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ABSTRACT

AlphaFold2 has achieved seminal success in predicting structures from amino
acid sequences with remarkable atomic accuracy. However, its Evoformer module
faces a critical challenge in terms of high memory consumption, particularly con-
cerning the computational complexity associated with sequence length L and the
number of Multiple Sequence Alignments (MSA), denoted as s. This challenge
arises from the attention mechanism involving third-order MSA and pair-wise ten-
sors, leading to a complexity of O(L3+ sL2). This memory bottleneck poses dif-
ficulties when working with lengthy protein sequences. To tackle this problem, we
introduce a novel and lightweight variant of Evoformer named Liteformer. Lite-
former employs an innovative attention linearization mechanism, reducing com-
plexity to O(L2 + sL) through the implementation of a bias-aware flow attention
mechanism, which seamlessly integrates MSA sequences and pair-wise informa-
tion. Our extensive experiments, conducted on both monomeric and multimeric
benchmark datasets, showcase the efficiency gains of our framework. Specifically,
compared with Evoformer, Liteformer achieves up to a 44% reduction in memory
usage and a 23% acceleration in training speed, all while maintaining competitive
accuracy in protein structure prediction.

1 INTRODUCTION

Recently, computational methods (Roy et al., 2010; Brini et al., 2020; Baek et al., 2021; Jumper
et al., 2021) based on the evolutionary history of proteins have shown the immense capability of
predicting three-dimensional protein structure from sequence. A significant milestone was achieved
with DeepMind’s AlphaFold2 (Jumper et al., 2021) in 2021. This groundbreaking model derives
protein structures by leveraging evolutionary history and pair-wise evolutionary correlations. In-
corporating advanced deep learning models, such as transformer-style models, and accumulating
a large database of protein sequences and structures, AlphaFold2 is capable of predicting protein
structure with atomic accuracy.

Specifically, the AlphaFold2 pipeline first utilizes a stack of transformer blocks in Evoformer to
update evolutionary information within multiple sequence alignments (MSA) representation and
pair-wise correlation representation. For MSA representation updates, row-wise biased attention is
employed to integrate pair-wise information. And pair representation update operates both column-
wise and row-wise with triangle bias to satisfy the triangle inequality of distances. Subsequently,
the updated information is passed to the structure module, which iteratively reconstructs a three-
dimensional structure of the primary sequence.

However, since both the row and column dimensions of the pair representation, along with the
row dimension of the MSA representation, are the same as the primary sequence length L. And
the column dimension of the MSA representation s is also of a comparable magnitude to the pri-
mary sequence length 1, coupled with the quadratic complexity introduced by canonical attention
mechanisms, these update operations ultimately yield O(L3 + sL2) memory and computational
complexity. Here the analysis excludes the head dimension d due to its relatively small magnitude.

We observe that the transformer blocks within Evoformer constitute the major portion of memory
usage in the overall model. This limitation hinders AlphaFold2 from scaling up to a larger model and

1The distribution of sequence length and MSA number can be seen in Appendix 7.
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Figure 1: Comparison of our Liteformer with Evoformer in terms of training computational costs
(GPU memory per block (left) and training time per block (middle)) at different sequence lengths
and structure prediction performance with TM-score metric on five benchmarks (right).

processing longer protein sequences. For instance, as illustrated in Figure 1, attempting to process
sequences of up to 800 in length would result in out-of-memory (OOM) issues. Consequently,
the reduction of memory consumption in AlphaFold2 can be equated to the reduction of memory
complexity in the biased attention mechanism, which is introduced by the communication between
third-order tensors for MSA and pair-wise representation.

The diversity of protein sequences requires non-trivial attention to generality. However, previous
linear attention mechanisms(Wang et al., 2020; Choromanski et al., 2021; Zhen et al., 2022) mainly
use similarity decomposition to approximate Softmax(QKT) with different kernel functions, which
reintroduce inductive bias and devise linear complexity at the expense of generality. Therefore,
we turn to reconstructing the biased attention mechanism from a new perspective, a flow network
perspective.

In this paper, we introduce a novel linear mechanism known as Bias-aware Flow Attention (BFA)
within the framework of flow network theory. This mechanism efficiently transforms both third-
order Multiple Sequence Alignment (MSA) and pair representations, reducing their complexity by
an order of magnitude. Unlike previous linear attention methods that overlook bias matrices, BFA
fully leverages biased information while linearizing the attention complexity. Empowered by BFA,
our Liteformer can finally decrease memory and computational complexity from O(L3 + sL2) to
O(L2 + sL). In Figure 1, the left and middle panels depict the performance optimization with
respect to both space and time across different sequence lengths.

We conducted extensive experiments on three monomeric and two multimeric protein datasets (as
depicted in Figure 1 right panel). Our empirical results demonstrate the effectiveness of Liteformer
in significantly reducing GPU memory consumption and training speed compared to Evoformer
in AlphaFold2 (Jumper et al., 2021). Specifically, Liteformer substantially reduces memory usage
by up to 44% and accelerates the training speed by 23% on a Nvidia A100 80G GPU, all while
achieving competitive results in protein structure prediction against a strong baseline.

2 BACKGROUND

2.1 NOTATIONS

The input and output of Evoformer are two types of representation denoted as MSA representation
M ∈ Rs×L×dm and pair representation Z ∈ RL×L×dz , where s is the number of MSA sequence,
L is the length of protein sequence, dm, dz are depth of dimension. Within each Evoformer block,
dm, dz are projected to h × d by canonical multi-head attention, where h, d are head number and
head dimension. The i, j in the equations below are the subscription of the L dimension.

2.2 EVOFORMER

This network has a two-tower architecture with axial self-attention for MSA representation M and
triangular self-attention for pair representation Z. Each Evoformer block has these representations
as its input and output, and the outer product mean and the attention bias allow communication
between representations, as illustrated in the top panel of Figure 2. In this section, we focus on
a detailed analysis of the two multi-head biased attention modules within the Evoformer, which
significantly impact memory utilization, namely MSA row-wise biased attention and pair triangular
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Figure 2: The structure comparison of Evoformer (in red) and our Liteformer (in yellow). In Evo-
former blocks, pair representation and MSA representation are transformed by canonical attention
and outer product mean and attention biasing allow the communication between these two repre-
sentations. Compared to Evoformer, Liteformer transforms the MSA representation and the pair
representation with Bias-aware Flow Attention (BFA). Similar to Evoformer blocks, transition and
outer product mean are used for exchanging information between pair and MSA representation.

attention. The multi-head biased attention in the Evoformer is in the form of:

Attention(Q,K,V,B) = Softmax(QKT +B)V (1)

Row-wise Biased Attention For row-wise multi-head self-attention, MSA representation M ∈
Rs×L×dm is first projected into Q,K,V ∈ Rs×h×L×d and operates with pair representation pro-
jected as bias B ∈ R1×h×L×L in the form of Eq. 1, here KT ∈ Rs×h×d×L. The calculation of
QKT +B causes O(shL2d) complexity. Since s, L is much larger than h, d, the total memory and
computational complexity of the row-wise MSA representation update is O(sL2).

Triangular Update with Attention. For triangular self-attention on the pair representation, it con-
ducts row-wise and column-wise canonical multi-head biased self-attention. The update for each po-
sition ij is modulated by both query-key similarity (i.e. ij and ik) and the bias derived from the third
position jk to satisfy triangle inequality in geometry. Both attention mechanisms can be formalized
as below. The pair representation Z ∈ RL×L×dz is first projected into Q,K,V ∈ Rh×L×L×d and
the triangle bias B ∈ Rh×L×L×1, the triangle attention result can be computed using Eq. 1, with
KT ∈ Rh×L×d×L. The calculation of (QKT + B) ∈ Rh×L×L×L leads to O(L3) memory and
computational complexity. More details about row-wise and column-wise triangle attention can be
seen in Appendix A.

After row-wise biased attention update, global attention calculates the similarity between the mean
of queries along the s dimension and keys to update the MSA column-wise information by canonical
attention with O(sL) complexity. The resulting updated MSA representation is then transformed by
transition with a fully connected layer, and an outer product mean block, which applies the outer
product to each of two entries of MSA representation to generate an update for the corresponding
pair representation entry. Please see more details in Appendix A.

It is notable that the bottleneck of Evoformer is the softmax function Softmax(QKT +B) on third-
order pair representation and MSA representation, which leads to O(L3+sL2) complexity of the en-
tire model. To tackle this obstacle, we present Liteformer as an alternative to the original Evoformer
in AlphaFold2 to reduce memory and computational complexity from O(L3+sL2) to O(L2+sL),
as shown in Figure 2.

3 METHOD

3.1 LITEFORMER OVERVIEW

Given pair and MSA representations of an input protein sequence, our target is to optimize the
computational complexity of Evoformer in AlphaFold2 (Jumper et al., 2021) for protein structure
prediction. Inspired by flow network theory, the proposed Bias-aware Flow Attention (BFA) treats
the biased attention mechanism as a flow network, where the flow originates from values nodes and
merges into the biased attention result. The bias flow capacity and bias flow weights are determined
by the query-key similarity as well as the bias matrix. Additionally, BFA conserves the flow capacity
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to achieve a competition mechanism similar to Softmax. We define the conserved bias flow capacity
and bias flow weights in Sec 3.2 and explain how Bias-aware Flow Attention achieves the biased
attention effect in MSA and pair update with linear complexity in Sec 3.3.

3.2 CONSERVED BIAS FLOW

Ablation experiments on Evoformer (Jumper et al., 2021) demonstrate the substantial impact of
bias on MSA row-wise update and pair-wise triangle update. However, previous linear attention
mechanisms (Tay et al., 2022), whether Performer (Choromanski et al., 2021) and Cosformer (Zhen
et al., 2022) using similarity decomposition kernels, or Sparse Transformer (Child et al., 2019) and
Linformer (Wang et al., 2020) using attention sparsity, have never taken into account linearization
with biased attention. Therefore, inspired by Flowformer (Wu et al., 2022a), we turn to analyze the
attention calculation from a flow network perspective and seek to reconstruct the biased attention
mechanism within this framework.

Previous work (Zhen et al., 2022) has identified two crucial characteristics of softmax that determine
its performance in attention mechanism: a non-negative function on the attention matrix and a re-
weighting mechanism to concentrate the distribution of attention connection. To achieve the effect of
softmax, our Bias-aware Flow Attention features these two properties by non-negative flow capacity
function ϕ(.) and competition mechanism among both source and sink nodes.

Bias Flow Weights. Since the Structure Module after the Evoformer only considers the primary
sequence representation in MSA as sequence information for further prediction, we first design bias
source nodes in this flow framework to expose the primary sequence with more pair-wise informa-
tion for better structure prediction. The primary sequence and pair representation are first projected
and reshaped to Q0,K0,V0 ∈ Rh×L×d, and B ∈ Rh×L×L. Inspired by (Sun et al., 2023), we
further introduce a relative position embedding (RoPE (Su et al., 2021)) on these projected tensors
to enhance the model’s extrapolation ability for a long sequence in inference time:

wb = GroupNorm((Q0 ⊙Θ)((K0 ⊙ Θ̄)T + (B⊙Θ⊙ Θ̄T )) (2)

where Θ = [el(iθ)]1×L×1 and its conjugation Θ̄ = [e−l(iθ)]1×L×1, θ is a constant. ⊙ denotes
element-wise multiplication. This computation leads to O(hL2d) memory and computational com-
plexity. The biased primary sequence wbV0 are then projected and concatenated with the rest of
the sequence projection to update queries Q′, keys K′ and biased source node V′:

Q′ = [(wbV0)WQ;Q1:]; K′ = [(wbV0)WK;K1:]; V′ = [(wbV0)WV;V1:]

where WQ,WK,WV ∈ Rd×d , Q′,K′,V′ ∈ Rs×h×L×d, and [; ] denotes tensor concatenation.

Similarity Score. In general, the similarity between queries Q′ and keys K′ with bias B is a
function of Q′K′T +B, in terms of F(Q′K′T +B). Bias-aware flow attention defines this function
with a non-linear and non-negative function ϕ(·) = Sigmoid(·). The similarity score is as follows:

SM(Q′,K′,B) = F(Q′K′T +B) = ϕ(Q′)ϕ(K′)T + ϕ(B) (3)

Bias Flow Capacity. As we mentioned above, there are two types of information flow, incoming
flow from the aggregation of values and outgoing flow to contribute to the results. Ii, incoming flow
to sink i from source nodes, and Oj , the outgoing flow from source j to sink nodes, can be defined
as follows:

Ii = ϕ(Q′
i)

L∑
j=1

ϕ(K′
j)

T +

L∑
j=1

ϕ(Bij), Oj = ϕ(K′
j)

L∑
i=1

ϕ(Q′
i)

T +

L∑
i=1

ϕ(Bij) (4)

where ϕ(Q′
i), ϕ(K

′
j) ∈ Rs×h×d, ϕ(Bij) ∈ Rh, Ii,Oj ∈ Rs×h. Since we first sum along L

dimension, the computation of I,O has O(shLd) memory and computational complexity.

Conserved Bias Flow Capacity. Softmax function is originally proposed as a “winner-take-all”
picking maximum operation (Bridle, 1989), enforcing higher attention only to the essential tokens.
To introduce this ”winner-take-all” mechanism in a flow network, we aim to conserve the capacity
of incoming and outgoing flow, resulting in competition among both the source and sink nodes to
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Figure 3: Pipeline of Bias-aware Flow Attention (BFA) for MSA row-wise update. MSA represen-
tation and pair representation are respectively multi-head projected into queries Q, keys K, values
V and bias B matrix. The primary sequence projections Q0,K0,V0 first incorporate with bias B
to calculate bias flow weights for their update, and then concatenate with the remaining projections.
A non-linear function ϕ(·) = Sigmoid(·) transforms the concatenated queries Q′ and keys K′ to
generate conserved incoming flow Î and conserved outgoing flow Ô. This flow information calcu-
lates the final result from concatenated values V′ through competition, information aggregation, and
allocation.

concentrate the distribution of the attention mechanism. We set the flow capacity as default 1 and
get the conserved incoming and outgoing flow defined as:

Îi = ϕ(Q′
i)

L∑
j=1

ϕ(K′
j)

T

Oj
+

L∑
j=1

ϕ(Bij)

Oj
, Ôj = ϕ(K′

j)

L∑
i=1

ϕ(Q′
i)

T

Ii
+

L∑
i=1

ϕ(Bij)

Ii
(5)

This normalization also leads to a O(shLd) memory and computational complexity. Please see
more details in Appendix B.

3.3 BIASED-AWARE FLOW ATTENTION

Our bias-aware flow attention is based on multi-head attention working for third-order tensors with
a given bias and its complexity can achieve O(L). After defining the conserved information flow
and bias source nodes V′, our bias-aware flow attention performs the effect of attention in three
steps: competition, information aggregation, and allocation. For MSA row-wise update, the MSA
representation can be first projected to Q′,K′,V ∈ Rs×h×L×d, where h, d are the head number and
head dimension, and the pair representation is also projected and reshaped to B ∈ Rh×L×L,.

Competition. For the biased source nodes (V′), the competition mechanism conserves outgoing
flow capacity to implement a ”winner-takes-all” effect, determining the gating weights for each
biased source node:

V̂ = SoftmaxL(Ô)⊙V′ (6)

where Ô ∈ Rs×h×L, V̂ ∈ Rs×h×L×d and ⊙ denotes broadcast element-wise multiplication, the
memory and computational complexity of which is O(shLd).

Aggregation. Information aggregation is implemented with competitive source nodes. Similar to
Row-wise attention (Eq. 1), we compute the distribution of incoming flow with the help of compet-
itive source nodes V̂ and similarity score ϕ(Q′)ϕ(K′)T :

A =
(ϕ(Q′)ϕ(K′)T )V̂

ϕ(Q′)
∑

j ϕ(K
′
j)

T
=

ϕ(Q′)

ϕ(Q′)
∑

j ϕ(K
′
j)

T
(ϕ(K′)T V̂) (7)

By first computing the matrix product of ϕ(K′)T V̂ ∈ Rs×h×d×d, the memory and computational
complexity of A reduced from O(shL2d) to O(shLd2).

Allocation. We finally introduce competition among sink nodes (RowAttn) with the use of con-
served incoming flow as a gate function and the memory and computational complexity of this
operation is still O(shLd):

RowAttn = Sigmoid(̂I)⊙A (8)
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where ⊙ denotes broadcast element-wise multiplication. The memory and computational complex-
ity of the entire Bias-aware Flow Attention finally achieves O(shLd2 + shLd + hL2d) ≈ O(sL),
when s, L are at the same magnitude and much larger than h, d

For pair representation update, both the row-wise and column-wise triangle attention can be lin-
earized as below. The pair representation Z ∈ RL×L×cz is projected and reshape into Q,K,V ∈
Rh×L×L×d and triangle bias Btri ∈ Rh×L×L×1. The (i, j, k) th biased similarity score is in the
form of:

SM(Qij ,Kik, (Btri)jk) = F(

d∑
t

qt ⊙ kt + 1h ⊙ b) = F(

d+1∑
t

q′t ⊙ k′t) (9)

where qt, kt,1h ∈ Rh×1, q′(d+1) = 1h, k
′
(d+1) = b,⊙ denotes element-wise multiplication. Thus,

Eq. 3 can be easily reformulated to an unbiased similarity score by tensor concatenation.

SM(Q′,K′,Btri) = F(Q′K′T +Btri) = ϕ(Q′)ϕ(K′)T (10)

where Q′ = [Q;1L],K
′ = [K;Btri], [; ] denotes matrix concatenation and 1L ∈ Rh×L×L×1,

Q′,K′ ∈ Rh×L×L×(d+1). Since triangle bias only has a single L dimension on the last two di-
mensions, the concatenated queries and keys are capable of computing unbiased flow capacity in
Eq. 4 and introduce the competitive effect similar to softmax by controlling total flow capacity in
Eq. 5. Following the same procedure in Eq. 6, 7 and 8, pair representation triangular update de-
creases its memory and computational complexity from O(L3) to O(L2). The pipeline of triangular
update with BFA as well as the contrast between BFA and canonical attention pipeline can be seen
in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We compare the performance of our Liteformer and baseline Evoformer (AlphaFold2) on
three monomeric datasets: CASP14 (Moult et al., 2020), CASP15 (Moult et al., 2022),CAMEO (X.
et al., 2021), and two complex datasets:VH-VL, DB5.5 (Vreven et al., 2015).

• CASP14 & CASP15. The 14th & 15th Critical Assessment of protein Structure Prediction,
which contains 50 and 56 single protein targets with sequence length less than 1000.

• CAMEO. The Continuous Automated Model Evaluation, which includes 194 single pro-
tein targets with sequence length ranging from 60 to 800.

• VH-VL. This complex protein dataset includes approximately 4.7k antibodies from PDB.
We randomly selected 159 samples as the test set. The sequence length of each sample is
less than 450.

• DB5.5. It is a multi-domain protein dataset with experimentally determined structures
covering a range of difficulty levels for structure prediction. We select 12 complex targets
following the experimental setting of EquiDock (Ganea et al., 2021).

Evaluation Metrics. We gauge the computational cost of training each Evoformer/Liteformer block
through measures of memory usage (Memory per Block) and time consumption (Cost per Block).
In assessing the structural prediction performance comprehensively, we employ metrics including
TM-score, RMSD, GDT-TS, and GDT-HA for structural prediction accuracy, along with DockQ
for evaluating docking performance. More details about each evaluation metric can be seen in
Appendix D.2.

Implementation. We implement our Liteformer based on OpenFold (Ahdritz et al., 2022) Frame-
work. We trained 10,000 randomly selected general protein data from PDB for 5 days using 8 ×
DGX-A100 80G GPUs and inference on two multimeric datasets: VH-VL and DB5.5. We further
trained a combined model of Liteformer and ESM-2 150M (Lin et al., 2022b) with 400,000 general
single protein data for 5 days and inference on single protein targets selected from three datasets:
CASP14, CASP15 and CAMEO. Corresponding to Evoformer in AlphaFold2, our Liteformer con-
tains 48 blocks. We set L in the training stage as 256 for the single protein structure prediction task
and 384 for the complex protein structure prediction task. We set MSA sequence number s as 1024,
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Table 1: Memory and computational cost comparison for each module component.

Mem per block (GB) Cost per block (ms)
Module Evoformer Liteformer Evoformer Liteformer

MSA row-wise update 25.318 14.931 197.657 140.435
Pair triangle update 3.658 1.560 41.253 39.417

Table 2: Quantitative results comparison on CASP and CAMEO benchmarks.

Dataset Model w/ ESM-2 TM-score ↑ RMSD ↓ GDT-TS ↑ GDT-HA ↑

CASP14 Evoformer 0.4971 10.086 0.2535 0.1347
Liteformer 0.4857 9.663 0.2383 0.1220

CASP15 Evoformer 0.5356 18.663 0.2433 0.1269
Liteformer 0.5517 17.594 0.2536 0.1377

CAMEO Evoformer 0.7112 5.962 0.4477 0.2770
Liteformer 0.7177 5.558 0.4627 0.2901

head number h as 8, and head dimension d as 32. Our baseline is ESM-2 150M with Evoformer for
a single protein structure prediction task, and AlphaFold-Multimer with Evoformer for a complex
protein structure prediction task. We also conduct AlphaFold2 as baseline for single structure pre-
diction, the results can be seen in Appendix E. We finally compare the computational cost, such as
memory and time consumption, and accuracy of predicted 3D structure between our Liteformer and
Evoformer. The training loss can be seen in Appendix D.1. Since Flash Attention (Dao et al., 2022)
lacks the capability to expedite computation with a predetermined bias, we opt not to compare the
efficiency of our model with it.

4.2 EXPERIMENTAL RESULTS

Computational Cost. Table 1 compares the memory and time consumption of different modules,
including MSA row-wise update and Pair triangle update, in Evoformer and Liteformer block. The
first two columns show that our Liteformer substantially diminishes memory by 43.67% for MSA
update and 57.35% for pair representation update. Meanwhile, the training time of our Liteformer
can be decreased up to 28.95%. Figure 1 (Left, Middle) shows the memory and time consumption
of Evoformer and Liteformer at different sequence lengths. As the sequence length increases, the
effect of our model’s reduction in memory usage becomes more clear. In sequence length of 600, our
Liteformer significantly reduces memory consumption by 53.33% for the entire model. Our Lite-
former even handles sequence lengths up to 800, while the Evoformer experiences out-of-memory
(OOM). Additionally, the speed of our Liteformer increases as the sequence length becomes longer.
The time consumption of Liteformer can be reduced by 21.23%.

Structure Prediction on Multiple Benchmarks. Table 2 & 3 shows the quantitative comparisons
with Evoformer on structure predictions. Table 2 evaluates three single protein structure datasets,
CASP14, CASP15 and CAMEO, and qualifies the performance with several metrics, such as TM-
score and RMSD for structure accuracy. It is evident that the accuracy of the structure predicted by
Liteformer with ESM-2 150M is comparable to Evoformer with ESM-2 150M on CASP14 and even
surpasses the baseline model on CASP15 and CAMEO. The Appendix E provides a comparative
curve of our Liteformer’s performance and that of the baseline across these three datasets, tracking
their progress as training steps grow. Table 3 assesses the performance of our Liteformer against
AlphaFold-Multimer on two complex protein sequence datasets, VH-VL and DB5.5 using various
metrics, such as TM-score for structure accuracy and DockQ for binding site accuracy. We can
observe that the accuracy of the structure predicted by Liteformer is comparable to AlphaFold-
Multimer on VH-VL and DB5.5 benchmarks.

4.3 ABLATION STUDIES

In this section, we performed ablation studies to demonstrate the benefit of introducing Bias-aware
attention modules. We also conducted extensive experiments to explore the effect of bias flow weight
and bias flow weight in Bias-aware attention, and the training sequence length in Liteformer.

Bias-aware Flow Attention. Table 4 ablates the effect of Bias-aware Flow Attention on MSA row-
wise update and pair triangle update. Here we set the sequence length L as 256 and MSA number
s as 1024. We compare three models, AlphaFold2, Liteformer, and Liteformer without BFA in
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Table 3: Quantitative results comparison on VH-VL and DB5.5 benchmarks.

Dataset Model w/ AF2-Multimer TM-score ↑ DockQ ↑ RMSD ↓

VH-VL Evoformer 0.9662 0.7168 1.325
Liteformer 0.9668 0.7514 1.302

DB5.5 Evoformer 0.7314 0.6404 7.461
Liteformer 0.7258 0.6927 7.367

Table 4: Ablation studies on the effect of Bias-aware Flow Attention (BFA) on MSA update and
Pair update in terms of computation and prediction performance on VH-VL benchmark.

MSA Pair Mem per
block (G)

Cost per
block(ms) TM-score ↑ DockQ ↑ RMSD ↓

% % 28.976 436.566 0.9640 0.7352 1.295
% ! 26.878 434.761 0.9647 0.7488 1.264
! ! 16.323 336.522 0.9638 0.7376 1.278

MSA row-wise update, and evaluate the prediction performance on the VH-VL benchmark, and the
memory consumption and time cost per Liteformer block.

Compared to the performance of AlphaFold2, it is notable that Liteformer benefits more from BFA in
pair updates. BFA in pair triangular update (on the second row) increases TM-score from 0.9640 to
0.9647 and DockQ from 0.7352 to 0.7488. Although canonical biased attention for MSA row-wise
update allows Liteformer to sacrifice less information for better results, it requires larger memory
usage and time consumption. Thus, there is a trade-off between performance and memory usage.
In our model, we set Bias-aware Flow Attention on both MSA and Pair update to balance this
tradeoff. Notably, the proposed Liteformer (on the last row) can achieve a significant reduction in
computational consumption while maintaining comparable performance to the vanilla baseline.

Bias Flow Weight & Flow Capacity. To validate the effectiveness of introducing bias in our Bias-
aware Flow Attention (BFA) module, in Table 5, we compare three models: BFA, BFA without
bias flow weight, and BFA without bias flow capacity in terms of memory and time usage as well
as performance on VH-VL datasets. Here we set the Liteformer block number to 8 and sequence
length to 256. For BFA without bias flow capacity (on the first row), we do not incorporate bias
terms in calculating conserved flow capacity, which results in a reduction of memory consumption
by more than half of BFA. The reason for memory reduction is that the intermediate variables related
to bias are no longer required to be retained for gradient backward propagation. Compared to the
performance of BFA (in the last row), it is obvious that the performance advantages of BFA are more
attributed to bias flow capacity. This is intuitively plausible, as the computation of bias flow capacity
allows bias (the pair-wise information) to incorporate with all sequences in MSA. For BFA without
bias flow weight, we only introduce bias by bias flow capacity. Our Bias-aware Flow Attention takes
advantage of both bias flow weight and bias flow capacity, and reaches a better performance than
baseline Evoformer in AlphaFold2 with less time and memory usage.

Impact of sequence length L in Liteformer. In Figure 4, we discuss the role of hyper-parameter
sequence length L in Liteformer for improving structure prediction. Here we compare the perfor-
mance of Liteformer with 8 Liteformer blocks under sequence lengths of 256, 350 and 400 on the
VH-VL benchmark. To compare clearly, we only capture the images from the final stage where
models are approaching convergence. We can observe that both the accuracy metric (TM-score) and
docking metric (DockQ) increase as the value of L increases, which aligns with our intuition that the
longer the sequence, the more knowledge the model can learn. Compared to a sequence length of

Figure 4: Performance of Liteformer with sequence length 256, 350 and 400 on VH-VL dataset.
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Table 5: Ablation studies on bias flow capacity and bias flow weights of Bias-aware Flow Atten-
tion (BFA) in terms of computation and prediction performance on the VH-VL benchmark.

Model Mem per
block (G)

Cost per
block(ms) TM-score ↑ DockQ ↑ RMSD ↓

BFA w/o bias flow capacity 5.366 325.253 0.9606 0.7201 1.341
BFA w/o bias flow weights 16.491 371.892 0.9608 0.7282 1.322
BFA 16.323 336.522 0.9638 0.7376 1.278

256, Liteformer with 400 sequence length has seen an increase in DockQ from 0.722 to 0.753, TM
score from 0.9626 to 0.9655, and the RMSD metric decreases from 1.311 to 1.255. Additionally,
the speed of convergence accelerates as the sequence length increases.

5 RELATED WORK

Protein Structure Prediction. Protein structure prediction aims to predict protein 3D structure us-
ing a primary sequence as input, which has been addressed in many previous works (Heo & Feig,
2018; Huang, 2017; Senior et al., 2020; Wang et al., 2017). Typically, researchers in DeepMind
proposed AlphaFold2 (Jumper et al., 2021), a transformer-based model to achieve a seminal work.
The pipeline of AlphaFold2 can be split into three parts: data preparation, Evoformer, and struc-
ture module. In the first part of the pipeline, based on input sequence, the model searches multiple
sequence alignment (MSA) and determined structure template (in terms of pair-wise representa-
tions), which contain valuable evolutionary and structural information respectively to assist further
structure modeling. Since searching for MSA is time costly and consumes large memory, some
subsequent models, such as Omegafold (Wu et al., 2022b), ESMfold (Lin et al., 2022b) and He-
lixFold (Fang et al., 2022), attempt to substitute MSA searching with pre-trained protein language
model (PLM), to get sequence representation. Compared to these works, our model focuses on re-
ducing memory consumption in the representation learning stage and is also fairly compatible with
pre-trained language models, such as ESM-2.

Efficient Linear Transformer. To break through the computational limitation caused by the
quadratic complexity of pair-wise relation modeling, various efficient linear transformers (Ho et al.,
2019; Iz et al., 2020; Ma et al., 2021; Vyas et al., 2020; Zhang et al., 2021) have been explored.
One category of methods (Child et al., 2019; Wang et al., 2020; Kitaev et al., 2020; Zaheer et al.,
2020; Lepikhin et al., 2020; Ding et al., 2023) attempts to reduce the model’s captured relations by
utilizing sparsity. By sparsely activating a subset of parameters, these models can achieve lower
complexity at the expense of information loss, leading to the tradeoff between performance and ef-
ficiency. More recently, RetNet (Sun et al., 2023) supported a hybrid form of recurrent and parallel
computation manner, which allows queries to attend all previous keys with linear complexity. An-
other mainstream of efficient transformers (Katharopoulos et al., 2020; Choromanski et al., 2021;
Zhen et al., 2022) is similarity decomposition methods, which try to substitute or approximate the
softmax similarity by designing a non-linear kernel function. Flowformer (Wu et al., 2022a) utilized
a simple non-negative projection function but brought flow conservation into the design to achieve
competition among tokens. However, the aforementioned methods mainly focus on the approxima-
tion of the unbiased similarity metric, and none of them attempt to linearize a more general similarity
score with a given bias. Unlike previous works, our model manages to linearize biased attention for
third-order tensors by similarity decomposition.

6 CONCLUSION

We present Liteformer, a novel and lightweight architecture to reduce the complexity of Evoformer
from O(L3+sL2) to O(L2+sL). The proposed framework leverages a Bias-aware Flow Attention
mechanism to linearize biased attention with O(L) complexity. Our Liteformer decreases memory
consumption by significant margins while achieving competitive prediction results compared to the
strong baseline Evoformer in AlphaFold2. In a broader context, various domains, including scoring
models (Liu et al., 2023), protein function prediction models (Hu et al., 2022) and docking predic-
tion (Luo et al., 2023), have integrated the Evoformer module. The improvement of our Liteformer
holds the potential to further advancement in these areas.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Gustaf Ahdritz, Nazim Bouatta, Sachin Kadyan, Qinghui Xia, William Gerecke, Timothy J
O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, Bo Zhang, Arkadiusz Nowaczynski,
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APPENDIX

In this appendix, we introduce sub-modules of Evoformer in Sec A and provide detailed Bias-aware
Flow Attention, including conserved bias flow capacity in Sec B and triangular update pipeline in
Sec C. We also introduce experimental setup in Sec D and more experimental results are in Sec E

A EVOFORMER SUBMODULES

Global Attention. The MSA representation is first projected and reshaped into Q,K,V ∈
Rh×L×s×d. Global Attention uses the mean of queries along s dimension to compute attention
as below:

GlobalAttn(Q,K,V) = Softmax(means(Q)KT )V (11)

where means(Q) ∈ Rh×L×1×dKT ∈ Rh×L×d×s. The calculation of softmax leads to O(hLsd) ≈
O(Ls) when s, L are much larger than h, d.

Triangular Update with Attention By considering residues in protein sequences as graph nodes,
the pair-wise information can be treated as the edge information between residue pairs. The row-
wise triangular attention updates the edges ij with values from all edges that share the same starting
node i.(i.e. all edges ik). The contribution of each edge ik is determined by both query-key simi-
larity and the bias information bjk derived from edge ij. The pair representation is projected into
Q,K ∈ Rh×L×L×d and the triangle bias B ∈ Rh×L×L×1. The similarity score of the row-wise
triangular update is:

RowSMij = Softmax(QT
ijKik +Bjk) (12)

where QT
ij ∈ Rh×1×d,Kik ∈ Rh×d×1.

Similarly, column-wise triangular attention aggregates values from all edges that share the same
ending nodes j(i.e.kj) to update edge ij , the weight of each edge can be modulated by query-key
similarity as well as the bias information from the third edges ki.

ColumnSMij = Softmax(QT
ijKkj + bki) (13)

MSA Transition & Pair Transition. After row-wise and global attention, MSA representation M
is transformed by 2-layer MLP blocks in MSA Transition.

M = (RELU(MWMLP1))WMLP2 (14)

where WMLP1 ∈ Rdm×4dm ,WMLP2 ∈ R4dm×dm . After row-wise and column-wise triangular
attention update, we also transform pair representation Z by 2-layer MLP blocks in Pair Transition.

Z = (RELU(ZWMLP1))WMLP2 (15)

where WMLP1 ∈ Rdz×4dz ,WMLP2 ∈ R4dz×dz .

Outer Product Mean. The outer product mean block transforms the MSA representation into an
update for the pair representation. For updating entry (i, j) of pair representation, the outer products
of vectors from two columns i and j are averaged over the sequences. Then the product is flattened
and projected to dimension dz for the update.

Ẑij = Flatten(means(Mi ⊗Mj)Wz (16)

where Mi,Mj ∈ Rs×dm ,Mi ⊗ Mj ∈ Rs×dm×dm ,Wz ∈ Rd2
m×dz , ⊗ denotes the outer product.

The pair representation is updated with MSA information by outer product mean:

Zij = Zij + Ẑij (17)

B DETAILED CONSERVED BIAS FLOW CAPACITY

Regarding conserved bias flow capacity, We introduce a competition mechanism into the flow net-
work by limiting the flow capacity. In the simple scenario, we set flow capacity as default 1 for each
source and sink node:
ϕ(Q′

i)
∑L

j=1 ϕ(K
′
j)

T +
∑L

j=1 ϕ(Bij)

Ii
= 1,

ϕ(K′
j)
∑L

i=1 ϕ(Q
′
i)

T +
∑L

i=1 ϕ(Bij)

Oj
= 1 (18)
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Figure 5: Pair representation row-wise and column-wise triangle update through Bias-aware Flow
Attention.

By treating ϕ(Q′
i)

Ii
,
ϕ(K′

j)

Oj
as normalization operations for queries-keys similarity and ϕ(Bij)

Ii
,
ϕ(Bij)
Oj

as normalization operations for bias matrix, and applying the normalization to Eq. 4, we get the
conserved incoming and outgoing flow:

Îi = ϕ(Q′
i)

L∑
j=1

ϕ(K′
j)

T

Oj
+

L∑
j=1

ϕ(Bij)

Oj
, Ôj = ϕ(K′

j)

L∑
i=1

ϕ(Q′
i)

T

Ii
+

L∑
i=1

ϕ(Bij)

Ii
(19)

C TRIANGULAR UPDATE WITH BIAS-AWARE FLOW ATTENTION

As shown in Figure 5, pair representation is first projected and reshaped into Q,K,V ∈ Rh×L×L×d

and triangle bias B ∈ Rh×L×L×1. The queries and keys matrix first concatenates with 1 and triangle
bias. Then based on the unbiased version of Eq ??, we use the concatenated queries Q′ and keys K′

to calculate the conserved incoming and outgoing flow.

Ii = ϕ(Q′
i)

L∑
j=1

ϕ(K′
j)

T , Oj = ϕ(K′
j)

L∑
i=1

ϕ(Q′
i)

T (20)

Îi = ϕ(Q′
i)

L∑
j=1

ϕ(K′
j)

T

Oj
, Ôj = ϕ(K′

j)

L∑
i=1

ϕ(Q′
i)

T

Ii
(21)

Following the same procedure of Bias-aware Flow Attention on MSA, the triangular update can be
implemented within three steps: competition, aggregation and allocation.

V̂ = SoftmaxL(Ô)⊙V

A =
(ϕ(Q′)ϕ(K′)T )V̂

ϕ(Q′)
∑

j ϕ(K
′
j)

T
=

ϕ(Q′)

I
(ϕ(K′)T V̂)

TriangleAttn = Sigmoid(̂I)⊙A

(22)

D EXPERIMENTAL SETUP

D.1 TRAINING LOSS

During training, we apply the same objective function as AlphaFold2 (Jumper et al., 2021). The
primary reason to use various loss function terms is to attach an individual loss to each major sub-
component of the model (including both the pair and MSA final embeddings) as a guide during the
training.

L = 0.5LFAPE + 0.5Laux + 0.3Ldist + 2Lmsa + 0.01Lconf (23)
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Figure 6: The contrast between Bias-aware Flow Attention and canonical attention pipeline.

• LFAPE : Main Frame Aligned Point Error Loss from the Structure Module block. This loss
evaluates the predicted structure against ground truth 3D structure and scores all atoms in
all backbone and side chain frames.

• Laux: Auxiliary Loss is also from the Structure Module. This term averages the FAPE
and torsion losses of intermediate structures, which are iteratively generated by Structure
Module blocks.

• Ldist: It is an averaged cross-entropy loss for pair representation distogram prediction. It
ensures that all entries in the pair representation have a clear relationship to the associated
(i, j) residue pair and assures that the pair representation will be useful for the structure
module.

• Lmsa: It is an averaged cross-entropy loss for masked MSA prediction. During training, we
added a Bert-like task by randomly masking some parts of MSA sequence tokens. This loss
is intended to force the network to consider inter-sequence relationships, the co-evolution-
like relationships, without explicitly encoding covariance statistics.

• Lconf : Model confidence Loss scores the final predicted structure with per-residue
lDDTCα

against the ground truth structure.

D.2 EVALUATION METRICS

We use the metrics below to comprehensively evaluate the memory usage of computation costs and
the accuracy of predicted 3D protein structures.

Computation cost.

• Mem per block (GB): the memory usage for training each Liteformer/Evoformer block.

• Cost per block (ms): the time cost for training each Liteformer/Evoformer block.
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Figure 7: The distribution of protein single sequence length (left) and MSA sequence number (right).
Single sequence length primarily ranges from 220 to 240, and its corresponding MSA sequence
number mainly falls within the range of 11,000 to 13,000.

Structure prediction.

• TM-score (Yang & Jeffrey, 2004): Template modeling score (TM-score) is a useful com-
plement to the fully automated assessment of protein structure predictions. This score
evaluates all residue pairs to assess the quality of the predicted protein structure. The value
of this metric ranges from 0 to 1, and shows a close coincidence with the results of the
human-expert visual assessment.

• DockQ (Sankar & Björn, 2016): DockQ is a continuous protein-protein docking model
quality measure with a single score in the range [0, 1]. This metric can estimate model
quality in a more quantitative way, which is valuable for CASP community and protein
docking field.

• RMSD: Root Mean Square Deviation (RMSD) is the most commonly used quantitative
measure of the similarity between two structures’ atomic coordinates. RMSD can be cal-
culated for any type and subset of atoms. For Table ??, we compare Cα atoms of all
residues.

• GDT-TS & GDT-HA (Zemla, 2003): Global Distance Test - Total Score (GDT-TS) is also
used to quantify the similarity between a predicted protein structure and a reference struc-
ture. Instead of using the actual distance between Cα, GDT works with the percentage of
Cα that are found within certain cutoff distances of each other and is more robust against
small fragment movements. GDT-TS gives an overall average measure of distance between
predicted and reference amino acids, its values range from 0 (a meaningless prediction) to
100 (a perfect prediction). Global Distance Test - High Accuracy (GDT-HA) uses a shorter
cutoff than GDT-TS and it is better at showing the proportion of Cα with high prediction
accuracy.

E MORE EXPERIMENTAL RESULTS

Figure 7 shows the distribution of single sequence length and MSA number. Figure 8 compares the
single protein structure performance between Liteformer with ESM-2 150M (purple) and baseline
Evoformer with ESM-2 150M (yellow). The x-axis is training global steps and the y-axis is the
value of various metrics. We observe that the Liteformer can achieve comparable accuracy against
Evoformer on CASP14, CASP15 and CAMEO.

Figure 6 shows the quantitative comparison with AlphaFold2 on single structure prediction. We
randomly selected 10,000 general protein data as a training dataset and evaluated CASP14, CASP15
and CAMEO datasets. It is evident that the accuracy of structure predicted by Liteformer with
AlphaFold2 outperforms Evoformer with AlphaFold2.
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(a) CASP14

(b) CASP15

(c) CAMEO

Figure 8: The performance comparison of Liteformer(purple) and Evoformer(yellow) with ESM-
2 150M on CASP14,CASP15 and CAMEO in terms of TM-score, RMSD, GDT-TS and GDT-HA.

Table 6: Quantitative results comparison on CASP and CAMEO benchmarks.
z

Dataset Model w/ AF2 TM-score ↑ RMSD ↓ GDT-TS ↑ GDT-HA ↑

CASP14 Evoformer 0.5738 9.041 0.3808 0.2236
Liteformer 0.6110 8.483 0.3877 0.2570

CASP15 Evoformer 0.6102 15.588 0.3612 0.2105
Liteformer 0.6269 15.220 0.3787 0.2176

CAMEO Evoformer 0.7207 5.973 0.5537 0.3868
Liteformer 0.7343 5.591 0.5867 0.3999
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