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Abstract

Large Vision-Language Models (LVLMs) have001
demonstrated remarkable performance in com-002
plex multimodal tasks. However, these models003
still suffer from hallucinations, particularly004
when required to implicitly recognize or infer005
diverse visual entities from images for complex006
vision-language tasks. To address this chal-007
lenge, we propose HALLUCINOGEN, a novel008
visual question answering (VQA) benchmark009
that employs contextual reasoning prompts as010
hallucination attacks to evaluate the extent of011
hallucination in state-of-the-art LVLMs. Our012
benchmark provides a comprehensive study of013
the implicit reasoning capabilities of these mod-014
els by first categorizing visual entities based015
on the ease of recognition in an image as either016
salient (prominent, visibly recognizable objects017
such as a car) or latent entities (such as identify-018
ing a disease from a chest X-ray), which are not019
readily visible and require domain knowledge020
or contextual reasoning for accurate inference.021
Next, we design hallucination attacks for022
both types of entities to assess hallucinations023
in LVLMs while performing various vision-024
language tasks, such as locating or reasoning025
about specific entities within an image, where026
models must perform implicit reasoning by027
verifying the existence of the queried entity028
within the image before generating responses.029
Finally, our extensive evaluations of eleven030
LVLMs, including powerful open-source031
models (like LLaMA-3.2 and DeepSeek-V2),032
commercial models like Gemini, and two hal-033
lucination mitigation strategies across multiple034
datasets, demonstrate that current LVLMs035
remain susceptible to hallucination attacks.036

1 Introduction037

In recent years, Large Language Models (LLMs)038

have made significant advancements in natural039

language understanding and natural language gen-040

eration, significantly advancing the field of artificial041

intelligence (Achiam et al., 2023; Dubey et al.,042

In the image, there is a person standing
near the yellow car parked in the parking.

Implicit Object Hallucination Attacks

Question: Describe where is the person in
the image. 

Ground Truth:  No

Generated Response

Explicit Object Hallucination Attacks

Question: Is the person present in the
image? 

Ground Truth:  No

No. There is no person in the image

Generated Response

Figure 1: Examples of different object hallucination attacks,
where hallucination prompts from HALLUCINOGEN (right)
are able to make the LVLM hallucinate response. (Left) When
explicitly asked to identify a non-existent object, such as

“person,” LVLMs like LLaVA1.5 (Liu et al., 2024b) generate a
correct response. (Right) However, in the case of an implicit
object hallucination attack, where the question requires first
implicitly determining an object’s presence before describing
its position, the LVLMs produce a hallucinated response.

2024; Zhao et al., 2023). Building on the excep- 043

tional capabilities of LLMs, researchers have de- 044

veloped Large Vision-Language Models (LVLMs), 045

which have demonstrated outstanding performance 046

on multimodal tasks such as image captioning and 047

VQA (Zhu et al., 2023; Ye et al., 2023; Wang et al., 048

2024; Dubey et al., 2024; Liu et al., 2024b). These 049

models use LLMs as their foundational architec- 050

ture, integrating visual features as supplementary 051

inputs and aligning them with textual features 052

through visual instruction tuning (Liu et al., 2023, 053

2024b). Despite these advancements, LVLMs 054

continue to struggle with the issue of hallucination 055

— a phenomenon characterized by the misidenti- 056

fication or misclassification of visual objects in 057

an image (Li et al., 2023; Lovenia et al., 2023). 058

This potentially leads to harmful consequences, 059

especially when users lacking sufficient domain 060

knowledge place undue reliance on these models. 061

HALLUCINOGEN vs. Existing Benchmarks. 062

Prior works have introduced a series of bench- 063

marks (Lovenia et al., 2023; Li et al., 2023; Guan 064
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et al., 2023; Yin et al., 2024) and mitigation strate-065

gies (Leng et al., 2024; Huang et al., 2024; Zhou066

et al., 2023) to evaluate and mitigate hallucina-067

tions in LVLMs. However, as illustrated in Fig. 1,068

we find that existing benchmarks predominantly069

rely on explicit closed-form attacks, which directly070

prompt the underlying LVLM to identify a specific071

visual entity, such as a “car,” expecting a simple072

“Yes” or “No” response. For example, POPE (Li073

et al., 2023) utilizes simple visual object detec-074

tion prompts like “Is <object> present in the im-075

age?”. In contrast, HALLUCINOGEN introduces076

implicit open-form hallucination attacks, which077

pose a more significant challenge for LVLMs to078

defend against. For instance, in a complex vision-079

language task that requires the model to identify080

the surrounding visual context of a specific object081

using a prompt like, “Describe the context and sur-082

rounding of the <object> in the image.”, LVLMs083

must first implicitly verify whether the object men-084

tioned in the prompt is present in the image be-085

fore generating a factually accurate response. This086

additional layer of reasoning increases the likeli-087

hood of LVLMs mistakenly assuming the presence088

of a visual entity due to pre-existing biases from089

strong LLM priors, such as spurious correlations090

between non-existent objects and the overall visual091

scene (Liu et al., 2024a, 2025).092

Main Contribution. To address these short-093

comings, we propose HALLUCINOGEN, a novel094

benchmark for evaluating hallucinations in LVLMs.095

Unlike existing benchmarks, which primarily rely096

on simple, single-object identification prompts,097

HALLUCINOGEN introduces a diverse set of098

contextual-reasoning prompts, which we call as099

hallucination attacks. We categorize these attacks100

into two types: explicit and implicit hallucination101

attacks. Prior benchmarks have shown to mainly fo-102

cus on explicit attacks, where LVLMs are directly103

asked to identify non-existent visual entities in104

an image, often leading to hallucinated responses.105

In contrast, we introduce implicit attacks, which106

employ more complex and indirect queries. Rather107

than explicitly asking about a specific entity, these108

prompts leverage contextual or relational cues in109

the visual and textual input, inducing LVLMs to110

infer visual entities not present in a target image.111

Additionally, based on the visual ease of recog-112

nizing entities in an image, we categorize them as113

either salient or latent entities. Salient entities refer114

to prominent, visibly recognizable objects, like a115

“car,” that can be easily identified without requir-116

ing additional context. In contrast, latent entities 117

are those that are not readily visible and neces- 118

sitate domain knowledge or contextual reasoning 119

for accurate inference, e.g., diagnosing a “disease” 120

from a biomedical image like a chest X-ray. Fur- 121

thermore, we design implicit hallucination attacks 122

for both types of entities and utilize these attacks 123

to identify hallucinated responses when LVLMs 124

are challenged with complex vision-language tasks 125

such as locating or reasoning about specific visual 126

entities in an image. We summarize our main con- 127

tributions below: 128

• We propose HALLUCINOGEN, a novel bench- 129

mark for evaluating hallucination in LVLMs. 130

Unlike prior benchmarks, HALLUCINOGEN 131

introduces a diverse set of complex contextual 132

reasoning prompts, referred to as hallucination 133

attacks, specifically designed to query LVLMs 134

about visual entities that may not be present in a 135

target image. Our benchmark consists of 90,000 136

image-prompt pairs with 6,000 visual-entity 137

pairs equally divided between salient and latent 138

entities. Furthermore, for robust evaluation, each 139

image is associated with 15 diverse implicit 140

hallucination attack prompts. 141

• We show that LVLMs are also capable of hallu- 142

cinating reasoning and using Chain-of-Thought 143

reasoning increases hallucination in LVLMs. 144

• Finally, we conduct extensive qualitative and 145

quantitative evaluations of eleven prior LVLMs 146

and two hallucination mitigation strategies on our 147

proposed benchmarks. Our results demonstrate 148

that, for the majority of hallucination attacks 149

proposed in HALLUCINOGEN, most LVLMs 150

show performance close to random guessing. 151

2 Related works 152

Our work lies at the intersection of large visual- 153

language models, hallucination benchmarks, and 154

mitigating techniques for hallucination. 155

Large Vision-Language Models (LVLMs). 156

In recent years, building on the success of 157

LLMs (Bubeck et al., 2023; Chang et al., 2024), 158

there has been a significant surge in the develop- 159

ment of LVLMs. To enhance the capabilities of 160

these LVLMs, prior works have primarily focused 161

on designing novel architectures (Ye et al., 2024), 162

improving cross-modal alignment between visual 163

and textual prompts (Dubey et al., 2024), and 164

refining training methods (Liu et al., 2024b). While 165
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Describe the context and
surroundings of car in the picture.
...

This image depicts a child sitting at a table with food. 
There's no visible car in the scene.

Salient Entity: 
e.g, Car

Salient Entity: 
e.g, Car

Latent Entity: 
e.g, Pneumonia

Expected Response

Latent Entity: 
e.g, Pneumonia

Salient Entity: 
e.g, Car

Latent Entity: 
e.g, Pneumonia

Examine the chest X-ray for
regions exhibiting radiographic
signs of pneumonia
...

Localization

No, the person does not have Pneumonia

Expected Response

Locate and describe the position of
car in the image.
...

Generated Response

There is no car present in the image

Generated Response

Analyze the X-ray and locate which
region is linked to Pneumonia.
...

Visual Context Reasoning

The X-ray reveals a lung infection,
aligning with a diagnosis of pneumonia.

The infection is situated in the right
lower lobe of the lung.

Generated Response
If we removed the car from the image, we
would be left with a young boy sitting at
a dining table. The presence of the car in

the image adds an interesting and
unexpected element to the scene. 

Counterfactual Reasoning

Generated Response
Removing pneumonia signs may reveal
hidden abnormalities like lung nodules,

fibrosis, or pleural effusion.

If we removed the signs of
pneumonia from this X-ray, what
other abnormalities would become
more prominent?
...

The presence of the car on the table
suggests that the child might be playing
with toys or engaging in imaginative play

while eating.

What would happen if we removed
the car from the image?
...

The X-ray shows a lung infection, which
is consistent with pneumonia. The

infection is located in the right lower
lobe of the lung.

Expected Response

Generated Response

Expected Response
There is no car visible in the image. The scene focuses on

a child eating at a table.

No, the person does not have Pneumonia
Expected Response

No, the person does not have Pneumonia
Expected Response

Generated Response

Expected Response

Increasing Level of Difficulty
Localization Visual Context Counterfactual Reasoning

The toy car is located to the right of the
child, just behind the glass on the table. 

Figure 2: Illustration of various types of hallucination attacks in HALLUCINOGEN. We broadly define two categories of
hallucination attacks: explicit and implicit attacks. An explicit attack involves directly prompting LVLMs to accurately identify
the presence or absence of existing or non-existing visual entity. In contrast, an implicit attack employs more complex queries
that do not explicitly inquire about a specific visual entity but instead require the model to implicitly assess its presence in the
image to generate a factually accurate response. Furthermore, for implicit attacks, we propose a range of visual-language tasks
with varying levels of difficulty, from correctly locating a visual entity to understanding its surrounding context.

these LVLMs excel in complex vision-language166

tasks (Zhou et al., 2024; Xu et al., 2024), they167

remain prone to generate hallucinated responses168

when faced with prompts involving nonexistent169

objects, incorrect attributes, or inaccurate relation-170

ships (Huang et al., 2023; Lovenia et al., 2023).171

Hallucination Benchmarks. In the context of172

LVLMs, prior research has defined “hallucination”173

as the phenomenon where a model generates re-174

sponses referencing objects that are either incon-175

sistent with or absent from the target image (Li176

et al., 2023; Lovenia et al., 2023). Various bench-177

marks have been proposed to evaluate the extent of178

hallucination in such models, primarily focusing179

on closed-ended tasks using yes-or-no or multiple-180

choice questions, with accuracy as the primary eval-181

uation metric. For example, POPE (Li et al., 2023)182

detects hallucinations through polling-based yes-183

or-no questions, while AMBER (Wang et al., 2023)184

and HallusionBench (Guan et al., 2024) extend and185

refine these methods to assess a broader range of186

hallucination types with greater granularity. De-187

spite their success, we find that these benchmarks188

rely heavily on simple visual object identification189

prompts, which fail to adequately challenge current-190

generation LVLMs such as Qwen2VL (Yang et al.,191

2024) and Llama3.2 (Dubey et al., 2024).192

Mitigating Hallucination in LVLMs. Based on 193

evaluations conducted on existing hallucination 194

benchmarks, there have been attempts to mitigate 195

hallucination in LLMs and LVLMs. In LLMs, tech- 196

niques like Chain-of-Thought reasoning (Wei et al., 197

2022) have proven effective at reducing halluci- 198

nated or erroneous responses (Luo et al., 2023; 199

Akbar et al., 2024). For LVLMs, methods such 200

as VCD (Leng et al., 2024) and OPERA (Huang 201

et al., 2024) use inference-time decoding optimiza- 202

tions to identify hallucinated tokens in the gener- 203

ated responses. Further, preference-aligned train- 204

ing techniques, like reinforcement learning with 205

human feedback (RLHF), have also been effec- 206

tive in addressing hallucination by prioritizing non- 207

hallucinatory responses while penalizing halluci- 208

nated content (Sun et al., 2023a). In this work, we 209

extensively evaluate these mitigation techniques 210

and show that these approaches fail to defend 211

against the diverse pool of hallucination attacks 212

introduced by HALLUCINOGEN. 213

3 HALLUCINOGEN: A Benchmark for 214

Evaluating Hallucinations in LVLMs 215

In this section, we present the details of our pro- 216

posed benchmark, HALLUCINOGEN, as illustrated 217

in Fig 2. We first outline the construction of HAL- 218
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LUCINOGEN in Section 3.1. Next, in Section 3.2,219

we provide the details on categorising various hal-220

lucination attacks introduced in HALLUCINOGEN.221

3.1 Developing HALLUCINOGEN Benchmark222

As illustrated in Fig. 2, for each image Ii and223

a target visual entity et from the associated list224

of entities E = {e1, e2, · · · , eN}, HALLUCINO-225

GEN employs a prompt pk (i.e., the hallucina-226

tion attack) from the set of hand-crafted prompts227

P = {p1, p2, · · · , pM} to query the LVLMs.228

Dataset Structure. We leverage the aforemen-229

tioned prompts in HALLUCINOGEN to conduct230

a comprehensive evaluation of hallucination in231

LVLMs by verifying whether the target entity et232

is accurately referenced in the generated response.233

To achieve this, we classify entities within an im-234

age based on their visual recognizability into two235

categories: salient and latent. Salient entities re-236

fer to prominently visible objects, such as a “car,”237

that can be easily identified without additional con-238

text. In contrast, latent entities are not immediately239

apparent and require domain knowledge or con-240

textual reasoning for accurate interpretation—for241

example, diagnosing a “disease” from a biomedi-242

cal image like a chest X-ray. For both categories,243

we design hallucination prompts that are further244

categorized based on the specific vision-language245

tasks they challenge LVLMs to perform. These246

tasks include localization, visual context, and coun-247

terfactual reasoning (detailed descriptions of each248

task are provided in Sec. 3.2). The crafted prompts249

implicitly require the model to infer the presence250

of the target entity before generating a response251

(e.g., by understanding the surrounding context).252

Furthermore, each sample in HALLUCINOGEN is253

uniquely represented by the triplet shown below:254

⟨Ii, {{pk(ej), yj}Nj=1}Mk=1⟩ (1)255

where yj is “Yes” or “No” depending on whether256

the visual entity ej can be recognized or inferred257

from a target image Ii. HALLUCINOGEN con-258

sists of 90,000 such triplets. For salient entities,259

we sourced 3,000 unique visual-entity pairs from260

the MS-COCO (Lin et al., 2014). For latent en-261

tities, we obtained 3,000 unique X-ray and dis-262

ease pairs from the test set of the NIH Chest X-ray263

dataset (Wang et al., 2017) (additional details on264

the NIH Chest X-ray dataset and the filtering pro-265

cess are provided in Appendix C). Furthermore,266

each image is accompanied by 15 diverse implicit267

hallucination attack prompts.268

3.2 Categorizing Hallucination Attacks 269

In contrast to prior benchmarks that primarily fo- 270

cus on straightforward identification prompts, we 271

introduce a diverse range of contextual prompts 272

in HALLUCINOGEN, referred to as hallucination 273

attacks. These attacks are designed to elicit hallu- 274

cinated responses by exploiting contextual or rela- 275

tional cues within the image. Additionally, each 276

hallucination attack is designed to evaluate LVLMs’ 277

ability to accurately infer the presence of diverse 278

visual entities with varying levels of complexity 279

while performing various visual-language tasks, in- 280

cluding localization, visual contextual reasoning, 281

and counterfactual reasoning (list of prompts used 282

for each task can be found in Appendix D). 283

Localization (LOC). Localization involves 284

identifying the precise location of a visual entity, 285

requiring both recognition and spatial awareness. 286

We employ implicit hallucination attacks by 287

prompting LVLMs to locate entities that are absent. 288

For example, for a salient entity like a “clock,” the 289

prompt “Where is the clock in the image?” can 290

induce hallucinated placements. Similarly, for a 291

latent entity like “Pneumonia,” the prompt “Locate 292

the region linked with Pneumonia in this X-ray” 293

may elicit false indications of disease. These 294

attacks test the LVLM’s spatial reasoning and its 295

susceptibility to context-induced hallucinations. 296

Visual Context (VC). Visual contextual reasoning 297

requires interpreting entities based on their sur- 298

rounding context rather than isolated recognition. 299

Implicit hallucination attacks exploit subtle cues 300

to induce erroneous inferences. For instance, given 301

a salient entity like a “car,” the prompt “Identify 302

surrounding objects near the car in the image?” 303

may induce hallucinations of a nonexistent car. 304

Similarly, for a latent entity like “Pneumonia,” the 305

prompt “Analyze the chest X-ray for radiographic 306

signs of pneumonia” can elicit hallucinated 307

diagnoses. These attacks expose LVLMs’ reliance 308

on context and their tendency to infer fitting but 309

incorrect entities. 310

Counterfactual (CF). Counterfactual reasoning 311

requires the model to infer how a scene changes 312

with the presence or absence of a visual entity, 313

demanding higher cognitive reasoning. We employ 314

implicit hallucination attacks, prompting the model 315

to imagine an absent object. For instance, given a 316

salient entity like a “car,” the prompt “What if we 317

removed the car from the image?” challenges the 318

model to respond based on a non-existent object. 319
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Similarly, for a latent entity like “Pneumonia,”320

the prompt “If we remove signs of Pneumonia321

from this X-ray, what other abnormalities appear?”322

requires first diagnosing Pneumonia before reason-323

ing further. These attacks assess how the model’s324

understanding adapts to hypothetical scenarios.325

3.3 HALLUCINOGEN vs. Prior Benchmarks326

In this section, we compare HALLUCINOGEN with327

prior benchmarks.328

i) Evaluating Hallucination Beyond Visual-329

Grounding Tasks. Prior benchmarks like330

POPE (Li et al., 2023) and AMBER (Wang et al.,331

2023) focus on visual grounding tasks for hallucina-332

tion detection, where models are explicitly queried333

about only the presence or absence of a visual en-334

tity. In contrast, HALLUCINOGEN extends this335

by holistically evaluating hallucination in complex336

vision-language tasks such as Localization, Visual337

Context, and Counterfactual Reasoning—where338

models implicitly must determine the existence of339

visual entities before generating a response.340

ii) Evaluating Hallucination Beyond Salient En-341

tities. Unlike prior benchmarks that focus on easily342

recognizable salient entities (Li et al., 2023; Wang343

et al., 2023; Guan et al., 2023), HALLUCINOGEN344

introduces a first-of-its-kind extension to latent enti-345

ties—visual elements requiring domain knowledge346

for accurate inference, such as diagnosing diseases347

from medical images.348

iii) Evaluating Hallucination with Multiple349

Prompts. For robust evaluation, HALLUCINOGEN350

maps each visual entity with five unique prompts351

across each of the three vision-language tasks,352

resulting in 15 distinct prompts.353

4 Experimental Results354

In this section, we demonstrate the utility of355

HALLUCINOGEN in studying the hallucination of356

LVLMs and evaluating their effectiveness against357

mitigation and reasoning techniques. We first de-358

scribe our experimental setup and then discuss the359

key findings of our benchmarking analysis.360

4.1 Experimental setup361

Large Visual Language Models. To demonstrate362

the effectiveness and generalizability of our363

proposed benchmark, we conduct extensive364

experiments on eleven state-of-the-art LVLMs.365

These models span a range of sizes: i) mid-sized366

models such as mPLUG-OWL (Ye et al., 2023),367

mPLUG-OWL2 (Ye et al., 2024), Multi-Modal 368

GPT (Gong et al., 2023), QwenVL (Bai et al., 369

2023), Qwen2VL (Yang et al., 2024), LLAVA- 370

1.5 (Liu et al., 2023), LLAVA-Med (Li et al., 2024), 371

DeepSeek-VL2 (Wu et al., 2024), and MiniGPT- 372

4 (Zhu et al., 2023), ii) larger models with 11B 373

parameters, such as LLAMA3.2-VL (Dubey et al., 374

2024) and iii) commercial vision-language models 375

such as Gemini (Team et al., 2024). 376

Hallucination Mitigation Strategies. We include 377

two widely adopted strategies for mitigating 378

hallucinations: reinforcement learning with human 379

feedback (RLHF) (Sun et al., 2023a) and LURE. 380

In addition, we test our hallucination attacks using 381

post-prompt and reasoning defenses. 382

Evaluation. Following prior hallucination bench- 383

marks (Li et al., 2023), we use accuracy as a metric 384

to evaluate hallucination in LVLMs. Specifically, 385

accuracy measures the proportion of correctly an- 386

swered questions, with lower accuracy indicating 387

a higher degree of hallucination in the generated 388

responses. Additionally, following NOPE (Love- 389

nia et al., 2023), we employ string matching 390

algorithms to convert open-ended responses into 391

binary “Yes” or “No” labels based on matching 392

negative keywords such as “no”, “not”, “never”, 393

“none”, “nope.” Furthermore, we also conduct an 394

LLM-as-judge evaluation (Zheng et al., 2023), in 395

which we use GPT-4o (Achiam et al., 2023) to 396

assess the responses generated by LVLMs. Specifi- 397

cally, we prompt GPT-4o to classify each response 398

as either “Yes” or “No,” depending on whether it 399

can be inferred that the model implicitly assumed 400

the presence of a visual entity (see Appendix G.2 401

for additional prompt details and results). We 402

generally observe a high correlation between the 403

results obtained from string-matching algorithms 404

and those from the LLM-as-judge evaluation. 405

4.2 Large Visual-Language Models fail under 406

HALLUCINOGEN attacks 407

We benchmark eleven LVLMs, including ten open- 408

sourced and one commercial modal (Gemini), us- 409

ing HALLUCINOGEN. The results reported are av- 410

eraged across multiple prompts and five runs. 411

Main Results. Our results in Figure 3 show 412

that LVLMs readily fail under different halluci- 413

nation prompt attacks and generate hallucinated 414

responses when subjected to diverse visual enti- 415

ties: salient and latent entities when performing 416

complex vision-language tasks such as for localiza- 417

tion, visual-context, and counterfactual reasoning. 418
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Figure 3: We benchmark eleven state-of-the-art LVLMs on the HALLUCINOGEN. Using image-entity pairs categorized as (top)
salient and (bottom) latent entities, we evaluate these LVLMs across diverse tasks, including Localization (LOC), Visual Context
(VC), and Counterfactual reasoning (CF). Lower accuracy reflects incorrectness in inferring the presence or absence of an object,
which correlates with a higher degree of object hallucination.

Interestingly, our results corroborate our cate-419

gorization difficulties, where LVLMs hallucinate420

more as we increase the difficulty of our hallucina-421

tion attacks from Localization → Counterfactual.422

In particular, for the salient visual entities, we423

observe a significant increase in the hallucination424

error across all eleven LVLMs as we increase the425

level of difficulty in HALLUCINOGEN prompt at-426

tacks. Notably, the average hallucination error for427

counterfactual attacks is 17.8% higher than the lo-428

calization attack category, highlighting that current429

LVLMs lack visual understanding and are not cog-430

nizant of their limitations. Furthermore, for latent431

entities requiring domain-specific expertise, most432

LVLMs fail to defend against HALLUCINOGEN at-433

tacks. In particular, all eleven LVLMs, including434

medical domain expert models such as LLAVA-435

Med, exhibit accuracy close to random guessing436

when tested on prompts from our HALLUCINOGEN437

benchmark. Our findings highlight the vulnerabil-438

ities of LVLMs in high-stakes applications, such439

as analyzing chest X-ray scans. Notably, most440

LVLMs exhibit implicit hallucinations by incor-441

rectly affirming the presence of common thoracic442

diseases—such as Pneumonia, Cardiomegaly, Ef-443

fusion, and Atelectasis—underscoring their unreli- 444

ability when applied to radiological imaging. 445

4.3 HALLUCINOGEN vs Explicit attacks 446

In Table 1, we compare the extent of hallucination 447

in LVLMs when subjected to explicit attacks vs. 448

the implicit attacks introduced in HALLUCINOGEN. 449

For salient entities, the prompts for explicit 450

attacks are sourced from prior benchmarks such 451

as POPE (Li et al., 2023) and AMBER (Wang 452

et al., 2023). In contrast, we design explicit 453

attack prompts for latent entities such as “Given 454

this X-ray, identify if the person has <disease>” 455

(see Appendix D for additional details on the 456

prompts). The results for implicit attacks are 457

averaged across all introduced vision-language 458

tasks, including localization, visual context, 459

and counterfactual reasoning. On average, for 460

both types of entities, implicit attacks result in 461

significantly higher hallucination compared to 462

explicit attacks, with performance differences 463

ranging from 6.8%-29.0%, further demonstrating 464

that LVLMs are more prone to hallucination when 465

required to perform contextual reasoning. 466
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LVLMs → LLAVA-1.5 mPLUG-OWL2 Qwen2-VL LLAMA3.2-VL
Attacks ↓ Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑

Salient Entities
Explicit 74.51± 0.19 88.22± 0.20 87.34± 0.18 84.63± 0.22
Implicit 64.20± 0.19 59.13± 0.21 69.10± 0.22 66.42± 0.25

Latent Entities
Explicit 59.12± 0.23 57.21± 0.20 60.53± 0.19 56.34± 0.18
Implicit 50.67± 0.22 50.33± 0.19 50.93± 0.21 49.57± 0.23

Table 1: Comparing the degree of hallucination in top per-
forming LVLMs, when exposed to Explicit and Implicit at-
tacks (HALLUCINOGEN attacks).

LVLMs → LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑

LOC (w/o PP) 82.20± 0.19 65.50± 0.25 81.27± 0.22 77.60± 0.31
LOC (w/ PP) 83.12± 0.22 64.32± 0.27 80.12± 0.19 77.12± 0.30
VC (w/o PP) 59.50± 0.21 57.26± 0.18 70.43± 0.20 64.62± 0.23
VC (w/ PP) 58.52± 0.24 56.45± 0.28 71.10± 0.20 64.15± 0.22
CF (w/o PP) 47.31± 0.23 51.40± 0.30 51.20± 0.21 55.61± 0.27
CF (w/ PP) 46.24± 0.19 50.10± 0.22 50.80± 0.23 54.32± 0.26

Table 2: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/o) inference-time
post prompting (PP). In general, hallucination attacks used
in HALLUCINOGEN are robust to post-prompting techniques.
See Table 7 for the post-prompting results on latent entities.

4.4 HALLUCINOGEN vs. Defense Techniques467

In this section, we evaluate LVLMs on HAL-468

LUCINOGEN using diverse hallucination mitiga-469

tion techniques, including inference-time defense470

methods such as Post-Prompt Defense (Gurari471

et al., 2018) and Chain-of-Thought (CoT) (Wei472

et al., 2022). We also present evaluations of473

training-based hallucination mitigation techniques474

such as LLAVA-RLHF (Sun et al., 2023b) and475

LURE (Zhou et al., 2023).476

Post-Prompt Defense. For post-prompt evaluation,477

we leverage existing inference-time post-prompting478

techniques (Gurari et al., 2018). Specifically, be-479

fore evaluating LVLMs on HALLUCINOGEN, we480

append our hallucination attack prompts with post-481

prompts such as, "When the object <obj> is not482

present in the image, respond with ’no’" (Addi-483

tional details on the post-prompt used in the experi-484

ment can be found in Appendix D). As shown in Ta-485

ble 2, across various task difficulties (Localization486

→ Counterfactual), we find that post-prompting487

(PP) has minimal impact on model performance,488

with differences ranging in 1.30% − 0.92% com-489

pared to evaluations without PP. This suggests490

that when subjected to the HALLUCINOGEN at-491

tacks, LVLMs continue to generate hallucinated492

responses even when explicitly instructed to refrain493

from doing so.494

Chain-of-Thought Defense. Chain of Thought495

(CoT) enables LLMs to reason before generating496

responses. LVLMs use LLMs to align visual497

Mitigation → LLAVA-RLHF LURE
HALLUCINOGEN ↓ Acc.(%) ↑ Acc.(%) ↑

LOC 80.43±0.45 69.14±0.19

VC 60.15±0.27 60.11±0.29

CF 48.12±0.32 55.31±0.22

Table 3: Evaluating object hallucination mitigation method
using HALLUCINOGEN across diverse hallucination attacks.

LVLMs → LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑

LOC (w/o CoT) 82.20±0.30 65.50±0.22 81.27±0.45 77.60±0.40

LOC (w/ CoT) 79.51±0.43 62.12±0.37 79.04±0.34 76.20±0.23

VC (w/o CoT) 59.50±0.33 57.26±0.41 70.43±0.29 64.62±0.30

VC (w/ CoT) 57.12±0.28 54.42±0.27 67.58±0.40 63.02±0.25

CF (w/o CoT) 47.31±0.23 51.40±0.35 51.20±0.12 55.61±0.27

CF (w/ CoT) 47.14±0.15 50.41±0.19 50.80±0.18 54.32±0.21

Table 4: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/o) Chain of Thought
(CoT) reasoning, where CoT reasoning causes LVLMs to
hallucinate more (lower accuracies). See Table 8 for the post-
prompting results on latent entities.

and textual features, enhancing reliability in 498

visual-question answering. Prior work shows 499

that adding “Let’s think step by step” to prompts 500

encourages intermediate reasoning. We inves- 501

tigate whether such reasoning amplifies object 502

hallucination. Our results in Table 4 show that 503

while CoT is ineffective against our hallucination 504

attacks, it increases hallucination in the four 505

best-performing LVLMs when performing diverse 506

vision-language tasks. We hypothesize that since 507

CoT prompts make LVLMs generate longer, 508

multi-step responses, it increases the likelihood 509

of hallucination as errors can accumulate over 510

extended reasoning (Bang et al., 2023) (For more 511

qualitative examples, refer to Appendix G.3). 512

Hallucination Mitigation Methods. We also eval- 513

uate two popular object hallucination mitigation 514

techniques: LLAVA-RLHF and LURE. Notably, 515

both techniques use LLAVA-1.5 as their backbone. 516

Our findings from Table 3 reveal that as the task dif- 517

ficulty increases (Localization → Counterfactual), 518

the average error for the counterfactual task in- 519

creases by 21.09% for LLAVA-RLHF and 23.12% 520

for LURE. This highlights the ineffectiveness of 521

these mitigation techniques when evaluated against 522

HALLUCINOGEN. 523

4.5 Investigating the Cause For Hallucination 524

To investigate the cause of hallucination, we con- 525

duct two experiments. First, we analyze the extent 526

to which LVLMs focus on visual input compared 527

to textual input, such as prompts or previously gen- 528
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LVLM → LLAVA-1.5 mPLUG-OWL2
HALLUCINOGEN ↓ No Acc.(%) ↑ No Acc.(%) ↑

LOC 69.23±0.40 72.10±0.18

VC 15.20±0.45 16.21±0.25

CF 10.13±0.27 12.45±0.30

Table 5: Evaluate the tendency of LVLMs to respond with
“No,” using Gaussian noise as visual input. To evaluate how
accurately a model responds with a "No" when presented with
Gaussian noise, we use No Accuracy (No Acc.).

erated text tokens. As shown in Fig.4, we evalu-529

ate LLAVA-1.5 on localization and counterfactual530

tasks in HALLUCINOGEN and plot the attention531

scores for visual, query, and previous predict to-532

kens. The attention scores are averaged across all533

attention heads. For visual tokens, an additional534

averaging is performed across patch lengths. Dur-535

ing next-token prediction, the model’s attention536

to visual tokens remains near zero, while atten-537

tion to query tokens decreases significantly, sug-538

gesting that LVLMs prioritize textual tokens over539

visual tokens, reflecting the influence of strong lan-540

guage prior while generating response (Liu et al.,541

2024a). We hypothesize that the lack of atten-542

tion to visual tokens is a key factor for object543

hallucination in LVLMs as they lack visual un-544

derstanding of the given image. Next, to assess545

the tendency of LVLMs to respond with “No,” we546

introduce Gaussian noise as the visual input and547

evaluate their performance under explicit and im-548

plicit hallucination attacks. We conduct this evalua-549

tion against two powerful LVLMs, LLAVA-1.5 and550

mPLUG-OWL2. As shown in Table 5, while these551

LVLMs can effectively defend against explicit at-552

tacks, such as identifying objects, they perform553

poorly when we increase the difficulty from Local-554

ization → Counterfactual. Particularly when re-555

sponding to visual context or counterfactual tasks,556

these models show an average drop of 59%− 60%.557

This behaviour demonstrates that LVLMs are heav-558

ily biased towards consistently responding with559

“Yes” and offering explanations, even for incorrect560

or misleading prompts.561

4.6 Error Analysis562

We conduct an error analysis of the incorrect re-563

sponses generated by the best-performing model,564

Qwen2VL (Yang et al., 2024). As shown in Fig. 5,565

we calculate the Yes vs. No ratio of the incorrect re-566

sponses when subjected to the HALLUCINOGEN at-567

tack across diverse vision-language tasks. We find568

that as we increase the difficulty of our attack (Lo-569

Identification Localization

Previous token attention

Visual Attention
Query Attention

Figure 4: Comparing attention scores for visual, query, and
previously generated tokens while predicting the next tokens.
The (left) plot illustrates the trend in attention scores for local-
ization tasks, while the (right) plot depicts the trend for coun-
terfactual reasoning tasks. Overall, we observe that LVLMs
allocate very little attention to visual tokens when responding
to our hallucination attacks.

Figure 5: Error Analysis on the incorrect responses gener-
ated by Qwen2VL (Yang et al., 2024) when evaluated across
HALLUCINOGEN attack on diverse vision-language tasks.

calization → Counterfactual), there is a steady rise 570

in the number of “Yes” responses (72.2%–96.2%), 571

while the number of “No” responses drops sharply 572

(27.8%–3.8%). This indicates that the model tends 573

to provide more affirmative responses, ultimately 574

failing to perform implicit reasoning. 575

5 Conclusion 576

In this work, we introduce HALLUCINOGEN, a 577

novel benchmark for evaluating hallucination in 578

large vision-language models. It incorporates a 579

diverse collection of visual entities and complex 580

contextual reasoning prompts, referred to as hal- 581

lucination attacks. These attacks are specifically 582

designed to assess models’ ability to perform im- 583

plicit reasoning, such as inferring the presence or 584

absence of a visual entity while executing com- 585

plex visual-language tasks. Through comprehen- 586

sive qualitative and quantitative evaluations across 587

a variety of LVLMs, as well as testing various de- 588

fense strategies on HALLUCINOGEN, we demon- 589

strate that most LVLMs perform near the level of 590

random guessing when subjected to our attacks. 591
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6 Limitation and Future Work592

In this section, we highlight a few limitations and593

future directions:594

• Currently, the hallucination attacks introduced595

in HALLUCINOGEN are centered on founda-596

tional vision-language tasks such as Visual597

Question Answering (VQA). We plan to ex-598

tend our benchmark to encompass more com-599

plex vision-language tasks in the future.600

• The current results on HALLUCINOGEN re-601

veal significant potential for improvement in602

addressing object hallucination. Moving for-603

ward, we aim to develop robust hallucination604

mitigation strategies for LVLMs.605

• Our results show that both generic and med-606

ical LVLMs lack visual understanding, high-607

lighting the need for developing LVLMs that608

are not strongly dependent on the language609

model to perform VQA tasks.610
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A Benchmarks828

Benchmarks for evaluating object hallucina-829

tions. Discriminative benchmarks such as830

POPE1 (Li et al., 2023), NOPE (Lovenia et al.,831

1https://github.com/RUCAIBox/POPE

2023), and CIEM (Hu et al., 2023) focus exclu- 832

sively on object-level hallucinations. Their dataset 833

sizes are 3,000, 17,983, and 72,941, respectively. 834

These benchmarks evaluate performance using ac- 835

curacy as the primary metric, determined by verify- 836

ing the presence of objects in images and compar- 837

ing the model’s outputs to ground-truth answers. 838

B Large Visual Language Models 839

LVLMs. We perform comprehensive experiments 840

on eight leading-edge LVLMs. These models 841

represent a variety of sizes, including mid-sized 842

models like mPLUG-OWL2 (Ye et al., 2023), 843

mPLUG-OWL23 (Ye et al., 2024), Multi-Modal 844

GPT4 (Gong et al., 2023), QwenVL5 (Bai et al., 845

2023), Qwen2VL6 (Yang et al., 2024), LLAVA- 846

1.5 7 (Liu et al., 2023), and MiniGPT-4 8 (Zhu 847

et al., 2023), all with parameter counts ranging 848

from 7B to 10B. Furthermore, we include a larger- 849

scale model, LLAMA3.2-VL 9 (Dubey et al., 2024), 850

which contains 11B parameters, in our evaluations. 851

C Additional Details: NIH Chest X-ray 852

dataset 853

Chest X-rays are among the most commonly per- 854

formed and cost-efficient medical imaging proce- 855

dures. However, interpreting chest X-rays for clini- 856

cal diagnosis can be more challenging compared to 857

chest CT scans. A significant barrier to achieving 858

clinically relevant computer-aided detection and 859

diagnosis (CAD) systems for chest X-rays in real- 860

world medical settings is the limited availability of 861

large, annotated datasets. Creating such datasets 862

is resource-intensive, particularly due to the sub- 863

stantial effort required for image labeling. Before 864

the introduction of this dataset, the largest publicly 865

accessible collection of chest X-ray images was 866

Openi, which included 4,143 images. Following 867

are the labels used: Atelectasis, Cardiomegaly, Effu- 868

sion, Infiltration, Mass, Nodule, Pneumonia, Pneu- 869

mothorax, Consolidation, Edema, Emphysema, Fi- 870

brosis, Pleural Thickening, Hernia 871

The NIH Chest X-ray Dataset addresses this lim- 872

itation by providing 112,120 X-ray images labeled 873

2https://github.com/X-PLUG/mPLUG-Owl
3https://github.com/X-PLUG/mPLUG-Owl
4https://github.com/open-mmlab/Multimodal-GPT
5https://github.com/QwenLM/Qwen-VL
6https://github.com/QwenLM/Qwen-VL
7https://github.com/haotian-liu/LLaVA
8https://github.com/Vision-CAIR/MiniGPT-4
9https://huggingface.co/collections/

meta-llama/llama-32-66f448ffc8c32f949b04c8cf
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Task Prompts

Identification Given this X-ray, identify if the person has <obj>.
Based on this X-ray, determine whether the person has <obj>.
Analyze this X-ray to identify if <obj> is present in the person.
Examine this X-ray and conclude if the person has <obj>.
Review this X-ray to assess whether the person shows signs of <obj>.

Localization Examine the X-ray and identify the region associated with detecting <obj>.
Analyze the X-ray and determine which region is linked to <obj>.
Inspect the X-ray and specify the area corresponding to <obj>.
Evaluate the X-ray to locate regions indicative of <obj>.
Review the X-ray and pinpoint the region associated with identifying <obj>.

Visual Context Assess the chest X-ray for regions showing potential indications of <disease>.
Inspect the chest X-ray and surrounding regions for any signs consistent with <disease>.
Review the chest X-ray along with the surrounding thoracic cavity for evidence of <disease>.
Assess the chest X-ray and nearby anatomical regions for indications of <disease>.
Analyze the chest X-ray and nearby adjacent structures for radiographic features suggestive of <disease>.

Counterfactual Reasoning If we removed the signs of <diseases> from this X-ray, what other abnormalities would be prominent?
If the indicators of <disease> were removed from this chest X-ray, what other abnormalities would stand out?
Excluding the signs of <disease> in this chest X-ray, which other abnormalities would be most noticeable?
If <disease>-related features were eliminated from this chest X-ray, what other prominent abnormalities would remain?
Without considering the presence of <disease> in this chest X-ray, what other radiographic abnormalities can be observed?

Table 6: Prompts for Latent entities

with disease information from 30,805 unique pa-874

tients. The labeling process involved using Natural875

Language Processing (NLP) techniques to extract876

disease classifications from corresponding radiol-877

ogy reports. These labels are estimated to have an878

accuracy exceeding 90%, making them suitable for879

weakly-supervised learning applications.880

D Additional Details: Prompt Used in881

HALLUCINOGEN882

We provide the details on the prompt used for each883

category in HALLUCINOGEN for salient entities884

(see in Table 6) and latent entities (see in Table 9).885

Additionally, during post-prompt inference, we re-886

port scores averaged across five prompts, as listed887

below:888

• When the object <obj> is not present in the889

image, respond with “no”.890

• Respond with “no” when the image does not891

contain the object <obj>.892

• In the absence of the object <obj> in the im-893

age, answer with “no”.894

• If <obj> is not found in the image, your re-895

sponse should be “no”.896

• When the object <obj> is not visible in the897

image, indicate “no”.898

E Additional Details: Hyper-parameters899

We use the default hyper-parameters for all our900

baselines.901

F Additional Details: Auxiliary 902

Compute Infrastructure: All our experiments 903

are conducted on one NVIDIA A6000 GPUs. No 904

training is required, and depending on the down- 905

stream task, a single inference run on a benchmark 906

requires anywhere between 1 and 5 minutes. 907

Potential Risks: We manually create all the 908

prompts used in our benchmark to avoid any poten- 909

tial harm or biases. 910

LVLMs → LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑

LOC (w/o PP) 55.32 54.76 55.12 54.90
LOC (w/ PP) 54.78 54.20 54.65 54.12
VC (w/o PP) 50.76 51.30 50.12 49.80
VC (w/ PP) 50.20 50.65 49.78 49.12
CF (w/o PP) 49.12 48.76 48.54 47.98
CF (w/ PP) 48.54 48.12 48.00 47.45

Table 7: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/o) inference-time
post prompting (PP) on latent entity

LVLMs → LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑ Acc.(%) ↑

LOC (w/o CoT) 54.88±0.35 55.12±0.28 54.75±0.41 55.30±0.29
LOC (w/ CoT) 54.30±0.31 54.65±0.25 54.12±0.39 54.78±0.27
VC (w/o CoT) 50.90±0.29 51.45±0.33 50.78±0.30 49.92±0.28
VC (w/ CoT) 50.34±0.27 50.80±0.30 50.12±0.28 49.50±0.24
CF (w/o CoT) 49.20±0.21 48.90±0.32 48.56±0.18 47.80±0.22
CF (w/ CoT) 48.75±0.19 48.50±0.25 48.12±0.21 47.35±0.19

Table 8: Evaluating hallucination in LVLMs using HALLU-
CINOGEN both with (w/) and without (w/o) Chain of Thought
(CoT) reasoning for latent entities

G Additional Results 911

G.1 Latent Entities 912

We provide additional results on the latent entities 913

in Table 8 and Table 7. 914
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Given the open-ended response below, determine if the response implies the presence
of a visual entity (e.g., character, object, or feature from a digital/virtual world) in an
image. The response may include a location or context related to the visual entity. If
the response suggests or assumes the presence of a visual entity, return "yes". If the
response does not imply such a presence, return "no".

Response: <Response>
Virtual Entity: <object>

Return “Yes” or “No”

Figure 6: Prompt used for the GPT-4o to convert open-ended
responses into “Yes” or “No”

Explicit Object Hallucination Attacks

Question: Is the chair present in the
image? 

Ground Truth:  No

No. There is no chair in the image

Expected Response

No, there is no chair in the image

Generated Response w/o CoT

First, let's identify the objects in the image.
There are four laptops, a backpack, and a
chair.
1. The four laptops are placed on a table,
with one on the left side, one in the middle,
one on the right side, and one in the
background.
2. The backpack is located on the left side
of the table, next to the laptops.
3. The chair is positioned on the right side
of the table, near the backpack.
So, the chair is on the right side of the
table, next to the backpack.

Generated Response w/ CoT

Figure 7: Comparison of responses generated by LlaMa-
1.5 (Liu et al., 2023) when subjected to an explicit hallu-
cination attack on a simple identification task. “w/” and
“w/o” denote “with” and “without” CoT, respectively.
We find that CoT induces additional hallucinations, re-
sulting in incorrect responses.

G.2 LLM as Judge915

Fig 6 provides the details on the prompt used for916

converting open-ended responses into “Yes” or917

“No” responses. Additionally, we provide the re-918

sults with LLM as Judge evaluation in Fig 8. We919

find that the results are highly correlated with the920

values reported in Fig 3 using string-matching.921

G.3 Qualitative Example for CoT922

Fig 7 shows a comparison of the responses gener-923

ated by LlaMa-1.5 (Liu et al., 2023) when exposed924

to a direct hallucination attack on a basic identifica-925

tion task. Our findings suggest that the use of CoT926

leads to more hallucinations, causing the model to927

provide incorrect responses.928
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Figure 8: We benchmark eleven state-of-the-art LVLMs on the HALLUCINOGEN. Using image-entity pairs categorized as (top)
salient and (bottom) latent entities, we evaluate these LVLMs across diverse tasks, including Localization (LOC), Visual Context
(VC), and Counterfactual reasoning (CF). We use LLM as judge evaluation to get close-ended responses. Lower accuracy reflects
incorrectness in inferring the presence or absence of an object, which correlates with a higher degree of object hallucination.

Task Prompts

Counterfactual How would the scene change if the <obj> were invisible?
What might replace the <obj> if it vanished from the image?
What is the purpose of the <obj> in this scene, and can the image work without it?
If <obj> were moved elsewhere, what would happen to the story of the image?
What would happen if we removed the <obj> from the image?

Identification Is the <obj> present in the image?
Determine whether a <obj> is visible in the image.
Assess if a <obj> can be seen in the image.
Find out if a <obj> appears in the photo.
Verify if there is a <obj> in the image.

Localization Describe where is <obj> in the image.
Examine the presence and location of <obj> in the image.
Locate and describe the position of <obj> in the image.
Determine and specify where <obj> is in the photo.
Explain where <obj> is found in the image.

Visual Context Interpret the object <obj> with respect to its context within the image.
Analyze the neighboring elements of <obj> in the image.
Describe the context and surroundings of <obj> in the picture.
Explain the context in which <obj> is placed within the image.
Outline the context and nearby items around <obj> in the photo.

Table 9: Prompts for Salient entity
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