarantees that the upper quantile prediction is greater than or equal to the
lower one at each time step, overcoming quantile crossing.

4.4 LOSS

We introduce the Average Quantile Loss (AQL) as the training objective for multi-region, multi-
timestep, and multi-quantile probabilistic forecasting. Let yi,rout,t denote the ground-truth price for
the i-th training sample, output region rout, and timestep t, and let ŷi,rout,t,τ be the corresponding
predicted quantile. The AQL is computed as:

AQL =
1

N |R| T |Q|

N∑
i=1

∑
rout∈R

T∑
t=1

∑
τ∈Q

Lτ (yi,rout,t, ŷi,rout,t,τ ) , (15)

where N is the number of samples, and the quantile loss Lτ is defined as:

Lτ (y, ŷτ ) =

{
τ · (y − ŷτ ), if y ≥ ŷτ ,

(1− τ) · (ŷτ − y), otherwise,
(16)

where y and ŷ are the true and predicted values, respectively.

5 EXPERIMENT

We split the data into training (2022-01-01 to 2024-01-01), validation (2024-01-01 to 2024-07-01),
and testing (2024-07-01 to 2025-01-01). The choice of the testing period aims to include numerous
extreme prices, as illustrated in Figure 2 (a). We assess the model performance using the quantile
losses (Q0.1, Q0.5, and Q0.9), AQL, Average Quantile Crossing Rate (AQCR), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2). The Diebold-
Mariano (DM) test is applied to determine if two models have a significant difference Diebold &
Mariano (2002). All metrics are explained in Appendix H. The hyperparameters are detailed in
Appendix E

5.1 MODEL COMPARISON

5.1.1 NAÏVE BASELINES

We include three seasonal naı̈ve baselines as reference models, where only historical prices are
used as input: (i) Naı̈ve1 uses 24 prices from the previous day; (ii) Naı̈ve2 uses 24 prices averaged
over the past three days; (iii) Naı̈ve3 uses 24 prices averaged over the past seven days. To obtain
probabilistic results, we compute empirical quantiles at individual levels (Q = {0.1, 0.5, 0.9}) for
each delivery hour. The seasonal naı̈ves are commonly used to evaluate the autoregressive strength
of the signal and often serve as strong baselines Ziel & Weron (2018); Lago et al. (2021).

The results from Table 1 show that PriceFM significantly outperforms the naı̈ve baselines, confirmed
by both the probabilistic and pointwise DM tests, with all p-values < 0.05 and negative DM values.
Specifically, the AQL values of baselines are between 36.83% and 44.80% higher, with an AQCR of
0.00%, as these forecasts are directly computed from historical values. Moreover, the high RMSE
and MAE, together with the low R2, observed in the naı̈ve baselines suggest limited performance.
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Table 1: Model comparison on the testing set. The symbol “–” indicates that the model does not
support probabilistic forecasting by design. All metrics are reported as mean±standard deviation
over 5 independent runs. The best results are shown in bold, and the second-best are underlined.
The units of Q0.1, Q0.5, Q0.9, AQL, RMSE, and MAE are expressed in e/MWh, and AQCR in %.

Model Q0.1 ↓ Q0.5 ↓ Q0.9 ↓ AQL ↓ AQCR ↓ RMSE ↓ MAE ↓ R2 ↑
Naı̈ve1 5.68±0.00 14.30±0.00 8.31±0.00 9.43±0.00 0.00±0.00 46.90±0.00 28.60±0.00 0.16±0.00
Naı̈ve2 6.01±0.00 14.42±0.00 8.44±0.00 9.62±0.00 0.00±0.00 46.73±0.00 28.84±0.00 0.17±0.00
Naı̈ve3 6.65±0.00 14.58±0.00 8.71±0.00 9.98±0.00 0.00±0.00 46.73±0.00 29.15±0.00 0.17±0.00

GCN 4.81±0.16 10.76±0.16 7.11±0.33 7.56±0.15 2.19±0.76 35.75±0.60 21.53±0.33 0.51±0.02
GAT 5.08±0.31 11.58±0.37 7.90±0.40 8.18±0.29 1.41±0.47 37.63±0.62 23.15±0.75 0.44±0.01
GraphSAGE 5.20±0.13 11.27±0.23 7.39±0.35 7.95±0.18 2.79±0.56 37.09±0.81 22.53±0.46 0.47±0.02
GraphDiffusion 4.80±0.20 11.03±0.21 7.34±0.33 7.73±0.18 3.33±0.70 36.35±0.80 22.07±0.42 0.48±0.02
GraphARMA 4.87±0.07 11.10±0.22 7.00±0.22 7.66±0.16 2.05±0.65 36.15±0.59 22.21±0.44 0.49±0.02

FEDFormer – – – – – 44.60±0.88 27.53±0.81 0.30±0.01
PatchTST – – – – – 45.32±1.03 26.21±0.92 0.29±0.02
iTransformer – – – – – 45.14±0.96 27.05±0.64 0.29±0.02
TimesNet – – – – – 44.20±0.87 26.40±0.52 0.30±0.01
TimeXer – – – – – 44.57±0.66 26.52±0.55 0.30±0.01

PriceFM 4.80±0.06 9.81±0.17 5.96±0.08 6.89±0.12 0.00±0.00 32.24±0.39 19.68±0.31 0.61±0.01

5.1.2 GRAPH MODELS

We compare with multiple GNN variants: (i) Graph Convolutional Network (GCN) Kipf (2016),
(ii) Graph Attention Network (GAT) Veličković et al. (2017), (iii) GraphSAGE Hamilton et al.
(2017), (iv) GraphDiffusion Li et al. (2018), and (v) GraphARMA Bianchi et al. (2021). The
adjacency matrix of these graph models is explained in Appendix F.

From Table 1, we observe that PriceFM outperforms all graph models, confirmed by both the proba-
bilistic and pointwise DM tests, with all p-values < 0.05 and negative DM values. Notably, PriceFM
reduces the AQL by between 8.86% and 15.77% and consistently achieves 0.00% AQCR compared
to graph baselines. A common limitation of these graph baselines is that they lack explicit regular-
ization over noisy regions and rely primarily on data-driven learning to assign spatial importance.
As a result, they require large datasets to generalize. Despite our dataset spanning three years, which
is considered large in the domain, the daily forecasting requirement limits the training set to only
around 700 samples, making it unsuitable for such models.

5.1.3 TIME-SERIES FOUNDATION MODELS

We include several time-series foundation models: (i) FEDFormer Zhou et al. (2022), (ii) iTrans-
former Liu et al. (2023), (iii) PatchTST Nie et al. (2023), (iv) TimesNet Wu et al. (2023), and (v)
TimeXer Wang et al. (2024), to investigate whether these pure time-series models can capture spa-
tial patterns without prior graph knowledge. As these foundation models do not support graph-based
input, features from all regions are concatenated along the feature dimension.

The results in Table 1 show that these time-series foundation models achieve similar RMSE and
MAE but exhibit better explained variance, as indicated by higher R2, compared to the naı̈ve base-
lines. Notably, PriceFM outperforms all time-series foundation models, confirmed by the pointwise
DM test, with all p-values < 0.05 and negative DM values. On average, PriceFM improves RMSE,
MAE, and R2 by 27.98%, 26.38%, and 0.31, respectively. Given the high complexity of these
foundation models, the inclusion of features from noisy regions easily leads to overfitting. This ob-
servation confirms that the pure time-series models struggle to recognize useful spatial patterns. In
contrast, PriceFM incorporates a graph decay mechanism that acts as a spatial regularizer, thereby
attenuating the influence of noisy regions.
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Table 2: Ablation studies of different module choices: temporal configuration (rows 1-3), fusion
block (rows 4–6), graph block (rows 7–9), and hierarchical quantile head (rows 10–13). The symbol
† marks the method used in PriceFM.

Method Q0.1 ↓ Q0.5 ↓ Q0.9 ↓ AQL ↓ AQCR ↓ RMSE ↓ MAE ↓ R2 ↑
L = 24† 4.80±0.06 9.81±0.17 5.96±0.08 6.89±0.12 0.00±0.00 32.24±0.39 19.68±0.31 0.61±0.01
L = 72 5.09±0.13 10.04±0.20 6.27±0.06 7.14±0.09 0.00±0.00 32.76±0.41 20.09±0.39 0.60±0.01
L = 168 5.62±0.30 10.52±0.26 6.65±0.16 7.60±0.21 0.00±0.00 33.82±0.59 21.04±0.53 0.57±0.01

Res. Add† 4.80±0.06 9.81±0.17 5.96±0.08 6.89±0.12 0.00±0.00 32.24±0.39 19.68±0.31 0.61±0.01
Concat. 5.03±0.18 10.50±0.21 6.40±0.06 7.31±0.13 0.00±0.00 34.68±0.49 21.01±0.42 0.56±0.01
Cross-Attn 4.92±0.14 9.76±0.10 6.07±0.09 6.92±0.09 0.00±0.00 32.46±0.27 19.51±0.19 0.61±0.01

Decay† 4.80±0.06 9.81±0.17 5.96±0.08 6.89±0.12 0.00±0.00 32.24±0.39 19.68±0.31 0.61±0.01
Random 5.32±0.27 10.95±0.13 7.21±0.11 7.83±0.11 0.00±0.00 35.85±0.30 21.89±0.25 0.50±0.02
No Decay 5.23±0.32 11.05±0.22 6.84±0.22 7.71±0.16 0.00±0.00 35.81±0.63 22.11±0.44 0.50±0.02

ABS† 4.80±0.06 9.81±0.17 5.96±0.08 6.89±0.12 0.00±0.00 32.24±0.39 19.68±0.31 0.61±0.01
Square 4.86±0.14 9.80±0.16 6.05±0.21 6.90±0.15 0.00±0.00 32.35±0.36 19.59±0.33 0.61±0.01
ReLU 4.76±0.15 9.84±0.07 6.06±0.14 6.89±0.07 0.00±0.00 32.48±0.13 19.68±0.15 0.61±0.00
Standard 4.80±0.14 10.05±0.06 5.94±0.13 6.93±0.04 4.10±1.28 32.76±0.18 20.10±0.13 0.60±0.01

5.2 ABLATION STUDY

5.2.1 SPATIOTEMPORAL CONFIGURATIONS

• Curvature Parameter: Spatially, we evaluate c ∈ {−1.0,−0.8, . . . , 0.8, 1.0} in incre-
ments of 0.2, ranging from weak decay to strong decay. In total, 2,090 trials are conducted
to determine the optimal curvature value for each output region individually.

• Backward-Looking Window Size: Temporally, we compare L ∈ {24, 72, 168}, corre-
sponding to one day, three days, and one week. For each window size, all other hyperpa-
rameters are re-optimized.

Spatially, Figure 4 illustrates the testing loss and the distribution of optimal curvature values across
all regions. Most regions confirm spatial interdependencies (c ̸= 1.0). Temporally, the results in Ta-
ble 2 indicate that the optimal backward-looking window size is 24, potentially because information
from the distant past becomes outdated.

a b

Testing loss (€/MWh) Optimal curvature value

Figure 4: Spatial distribution of testing loss and
curvature values. (a) Average quantile loss per re-
gion on the testing set. Western European regions
exhibit lower losses, whereas BG, HU, and RO
show particularly high losses (orange areas). (b)
Optimal curvature value per region. Notably, BG,
ES, FR, FI, and partial regions from IT and SE
have a curvature value of 1.0, indicating optimal
performance by excluding neighboring features.

5.2.2 FUSION BLOCK

• Concatenation: We replace Equation 4 by first flattening both X̂price
rin and X̂exo

rin , and then
concatenating them:

Frin = Concat
(
Flatten

(
X̂price

rin

)
, Flatten

(
X̂exo

rin

))
. (17)

• Cross-Attention: We apply multi-head attention with X̂price
rin as the query and X̂exo

rin as both
key and value to produce X̂attn

rin . The attended features are then fused back into the price

8
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representation using residual addition:

Frin = Flatten
(
X̂price

rin + X̂attn
rin

)
. (18)

The results in Table 2 show that replacing the residual addition with concatenation leads to 6.10%
higher AQL for probabilistic prediction. Switching to cross-attention yields comparable perfor-
mance to residual addition, while introducing additional model parameters. This suggests that the
residual addition strikes a favorable balance between predictive performance and model simplicity.

5.2.3 GRAPH BLOCK

• Random Graph Decay Mask: We replace Equation 8 with a randomly sampled vector,
where each decay weight is drawn independently from a uniform distribution over [0, 1],
thereby removing the spatial graph prior:

Wrout ∼ U(0, 1)|R|×1. (19)

• No Graph Decay: We remove the decay mask, which simplifies Equation 9 to a uniform
average over input regions:

Urout =
1⊤S

|R|
, (20)

The results in Table 2 demonstrate that randomizing or removing the graph decay mask, which
discards the prior graph knowledge, leads to a significant drop in all metrics. We also observe that
such results are on par with those of GNN baselines. We emphasize that relying on pure data-driven
learning without an explicit decay mechanism leads to a loss of the key inductive bias, limiting the
model’s performance, especially when the training data is scarce.

5.2.4 HIERARCHICAL QUANTILE HEAD

• Non-Negative Functions: We replace the absolute-value function used in Equation 12 and
14 with either a square function or ReLU:

g(·) = (·)2, (21)

g(·) = max(0, ·). (22)

• Standard Multi-Quantile Head: The Equation 11 and 13 are skipped, and Urout is passed
directly to three independent dense layers to produce quantile trajectories.

The results in Table 2 reveal that replacing the absolute-value function with either a square function
or ReLU does not result in a noticeable change in performance, suggesting that the choice of non-
negative function is flexible. Moreover, while the hierarchical quantile head achieves comparable
loss to the standard multi-quantile head, the latter exhibits a mean AQCR of 4.10%, indicating that
the hierarchical design mitigates quantile crossing without harming performance.

6 CONCLUSION

In this paper, we introduced and released a dataset, which will benefit both the research community
and the energy industry. We proposed and released PriceFM, a foundation model with a generic
architecture applicable to all European electricity markets without relying on pretraining, similar
to time-series foundation models used in this work. Extensive experiments and ablation studies
demonstrate that PriceFM outperforms competitive baselines and highlight the importance of spatial
context. By enabling more accurate and comprehensive probabilistic electricity price forecasting,
our work has the potential to support better decision-making in energy trading and grid management.

Several directions remain for future work. First, as the current graph decay function is empirically
defined, exploring alternative formulations could improve spatial representations. Second, as the
transmission network evolves, model retraining may be required to account for structural changes.
Third, since our dataset is sampled at an hourly resolution, we aim to extend PriceFM to support
quarter-hourly forecasts, in anticipation of more European bidding zones transitioning to 15-minute
markets in the coming years.

9
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Ethics Statement We adhere to the ICLR Code of Ethics. Our study uses market and energy
data from the European Network of Transmission System Operators for Electricity (ENTSO-E); no
human subjects or personally identifiable information are involved. We release code and documen-
tation for research purposes. We have no known conflicts of interest related to the data providers or
outcomes reported.

Reproducibility Statement To support reproducibility, we release well-documented code with an
easy-to-use three-step pipeline, along with the code structure and usage guidelines in Appendix B.
We report hardware and runtime details in Appendix C to facilitate realistic deployment of our pro-
posed model. As the release and cleaning of the dataset are part of our contributions, the details are
described in Section Data and Appendix D. Additional reproducibility details are also provided, in-
cluding data scaling (Appendix G), evaluation metrics (Appendix H), hyperparameters and training
procedures (Appendix E).
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed GPT-4o to assist with grammar correction during the writing process. All LLM-
generated suggestions were reviewed and edited to ensure they accurately reflect the authors’ origi-
nal intent. No content related to the methodology, analysis, or reference was generated by the LLM.

B CODE GUIDELINE

We open-source all code for preprocessing, modeling, and analysis. The project directory is struc-
tured as follows:

|- PriceFM/
|- Data/
|- Figure/
|- Model/
|- Result/
|- PriceFM.py
|- Main.py
|- Tutorial.ipynb
|- README.md

where the README.md specifies the required package version. To facilitate reproducibility and
accessibility, we have streamlined the entire pipeline through extensive engineering efforts into just
three simple steps:

Step 1: Create a folder named PriceFM, along with subfolders Data, Figure, Model, and
Result. Place the energy data EU Spatiotemporal Energy Data.csv into Data, and
place PriceFM.py inside the PriceFM folder.

Step 2: Run Main.py to process the energy data, and to train, validate, and test the PriceFM. The
script PriceFM.py contains all necessary functions and classes.

Step 3: After execution, you can inspect: Figure/ for visualizations of forecasts versus true
prices; Model/ for saved model weights; Result/ for evaluation metrics.

Optional: To better understand the code structure and functionality, run Tutorial.ipynb block
by block.
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C HARDWARE AND COMPUTATION

The PriceFM is evaluated on both an NVIDIA A100 GPU and an Intel Core i7-1265U CPU, respec-
tively. The NVIDIA A100 is designed for high-performance computing and deep learning work-
loads, offering 80 GB of high-bandwidth memory and up to 6,912 CUDA cores. In contrast, the
Intel i7-1265U is a power-efficient CPU commonly found in standard laptops. Under the training
setup described in Section Model, the training time is approximately 4–5 minutes on the A100 GPU
and 12–13 minutes on the i7 CPU. Inference time for both setups is under 10 seconds. We note that
neither training nor inference time is critical for our application, as bid submissions can occur at any
point before the market gate closure on a daily basis.

D LOOKUP TABLE AND FEATURE AVAILABILITY

The country-region code lookup table and the feature availability are listed in Table 1.

E BASELINES AND HYPERPARAMETERS

We compare the PriceFM with several spatial and temporal models. The PriceFM is optimized based
on validation loss, and the hyperparameter search space is summarized in Table 2. The number of
parameters of PriceFM is only 3.38M. We use the Adam optimizer with an initial learning rate of
4×10−3, which decays exponentially by a factor of 0.95 every 10 epochs. The batch size is 8, which
introduces a slight regularization effect. The model is trained for 50 epochs, and the checkpoint with
the lowest validation loss is saved.

The graph models, such as GCN, GAT, GraphDiff, GraphSAGE, and GraphARMA, lack an ex-
plicit spatial decay mechanism guided by graph distance. GraphConv assigns uniform weights
to all neighbors, ignoring spatial relevance; GraphAttn learns attention weights entirely from data
without structural priors; GraphDiff uses diffusion kernels that spread information globally, but the
importance of nodes is still determined through learned weights, without decay constraints; Graph-
SAGE aggregates features from sampled neighbors but lacks a notion of spatial proximity; and
GraphARMA applies recursive smoothing, which can propagate noise from irrelevant neighbors.
As a result, these models require large datasets to recognize spatial patterns and may struggle to
suppress the influence of noisy regions. The hyperparameters are optimized based on validation
loss, and the search space is summarized in Table 3. All spatial models require an adjacency matrix
as input, detailed in Appendix F. Notably, these optimized spatial models contain more than 10M
parameters.

FEDFormer, iTransformer, PatchTST, TimesNet, and TimeXer have demonstrated strong perfor-
mance in general time-series forecasting tasks. FEDFormer, iTransformer, PatchTST, and TimeXer
are Transformer-based architectures, while TimesNet is CNN-based. However, these models are
not designed for graph forecasting tasks and may require large-scale data to implicitly learn spatial
dependencies. The hyperparameters are optimized based on validation loss, and the search space
is summarized in Table 4. Notably, the number of parameters of these optimized temporal mod-
els ranges from 4.96M to 10.31M, and they are limited to single-region prediction. As a result,
38 separate models must be trained for each output region, since they are not designed to support
multi-region forecasting.

F ADJACENCY MATRIX

We model the European market as a graph G = (R, E), where each node r ∈ R is a bidding zone
and edges indicate direct power flow via cross-border interconnections. This spatial topology is
detailed in Table 6. Let N (r) denote the set of directly connected neighbors of r, excluding r itself.
The binary adjacency matrix A ∈ {0, 1}|R|×|R| is defined by

Ar,s =

{
1, if s ∈ N (r),

0, otherwise,
r, s ∈ R. (23)

For GNN layers, self-loops can be added via Ã = A+ I .
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Table 1: Lookup table and feature availability across European regions. ✓ indicates that the feature
is available. (✓) denotes partial availability, and the feature is excluded from this study due to the
high rate of missing values.

Country Region Code Price Load Solar Wind
(Onshore)

Wind
(Offshore)

Austria AT ✓ ✓ ✓ ✓
Belgium BE ✓ ✓ ✓ ✓ ✓
Bulgaria BG ✓ ✓ ✓ ✓
Czech Republic CZ ✓ ✓ ✓
Germany, Luxembourg DE-LU ✓ ✓ ✓ ✓ ✓
Denmark DK1 ✓ ✓ ✓ ✓ ✓
Denmark DK2 ✓ ✓ ✓ ✓ ✓
Estonia EE ✓ ✓ ✓ ✓
Spain ES ✓ ✓ ✓ ✓
Finland FI ✓ ✓ ✓ ✓
France FR ✓ ✓ ✓ ✓ (✓)
Greece GR ✓ ✓ ✓ ✓
Croatia HR ✓ ✓ ✓ ✓
Hungary HU ✓ ✓ ✓ ✓
Italy IT-CALA ✓ ✓ ✓ ✓
Italy IT-CNOR ✓ ✓ ✓ ✓
Italy IT-CSUD ✓ ✓ ✓ ✓
Italy IT-NORD ✓ ✓ ✓ ✓
Italy IT-SARD ✓ ✓ ✓ ✓
Italy IT-SICI ✓ ✓ ✓ ✓
Italy IT-SUD ✓ ✓ ✓ ✓
Lithuania LT ✓ ✓ ✓ ✓
Latvia LV ✓ ✓ (✓) ✓
Netherlands NL ✓ ✓ ✓ ✓ ✓
Norway NO1 ✓ ✓ ✓
Norway NO2 ✓ ✓ ✓
Norway NO3 ✓ ✓ ✓
Norway NO4 ✓ ✓ ✓
Norway NO5 ✓ ✓
Poland PL ✓ ✓ ✓ ✓
Portugal PT ✓ ✓ ✓ ✓ ✓
Romania RO ✓ ✓ ✓ ✓
Sweden SE1 ✓ ✓ ✓ ✓
Sweden SE2 ✓ ✓ ✓ ✓
Sweden SE3 ✓ ✓ ✓ ✓
Sweden SE4 ✓ ✓ ✓ ✓
Slovenia SI ✓ ✓ ✓
Slovakia SK ✓ (✓) ✓ ✓

G DATA SCALING

To normalize the data while being robust to extreme values, we employ a RobustScaler fitted
on the training data, using the Scikit-Learn implementation. The fitted scaler is then used to
transform validation and testing data.
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Table 2: Hyperparameter search space for PriceFM.

Model Search Space
PriceFM hidden size: {12, 24, 48}

layers: {2, 3, 4}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

Table 3: Hyperparameter search space for spatial models.

Model Search Space
GCN hidden size: {32, 128, 512}

layers: {2, 3, 4}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

GAT hidden size: {32, 128, 512}
layers: {2, 3, 4}
n heads: {2, 4, 8}
batch size: {8, 32, 128}
dropout: {0.1, 0.3, 0.5}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

GraphSAGE hidden size: {32, 128, 512}
layers: {2, 3, 4}
aggregate: {mean, max, sum}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

GraphDiff diff steps: {2, 4, 6}
hidden size: {32, 128, 512}
layers: {2, 3, 4}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

GraphARMA hidden size: {32, 128, 512}
layers: {2, 3, 4}
order: {1, 2, 4}
iteration: {1, 2, 4}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

H METRICS

H.1 QUANTILE LOSS AT INDIVIDUAL LEVELS

We compute quantile loss separately for each target quantile:

Qτ =
1

N |R| T

N∑
i=1

∑
rout∈R

T∑
t=1

Lτ (yi,rout,t, ŷi,rout,t,τ ) , (24)
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Table 4: Hyperparameter search space for time-series foundation models.

Model Search Space
FEDFormer hidden size: {32, 128, 512}

conv hidden size: {32, 128, 512}
e layers: {2, 3, 4}
n heads: {2, 4, 8}
dropout: {0.1, 0.3, 0.5}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

iTransformer hidden size: {32, 128, 512}
e layers: {2, 3, 4}
d ff: {512, 1024, 2048}
n heads: {2, 4, 8}
dropout: {0.1, 0.3, 0.5}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

PatchTST hidden size: {32, 128, 512}
e layers: {2, 3, 4}
n heads: {2, 4, 8}
dropout: {0.1, 0.3, 0.5}
patch len: {4, 6, 12}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

TimesNet hidden size: {32, 128, 512}
conv hidden size: {32, 128, 512}
e layers: {2, 3, 4}
dropout: {0.1, 0.3, 0.5}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
Epochs: 50

TimeXer hidden size: {32, 128, 512}
e layers: {2, 3, 4}
n heads: {2, 4, 8}
d ff: {512, 1024, 2048}
dropout: {0.1, 0.3, 0.5}
batch size: {8, 32, 128}
learning rate: {4e-4, 1e-3, 4e-3}
epochs: 50

where τ ∈ {0.1, 0.5, 0.9}.

H.2 AVERAGE QUANTILE LOSS (AQL)

AQL represents the average quantile loss across all quantiles, as described in Section Model.

H.3 AVERAGE QUANTILE CROSSING RATE (AQCR)

AQCR captures the proportion of forecasted distributions that violate quantile monotonicity, i.e.,
when a lower quantile is predicted to be greater than a higher one. For each sample, the quantile

16
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crossing indicator is defined as:

Ci,r,t = I
(
max
τl<τu

(ŷi,r,t,τl − ŷi,r,t,τu) > 0

)
(25)

where I(·) is an indicator function that returns 1 if any quantile pair fulfills the condition inside and
0 otherwise.

We compute the AQCR as:

AQCR =
1

N |R| T

N∑
i=1

∑
r∈R

T∑
t=1

Ci,r,t. (26)

A lower AQCR indicates fewer quantile crossing violations and thus reflects more reliable proba-
bilistic forecasts.

H.4 ROOT MEAN SQUARED ERROR (RMSE)

We compute RMSE within each region, then average over all regions:

RMSEr =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(yi,r,t − ŷi,r,t,0.5)
2
, (27)

RMSE =
1

|R|
∑
r∈R

RMSEr. (28)

H.5 MEAN ABSOLUTE ERROR (MAE)

Same procedure as RMSE, but using absolute error:

MAEr =
1

NT

N∑
i=1

T∑
t=1

|yi,r,t − ŷi,r,t,0.5| , (29)

MAE =
1

|R|
∑
r∈R

MAEr. (30)

H.6 COEFFICIENT OF DETERMINATION

We compute the Coefficient of Determination (R2) for each region and average across all regions:

R2
r = 1−

∑N
i=1

∑T
t=1 (yi,r,t − ŷi,r,t,0.5)

2∑N
i=1

∑T
t=1 (yi,r,t − ȳr)

2
, (31)

ȳr =
1

NT

N∑
i=1

T∑
t=1

yi,r,t, (32)

R2 =
1

|R|
∑
r∈R

R2
r. (33)

H.7 DIEBOLD & MARIANO (DM) TEST

To assess whether differences in forecasting performance are statistically significant, we apply the
DM test. We compute the loss differential at each prediction instance.

For probabilistic forecasts, we compute the loss differential at each quantile τ ∈ Q between two
models l ∈ {1, 2}:

di,r,t,τ = Lτ

(
yi,r,t, ŷ

(1)
i,r,t,τ

)
− Lτ

(
yi,r,t, ŷ

(2)
i,r,t,τ

)
. (34)
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For point forecasts, the loss differential between two models is computed for each sample, region,
and timestep as:

di,r,t =
∣∣∣yi,r,t − ŷ

(1)
i,r,t

∣∣∣− ∣∣∣yi,r,t − ŷ
(2)
i,r,t

∣∣∣ . (35)

The DM test statistic is then calculated as:

DM =
d̄

σ̂d/
√
M

, (36)

d̄ =
1

M

M∑
j=1

dj , (37)

where M = N · |R| · T · |Q| for probabilistic forecasts, and M = N · |R| · T for point forecasts.
The index j enumerates all prediction instances across dimensions, and σ̂d is the sample standard
deviation of {dj}Mj=1. We compute a p-value; if p < 0.05 and the DM value is positive (negative),
then we report that model 2 (model 1) significantly outperforms the other in Section Experiment.
The rules are summarized in Table 5.

Table 5: Interpretation of DM test outcomes.

Condition Interpretation Conclusion
p < 0.05, DM > 0 Statistically significant Model 2 is better
p < 0.05, DM < 0 Statistically significant Model 1 is better

p ≥ 0.05 Not statistically significant –
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Table 6: Direct neighbors by region and neighbor count.

Region Code Direct Neighbors Count
AT CZ, DE-LU, HU, IT-NORD, SI 5
BE DE-LU, FR, NL 3
BG GR, RO 2
CZ AT, DE-LU, PL, SK 4
DE-LU AT, BE, CZ, DK1, DK2, FR, NL, NO2, PL, SE4 10
DK1 DE-LU, DK2, NL, NO2, SE3 5
DK2 DE-LU, DK1, SE4 3
EE FI, LV 2
ES FR, PT 2
FI EE, NO4, SE1, SE3 4
FR BE, DE-LU, ES, IT-NORD 4
GR BG, IT-SUD 2
HR HU, SI 2
HU AT, HR, RO, SI, SK 5
IT-CALA IT-SICI, IT-SUD 2
IT-CNOR IT-CSUD, IT-NORD 2
IT-CSUD IT-CNOR, IT-SARD, IT-SUD 3
IT-NORD AT, FR, IT-CNOR, SI 4
IT-SARD IT-CSUD 1
IT-SICI IT-CALA 1
IT-SUD GR, IT-CALA, IT-CSUD 3
LT LV, PL, SE4 3
LV EE, LT 2
NL BE, DK1, DE-LU, NO2 4
NO1 NO2, NO3, NO5, SE3 4
NO2 DE-LU, DK1, NL, NO1, NO5 5
NO3 NO1, NO4, NO5, SE2 4
NO4 FI, NO3, SE1, SE2 4
NO5 NO1, NO2, NO3 3
PL CZ, DE-LU, LT, SE4, SK 5
PT ES 1
RO BG, HU 2
SE1 FI, NO4, SE2 3
SE2 NO3, NO4, SE1, SE3 4
SE3 DK1, FI, NO1, SE2, SE4 5
SE4 DE-LU, DK2, LT, PL, SE3 5
SI AT, HR, HU, IT-NORD 4
SK CZ, HU, PL 3
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