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ABSTRACT

Pruning at Initialization (Pal) accelerates training while maintaining accuracy, yet
most criteria depend on data and backpropagation, leaving them brittle. Slight
variations in random seed or sparsity budget reorder scores require rescoring or it-
erative schedules and yield masks with weak transferability across seeds, datasets,
and budgets. The proposed You Only Prune Once (YOPO) framework addresses
these limitations through a zero-shot, data and gradient-free design. YOPO com-
putes a once-only saliency by fitting a nonnegative low-rank model to absolute
weights at random initialization and measuring the element-wise Frobenius resid-
ual. Global or layer-wise thresholds generate masks with exact sparsity control
and no layer collapse. Since ordering and budget are decoupled, the same saliency
supports re-thresholding to any sparsity and dataset transfer without rescoring,
enabling reusable “supermasks”. Experiments on CIFAR-10, CIFAR-100, Tiny-
ImageNet, and ImageNet with standard CNN backbones show that YOPO matches
or surpasses strong single-shot Pal baselines, rivals iterative/data-dependent meth-
ods despite using no data at initialization, and consistently outperforms expander-
graph zero-shot Pal. Altogether, YOPO provides a scalable and intuitive approach
to initialization-time pruning with stable transfer across seeds, datasets, and spar-
sity levels.

1 INTRODUCTION

Modern neural networks are often heavily overparameterized, which invites structured or unstruc-
tured pruning to reduce memory, computation, and training time without sacrificing accuracy. An
especially attractive paradigm is Pal: remove parameters before learning begins and train the sparse
subnetwork from scratch under a standard recipe. The conceptual root is the Lottery Ticket Hypothe-
sis (LTH), which posits that randomly initialized dense models contain sparse “winning tickets” that
can be trained in isolation from their initial weights to match dense performance (Frankle & Carbin,
2019). Early demonstrations relied on iterative magnitude pruning with weight rewinding, effec-
tive but computationally heavy. This motivated single-shot criteria that score connections directly
at initialization. Among these, SNIP evaluates the loss sensitivity of each weight using data and
first-order gradients (Lee et al., 2019), while GraSP incorporates Hessian information to preserve
gradient flow (Wang et al., 2020). A complementary line, SynFlow, enforces a positivity-based con-
servation law to avoid layer collapse in a data-free fashion, but does so through an iterative scoring
schedule (Tanaka et al., 2020).

Although these approaches advance the Pal paradigm, two practical frictions remain. First, most
criteria are inherently data and seed dependent: saliencies are computed from task-specific batches
and are sensitive to the random initialization, so masks often need to be recomputed when the dataset
changes, when the target sparsity (budget) changes, or even when the seed changes. Second, recent
sanity-check studies argue that a considerable portion of Pal gains can arise from how sparsity
is allocated across layers rather than from precise per-weight ranking (Su et al., 2020; Ma et al.,
2021). This raises a sharper question: can we construct an initialization-time saliency that is both
data-free and once-only, thereby enabling reuse across datasets and across sparsity budgets by mere
re-thresholding, while remaining competitive with data-dependent baselines?
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Two recent directions illuminate the landscape. One replaces saliency with connectivity priors:
expander-style d-regular bipartite masks instantiated at initialization deliver strong signal propaga-
tion and competitive accuracy at extreme sparsities, consistently outperforming random wiring and
earlier expander variants (Stewart et al., 2023). These approaches are appealingly data-free, yet
they do not by themselves address transfer across datasets or across budgets and introduce graph-
construction choices (e.g., degree d, generator family) that can complicate deployment. At the
other end of the spectrum, score optimization at initialization (“GEM-MINER”) learns supermasks
that rival prune-after-train baselines and pass modern sanity checks (Sreenivasan et al., 2022), but
requires labeled data and many epochs of score training. A data-agnostic perspective argues for
topology-guided criteria less entangled with dataset statistics Pham et al. (2023); concurrently, the-
ory delineates when purely data-free Pal can (or cannot) succeed Kumar et al. (2024), and recent
results sharpen sparse variants of the strong Lottery Ticket Hypothesis Natale et al. (2024). Sur-
veys synthesize these developments and chart open problems in Pal, from sanity-check robustness
to deployability and efficiency trade-offs Cheng et al. (2024); Wang et al. (2022).

Positioned between these extremes, the proposed method YOPO follows a once-only, data and
gradient-free route that explicitly targets transferability. A single, dataset-agnostic saliency per
backbone is obtained by fitting a nonnegative low-rank template to the absolute weights and scor-
ing each connection via its elementwise Frobenius residual. For a prunable layer with absolute
weights W = |W/|, the factorization W ~ V H with V, H! >!0 is computed using Nonnegative
Matrix Factorization (NMF), and saliency is defined as S = ’W - VH | The additive, parts-based
reconstruction V' H captures low-rank regularities, whereas large residuals highlight distinctive, po-
tentially informative connections (Lee & Seung, 1999; 2001). A robust monotone re-thresholding
scheme is applied layer-wise or globally, convert .S into masks that realize an exact sparsity budget
in a single shot while avoiding collapses. Since the ordering in S is fixed, any sparsity level emerges
through re-thresholding, and the resulting mask family transfers seamlessly across datasets without
rescoring.

The main contributions of this research are summarized as follows:

(i) A zero-shot, data and gradient-free Pal criterion based on nonnegative low-rank residuals,
providing a simple alternative to data-dependent initialization pruning.

(i) Formalization and systematic evaluation of mask transferability, showing that a once-only
ordering enables reusable “super tickets” across datasets and sparsity levels.

(iii) A lightweight collapse-avoidance principle: enforcing nonnegativity with robust thresh-
olds ensures per-neuron survival in a single shot without iterative scoring.

(iv) Comprehensive experiments on CIFAR-10/100, Tiny-ImageNet, and ImageNet with VGG,
ResNet, and WRN backbones, demonstrating consistent outperformance of existing zero-
shot Pal methods, competitive results against data-dependent baselines, and unique support
for budget reuse and dataset transfer without restoring.

Therefore, the proposed YOPO reframes Pal through the lens of once-only, data-free saliency de-
rived from nonnegative low-rank structure: it simplifies initialization-time computation, provides
exact budget control, and most importantly decouples mask selection from downstream datasets,
enabling practical reuse across tasks and sparsity levels.

2 PROBLEM FORMULATION AND BACKGROUND

Let A be a fixed architecture with parameter vector # € R"™ and random initialization 6y ~ Piy.
We consider a family of supervised datasets D = {Dy,..., D} drawn from a task distribution T.
A binary mask m € {0,1}"™ induces a pruned model 6y ® m (Hadamard product). Training from
scratch on D € D with a fixed recipe produces parameters 60* (m; D) and validation risk R(m; D)
(or accuracy Acc(m; D)). Global sparsity is

s(m) = 1— @ € [0,1].

The mask m is trainable on D at sparsity s if Acc(m; D) is within a small tolerance e of the dense
baseline under the same training protocol.
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Classical Pal as a data-dependent mapping. Pal can be abstracted as a scoring rule followed
by a budgeted selection. Given (6y, D, p), many Pal methods compute a data-dependent saliency
0(6p; D) € R™ and return a mask

f(A,D,p) = mp, = TopK(c(bo; D), k(p)),  k(p) =1 —p)n, (1)

where TopK keeps the k(p) largest entries (ties broken arbitrarily). SNIP and GraSP instantiate o
with gradient- and Hessian-based criteria computed on batches from D (Lee et al., 2019; Wang et al.,
2020); SynFlow constructs o through an iterative, data-agnostic flow conservation process (Tanaka
et al., 2020). Two consequences follow from equation 1: (i) for each new dataset D’ the full scoring
procedure must be repeated to obtain mp ; (ii) for each new sparsity level p’ one recomputes or at
least re-ranks saliency to target the new budget and obtain mp .

Once-only, dataset-agnostic saliency. We aim to decouple mask construction from data and spar-
sity by computing a single saliency vector

S(6o) € RZ, @
| S ————

computed once, no data/gradients

and deriving masks for any target sparsity by re-thresholding/ranking without recomputing scores.
Formally, define a family of threshold operators {T; }+>0 acting elementwise:

7;—[5]1 = HZ{SL >T}, 1€ {1,...,71}. 3)
A once-only scheme selects 7 = 7(p) so that s(7.(,[S]) = p (up to a small tolerance), yielding
my = Trp)[S(0o)] € {0,1}". )

Equivalently, one can view m,, = TopK(S(6p), k(p)). The crucial property is that all masks across
p € [0, 1] are induced by a fixed ranking of S(fo).

Transferability objective. Let P C [0, 1] be a set of sparsity budgets of interest and Dyg, C D a
set of target datasets. The supermask objective seeks an S(6y) such that the induced masks m,, are
simultaneously trainable across datasets and budgets:

min EDNT{ sup A(mp;D)} where A(m;D) = R(m;D)— R(1; D), (5)
SeRy, peP

subject to the once-only constraint equation 4. An e-supermask satisfies VD € Dy, Vp € P :
A(myp; D) < e, with training performed from scratch on (6y ® m,,, D) under a fixed recipe. This
formulation captures two desiderata: dataset transfer (D varies) and budget reuse (p varies) without
recomputing scores or using extra budget (epochs).

Background: why once-only helps. equation 4 separates the ordering of parameters (encoded in
S) from the budget p (encoded in 7). In contrast, data-dependent Pal implements f(.A, D, p) as in
equation 1, entangling D and p with 0. When S is dataset- agnostic and computed once, changing p
reduces to threshold selection (no recomputation), and moving from D; to D, reuses the same m,,
or simply re-thresholds S to a new budget. This matches the operational goal stated informally as

f(A) = {mp}pep transferable across Dy,
—~— ———
once all budgets

in contrast to f (A, D, p) which must be re-evaluated for each (D, p) pair.

3  PROPOSED METHOD: YOPO (YOoU ONLY PRUNE ONCE)

YOPO is a zero-shot, data, and gradient-free Pal method. Given a randomly initialized network,
it computes a once-only, dataset-agnostic saliency from a nonnegative low-rank reconstruction of
absolute weights and produces a binary mask by robust thresholding to match a target sparsity. The
same once-only saliency supports multiple sparsity budgets and transfers across datasets without
recomputation.



Under review as a conference paper at ICLR 2026

3.1 NOTATION AND PRELIMINARIES
Let A be a fixed architecture with prunable layers £. For a convolutional layer ¢,
. hy w .
W(f) c RO XigXky Xkjp ; d,g _ szélk/,éu7 (6)
and define the flatten/unflatten operators
fat : Roxixkhka —}RUXd unflat - Roxd _>Ro><i><kh><kw
: , : .

We work with elementwise absolute weights TV (©) £ }ﬂat(W(f)) ‘ € R;"OX d¢ | A binary mask M) e
{0, 1}°¢%% prunes via W) «— W © unflat(M ) and we freeze pruned parameters during

()
training with VIV®  VIW©® @ unflat(M ®). Global sparsity is s = 1 — %

3.2 ONCE-ONLY SALIENCY VIA NONNEGATIVE LOW-RANK RESIDUALS

We construct a dataset-agnostic saliency once at initialization by measuring how poorly the absolute
weights of each layer are explained by a small additive (nonnegative, low-rank) Frobenius template.
Let ¢ € £ index a prunable layer with flattened, nonnegative weights

WO & |flat(WO)] € R .

We approximate w® by a nonnegative rank—r, model and define the elementwise residual as
saliency.

Nonnegative low-rank model. We solve the Euclidean NMF (Lee & Seung, 1999; 2001) problem
; HVW) O g© H2 ,
F

(Z) Op X7y (f) ’I“[Xd@
v<£)2r£11}<f)zo VIV eRSy ™, HY eRS5™. 7

We employ the standard multiplicative updates (Lee & Seung, 1999; 2001) with a small € > 0:

WHT He Ho VIw
VHHT +¢’ VTVH +¢’

initialized either by nonnegative SVD seeding or i.i.d. Uniform[0, 1].

VeVo ¥

Elementwise residual saliency. Given any feasible factors (V(©), H()) (after T iterations of
equation 8), define

5O 2 WO _yOF©| e goxd, ©)
and unflatten to the native tensor shape for masking. Intuitively, the nonnegative product V H
captures additive, parts-based regularities; the residual highlights idiosyncratic, less-template-like
connections that we retain (Lee & Seung, 1999). Variants include replacing the Euclidean loss in

equation 7' with KL or Itakura—Saito divergences, and using a per-output-channel factorization that
reduces each convolution row to 1 X dy to accelerate preprocessing while preserving rankings.

STRUCTURAL PROPERTIES

We record simple properties that explain the “once-only” and robustness behavior.
Proposition 1 (Magnitude and perfect-template limits). Let S\©) be defined by equation 9.

(a) (Rank-0 reduction) If r; = 0 (i.e., VH = 0), then S®) = WO : YOPO reduces to magni-
tude ranking at initialization.

(b) (Exact template) Ifrank+(V~V(Z)) <r¢and VH = W® exactly, then S0 = 0. In practice
this is a measure-zero event; we prevent degenerate collapse by (i) choosing small ry, (ii)
using strict thresholds, and (iii) enforcing per-row minimum keep.

"We also tried KL and Itakura—Saito updates; results were similar while Euclidean was faster to compute.
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(a) YOPO variants vs. random pruning (b) Layerwise vs. global sparsity allocation on VGG19.
across sparsity. Across all sparsity levels, Heatmaps of VGG19 show YOPO-L enforces near-uniform prun-
YOPO variants outperform random pruning ing across layers, whereas YOPO-G allocates sparsity adaptively
with lower variance. YOPO-G(s) maintains preserving early convolutional layers (14 to 45% pruned) while
near-baseline accuracy up to 90% sparsity aggressively compressing deeper ones (>95%). The inset at 95%
and still achieves 58% at 95%, while random sparsity highlights this contrast, explaining YOPO-G’s superior
pruning collapses below 50%. retention under extreme compression.

Lemma 1 (Positive homogeneity and scale stability). For any scalar ¢ > 0, replacing w® by
c WO admits optimal factors (\/cV*,/cH*) whenever (V*, H*) is optimal for W©, and the
corresponding residual scales as S© — ¢ S®). Hence the ranking of entries in S\9 is invariant to
positive scalar rescaling of a layer.

Lemma 2 (Permutation invariance within flattened structure). Let I1,., I, be permutation matrices
acting on rows/columns of W) (e.g., re-indexing output channels or kernel coordinates under
flattening). Then S permutes accordingly: if W' = I, W®OIL,, an NMF of W' yields S’ =
I1,,SOT1,.. Thus once-only rankings respect reindexings inherent to convolutional reshaping.

Proposition 2 (Nested masks across budgets). Let M) (1) = 1[S) > 7]. If 1, < o, then
MO (ry) < MO (1y) elementwise. Consequently, the sets of survivors are nested as sparsity in-

creases, and all budgets p € [0, 1] are obtained by re-thresholding a fixed S () without recomputa-
tion.

WHY NONNEGATIVITY? COMPARISON TO SVD/CP/TUCKER

Low-rank SVD approximations can cancel positive and negative components, obscuring which en-
tries are systematically explained by a small additive template. In contrast, NMF is parts-based:
reconstructions are additive and nonnegative, and any mismatch must appear as a positive residual
(used in our collapse argument). CP/Tucker compress dense tensors but do not enforce nonnegativ-
ity; their residuals are not guaranteed to be elementwise informative in the same way. Empirically,
we found that NMF residuals yield stable rankings at initialization and high kernel sparsity at large
global s.

3.3 ROBUST THRESHOLDING AND CALIBRATION

Given the once-only saliency S() (Sec. 3.2), YOPO converts scores into a binary mask through a
robust threshold per layer. We use either a median/MAD cutoff or a mean/STD cutoff:

MAD:  7(a) = median(S?) + o - MAD(S®), (10)
STD:  7(a) = u(SY) +a-o(SY), Y
and define
M@
MO(a) = 1[SY > ()] € {0,1}%% () = 1— 2 M7 (@)l (12)
>0 0ede

The parameter o € R>( tunes aggressiveness. We adopt strict comparison (>) to avoid tie ambiguity;
in practice, ties are rare and can be broken deterministically by infinitesimal jitter. Furthermore,
YOPO supports two calibration regimes:
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* YOPO-G (global). A single « is chosen so that §(«) &~ s for a given target sparsity s, via 1-D
bisection. This uses the same « for all layers.

* YOPO-L (local). Each layer receives its own oy to meet a per-layer budget s, with > ¢ 500¢dy =
5, 0¢dg. A simple and effective choice is the equal-ratio policy s, = s (i.e., maintain approxi-
mately the same sparsity ratio in every layer).

Both calibration regimes incorporate the survival constraints to prevent row/column collapse.

de O¢

Z Mz(;) Z Mmin, Z Mz(j) Z Cmin (typlcally Mmin € {17 2}7 Cmin € {0; 1})7 (13)
j=1 =1

We establish sufficient conditions under which YOPO guarantees per-neuron (row) and per-layer
survival, and provide full proofs in Appendix A (see Prop. 3 and Cor. 1).

Monotonicity and Exact Budget Control: For both thresholding rules in equation 10 & equa-
tion 11, the achieved sparsity $(«) is monotone non-decreasing in « because masks are nested: if
ag > ajg then MY (ay) < M (a;) elementwise (Prop. 2). Consequently, a 1-D bisection on
« attains any feasible budget to tolerance ¢ in O(log(1/¢)) steps. We instantiate this as MORT
(Monotone Re-Thresholding): (i) for YOPO-G, we pool scores across layers and select a single «
to match the global sparsity; (ii) for YOPO-L, we solve independent per-layer bisections (with the
min-keep row constraint to preclude collapse). See Alg. 2 for the procedure.

Robustness and calibration. At high sparsity, S() is often heavy-tailed; MAD thresholds are
therefore more stable than STD in practice (cf. Figs. 1a, 4). One may equivalently standardize via
70 = (8 — median)/(MAD+) and threshold Z*) >, though we adopt the direct MAD form
in equation 10 for simplicity. Among calibrations, YOPO-G typically attains slightly higher accu-
racy than YOPO-L at matched global sparsity by allocating more parameters to layers with larger
residual statistics (Fig. 1a); YOPO-L enforces near-uniform per-layer ratios, while YOPO-G prunes
gently in early layers and more aggressively in deeper ones (heatmap in Fig. 1b), aligning with the
heuristic of preserving low-level features. Additional analyses appear in Sec. 4, with complexity
and practical guidance in Appx. G.

3.4 TRANSFERABILITY AND BUDGET REUSE FROM A ONCE-ONLY SALIENCY

In Section 2, the transferability objective is introduced. Building on this, our goal is to separate the
process of mask construction from the specifics of the data and the sparsity level. To achieve this, we
rely on a once-only saliency equation 4 and re-thresholding equation 12, which serves as a reusable
foundation for the rest of our approach.

Once-only family of masks. Let S(6y) = {S“},c. be YOPO’s layerwise saliency computed
once at initialization (Sec. 3.2). For any sparsity p € [0, 1], define the global mask family

M(p) = {M<f>(n(a(p))) ]e € c}, where 7¢(a) = median(S®) + a MAD(S®). (14)

By monotonicity, there exists «(p) with achieved sparsity §(a(p)) ~p; the ordering of entries within
each S®) is fixed across all p. The local variant M (p) uses per-layer a,(p) to meet per-layer quotas.
In both regimes, no saliency recomputation is needed when p changes: m, = TopK(S, k(p)) or
equivalently m, = 1[S > 7(p)].

Dataset transfer. Because S(6) depends only on |f| and a low-rank additive template, the same
family { M(p)}pe[o,1] is applicable to any D drawn after initialization. Let training from scratch on
(60 ® M(p), D) yield validation risk R(p; D) and dense risk Rdense (D). We evaluate transfer via
two indices.

Definition 1 (Dataset-Transfer Index (DTI)). Fix a source dataset Dq,. and let Mg, .(p) denote the
mask family constructed from S(0y) (and, if desired, a concrete mask at a particular p). For any
target Dy, and budget p,

DTI(DsrC%Dtgmp) = R(p; Dtgt | Msrc(p)) - R(p; Dtgt | Mtgt(p))a
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Algorithm 1 YOPO: You Only Prune Once (Pseudocode)

Require: Random init {W ()}, .; target sparsity s (global) or budgets {s,} (local); ranks {r};
min-keep (Mumin, Crmin)

1: for { € L do > For each layer compute the saliency
2: W |ﬂat(W(Z))| > optional: layerwise normalization
3:  Solve NMF equation 7 for V¥, H(®)
4 SO |W(f) —vOg®w |
5: end for
6: if global (YOPO-G) then > Select the sparsity type
7:  Find a by MORT (Alg. 2), so that s({M ) (a)}) ~ s
8 else > local (YOPO-L)
9: Choose oy by MORT (Alg. 2), so that per-layer budgets s; hold
10: end if
11: for ¢ € L do > Apply the once-only mask
12: 70 < median(S®)) + « MAD(S®) >orpu+ ao
13: M® + 1[S® > 7;]; enforce row/col keep using equation 13
14: Apply M ©); freeze gradients: VIV « VW) © unflat(M©)
15: end for

16: Train the masked model from scratch under a same recipe

i.e., the excess risk (negative of accuracy gap) when reusing the source mask on the target versus
a mask calibrated on the target. Values near 0 indicate successful transfer. We also report the
worst-case sup,,ep DTI(:, p) over a budget set P.

Definition 2 (Initialization-Independence Index (I)). Let {9(()5) 9_, be S independent random ini-
tializations and M%) (p) the corresponding masks from the same S(-) construction. For a fixed
dataset D and budget p,
s
1 s 5
F(D.p) = 5 (REmD I MO®) = R(p:D | MOp) ),
s=1

where 5 denotes applying the mask from seed s to a different initialization. Values near 0 indicate
that masks transfer across seeds (sanity for Pal (Su et al., 2020; Ma et al., 2021)).

Why transfer can hold. Three structural aspects promote transfer under YOPO: (i) Architecture-
driven statistics: at random initialization, early convolutional blocks and specific receptive-field pat-
terns exhibit systematically larger Frobenius residuals than later blocks; global calibration preserves
these high-residual regions regardless of dataset (Sec. 3.3). (ii) Positivity and additivity: nonnega-
tivity forbids cancellation, so residuals reflect entrywise mismatch from a small additive template
that is intrinsic to the parameterization, not to data. (iii) Nestedness across budgets: the survivor sets
for p; < po are nested (Proposition 2); moving across budgets is a deterministic re-thresholding,
not a rescoring, which stabilizes training. These stand in contrast to data-dependent Pal, where
gradients/Hessians encode D-specific statistics by construction (Lee et al., 2019; Wang et al., 2020).

Protocol and hypotheses. We adopt a simple cross-dataset protocol: compute S(6p) once on
the architecture, fix a discrete budget set P = {0.9,0.95}, and train (6p ©® M(p), D) for D €
{D1, D2, D3} using the same recipe. We test the hypotheses: (H1) DTI(D; — D;,p) ~ 0 for
YOPO across p; (H2) I3(D, p) ~ 0, indicating seed-robustness; (H3) accuracy under YOPO-G >
YOPO-L at matched p, consistent with prior observations that global budgets preserve accuracy
better than rigid per-layer quotas in Table 6;

4 EXPERIMENTS & RESULTS

We assess YOPO on CIFAR-10/100, Tiny-ImageNet, and ImageNet, over VGG16/19, ResNet(RN)-
18/34/50/56/101, and WRIN28-10. Unless noted, we compute the once-only saliency once per back-
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Figure 2: Accuracy vs. sparsity across datasets and architectures. YOPO the once-only, data-free YOPO
tracks the best methods at moderate pruning and maintains a clear margin at high sparsity (> 90%), out-
performing single-shot baselines (SNIP, GraSP, SynFlow, Magnitude @Init) while remaining competitive with
ProsPr under extreme compression.

Table 1: Zero-shot Pal comparison under extreme sparsity.} Top-1 accuracy (%) at the indicated budgets. All
methods are data-free at initialization.

VGG16 VGG16 RN18 RN34 RN50 RNI101 RN50
Method Topology / Notes C10 C100 Tiny-ImagNet ImageNet
Unpruned Baseline 94.24 74.16 53.88 57.08 60.13  61.29 68.69
Sparsity (%) 96.38 99.22 96.38 99.22 9655 97.77 8576 9148 85.76
Random random 913 8581 6658 5698 44.02 4734 4677 49.05 51.48
X-Net d-left-regular 91.38 86.06 66.81 56.69 42.69 4697 4536 49.47 52.63
RReg d-regular 915 87.02 67.72 59.61 443 463 4827 51.21 54.26
YOPO Low Rank residual 93.04 89.71 69.1 6323 504 52.02 53.51 51.1 64.9

bone at initialization and obtain any target budget by MORT; all pruned models are trained from
scratch with the same optimizer, schedule, augmentation, and epochs across methods. We compare
against standard single-shot and zero-shot Pals baselines-SNIP (Lee et al., 2019), GraSP (Wang
et al.,, 2020), SynFlow (Tanaka et al., 2020), Magnitude@init, X-Net (Prabhu et al., 2018),
RReg (Stewart et al., 2023), and a within-layer Random mask-and report Top-1 accuracy and pa-
rameter counts at matched global sparsities; further protocol details, hyperparameters, and ablations
appear in Appendix §F.

Why low-rank residual outperforms expander graphs. Expander masks encode strong fopolog-
ical priors that preserve signal flow at extreme sparsities, explaining their advantage over random
wiring (Stewart et al., 2023; Friedman, 2008; Hoory et al., 2006). However, degree constraints treat
all coefficients uniformly and cannot provide fine-grained selection within a layer. YOPO instead
defines an element-wise, data-/gradient-free saliency: absolute weights are approximated by a non-
negative low-rank template, and the Frobenius residual highlights informative connections while
discarding redundant ones. This yields two structural benefits: (i) exact budget control and nested
survivor sets via monotone re-thresholding (Proposition 2), and (ii) guaranteed per-neuron survival
through NMF positivity (Proposition 3).

Empirically, these properties translate into consistent gains over expander baselines. At matched
ultra-high sparsities, YOPO improves accuracy on VGG-16 (CIFAR-10/100, Tiny-ImageNet) and
ResNet-34 (Tiny-ImageNet), and shows a clear zero-shot margin on ImageNet ResNet-50 (Table 1).
Despite using no data or gradients, YOPO remains competitive with iterative and data-dependent
Pal: on ResNet-50/ImageNet, reusing the Tiny-ImageNet recipe, YOPO reaches 64.3/85.5 (Top-
1/Top-5) at 90% and 58.5/81.6 at 95% sparsity (Table 5). Accuracy-sparsity curves (Fig. 2) confirm
that YOPO consistently surpasses Random and Magnitude and matches or exceeds SNIP/GraSP at
high sparsities, with tight mean4-std bands reflecting stable training.

Budget reuse and dataset transfer. YOPO decouples ordering from budget: once the saliency
S@ is computed, every sparsity level follows by simple re-thresholding no rescoring. The in-
duced ranking is invariant to positive rescaling and respects convolutional re-indexings (Lem. 1,
Lem. 2), enabling the same “supermask™ to carry across seeds and datasets. This achieves the
transferability objective as defined in equation 5. Emmpirically, a single backbone saliency sus-
tains accuracy across {50, 70, 80,90, 95, 98}% sparsities (Table 3), while cross-dataset gaps (DTI;
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Table 2: Mask transfer across datasets at fixed sparsity budgets. Note: The transferability is measured in
DTI, Definition 1. Columns show per-dataset DTI and two summaries: mean DTI and worst absolute DTI.

Model  #Params p C10 C100 TinyIN Mean Worst [DTI]

VGG16 14M 090 -0.10 -0.05 —-0.09 —0.08 0.10
VGG19 20M 090 —0.12 0.08 0.04 0.00 0.12
RN18 11M 0.90 0.01 —-0.02 0.12 0.04 0.12
RN34 21IM 0.90 0.14 —0.06 0.01 0.03 0.14
VGG16 14M 0.95 0.07 -040 -0.21 —-0.18 0.40
VGG19 20M 095 —0.06 0.10 —-0.18 —0.05 0.18
RN18 11M 0.95 0.11 0.02 -0.11 0.01 0.11
RN34 21IM 0.95 0.02 0.03 —-0.07 —0.01 0.07

Table 3: Mask transfer across sparsity levels. Top-1 accuracy (%) on CIFAR-10/100 for VGG19 and
WRN28-10. Note: Saliency is computed once per backbone and re-thresholded to each target sparsity without
rescoring.

Sparsity level (% zeros)
50% 70% 80% 90% 95%  98%

20M CIFAR-10 93.61 93.60 93.90 9340 93.80 93.50 93.10
CIFAR-100 71.60 72.83 73.07 7277 7276 71.02 69.80

3™ CIFAR-10 96.40 9726 96.85 96.79 96.83 9538 94.81
CIFAR-100 80.70 80.79 81.06 80.77 80.75 79.07 77.89

Model #Params Dataset Unpruned

VGG19

WRN28-10

Def. 1) concentrate near zero at p € {0.90,0.95} (Table 2), implying that under a fixed initialization
Mgo(p) = Mgt (p). Initialization robustness is consistent with near-zero I (Def. 2), as reflected by
the small cross-seed gaps in Table 4.

Ablations and stability. YOPO remains robust across thresholding schemes, low-rank choices,
and initialization seeds, with MAD thresholds, small ranks (r € {3,4,6}), and standard inits
all yielding stable accuracy-sparsity frontiers. Detailed analyses and figures are provided in Ap-
pendix D.

5 CONCLUSION

We introduced YOPO, a zero-shot, data/gradient-free Pal method that computes a once-only
saliency from nonnegative low-rank residuals and converts it into masks via robust thresholds
with exact budget control (MORT). This design separates parameter ordering from sparsity bud-
get, yielding nested, re-thresholdable masks that transfer across datasets and seeds without restor-
ing, supported empirically by near-zero DTI and I3, and theoretically by our monotonicity and
collapse-avoidance results. Across CIFAR-10/100, Tiny-ImageNet, and ImageNet, YOPO matches
or surpasses strong single-shot Pal baselines and remains competitive with iterative/data-dependent
methods, despite using no data at initialization. Notably, YOPO consistently and substantially out-
performs SOTA methods such as expander-graph, zero-shot Pals etc., indicating that parts-based
low-rank residuals provide finer, more informative selection than topology-only degree constraints.

Limitations & Outlook. Gaps to the very best iterative/data-driven approaches on large-scale tasks
and sensitivity at ultra-extreme sparsities remain; both are promising targets for improved calibration
and schedule tuning. Future work will pursue principled structured speedups, tighter theory for
transfer across domains, and scaling to larger architectures. Overall, YOPO reframes Pal as prune
once, reuse many, a practical route to deployable sparsity with minimal initialization compute.

6 REPRODUCIBILITY CHECKLIST

* Code: https://anonymous.4open.science/r/YOPO-7F95/


https://anonymous.4open.science/r/YOPO-7F95/
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* Code will include: once-only saliency computation, MORT calibration (global/local), survival
constraints, transferability across dataset and sparsity budgets.

* Exact seeds and splits; versions of PyTorch/CUDA; GPU model(s).
* Full hyperparameters and training scripts for each backbone.

* Clear instructions to regenerate tables/plots.

FLOP/#Param computation script.

REFERENCES

Yue Bai, Huan Wang, Zhigiang Tao, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis, 2022.
URL https://arxiv.org/abs/2203.04248.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEFE Transactions on Pattern Analysis
and Machine Intelligence, 2024. URL https://arxiv.org/abs/2308.06767. Early
Access; see also arXiv:2308.06767.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 2943-2952. PMLR,
2020. URL https://proceedings.mlr.press/v119/evci20a.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJ1-b3RcF7.

Joel Friedman. A proof of alon’s second eigenvalue conjecture and related problems. Memoirs of
the American Mathematical Society, 195(910):1-100, 2008. doi: 10.1090/memo/0910. preprint
2003; published 2008.

Shlomo Hoory, Nathan Linial, and Avi Wigderson.  Expander graphs and their applica-
tions. Bulletin of the American Mathematical Society, 43(4):439-561, 2006. doi: 10.1090/
50273-0979-06-01126-8.

Siddhant M. Jayakumar, Razvan Pascanu, Jack W. Rae, Simon Osindero, and Erich Elsen. Top-
KAST: Top-k always sparse training. arXiv preprint arXiv:2106.03517, 2021. URL https:
//arxiv.org/abs/2106.03517.

Tanishq Kumar, Kevin Luo, and Mark Sellke. No free prune: Information-theoretic barriers to prun-
ing at initialization. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 25662-25681. PMLR, Jul 2024. URL https://proceedings.mlr.press/v235/
kumar24a.html.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 5544-5555. PMLR, 2020. URL https://
proceedings.mlr.press/v119/kusupati20a.html.

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factor-
ization. Nature, 401(6755):788-791, 1999. doi: 10.1038/44565.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In Ad-
vances in Neural Information Processing Systems, volume 13, pp. 556562, 2001.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=B1VZgjAcYX.

10


https://arxiv.org/abs/2203.04248
https://arxiv.org/abs/2308.06767
https://proceedings.mlr.press/v119/evci20a.html
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/2106.03517
https://arxiv.org/abs/2106.03517
https://proceedings.mlr.press/v235/kumar24a.html
https://proceedings.mlr.press/v235/kumar24a.html
https://proceedings.mlr.press/v119/kusupati20a.html
https://proceedings.mlr.press/v119/kusupati20a.html
https://openreview.net/forum?id=B1VZqjAcYX

Under review as a conference paper at ICLR 2026

Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu,
Minghai Qin, Sijia Liu, Zhangyang Wang, and Yanzhi Wang. Sanity checks for lottery tickets:
Does your winning ticket really win the jackpot? In Advances in Neural Information Process-
ing Systems, volume 34, 2021. URL https://papers.nips.cc/paper/2021/hash/
6al130f1dc6£f0c829£874e92e5458dced-Abstract.html.

Emanuele Natale, Davide Ferre, Giordano Giambartolomei, Frédéric Giroire, and Frederik
Mallmann-Trenn. On the sparsity of the strong lottery ticket hypothesis. arXiv preprint
arXiv:2410.14754,2024. URL https://arxiv.org/abs/2410.14754.

Hoang Pham, The-Anh Ta, Shiwei Liu, Lichuan Xiang, Dung D. Le, Hongkai Wen,
and Long Tran-Thanh. Towards data-agnostic pruning at initialization: What makes a
good sparse mask? In Advances in Neural Information Processing Systems (NeurlPS),
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/fd5013ea0c3f96931dec77174eaf9d80-Paper—Conference.pdf.

Ameya Prabhu, Girish Varma, and Anoop Namboodiri. Deep expander networks: Efficient deep net-
works from graph theory. In The European Conference on Computer Vision (ECCV), September
2018.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with contin-
uous sparsification. In Advances in Neural Information Processing Systems, vol-
ume 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
83004190b1793d7aal5£8d0d49%al3eba-Abstract.html.

Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Alliot Nagle, Hongyi Wang, Eric
Xing, Kangwook Lee, and Dimitris Papailiopoulos. Rare gems: Finding lottery tickets at ini-
tialization. In Advances in Neural Information Processing Systems (NeurIPS), 2022. URL
https://arxiv.org/abs/2202.12002. arXiv:2202.12002.

James Stewart, Umberto Michieli, and Mete Ozay. Data-free model pruning at initial-
ization via expanders. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pp. 4518-4523. IEEE, 2023. doi:
10.1109/CVPRW59228.2023.00475. URL https://openaccess.thecvf.com/
content /CVPR2023W/ECV/html/Stewart_Data-Free_Model_Pruning_at_
Initialization_via_Expanders_CVPRW_2023_paper.html.

Juntang Su, Xinyang Wang, and Stefano Ermon. Sanity-checking pruning meth-
ods: Random tickets can win. In Advances in Neural Information Processing Sys-
tems, volume 33, 2020. URL https://papers.nips.cc/paper/2020/hash/
eae27d77ca20db309e056e3d2dcd7d69—-Abstract.html.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Advances in Neural Information Pro-
cessing Systems, volume 33, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/46a4378£835dc8040c8057bebba2dab2—-Abstract.html.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgsACVKPH.

Huan Wang, Can Qin, Yue Bai, Yulun Zhang, and Yun Fu. Recent advances on neural net-
work pruning at initialization. In Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence (IJCAI), pp. 5638-5645, 2022. doi: 10.24963/ijcai.2022/786. URL
https://www.ijcai.org/proceedings/2022/786.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G Baraniuk,

Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Towards more efficient training
of deep networks. arXiv preprint arXiv:1909.11957, 2019.

11


https://papers.nips.cc/paper/2021/hash/6a130f1dc6f0c829f874e92e5458dced-Abstract.html
https://papers.nips.cc/paper/2021/hash/6a130f1dc6f0c829f874e92e5458dced-Abstract.html
https://arxiv.org/abs/2410.14754
https://proceedings.neurips.cc/paper_files/paper/2023/file/fd5013ea0c3f96931dec77174eaf9d80-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fd5013ea0c3f96931dec77174eaf9d80-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2020/hash/83004190b1793d7aa15f8d0d49a13eba-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/83004190b1793d7aa15f8d0d49a13eba-Abstract.html
https://arxiv.org/abs/2202.12002
https://openaccess.thecvf.com/content/CVPR2023W/ECV/html/Stewart_Data-Free_Model_Pruning_at_Initialization_via_Expanders_CVPRW_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023W/ECV/html/Stewart_Data-Free_Model_Pruning_at_Initialization_via_Expanders_CVPRW_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023W/ECV/html/Stewart_Data-Free_Model_Pruning_at_Initialization_via_Expanders_CVPRW_2023_paper.html
https://papers.nips.cc/paper/2020/hash/eae27d77ca20db309e056e3d2dcd7d69-Abstract.html
https://papers.nips.cc/paper/2020/hash/eae27d77ca20db309e056e3d2dcd7d69-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://openreview.net/forum?id=SkgsACVKPH
https://www.ijcai.org/proceedings/2022/786

Under review as a conference paper at ICLR 2026

APPENDIX

A COLLAPSE AVOIDANCE: POSITIVITY & ROBUST THRESHOLDS

We formalize conditions under which YOPO avoids neuron/row collapse in a single shot. Recall
S — |W(€) — V(K)H(Z)| € R‘;"'OX de 7e(c) is a robust layer-wise threshold (MAD or STD), and
M®(a) =1[S® > 7y(a)] is the binary mask. Let Si(,é) denote the i-th row of S() and || - || the
max norm.

Proposition 3 (Row survival under positive reconstruction). Fix a layer {. Suppose W® > 0 and
VOH® > 0. If a row i satisfies Wi(,g) + (V(E)H(é))i,, then ||S,§,£)|\oo > 0. Consequently, for any
threshold T, with 7, < ||Si(,€) llco we have Z;li 1 Mi(f) > 0, i.e., row i retains at least one nonzero
parameter.

Discussion. Positivity eliminates sign cancellation: any coordinate-wise mismatch between Wi(.e)
and its nonnegative reconstruction must manifest as a strictly positive residual on that coordinate,
guaranteeing a nonzero max-residual. Thus, whenever the chosen layer threshold lies below this

max-residual, the row cannot vanish. In practice, (i) exact equality Wi(.é) = (VOH (Z))i. is a
measure-zero event under continuous random initializations and finite-rank NMF; (1) we adopt strict

inequality in the mask, Mi(jz) = 1[5 52

i > 7¢], to break ties; and (iii) we enforce a minimal per-row
keep:

dy
STMY > i (typically mp, € {1,2}), (15)

j=1
which acts as a deterministic safeguard even in degenerate numerical cases. We provide the proofs
in Appendix A.1.

Corollary 1 (No layer collapse). If at least one row i satisfies Wi(,e) # (V(E)H (Z))i' and T, <

max; |\Sf?)||oo, then 3, . Mij[) > 0, i.e., the layer retains parameters. Furthermore, with the

constraint equation 15, every row retains at least my;, entries.

Practical instantiation. Because $(«) is monotone in «, bisection selects « to meet a feasible global

budget; empirical ranges of « that achieve s € [0.1,0.99] invariably satisfy 7, < max; ||Sl(e)|\OO
unless S = 0 (an event tantamount to perfect NMF reconstruction, Propositionl). In rare near-
degenerate cases, the explicit mp,;, rule guarantees row survival.

A.1 PROOFS FOR SECTION A

We collect elementary lemmas used in the proof. All vectors/matrices are real and nonnegative
where stated. For a vector z, ||| o = max; |z,|; for a matrix A, A;. denotes the i-th row.

Lemma 3 (Positive mismatch implies positive max-residual). Let z, 3 € R, and define s = |v— 3|
elementwise. If © # , then ||s||cc > 0.

Proof. If x # Z, there exists j* with 2« # Z;+. Then |2+ —Z;«| > 0, hence ||s|| o0 > |2 jx —&;«| >
0.

Lemma 4 (Row-wise residual positivity for NMF reconstructions). Fix a layer { and let W) &
R, VOO ¢ R2X p WD % (VOHO) | then || |[W — (VOH®), ||| > 0.

Proof. Apply Lemma 3 with z = W*) and & = (VO H®),.. O

Lemma 5 (Strict-threshold survival). Let s € R, and T > 0. If 7 < ||s]|cc and the mask is defined
bym; = 1[s; > 7|, then Z?Zl m; > 1.
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Proof. Let j* € argmax; s;; then s+ = ||s|loc > 7, 50 Mjx = 1. O

Proof of Proposition 3. Fix arow 4. If Wi(,e) # (VOH®), | then by Lemma 4, Si(o lloo > 0. For
any 7y < HSi(,L])HDO, Lemma 5 with s = Si(_e) ensures ) _ Mi(f) =2, l[Si(f) > 1) > 1. O

On degeneracy and probability-one statements. If W) = (V) H®) exactly, then S) = 0
and any 7, > 0 yields M = 0. Under continuous random initializations and finite rank
re¢ < min(oy, dy), the event of exact equality has Lebesgue measure zero (heuristically, it requires
solving a system of polynomial equalities oyd, constraints with only r,(oy + dp) degrees of free-
dom). In practice, finite-precision multiplicative updates do not produce exact equality, and our
implementation additionally enforces equation 15, guaranteeing per-row survival regardless of nu-
merical coincidences.

Table 4: Initialization-Independence Index (I%) at 90% sparsity on VGG19. Seeds correspond to different
random initializations used to construct YOPO masks via the once-only saliency. For each dataset D and
seed s, we report the own-initialization pruned Top-1 accuracy (Accser). Since I°(D, p) (Def. 2) requires
cross-seed evaluation (apply the mask from seed s to a different initialization), we additionally show a proxy

cross-seed accuracy, Acciseed, computed as the leave-one-out mean of Accer across the other seeds; the proxy

gap Ay = AcCgert — AcciSeed summarizes seed sensitivity (smaller is better). Exact I® is obtained by replacing
Acc,]:Seed with the empirical mean over actual cross-seed transfers; we report that in the appendix when those
runs are completed.

Seed value AcCgelr Acc:[ d Ay Notes
Dataset Seed (ID) (%) % 5)ee (%)
A 42 72.80 72.35 0.45
B 52 72.50 72.43 0.08
CIFAR-100 C 62 72.10 72.53 —0.43
D 72 72.30 72.48 -0.18
E 82 72.50 72.43 0.08
Mean =+ Std (Accgerr) 72.44 £ 0.26 Mean|A¢| = 0.24
A 42 93.80 93.50 0.30
B 52 93.40 93.60 —0.20
CIFAR-10 C 62 93.70 93.53 0.18
D 72 93.10 93.68 —0.58
E 82 93.80 93.50 0.30
Mean = Std (Accgerr)  93.56 4= 0.30 Mean|A¢| = 0.31

Choice of threshold and ties. We adopt a strict indicator l[Si(f) > 74| to avoid ambiguity when
an entry equals the threshold. For robust thresholds (median/MAD or mean/STD), 7, < max; ; Sif)
whenever S is not constant, ensuring that at least some entries (and often each nontrivial row)
survive without resorting to the m,,;, safeguard.

B RELATED WORK

Pal stems from the Lottery Ticket Hypothesis (LTH), which showed that dense networks contain
sparse subnetworks trainable from their initial weights (Frankle & Carbin, 2019). Single-shot Pal
criteria such as SNIP, which scores data-dependent connection sensitivity via loss derivatives (Lee
et al., 2019), and GraSP, which preserves gradient flow through a Hessian—gradient surrogate (Wang
et al., 2020), avoid iterative pruning but remain tightly coupled to data and seeds. SynFlow intro-
duces a conservation principle that avoids layer collapse through iterative, data-free scoring (Tanaka
etal., 2020). Related work in dynamic sparse training (DST) maintains sparsity during optimization,
as in STR (Kusupati et al., 2020), Top-KAST (Jayakumar et al., 2021), Continuous Sparsification
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Table 5: Test accuracies of ResNet-50 on ImageNet. YOPO is the only zero-shot, data/gradient-free Pal among
these—computed once at initialization without labels or backprop—yet performs competitively with iterative
or data-dependent Pals.

ResNet-50
Sparsity 90% 95%
Accuracy Top-1 Top-5 Top-1 Top-5
Unpruned Baseline 75.6 92.8 - -
YOPO (ours) 6431 8548 585 81.63
ProsPR 66.86 87.88 59.62 82.82
FORCE 64.9 86.5 59.0 82.3
Iter-SNIP 63.7 85.5 54.7 78.9
GraSP-MB 65.4 86.7 46.2  66.0
SNIP-MB 61.5 83.9 44.3 69.6
Random 64.6 86.0 572 80.8

Note. Due to compute constraints on ImageNet, we reused the Tiny-ImageNet hyperparameters (k=14, T=300)
without per-dataset tuning or budget-specific sweeps. We expect further gains for YOPO with
ImageNet-specific calibration.

(Savarese et al., 2020), and RigL (Evci et al., 2020), though all rely on gradients. Orthogonal to
saliency, connectivity priors such as expander-style d-regular masks achieve strong propagation and
resilience at extreme sparsities (Stewart et al., 2023; Friedman, 2008; Hoory et al., 2006), while
score-optimization methods like GEM-MINER (Sreenivasan et al., 2022) learn supermasks rivaling
prune-after-train but require labels and costly score training.

More recent work critiques Pal from multiple angles. Topology-guided, data-agnostic perspectives
aim to decouple pruning from dataset statistics (Pham et al., 2023), while sanity checks show many
reported gains collapse under controls such as mask reinit or score inversion (Su et al., 2020; Ma
etal., 2021). Information-theoretic analyses formalize when data-free Pal can succeed (Kumar et al.,
2024), and sharpened LTH variants (Natale et al., 2024) together with surveys (Cheng et al., 2024;
Wang et al., 2022) synthesize open challenges. Within this landscape, YOPO follows a single-
shot, data/gradient-free path based on nonnegative low-rank reconstruction residuals (Lee & Seung,
1999; 2001): unlike gradient-based Pal it requires no data, unlike SynFlow it is non-iterative, and
unlike expanders it selects coefficients by residuals rather than degree, targeting collapse avoidance,
transferability, and mask reuse via re-thresholding.

C ADDITIONAL RESULTS TABLES

D ABLATIONS AND STABILITY

We ablate thresholding, factorization rank, and initialization. Thresholding. Replacing 7¢(c) with
MAD-based thresholds in Egs. equation 10-equation 11, either globally or per-layer, produces
nearly identical accuracy-sparsity frontiers at moderate budgets, with only small dataset-dependent
deviations at extreme sparsities. We therefore adopt MAD as the default due to its robustness under
heavy-tailed residuals. Rank. Sweeping the NMF rank r (§3.2, §D) reveals that accuracy remains
flat across small values (r € {3,4,6}). YOPO-G consistently outperforms YOPO-L at fixed (r, s),
reflecting the advantage of global calibration in adapting to cross-layer residual statistics. The ef-
fect of 7 on once-only saliency distributions appears in Fig. 3b, with corresponding accuracy trends
(VGG-16, CIFAR-100, s=0.9) in Fig. 3a and the combined panel of Fig. 3. Initialization. YOPO
exhibits strong seed-stability: at s=0.9, CIFAR-10/100 show negligible gaps across Normal, Xavier-
normal, and Kaiming-uniform schemes (Table 7). This behavior aligns with our Definition 2 and is
guaranteed by the collapse-safety results of Proposition 3 and Corollary 1.

NMF rank. We sweep rp € {2,3,4,6,8,10}; accuracy is typically flat in [3, 6] with minor vari-
ance changes. Very large 7, reduces residual contrast (less informative saliency) Figure 3.
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Table 6: ResNet-56 on CIFAR-10/100 at multiple sparsity levels. Top-1 accuracy (%) as mean =+ std over
seeds. Best and second-best per column (within each dataset block) are bold and italic, respectively. Dense

baselines: CIFAR-10 = 93.50%, CIFAR-100 = 72.54%.

ResNet-56 + CIFAR-10

Sparsity 50% 70% 90 % 95% 98 %

LTH Frankle & Carbin (2019) 92.67+0.25 91.88+0.35 89.78 £0.35 88.05+0.50 83.85+0.55
LTH Iter-5 Frankle & Carbin (2019) 92.68 4+ 0.39 92.50 +0.15 90.24 +0.27 88.10 £0.36 83.91 £0.15
EB You et al. (2019) 92.76 £0.21 91.61 £0.60 89.50 £ 0.60 88.00+0.38 83.74 £0.35
Scratch 9249+ 035 92.14+£0.27 89.89 £0.12 87.41 £0.31 82.71 £0.40
GraSP Wang et al. (2020) 91.82+0.25 90.85+0.28 89.93 +£0.20 88.42+0.30 84.16+0.15
RST Bai et al. (2022) 9234+ 0.12 9227 £0.24 90.41 £0.05 88.24 +0.08 83.77 £ 0.47
RST Iter-5 Bai et al. (2022) 9341 £0.16 92.67 £0.02 90.43+0.21 88.40+0.14 83.97 £ 0.09
YOPO-G (M) 93.10+0.16 92.85+0.03 91.83 £0.06 89.52 + 0.14 87.70 £+ 0.15
YOPO-L (S) 93.44 + 0.06 93.09 +£0.21 90.15£0.21 89.37+0.03 8582=+0.16

ResNet-56 + CIFAR-100

Sparsity 50% 70% 90 % 95 % 98 %

LTH Frankle & Carbin (2019) 69.95 £ 047 6824 £0.60 65.66+0.47 60.97 +0.30 52.77 + 0.44
LTH Iter-5 Frankle & Carbin (2019) 70.57 £0.15 69.54 £0.46 64.84 £0.11 60.45 £ 0.61 53.83 +0.09
EB You et al. (2019) 70.27 £0.59 69.16 =036 64.01 £0.42 60.09+0.33 53.14 £ 1.04
Scratch 70.96 +£0.25 6839 £0.35 64.62+0.52 59.93+0.24 50.80 £ 0.55
GraSP Wang et al. (2020) 67.98 £0.15 6738 £0.25 6421 £0.25 59.39+£0.25 45.01 £0.25
RST Bai et al. (2022) 71.13 £ 048 69.85+0.23 66.17 £0.18 61.66 +0.37 54.11 +£0.37
RST Iter-5 Bai et al. (2022) 7139+ 034 7048 £0.19 65.65£0.15 61.71 £0.36 54.46 £ 0.32
YOPO-G (M)* 71.58 £0.16 70.90+0.09 68.61 +£0.19 61.35£0.12 59.07 £+ 0.26
YOPO-L (S)* 71.85£0.21 71.08 £ 0.13 68.53 £0.06 61.81 +0.26 52.74 £0.18

Table 7: Robustness to initialization at global sparsity s = 0.90. Top-1 accuracy (%) reported as mean =+ std

over seeds.

Initialization CIFAR-10 CIFAR-100
(%) (%)
Normal 93.80 £ 0.30 73.60 £ 0.20
Xavier normal 93.29 £ 0.20 72.09 £ 0.30
Kaiming uniform 93.68 +0.30 73.15+£0.25

Thresholding scheme. MAD vs. STD: MAD is more stable at s > 0.9 (heavy-tailed residuals).

STD can be competitive at moderate sparsities.

Minimal keeps. mpui, = 1 prevents collapse; mpyin > 10 slightly stabilizes very deep nets at
5$=0.95. Column keep (cnin) is usually unnecessary.

Per-channel vs. full-layer NMF. Per-channel NMF reduces preprocessing time with similar rank-
ings and accuracy; see per-backbone comparisons.

E IMPLEMENTATION DETAILS AND REPRODUCIBILITY

Environment. PyTorch 2.x, CUDA 11+/12+, single A100 or RTX 3090. Random seeds fixed
per run (data-loader, PyTorch, NumPy). AMP enabled for training; NMF preprocessing runs on

CPU or GPU (whichever is idle).

Baselines. We reproduce SNIP, GraSP, and SynFlow from official or widely used reference code
(matching their scoring hyperparameters) but always train with our shared recipe (optimizer, sched-
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(a) Impact of low-rank k on YOPO-L vs. YOPO-G test accuracy (VGG-16, CIFAR-100, 90% sparsity).
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(b) Distribution of YOPO saliency scores across VGG-19 layers for different low-rank settings k (with 7" =
200).

Figure 3: Effect of low-rank parameter £ on saliency and accuracy. (a) Higher ranks lower median saliency
and reduce spread across VGG-19 layers, indicating improved low-rank approximation; later layers show
higher, more variable saliency. (b) YOPO-G outperforms YOPO-L by ~2-3.5% across ranks under 90% spar-
sity on CIFAR-100, with both stable across k.

ule, epochs). For SNIP/GraSP we use a single scoring batch (size 1024 when feasible); for SynFlow
we run K=100 pruning steps to the target s.

Reporting. All tables report mean + std over 3 seeds. We release code, seeds, and masks, and
provide per-layer sparsity profiles and raw logs.
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(a) Paired scatter plots comparing MAD vs. STD pruning accuracy for YOPO-G on CIFAR-10 (left) and
CIFAR-100 (right). Each point corresponds to a sparsity setting, annotated by percentage. Points above the
y = « dashed line indicate superior MAD performance; points below favor STD.
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(b) Absolute accuracy (top) and A = MAD — STD accuracy (bottom) across sparsity levels. CIFAR-100 (left)
shows near parity with a slight STD edge at extreme sparsity, while CIFAR-10 (right) consistently favors MAD.
Dashed lines mark dense baselines.

Figure 4: Comparison of MAD vs. STD thresholding for YOPO-G. (a) Scatter plots show MAD slightly
outperforming STD at higher sparsities, especially on CIFAR-10. (b) Accuracy trends and A plots confirm that
MAD is competitive on CIFAR-100 and provides a small but consistent robustness advantage on CIFAR-10.

F EXPERIMENTAL DETAILS

Benchmarks and architectures.
and ImageNet-1k,

across VGG16/19

We assess YOPO on CIFAR-10/100, Tiny-ImageNet,
(both CIFAR-style and ImageNet-style variants),

RN18/34/56/50/101, and WRN28-10. Unless stated, one once-only saliency is computed per back-
bone and re-thresholded for all sparsity budgets.
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Datasets. CIFAR-10/100 use the standard split (50k train, 10k test). For early diagnostics only, we
carve a 5k validation set from training and then retrain on the full 50k for final reports on the 10k test.
Tiny-ImageNet contains 100k training images over 200 classes at 64 x 64 resolution; we follow the
official 10k validation split. ImageNet-1k uses the standard 1.28M/50k train/val split at 224 x 224
resolution. Due to a single-GPU budget, we reuse the Tiny-ImageNet YOPO hyperparameters on
ImageNet (no dataset-specific tuning), as discussed in §4.

Preprocessing and augmentation. For CIFAR-10/100, we apply per-channel mean/std normal-
ization (from the training set), random 32x32 crops with 4-pixel reflection padding, and random
horizontal flips (p = 0.5). For Tiny-ImageNet, we use per-channel normalization, random resized
crops to 64x64, and horizontal flips (p = 0.5). For ImageNet, we use the common resized-crop
to 224 x 224 (scale [0.08, 1.0], aspect ratio [3/4, 4/3]), horizontal flips (p = 0.5), and center-crop at
evaluation. Unless otherwise noted, we do not employ Cutout, Mixup, or label smoothing; ablations
with these are in §D.

Training protocol. All pruned models are trained from scratch under a shared recipe per dataset
family. For CIFAR-10/100: SGD with momentum 0.9, weight decay 5 x 10~%, cosine schedule
over 200 epochs (no warmup), initial LR 0.1 for VGG/ResNets and 0.2 for WRN28-10, batch size
128, mixed precision (AMP) enabled. For Tiny-ImageNet: same optimizer, 200 epochs, batch size
256, initial LR 0.2, cosine decay, AMP. For ImageNet: we reuse the Tiny-ImageNet recipe with
input size 224 and batch size 256 (accumulation when required), 100 epochs, initial LR 0.1, StepLR
decay, AMP; no hyperparameter tuning beyond this reuse.

Calibration and masking. Once-only saliency S*) is computed with Euclidean NMF (1, €
{3,5,7,14}; default 7 for VGG, 7 for ResNets/WRN) for =200 multiplicative-update steps and
14 for ImageNet-1k. Thresholds use MAD by default (STD in an ablation), with min_keep row
constraint to avoid collapse. YOPO-G (global) selects a single « via bisection (MORT) to match
the target global sparsity; YOPO-L (local) matches equal per-layer ratios. No data or gradients are
used during saliency computation.

Evaluation. We report Top-1 accuracy and parameter counts at matched global sparsities s €
{0.5,0.7,0.8,0.9,0.95,0.98}, averaging over multiple seeds where indicated. Transferability
is quantified by the Dataset-Transfer Index (DTI; Def. 1) and initialization robustness by the
Initialization-Independence Index (I%; Def. 2). Complete hyperparameters, per-architecture ranks
¢, and additional ablations (threshold type, per-channel vs. full-layer NMF, min_keep sensitivity)
appear in §F-§D.

Training recipe (shared across all methods). SGD with momentum 0.9, weight decay 5x 104,
batch size 128, cosine learning-rate schedule from 0.1 to 0 for 200 epochs. We use automatic mixed
precision (AMP) and gradient masking to freeze pruned weights:

VWO v o unflat(M ).

Unless otherwise noted, we do not use warmup or label smoothing. @ Random seeds:
{42,52,62,72,82}.

Hardware and software. PyTorch (1.12+), CUDA 11+, cuDNN 8+. Experiments are run on mod-
ern NVIDIA GPUs. We log wall-clock for saliency computation (NMF), training, and calibration;
see §C.

G YOPO IMPLEMENTATION DETAILS

Saliency construction (once-only). For each convolutional or linear prunable layer ¢, we flatten
to W = |flat(W®))| € R% " and compute an NMF with rank r:

min WO - vORO|2
V>0, H® >0 F
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Multiplicative updates (with e = 10~ in denominators) for T'=200 iterations; initialization via
nonnegative SVD or Uniform[0, 1]. We optionally normalize W) by median(WW () + € prior to
NMF and use the residual saliency S(*) = |W(€) —VOH® ’

Thresholding and calibration. Layerwise robust threshold
7¢(a) = median(S®) + a MAD(S),

mask M (a) = 1[S® > 74(a)] (strict comparison). YOPO-G uses a single  found by bisec-
tion to achieve target s within +0.1%; monotonicity of §(«) ensures convergence in O(log(1/¢))
iterations. YOPO-L chooses oy to meet per-layer ratios sy.

Survival constraints and ties. We enforce per-row and optional per-column keeps:

Z Ml(f) Z Mmin, Z Ml(f) Z Cmin (mmin € {15 2}5 Cmin6{07 1})
J 7

We use strict inequality (>) in masking; infinitesimal jitter may be added to S for deterministic
tie-breaking.

Complexity and Practical Considerations For layer ¢ with W e R2*d one NMF run with
rank r, and 7" multiplicative-update iterations costs

@(T reopdy)  per layer.

Since 7, is small (e.g., 2-8) and the saliency is computed only once, the overhead is modest relative
to training. Bisection in « converges in O(log(1/¢)) steps to sparsity tolerance . Heuristics. (i)
initialize (V, H) with nonnegative SVD seeds or i.i.d. Uniform[0, 1]; (ii) prefer MAD thresholds at
high sparsity; (iii) optionally factor each output channel separately to reduce NMF matrix sizes; (iv)
normalize per layer prior to NMF for scale stability.

Per-channel NMF (speed optimization). A fast variant factors each output row independently
(rank r=1 by default), which reduces matrix sizes and preprocessing time with similar rankings; see
§D.

MORT: Monotone Re-Thresholding for Exact Sparsity (Global or Layerwise). Let S() =
{Si(e)} be YOPO’s once-only saliency for layer £ and 7¢(cr) = median(S¥)) + o MAD(S®) (resp.
mean/STD) the robust threshold. Because 7¢(«) is nondecreasing in o and M) (a) = 1[S®) >
7e()] is pointwise nonincreasing, the achieved sparsity $(«) is monotone (nondecreasing) in «
under both global and layerwise calibration. Thus any feasible budget s* € [0, 1] is attained to

tolerance € by bisection in O(log(1/¢)) evaluations while preserving the nested mask property
M(ag) < M(ay) for ag > .

Observed calibration behavior (YOPO-G vs. YOPO-L). Our experiments indicate the follow-
ing qualitative patterns (consistent with prior reports that global budgets often preserve accuracy
better than rigid per-layer quotas):

1. Accuracy at fixed s. YOPO variants across various sparsity profiles are illustrated in Figure
la. YOPO-G tends to achieve slightly higher accuracy than YOPO-L at the same global target
sparsity. Global calibration allows layers with intrinsically higher residual statistics to retain
more parameters, improving overall capacity where the saliency indicates greater necessity.

2. Sparsity profile across depth. YOPO-L with the equal-ratio policy maintains nearly uniform
sparsity across layers (sy = s), which can be desirable for hardware constraints or fair per-layer
comparison. In contrast, YOPO-G prunes less in early layers and more in later layers: early
convolutional blocks typically exhibit larger residuals (edges/low-level templates are less well
captured by small-rank additive factors), so their entries more often exceed 7;(«c) and survive.
This naturally recovers the widely observed heuristic that early layers warrant gentler pruning,
without hand-crafted per-layer schedules. A heatmap of layerwise vs. global sparsity is depicted
in Figure 1b.
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Layerwise Sparsity Progression: YOPO-L vs YOPO-G
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Figure 5: Layerwise Sparsity Allocation: YOPO-L vs. YOPO-G. Figure X presents the layerwise sparsity
distribution for VGG19 under YOPO-L (solid) and YOPO-G (dashed) across target sparsities from 50% to 98%.
Each curve shows the percentage of pruned weights per convolutional layer (£ . O through £ . 49), revealing how
pruning pressure is allocated through depth. YOPO-L applies nearly uniform pruning across layers (flat curves),
whereas YOPO-G is adaptive: early layers are pruned much less (=10-15% even at 95% target sparsity),
while deeper layers are pruned aggressively, approaching >99% sparsity in the final convolutional blocks at
high pruning ratios. This matches the expectation that early layers encode essential low-level features (edges,
textures) important for generalization, while later layers contain more redundant, task-specific filters that can
be pruned.

Choosing between YOPO-G and YOPO-L in practice. Default to YOPO-G when accuracy is
the primary objective and no strict per-layer budget is mandated. Prefer YOPO-L when deployment
requires uniform layer densities (e.g., operator fusion limits, memory partitioning) or when compar-
ing methods under fixed per-layer sparsity. YOPO’s once-only saliency S) supports both regimes
without recomputation; switching between global and local calibration amounts to changing only the
threshold selection rule. Numerically, Table 6 shows that this adaptive allocation yields a small but
consistent accuracy edge for YOPO-G at higher budgets (e.g., s € {0.9,0.95,0.98} on CIFAR-10),
while YOPO-L is competitive or best at moderate budgets where balanced compression is preferred
(e.g., s€{0.5,0.7}).

Percentile fallback and feasibility. If the desired s lies outside the achievable range due to sur-
vival constraints or discrete ties, we fallback to percentile-based thresholds on S(©) (global or per
layer) to match the budget within tolerance. In practice this is rare because the bisection on « yields
fine-grained control and the survival constraints affect only a negligible fraction of entries at high
sparsity.

Stability across initializations. Because S(*) depends only on [ (¥) and a low-rank additive fit,
the ordering of entries is stable across random seeds; calibration with either YOPO-G or YOPO-L
therefore achieves reproducible sparsity and accuracy, and supports mask transfer (Sec. 4).

H BASELINES AND FAIRNESS

SNIP. Connection sensitivity from one mini-batch; we use official or widely adopted implementa-
tions and calibrate sparsity with the same global/local policies and gradient masking during training.
Code - https://github.com/mil-ad/snip

GraSP. Hessian—gradient product-based saliency; we follow common practice for batch
size and Hessian approximation; sparsity calibration matches YOPQO’s protocols. Code -
https://github.com/alecwangcq/GraSP
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Algorithm 2 MORT: Monotone Re-Thresholding for Exact Sparsity (Global or Layerwise)

Require: Scores {S()}_ : target budget s* € [0, 1]; MODE € {GLOBAL, LAYERWISE}; ROBUST
€ {MAD, STD}; tolerance ¢ > 0; optional MIN-KEEP
Ensure: Mask M = { M)} with realized sparsity §(a*) ~ s*
1: if MODE=GLOBAL then Sy + [J, S end if

2: for { =1to L do > precompute stats
3: (locy, scaley) + stat(S“) ROBUST) > &MAD or &STD
4: end for
5: if MODE=GLOBAL then
6: (10Ca11, scalean) — Stat(San, ROBUST)
7: end if
8: function ACHIEVEDSPARSITY (cx)
9: if MODE=GLOBAL then
10: T < locan + ascaleg
11: for / = 1to L do
12: MO (a) « 1[5 > 7]
13: end for
14: else > LAYERWISE
15: for / = 1to L do
16: Tp < locy + arscaley
17: MO (a) +1[S® > 7]
18: end for
19: end if
20: if MIN-KEEP then > collapse avoidance
21: enforce > 1 survivor per output row/channel in each M (©) (@)
22: end if
23:  return 5(a) [ : MT,uEa) =0}
24: end function
25: function BRACKET(f) > find [ayo, api] with f(ae) < 0 < f(an;)
26: Qo 0, ap; + 1
27: while f(ap;) < 0do
28: Qpi ¢ 2 o
29: end while
30: return (ao, ovpi)

31: end function
Bisection on o (monotone target):
32: f(a) < ACHIEVEDSPARSITY () — s*
33: (o, ni) < BRACKET(f)
34: while ay; — ajp > € do
35: a <+ 0.5(ao + an)

36: if ACHIEVEDSPARSITY () < s* then
37: )y ¢ Q

38: else

39: Qpi < «

40: end if

41: end while
42: a* < ay;;  recompute M = {M©)(a*)} via ACHIEVEDSPARSITY
43: return M

SynFlow. [Iterative, data-free scoring using synaptic flow conservation; number of iterations
chosen to match target s; we preserve positivity conventions and avoid layer collapse. Code
https://github.com/ganguli-lab/Synaptic-Flow

Magnitude-at-init and random. Magnitude uses |V |; random-within-layer uses uniform random
scores per layer with the same calibration and survival constraints. Code - publicly available.
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Training parity. All methods share the same optimizer, schedule, epochs, augmentation, gradient
masking, and evaluation metrics. Any method-specific hyperparameters are tuned within small grids
that do not alter the global training recipe.

I TRANSFER METRICS AND PROTOCOL

Once-only masks across budgets. For any p € [0, 1], we obtain m,, by re-thresholding the fixed
saliency S(6p) (YOPO-G/L) without recomputation.

Dataset transfer. 'We compute S(6y) once per backbone, then evaluate training on CIFAR-10 and
CIFAR-100 by reusing the same mask family (or the same S with a new threshold) across datasets.
For resusing the same mask on TinyImageNet we resize the input.

Metrics. Primary: Top-1 accuracy (%), #Params. Transfer/stability:
DTI(Dsrc%Dtgt;p) = R(pa Dtgt | Msrc(p)) - R(pv Dtgt ‘ Mtgt(p))v
B(D.p) = § X2 (R D | MO () = R(p: D | M) ().

Lower is better; values near O indicate successful transfer and initialization robustness.
Budgets and seeds. We evaluate p € {0.5,0.7,0.8,0.9,0.95} and seeds {1, 2, 3}.

FLOPs and parameters. We count multiply-adds for convolutions and fully connected layers;
BatchNorm/activations are excluded. Structured FLOPs after kernel/channel removal are not re-
ported in the main paper (future work).

J EXTRA TABLES

Reporting notes. All tables in the appendix follow the same layout: mean=std across seeds, KSR
in parentheses when applicable, and identical training recipes across methods.
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