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Abstract
Backdoor (Trojan) attack is a common threat to
deep neural networks, where samples from one or
more source classes embedded with a backdoor
trigger will be misclassified to adversarial target
classes. Existing methods for detecting whether
a classifier is backdoor attacked are mostly de-
signed for attacks with a single adversarial target
(e.g., all-to-one attack). To the best of our knowl-
edge, without supervision, no existing methods
can effectively address the more general X2X at-
tack with an arbitrary number of source classes,
each paired with an arbitrary target class. In this
paper, we propose UMD, the first Unsupervised
Model Detection method that effectively detects
X2X backdoor attacks via a joint inference of the
adversarial (source, target) class pairs. In particu-
lar, we first define a novel transferability statistic
to measure and select a subset of putative back-
door class pairs based on a proposed clustering ap-
proach. Then, these selected class pairs are jointly
assessed based on an aggregation of their reverse-
engineered trigger size for detection inference,
using a robust and unsupervised anomaly detector
we proposed. We conduct comprehensive eval-
uations on CIFAR-10, GTSRB, and Imagenette
dataset, and show that our unsupervised UMD out-
performs SOTA detectors (even with supervision)
by 17%, 4%, and 8%, respectively, in terms of the
detection accuracy against diverse X2X attacks.
We also show the strong detection performance
of UMD against several strong adaptive attacks.

1. Introduction
Despite the success of deep neural networks in many ap-
plications, they are vulnerable to adversarial attacks such
as backdoor (Trojan) attacks (Miller et al., 2020; Li et al.,
2022a). A classical backdoor attack is usually specified by
one or more source classes, a target class, and a backdoor
trigger, such that test samples from any source class em-
bedded with the trigger will be misclassified to the target
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Figure 1. Outline of UMD: 1⃝ reverse-engineer a trigger for each
class pair (Sec. 4.1.1); 2⃝ compute TR for all ordered pair of class
pairs (Sec. 4.1.1); 3⃝ select a subset of putative backdoor class
pairs based on TR (Sec. 4.2.1); 4⃝ inspect the selected pairs by
unsupervised anomaly detection on trigger statistics (Sec. 4.2.2).

class; while samples without the trigger will be correctly
classified (Gu et al., 2019). Typically, a backdoor attack
is launched by poisoning the training set of the classifier
(Chen et al., 2017; Turner et al., 2019; Zhong et al., 2020;
Liu et al., 2020; Nguyen & Tran, 2021; Li et al., 2021b).

Recently, many approaches have been proposed to detect
whether a trained classifier is backdoor attacked without ac-
cess to the training set or any benign models for supervision
(e.g. to set a detection threshold) (Chen et al., 2019; Guo
et al., 2019; Xiang et al., 2020; Wang et al., 2020; Dong
et al., 2021; NeurIPS, 2022). These methods mainly fall
into either a family of reverse-engineering-based detectors
(REDs) or a category of meta-classification-based detectors
(MCDs). Typically, REDs reverse-engineer putative triggers
for anomaly detection (Wang et al., 2019; Liu et al., 2019),
while MCDs train a binary meta classifier on a large number
of shadow classifiers with and without attack for detection
(Xu et al., 2021). These detectors are effective against the
classical backdoor attack, but they may be bypassed by more
advanced backdoor attacks recently proposed to defeat them
(Nguyen & Tran, 2020; Peng et al., 2022).

In this paper, we consider X2X backdoor attacks, which
refer to a broad family of backdoor attacks with an arbitrary
number of source classes, each assigned with an arbitrary
target class. Thus, the X2X attack includes many popular
attack types such as the “all-to-one” attack, “X-to-one” at-
tack (Shen et al., 2021), “one-to-one” attack (Tran et al.,
2018), and “all-to-all” attack (Gu et al., 2019). Unlike other
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advanced attacks that mostly rely on additional assumptions
such as full control of the training process (Zhao et al., 2022;
Wang et al., 2022), X2X attacks can be easily launched by
poisoning the training set just like classical backdoor attacks.
Moreover, to the best of our knowledge, X2X attacks are not
detectable by existing methods – REDs are mostly designed
for “all-to-one” attacks only, while MCDs need to assume
access to the attack setting to train the shadow classifiers.

To bridge this gap, we propose an Unsupervised Model
Detection approach (UMD) to detect X2X attacks and infer
all the class pairs involved in the attack, without any assump-
tions about the number of source classes or the target class
assignment rules. UMD first reverse-engineers a putative
trigger for each class pair. Unlike existing detectors that di-
rectly use trigger statistics (e.g., the perturbation size of the
triggers) for anomaly detection, we calculate a transferabil-
ity (TR) statistic for each ordered pair of class pairs. The TR
statistics are then used to select a subset of class pairs that
are most likely involved in an X2X attack by solving a novel
clustering problem. Finally, an unsupervised, bias-reduced
anomaly detector is designed to robustly assess the atypical-
ity of the trigger statistic aggregated over the selected class
pairs – these class pairs are deemed the backdoor class pairs
when an attack is detected. Our contributions in this paper
are summarized as the following:

• We propose UMD, the first unsupervised model detector
against X2X backdoor attacks with arbitrary numbers of
source classes and arbitrary target class assignments.

• We propose a statistic – TR – to identify backdoor class
pairs. In particular, we prove that in ideal cases, TR from
one backdoor class pair to another backdoor class pair is
guaranteed to be no less than TR from a backdoor class
pair to a non-backdoor class pair.

• We propose a two-step inference procedure for UMD.
First, a set of putative backdoor class pairs is selected
based on the TR statistics by solving a novel clustering
problem using an agglomerative algorithm. Second, an
aggregated trigger statistic based on these selected class
pairs is evaluated for inference using our robust, unsu-
pervised anomaly detector, with a confidence threshold
adapted to the number of classes in the domain.

• We conduct extensive experiments to show the strong
detection capability of UMD against diverse X2X attacks
and several strong advanced adaptive attacks. We show
that our unsupervised UMD outperforms SOTA baselines,
including the ones with supervision by Liu et al. (2019)
and Shen et al. (2021) by 17%, 4%, and 8% in the average
model inference accuracy against various X2X attacks on
CIFAR-10, GTSRB, and Imagenette, respectively.

2. Related Work
Backdoor attacks While we focus on image classification

in this paper like most existing works, backdoor attacks have
also been extended to other data domains and/or learning
paradigms (Li et al., 2021a; Chen et al., 2021; Li et al.,
2022b; Xie et al., 2020; Yao et al., 2019; Jia et al., 2022).
For the image domain, apart from the X2X attack focused on
in this paper, advanced backdoor attacks, such as clean-label
attacks (Turner et al., 2019; A. Saha, 2020), invisible-trigger
attacks (Zhong et al., 2020; Nguyen & Tran, 2021; Zhao
et al., 2022; Wang et al., 2022), and physical attacks (Liu
et al., 2020), are also proposed to achieve better stealthiness
against possible human inspection of either the training
set or test instances. Moreover, some advanced backdoor
attacks are proposed, e.g., by Nguyen & Tran (2020), Li
et al. (2021), and Xue et al. (2022), to evade particular
backdoor defenses. In addition to the X2X attack, we will
show the effectiveness of our UMD against some of these
advanced attacks (including their X2X extensions) as well.

Backdoor model detection Existing methods that detect
whether a trained classifier is backdoor attacked mainly fall
into two categories. Reverse-engineering-based detectors
(REDs) estimate putative triggers for anomaly detection
(Wang et al., 2019; Chen et al., 2019; Xiang et al., 2020;
Wang et al., 2020; Shen et al., 2021; Tao et al., 2022; Hu
et al., 2022). Meta-classification-based detectors (MCDs)
train a meta classifier using shadow classifiers trained with
and without attacks (Xu et al., 2021; Kolouri et al., 2020).
Unlike our UMD, these methods cannot effectively detect
X2X attacks since they all rely on assumptions about the
target class assignment. Except for our UMD, several prior
model detectors also involved the concept of “transferabil-
ity”. For example, transferability is defined at the instance
level by Xiang et al. (2022) and Huster & Ekwedike (2021),
or for each putative target class to be inspected by Liu et al.
(2019). Differently, the TR statistic used by our UMD is
defined for each ordered pair of class pairs, which enables
UMD to identify backdoor class pairs regardless of the tar-
get class assignment.

Other types of backdoor defense Backdoor mitigation ap-
proaches aim to remove the learned backdoor mapping from
a trained classifier (Liu et al., 2018; Wu & Wang, 2021; Li
et al., 2021c; Guan et al., 2022; Zheng et al., 2022; Zeng
et al., 2022). They usually require a large number of sam-
ples and may degrade the clean accuracy of the classifier.
Training-phase defenses aim to obtain a backdoor-free clas-
sifier from the possibly poisoned training set (Tran et al.,
2018; Chen et al., 2018; Xiang et al., 2019; Du et al., 2020;
Huang et al., 2022). They can not be deployed at the user
end where the classifier is already trained. Inference-stage
defenses detect whether a test sample is embedded with a
backdoor trigger (Gao et al., 2019; Doan et al., 2020; Chou
et al., 2020). They require test samples with the actual
backdoor trigger, which are unavailable for our detection
problem. Thus, we will not further discuss these methods.

2



UMD: Unsupervised Model Detection for X2X Backdoor Attacks

3. Threat Model
X2X backdoor attacks refer to a family of backdoor attacks
with arbitrary numbers of source classes each assigned with
an arbitrary target class. It covers many popular attacks with
different settings including the “all-to-one” (A2O) attack
(Chen et al., 2017), “X-to-one” (X2O) attack (Shen et al.,
2021) (a.k.a. a “partial backdoor” (Wang et al., 2019)),
“one-to-one” (O2O) attack (Tran et al., 2018), and “all-to-all”
(A2A) attack (Gu et al., 2019). The complete taxonomy of
X2X backdoor attacks is shown in Fig. 2. Formally, for a
classification task with sample space X and label space Y ,
an X2X backdoor attack can be defined as the following:

Definition 3.1. (X2X Backdoor Attack) An X2X back-
door attack against a victim classifier f : X → Y is
specified by a trigger embedding function δ : X → X
and a subset A ⊂ Y × Y of backdoor class pairs, satis-
fying: (1) ∀a = (s, t) ∈ A, s ̸= t, (2) if |A|> 11, for
any ai = (si, ti) ∈ A and aj = (sj , tj) ∈ A, si ̸= sj
if ai ̸= aj . A (perfectly) successful X2X attack will: (a)
jointly minimize EPXY |a [l(Y, f(δ(X)))] over both δ and f ,
∀a ∈ A, and (b) jointly minimize EPXY |a [l(Y, f(X))] over
f for all class pairs a = (s, t) with s = t (i.e., high accu-
racy on clean samples), where l : Y × Y → R is the loss
function of classifier f .

Notes: In Def. 3.1, PXY |a is the joint distribution of (source
class) sample X ∈ X and (target) label Y ∈ Y conditioned
on class pair a ∈ Y×Y . In particular, for any a = (s, t), the
marginal distribution PY |a is a singleton at Y = t, and X
only depends on s, i.e., PXY |a(x, y) = PX|s(x) · 1[y = t]
for any x ∈ X and y ∈ Y where 1[·] is the indicator func-
tion. Thus, goal (a) can be achieved only if condition (2)
holds; otherwise, there will be at least two class pairs in A
with conflict minimization objectives. Moreover, although l
can be any legitimate loss function for classification, for
simplicity, in this paper, we consider the 0-1 loss with
l(Y1, Y2) = 0 if Y1 = Y2 and l(Y1, Y2) = 1 otherwise. Fi-
nally, we do not specify the form of δ here, since our UMD is
applicable to a variety of trigger types – (e.g.) (1) image per-
turbation trigger embedded by δ(X) = [X + v]c, where v
is a small perturbation and [·]c is a clipping function, and (2)
a patch trigger embedded by δ(X) = (1−m)⊙X+m⊙u,
where u is a small image patch, m is a binary mask, and ⊙
represents element-wise multiplication.

By definition, X2X attacks are different from the N2N at-
tacks proposed by Xue et al. (2022). The latter refers to
backdoor attacks with multiple triggers, each associated
with a unique target class, which can be viewed as the joint
deployment of multiple A2O attacks (Xue et al., 2022a). By
contrast, X2X attacks use a single trigger, with the main

1For attacks with only one backdoor class pair, i.e. |A|= 1,
our method is still effective empirically (see Sec. 5.4) due to a
“collateral damage” phenomenon observed by Xiang et al. (2020).

Figure 2. Venn map for the family of X2X attacks, with ‘X’ for
“arbitrary”, ‘A’ for “all”, and ‘O’ for “one”.

focus on different configurations of the (source, target) class
pairs. In Sec. 5.4, we show that UMD (with trivial general-
ization) can easily detect N2N attacks.

In practice, X2X attacks can be easily launched by poisoning
the training set of f , with δ prescribed by the attacker. For
many choices of δ (even without optimization), both (a) and
(b) in Def. 3.1 can be achieved by only optimizing over f
during the training. Thus, the attacker does not need access
to the training process, which is required by many other
advanced attacks. Moreover, X2X attacks are not detectable
by existing methods without supervision. REDs mostly
assume that the attack is A2O (Wang et al., 2019). MCDs
need to train shadow models for a variety of attack settings,
which cannot effectively cover all possible backdoor class
pair configurations for X2X attacks (Xu et al., 2021). Thus,
we propose UMD (introduced next) to close this gap.

4. Method
Next, we will first provide a formal problem statement for
model detection against backdoor attacks, and then pro-
vide an overview of our proposed detection approach UMD,
followed by a detailed introduction of UMD procedures.

Model detection problem For any potentially backdoor
attacked classifier f : X → Y , a defender aims to detect
(without supervision) whether f is backdoor attacked and
infer all the backdoor class pairs (i.e. set A). Similar to
the importance of the target class inference for A2O attacks
(NeurIPS, 2022), for X2X attacks, the detected class pairs
can be used to “fix” the classifier by “unlearning” the back-
door on these class pairs (Wang et al., 2019). The defender is
assumed with the following constraints: (1) does not know
a priori if f is attacked or not; (2) no access to the training
set or any samples embedded with the backdoor trigger; (3)
no access to any benign classifiers for reference (otherwise,
one can use the benign classifier for the task); (4) no prior
knowledge about the number of backdoor class pairs or the
assignment rules for the target classes. Thus, the detection
problem is unsupervised due to the unavailability of both
models with and without a backdoor. Commonly, the de-
fender is allowed to possess a small dataset Dc containing
clean samples for detection (Wang et al., 2019).

Overview of UMD To address the unavailability of the true
backdoor trigger, UMD first reverse-engineers a putative
trigger for each class pair using samples in Dc. Different
from prior works (e.g. Wang et al. (2019)) that assume an
A2O attack and perform trigger reverse-engineering for each
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putative backdoor target class, our design makes class-pair-
wise inference possible. However, as a result, the premise
behind those prior works – the (image) trigger estimated for
the backdoor target class will have a much smaller perturba-
tion size than for all the other classes – cannot be extended to
our method with class-pair-wise trigger reverse-engineering.
Indeed, when there is an attack, the estimated trigger for
the backdoor class pairs in A will have a small perturbation
size due to the nature of the attacks. But when there is no
attack, the estimated trigger for some non-backdoor class
pairs may also have a small perturbation size – this is called
an “intrinsic backdoor” (a.k.a. natural backdoor) (Xiang
et al., 2022b; Tao et al., 2022), which easily causes a false
detection if the class-pair-wise perturbation size statistics
are directly used for inference (as will be shown by our
experiments in Sec. 5.3). To avoid such false detection, we
propose a statistic “transferability” (TR), which is defined
for each ordered pair of class pairs based on the reverse-
engineered trigger (Sec. 4.1.1). We show that in ideal cases,
TR from a backdoor class pair to another backdoor class
pair is guaranteed to be no less than TR from a backdoor
class pair to a non-backdoor class pair (Sec. 4.1.2). Based
on this property, UMD selects a subset of putative backdoor
class pairs using the TR estimated for all ordered class pairs,
by solving a proposed optimization problem (Sec. 4.2.1)
Then, an aggregation of the perturbation size statistics over
all the selected class pairs is assessed by an unsupervised,
bias-reduced anomaly detector (Sec. 4.2.2). In summary,
the set of class pairs being detected should have: (a) a large
TR to any other class pair in the set and a small TR to any
class pair not in the set, and (b) a small perturbation size for
the reverse-engineered trigger. The pipeline of our UMD is
illustrated in Fig. 1 and summarized by Alg. 1.

4.1. Transferability

4.1.1. DEFINITION

As motivated above, the TR statistic is defined for each
ordered pair of class pairs based on the reverse-engineered
trigger. Since neither TR nor any part of the UMD pipeline
is limited to any objective function or algorithm for trigger
reverse-engineering, we define a general form for the trigger
reverse-engineering problem as the following. That is, for
each a = (s, t) ∈ Y × Y (s ̸= t), we solve:

minimize
δ

EPX|a [d(X, δ(X))]

s.t. δ ∈ argmin
δ′

EPXY |a [l(Y, f(δ
′(X)))]

(1)

Here d : X ×X → R is a distance metric with respect to the
trigger type, e.g. the ℓ2 norm d(X, δ(X)) = ||X − δ(X)||2
for image perturbation triggers (Xiang et al., 2020). The
distance is minimized since image triggers are typically
designed to be human-imperceptible. Moreover, if a is a
backdoor class pair, the set of δ satisfying the constraint of

(1) will include the true backdoor trigger due to the goal (a)
of the attacker in Def. 3.1. Empirically, for each a = (s, t),
problem (1) can be solved on clean samples in Dc from
class s (Wang et al., 2019). Denoting the reverse-engineered
trigger (i.e. the optimal solution to (1)) for each class pair a
by δa, we define the TR statistic as the following:

Definition 4.1. (Transferability (TR)) For any class pair
ai = (si, ti), si ̸= ti, with a reverse-engineered trigger
δai , and 0-1 loss l(·, ·), TR from ai to any other class pair
aj = (sj , tj), aj ̸= ai and sj ̸= tj , is defined by:

Taiaj
≜ 1− EPXY |aj

[l(Y, f(δai
(X)))]. (2)

Based on the notes below Def. 3.1, the expectation in Eq.
(2) is equivalent to EPX|sj

[l(tj , f(δai(X)))]. Thus, empiri-
cally, Taiaj can be estimated using the clean samples from
class sj in Dc and the trigger reverse-engineered for class
pair ai. The form of Eq. (2) is chosen for l being 0-1 loss
with the value of TR scaled to [0, 1] for simplicity, though
other forms can be adopted for different choices of the loss
function. In plain language, Taiaj represents the misclassi-
fication rate to class tj when the trigger δai

(estimated for
class pair ai) is applied to examples from class sj .

4.1.2. PROPERTY

Next, we show that TR is intrinsically suitable for identify-
ing backdoor class pairs. Consider an arbitrary set of class
pairs A′ = {a1, · · · , ak} satisfying both conditions (1) and
(2) in Def. 3.1, and with PA(a) > 0 for ∀a ∈ A′. For any
trigger embedding function δ, we denote Xδ ≜ δ(X) as the
random variable for samples with a trigger embedded by δ.
Then, the set of Bayes classifiers (Devroye et al., 1996) for
(optimal) estimation of Y from Xδ can be written as:

Fδ = {f ∈ F|EP
XδY

[l(Y, f(Xδ))] = RF (Y |Xδ)} (3)

where PXδY = PXY ·PXδ|X is the joint distribution of Xδ

and Y , l(·, ·) is the classification loss (i.e. 0-1 loss here), F
is the set of all legitimate classifiers2, and

RF (Y |Xδ) = min
f∈F

EP
XδY

[l(Y, f(Xδ))] (4)

is the Bayes risk over all classifiers in F for estimating
Y from Xδ. Here, we assume the minimum always ex-
ists for simplicity. Similarly, for each class pair a ∈ A′,
we denote the set of “class-pair-conditional” Bayes clas-
sifiers as Fδ

a and the associated Bayes risk as RF
a (Y |Xδ),

by replacing PXδY in both Eq. (3) and (4) with PXδY |a =

PXY |a · PXδ|X . These classifiers in Fδ
a are optimal for pre-

dicting Y from Xδ , with Xδ and Y both conditioned on the
class pair a. Then, we have the following theorem for the
transferability of reverse-engineered triggers:

2For example, all classifiers with the same architecture as the
one to be inspected but with different parameter values.
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Theorem 4.2. (Optimal Transferability Condition) For
any class pair a ∈ A′, consider a trigger embedding func-
tion δ that minimizes RF

a (Y |Xδ). Then, δ minimizes:

min
f∈Fδ

a

∑
a′∈A′\a

PA|A ̸=a(a
′)EP

XδY |a′ [l(Y, f(X
δ))] (5)

if and only if δ also minimizes RF (Y |Xδ).

Proof (sketch). First, we derive the lower bound of (5) over
δ. Then, sufficiency is proved by showing that the lower
bound will be achieved if δ minimizes RF (Y |Xδ), while
necessity is proved by showing that the lower bound cannot
be achieved if δ does not minimize RF (Y |Xδ) via contra-
diction. The complete analysis is shown in Apdx. B.

Remarks: For any class pair a and classifier f , the reverse-
engineered trigger satisfying the constraint of problem (1)
should also minimize RF

a (Y |Xδ) if f is a Bayes classifier
conditioned on a. Thus, based on goal (a) in Def. 3.1, δ con-
sidered by the theorem may be a trigger reverse-engineered
for some backdoor class pair a of a successful X2X attack.
In this case, based on Def. 4.1, the conditional expectation
in (5) for each a′ ∈ A′ \ a represents one minus the TR
statistic from a to a′. Thus, the theorem shows the condition
for δ maximizing the expected TR from a to all the other
class pairs in A′, which is that δ also minimizes RF (Y |Xδ)
– the Bayes risk without any class-pair-conditioning. Ap-
parently, this optimal transfer condition holds if A′ ⊂ A
contains only backdoor class pairs of a successful X2X at-
tack, with f being a Bayes classifier on A′ and δ being the
actual backdoor trigger. Thus, for a perfectly successful
attack and optimal trigger reverse-engineering, if we apply
Thm. 4.2 to any set A′ of two class pairs with at least one
being a backdoor class pair, we will have the guarantee
that TR from a backdoor class pair to another backdoor
class pair is no less than TR from a backdoor class pair
to a non-backdoor class pair. Empirically, we will likely
observe large TRs (possibly close to 1) for any ordered pair
of class pairs in A′ if the set is pure in backdoor class pairs.
Otherwise, there will likely be at least two class pairs in A′

with a small TR from either direction.

4.2. Detection Inference

4.2.1. SELECT PUTATIVE BACKDOOR CLASS PAIRS

Due to the absence of supervision, it is hard to choose a
threshold on TR to identify the backdoor class pairs directly
if there is any. Moreover, a naive combination of TR with
other statistics such as the perturbation size of the reverse-
engineered trigger cannot effectively detect backdoor class
pairs, while still causing a high false detection rate (as will
be shown by our experiments in Sec. 5.3). Thus, we propose
to use TR to select a set Â of putative backdoor class pairs
for further inference. Based on our analysis for TR, if there

Algorithm 1 UMD against X2X backdoor attacks
1: Input: a classifier f ; a small, clean dataset Dc, a desired

significance level β for anomaly detection.
2: Compute TR statistics:
3: Get δa by solving (1) on Dc for ∀a = (s, t) ∈ Y × Y \ B.
4: Compute Taiaj by Eq. (2) on Dc for ∀ai ∈ Y × Y \ B and

∀aj = (sj , tj) ∈ Y × Y \ B, aj ̸= ai.
5: Select a set Â of putative backdoor class pairs:
6: Initialize Â2 = argmax{ai=(si,ti),aj=(sj ,tj)},si ̸=sj

Taiaj .
7: for n = 3 : |Y| do
8: Âc

n−1 = {a = (s, t) /∈ Ân−1|s ̸= s′ for ∀a′ = (s′, t′) ∈
Ân−1}.

9: a∗ = argmaxa∈Âc
n−1

H(Ân−1 ∪ a).

10: Ân = Ân−1 ∪ a∗.
11: end for
12: n∗ = argmaxn∈{3,···,|Y|} H(Ân)

13: Â = Ân∗

14: Unsupervised anomaly detection:
15: Compute r on Dc using all {δa} and Â by Eq. (7) and (8).
16: Compute θ(β,N) for N = |Y × Y \ B|−|Â| by Eq. (9).
17: Output: If r > θ(β,N), there is an attack with backdoor

class pairs Â; otherwise, there is no attack.

is an attack, we expect: (1) a large TR for any ordered pair
of class pairs in Â, (2) a small TR from any class pair in
Â to class pairs outside Â, (3) Â satisfies the conditions in
Def. 3.1 for valid X2X attacks. Accordingly, we propose to
solve the following optimization problem:

maximize
Â⊂Y×Y\B

H(Â) = min
a∈Â

∑
a′∈Â\a(Taa′ + Ta′a)

2(|Â|−1)

−max
a/∈Â

∑
a′∈Â Ta′a

|Â|
subject to s ̸= s′,∀a = (s, t), a′ = (s′, t′) ∈ Â

(6)

where B = {(s, t) ∈ Y × Y|s = t} is the set of all “iden-
tical” pairs. Clearly, for problem (6), the two terms in the
objective function and the constraint are designed to satisfy
the requirements (1)-(3), respectively. In particular, the sec-
ond term of H(Â) is critical in practice when the actual
number of backdoor class pairs is unknown. Without this
term, we will likely obtain a parsimonious set Â of two
class pairs with the top “mutual-TR”. Finally, we propose to
solve problem (6) using an agglomerative algorithm without
any hyperparameter, as detailed by lines 5-13 of Alg. 1.

4.2.2. UNSUPERVISED ANOMALY DETECTION

Since Â will always be selected regardless of the presence
of attack, we still need to infer whether Â is indeed a set of
backdoor class pairs. Inspired by previous works, we design
an anomaly detector based on median absolute deviation
(MAD) (Hampel, 1974). The anomaly detector uses the
trigger perturbation/patch size za ≜ EPX|a [d(X, δa(X))]
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empirically estimated for each class pair a = (s, t) on the
clean samples Dc as the detection statistic. Under the null
hypothesis of “no attack”, all detection statistics are asso-
ciated with non-backdoor class pairs and follow some null
distribution characterized by the median statistic and MAD.
Different from prior works, our estimation of MAD (de-
noted by σ below) is performed on ∀a /∈ Â which are likely
non-backdoor class pairs, i.e.:

σ = meda/∈Â(|z
−1
a −meda′ /∈Âz

−1
a′ |) (7)

where med represents median. The reciprocal is taken such
that the outlier statistics corresponding to small trigger sizes,
if there are any, will stay at the tail of the null distribution.
Compared with other detectors that use all statistics to esti-
mate MAD (since they do not select putative backdoor class
pairs like us), our estimation will not suffer from the bias
caused by the possible involvement of backdoor statistics.
Then, we assess the atypicality of za for ∀a ∈ Â through
aggregation using an anomaly score computed by:

r = (meda∈Âz
−1
a −meda′ /∈Âz

−1
a′ )/(1.4826 · σ) (8)

where the constant 1.4826 is a scaling factor such that the
scaled MAD can be viewed as an analog to the standard
deviation of the null distribution under Gaussian assump-
tion (Rousseeuw & Croux, 1993). The aggregation, i.e. the
median of z−1

a for ∀a ∈ Â, helps to avoid false detection
caused by any a ∈ Â with an outlier statistic (e.g. for an
intrinsic backdoor) when there is actually no attack. In sum-
mary, the anomaly score r describes how many “standard
deviations” the aggregated statistic is away from the median.

To test whether r is an outlier to the underlying null dis-
tribution, we propose a method to determine a confidence
threshold in adaption to the number of “null statistics”, i.e.
N = |Y × Y \ B|−|Â|, which is largely dependent on the
number of classes |Y|. Let R1, · · · , RN be i.i.d. random
variables following some null density form, e.g., a standard
Gaussian distribution in here. It is easy to show that for
any given Θ, Prob(maxi=1,···,N Ri > Θ) → 1 as N → ∞.
In other words, with a constant threshold, a false detection
will be easily made when N is large. Thus, we obtain a
threshold θ(β,N) based on both a prescribed confidence
level 1−β (e.g. β = 0.05 by convention) and N by solving
θ from Prob(maxi=1,···,N Ri > θ) ≤ β, which gives:

θ(β,N) = Φ−1((1− β)1/N ) (9)

where Φ−1 is the inverse of the standard Gaussian CDF.
Then, if r > θ(β,N), we claim with confidence 1 − β
(a.k.a. β-significance) that the classifier is attacked with
backdoor class pairs Â; otherwise, no backdoor attack.

5. Experiment
First, we show that our unsupervised UMD outperforms five
SOTA baselines (even with supervision) by at least 17%,

Table 1. Designed functionalities and detection capabilities of
UMD compared with five SOTA baselines. UMD is the only
unsupervised method against X2X attacks with pair inference.
Empirically, UMD can also detect O2O attacks as shown in Tab. 6.

NC ABS PT-RED MNTD K-Arm UMD (ours)
A2O ✓ ✓ ✓ ✓ ✓ ✓
O2O ✓ ✓ △
X2O ✓ ✓ ✓
A2Ar ✓
A2X ✓
X2X ✓

detect pairs ✓
unsupervised ✓ ✓ ✓

4%, and 8% on CIFAR-10, GTSRB, and Imagenette, re-
spectively, in the average model inference accuracy against
various X2X attacks. Second, in our ablation study on
CIFAR-10, we justify our design choices for UMD. Third,
we show that UMD can even detect X2X attacks with two
advanced triggers and address four different types of adap-
tive attacks. Finally, we show that the class pairs detected
by UMD can be used to “fix” the backdoored model.

5.1. Setup

Dataset: We consider three benchmark image datasets,
CIFAR-10 (Krizhevsky, 2012), GTSRB (Stallkamp et al.,
2012), and Imagenette (Deng et al., 2009), which contain
color images (with resolution 32 × 32, 32 × 32 (resized),
and 224 × 224, respectively) with 10, 43, and 10 classes,
respectively. In our experiments, we follow the standard
train-test split for each dataset (see Apdx. C.1 for details).
Backdoor trigger: We consider two common triggers: 1) a
large, perturbation-based trigger with a big ‘X’ shape, and
2) a local patch trigger with a random color and a random
location for each attack. Examples of these triggers are
shown in Fig. 5, with more details in Apdx. C.2.
Attack setting: We first consider the classical A2O attack
addressed by most existing works for all three datasets. The
target class for each A2O attack is randomly selected. Then
we consider a general all-to-all (A2Ar) attack with a random
bijection mapping between the source and target classes.
Note that the classical A2A attack by Gu et al. (2017) uses
rotational target assignment and is a special case of the A2Ar
attack considered here. For each dataset, we also consider
several X2X attack settings other than A2O and A2Ar. On
CIFAR-10, we consider 2to2, 5to5, and 8to8 attacks; on
GTSRB, we consider 20to20, 30to30, and 40to40 attacks;
on Imagenette, we consider 3to3, 5to5, and 8to8 attacks.
The backdoor class pairs for each X2X attack are randomly
selected. Moreover, for each attack on CIFAR-10, GTSRB,
and Imagenette, we create 300, 70, and 200 poisoning in-
stances per source class, respectively.
Training: For each attack setting on each dataset, we train
10 classifiers under attack with each of the two triggers
respectively. For the 8to8 and the A2Ar settings on Ima-
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genette, the attacks with the patch trigger are mostly un-
successful; thus, they are excluded from our experiments.
In total, our main evaluation of the detection performance
involves ((5×3×2−2×1×1)×10 =) 280 classifiers being
attacked. For model architecture, we use ResNet-18 (He
et al., 2016) for CIFAR-10 and Imagenette, and the winning
model on the leaderboard (Leaderboard, 2018) for GTSRB.
Detailed training configurations are shown in Apdx C.3. All
the attacks we created are successful with attack success
rates (ASRs) > 78% and negligible degradation in clean
test accuracy (ACC) (see Tab. 8 in Apdx. C.3).
Evaluation metric: We define a model inference accuracy
(MIA) as the proportion of correct inference for a group of
classifiers. MIA is equivalent to the true positive rate (or one
minus the false positive rate) if all classifiers in the group are
attacked (or benign). For each true positive model inference
by UMD, we also define a pair detection rate (PDR) which
is the proportion of backdoor class pairs being successfully
detected. Note that the false positive rate for pair inference
(by incorrectly recognizing a non-backdoor class pair as a
backdoor class pair) will always be small since UMD de-
tects at most K (out of K(K − 1)) class pairs, where K is
the number of classes. Thus, we neglect it for brevity.
Baselines: We compare our UMD with the following SOTA
baselines, including Neural Cleanse (NC) (Wang et al.,
2019), ABS (Liu et al., 2019), PT-RED (Xiang et al., 2020),
MNTD (Xu et al., 2021), and K-Arm (Shen et al., 2021).
For a fair comparison, we set the confidence level for model
inference to 95% (i.e. 5% desired false positive rate) for
NC and PT-RED equipped with unsupervised threshold
selection. For ABS, MNTD, and K-Arm which require su-
pervision to select the detection threshold, we set the overall
actual false positive rate (for all datasets and settings) to 5%
while maximizing their true positive rates for model infer-
ence. The designed functionalities and detection capabilities
of these methods are shown in Tab. 1, compared with UMD.
More details about these methods are shown in Apdx. C.4.
Experimental Details: For our UMD, we consider the trig-
ger reverse-engineering algorithms used by PT-RED and
NC, respectively, to cover both the perturbation trigger and
the patch trigger. That is, we execute Alg. 1 with both al-
gorithms, and a classifier is deemed to be attacked if any of
the two executions claim a detection. In particular, PT-RED
assumes that the trigger is an additive image perturbation
incorporated by δ(x) = [x+ v]c with a small ||v||2, where
[·]c is a clipping function (Xiang et al., 2020). Its reverse
engineer algorithm is similar to the way to generate a uni-
versal adversarial perturbation (Moosavi-Dezfooli et al.,
2017) – for any class pair (s, t), a perturbation v is initial-
ized to zero and updated using gradient-based approaches,
until a high misclassification fraction from class s to class
t is achieved. NC assumes a patch trigger u embedded by
δ(x) = (1−m)⊙ x+m⊙ u using a binary mask m with
a small patch size ||m||1, where ⊙ represents element-wise

Table 2. MIA of UMD for various X2X attacks and benign classi-
fiers on CIFAR-10, GTSRB, and Imagenette, compared with five
SOTA detectors. MIAs of ABS, MNTD, and K-Arm on benign
classifiers are manually fixed to control the false positive rates;
thus are “not applicable” (n.a.). UMD outperforms the five SOTA
detectors (some even with supervision) on all three datasets by a
clear margin in the average MIA over the X2X attacks.

(a) CIFAR-10

Setting Benign A2O 2to2 5to5 8to8 A2Ar Avg
NC 0.60 0.55 0.20 0.20 0.30 0.30 0.31

ABS n.a. 0.90 0.40 0.15 0.20 0.20 0.37
PT-RED 0.70 0.55 0.40 0.35 0.30 0.45 0.41
MNTD n.a. 0.45 0.65 0.40 0.25 0 0.35
K-Arm n.a. 1.0 0.90 0.70 0.65 0.45 0.74
UMD 0.90 0.90 0.90 0.95 0.85 0.95 0.91

(b) GTSRB

Setting Benign A2O 20to20 30to30 40to40 A2Ar Avg
NC 0.90 0.85 0.30 0.25 0.35 0.35 0.42

ABS n.a. 0.35 0.25 0.10 0.20 0.10 0.20
PT-RED 0.20 0.65 0.50 0.30 0.55 0.55 0.51
MNTD n.a. 0.25 0.15 0.15 0.15 0 0.14
K-Arm n.a. 1.0 0.95 0.85 0.80 0.75 0.87
UMD 0.90 0.95 0.80 0.90 0.90 1.0 0.91

(c) ImageNette

Setting Benign A2O 3to3 5to5 8to8 A2Ar Avg
NC 0.90 0.85 0.30 0.15 0.05 0.15 0.30

ABS n.a. 1.0 0.80 0.40 0.70 0.70 0.72
PT-RED 0.80 0.60 0.45 0.20 0.10 0 0.27
MNTD n.a. 0.55 0.50 0.50 0.30 0.40 0.45
K-Arm n.a. 0.90 0.60 0.65 0.90 0.80 0.77
UMD 0.80 0.90 0.75 0.80 0.80 1.0 0.85

multiplication (Wang et al., 2019). The reverse engineering
algorithm of NC also solves an optimization problem for
each class pair (s, t) to achieve a high misclassification frac-
tion from class s to class t while minimizing the patch size
||m||1. For all three datasets, the two algorithms consume
merely 10 and 20 trigger-free images (correctly predicted by
the classifier to be inspected) per class, respectively. More
details about these two algorithms can be found in Apdx.
C.5. Again, our UMD is not limited to any particular algo-
rithms for trigger reverse-engineering, allowing the potential
incorporation with more recent or even future techniques
(Wang et al., 2023). For the selection of candidate back-
door class pairs, we repeat lines 6-13 of Alg. 1 five times,
each with a different initialization, and pick the best optimal
solution to avoid poor local optimum. For the anomaly de-
tection step, we use the same confidence threshold of 95%
(i.e. β = 0.05) as the other detectors for a fair comparison.
Results for other confidence levels are shown in Apdx. C.6.

5.2. Detection Performance

As shown in Tab. 2, UMD clearly outperforms the five
SOTA baselines on all three datasets in terms of the average
MIA over the X2X attacks on each dataset. In particular,
most of these SOTA baselines exhibit some detection ca-
pability against A2O attacks they are designed for but fail
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Table 3. Average PDR of UMD over successfully detected attacks
for the three datasets.

CIFAR-10 Setting A2O 2to2 5to5 8to8 A2Ar
Avg PDR 0.93 0.92 1.0 0.88 0.98

GTSRB Setting A2O 20to20 30to30 40to40 A2Ar
Avg PDR 0.90 0.72 0.83 0.79 0.86

Imagenette Setting A2O 3to3 5to5 8to8 A2Ar
Avg PDR 0.96 0.87 0.75 0.70 0.65

against X2X attacks with more than one target class. In con-
trast, UMD performs uniformly well against all X2X attacks,
with even better control of the false positive rate (reflected
by the generally higher MIA on benign classifiers) com-
pared with the other two unsupervised detectors, NC and
PT-RED. We note that among the five SOTA baselines, K-
Arm achieves the best average MIA against X2X attacks for
all three datasets. A possible reason is that K-Arm can effec-
tively reverse-engineer the trigger for O2O attacks, while all
X2X attacks can be viewed as a joint deployment of multi-
ple O2O attacks sharing the same trigger. However, K-Arm
requires supervision to determine if a reverse-engineered
trigger is associated with the backdoor, which is infeasible
for practical backdoor detection problems. But even with
the supervision to maximize its performance, K-Arm is still
outperformed by our unsupervised UMD by 17%, 4%, and
8% on CIFAR-10, GTSRB, and Imagenette, respectively,
in terms of the average MIA over the X2X attacks for each
dataset. Finally, we show the pair inference performance of
UMD in Tab. 3 since the other methods are not designed
with such functionality. UMD achieves high average PDRs
for most X2X settings on the three datasets. The relatively
low PDRs, e.g. for A2Ar attacks on Imagenette, are likely
due to the existence of intrinsic backdoor class pairs.

5.3. Ablation Study

First, we show the advantages of using the proposed TR
statistic and the associated clustering approach for back-
door detection by comparing UMD with its two baseline
variants. The first variant UMD† directly applies a MAD-
based anomaly detector to triggers reverse-engineered for
all class pairs, without using the TR statistic. The second
variant UMD‡ uses TR simply as a secondary statistic with-
out our clustering technique. More details about these two
baseline variants are shown in Apdx. D.1. For a demonstra-
tion, we consider the 2to2, 5to5, 8to8, and A2Ar attacks on
CIFAR-10 with the perturbation trigger (i.e. 10 backdoored
classifiers per setting). We also use the 10 benign classifiers
on CIFAR-10 to evaluate the false detection rate.

As shown in Tab. 4, though the desired false positive rate
is set to 5%, the actual ones for the two baseline variants
are very high (reflected by the low MIAs on the benign clas-
sifiers). Such high false positive rates cannot be alleviated
even with alternative confidence levels, as shown in Apdx.
D.2. In contrast, UMD achieves a 93% overall MIA as av-

Table 4. MIA and average PDR of UMD, compared with the two
baseline variants of UMD, against 2to2, 5to5, 8to8, and A2Ar
attacks (with the perturbation trigger) on CIFAR-10. Both variants
of UMD favor predicting an “attack”, resulting in low MIAs on
benign classifiers (i.e. high false positive rates). UMD achieves
the best overall MIA (computed by adding the benign MIA with
the average MIA for all attacks and then dividing by two).

2to2 5to5 8to8 A2Ar Benign Overall
MIAMIA PDR MIA PDR MIA PDR MIA PDR MIA

UMD† 1.0 0.90 1.0 0.94 1.0 0.84 1.0 0.72 0 0.50
UMD‡ 1.0 0.45 1.0 0.82 1.0 0.73 1.0 0.53 0.40 0.70
UMD 1.0 0.85 1.0 1.0 0.90 0.83 0.90 0.92 0.90 0.93

eraged over both attacked and benign classifiers with equal
weights, showing a strong detection capability against X2X
attacks with a controlled false detection rate. Moreover,
UMD achieves good performance in class pair inference,
which is generally better than the two baseline variants.

Next, we show the influence of the hyperparameters on
UMD. Since UMD does not involve any tunable hyperpa-
rameters in the inference step, we study the influence of
the hyperparameters used by the trigger reverse-engineering
algorithms on our UMD. In particular, we focus on the num-
ber of images and the targeted misclassification fraction
used by Xiang et al. (2020) for trigger reverse-engineering.
Note that for X2X attacks, the ASR for a backdoor class pair
is typically less than 100%. Thus, in principle, the defender
should avoid using an overly large targeted misclassification
fraction; otherwise, trigger reverse-engineering may fail to
produce an accurate estimation of the actual backdoor trig-
ger. As shown in Fig. 3, UMD performs uniformly well
for targeted misclassification fractions less than 1, giving a
large freedom to choose this hyperparameter.

As for the number of images, UMD prefers even fewer
(though > 1) images for trigger reverse-engineering than
the default setting by Xiang et al. (2020). Note that trig-
gers reverse-engineered on a large number of images may
easily contain class-discriminate features that transfer well
between non-backdoor class pairs (especially those sharing
the same target class) and lead to a wrong detection. In
practice, the suitable number of images for trigger reverse-
engineering can be easily determined as the following. Ide-
ally, a TR map (e.g. the one in Fig. 1) is supposed to be
dark almost everywhere except for a few entries that may
be associated with the backdoor class pairs. Thus, we start
with a relatively large number of images (e.g. 15 or even
more) to compute the TR statistics. If there are more than
2(K2 − K) bright entries in the TR map with TR larger
than some prescribed threshold, we reduce the number of
images, e.g., by dividing it by 2. Here, K is the number
of classes, and K2 −K is the maximum number of entries
in the TR map corresponding to a valid candidate set of
backdoor class pairs. The above steps are repeated until
there are at most 2(K2 −K) bright entries in the TR map.
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Figure 3. Influence of the number of images and the targeted mis-
classification fraction used by Xiang et al. (2020) for trigger
reverse-engineering on our UMD. The default setting suggested by
the authors, which is globally used in this work, is marked in red.
UMD prefers even fewer images for trigger reverse-engineering
and is insensitive to targeted misclassification fractions less than 1.

Table 5. MIA of UMD against a variety of X2X attacks with the
WaNet trigger and the Blended trigger, respectively. UMD achieves
generally high MIAs against all these X2X attacks for both triggers.

2to2 5to5 8to8 A2Ar
WaNet 0.80 0.80 1.0 0.90

Blended 0.90 0.90 0.90 0.90

Table 6. UMD achieves generally high MIAs against four adaptive
attacks, ISSBA, CLA, N2N, and O2O, on CIFAR-10.

ISSBA CLA N2N O2O
MIA for UMD 1.0 0.60 1.0 0.80

5.4. Performance of UMD against Adaptive Attacks

Here, we show the detection performance of UMD against
two advanced trigger types, WaNet (Nguyen & Tran, 2021)
and Blended (Chen et al., 2017), for a variety of X2X at-
tack settings. We also evaluate UMD against four adaptive
attacks, including the invisible sample-specific backdoor
attack (ISSBA) proposed by Li et al. (2021), the clean label
attack (CLA) proposed by Turner et al. (2019), the N2N at-
tack proposed by Xue et al. (2022), and the O2O attack with
one randomly selected backdoor class pair. We consider the
default A2O setting for ISSBA and CLA since these two
attacks cannot be easily extended to other X2X settings. For
each N2N attack, we launch N = 3 A2O attacks together,
each with a randomly selected target class and a random
patch trigger. The experiments in this section are conducted
on CIFAR-10. For each setting considered for each trigger
or attack type, we create 10 attacks and train a model for
each attack using the configurations in Sec. 5.1.

Due to the complexity of the trigger embedding functions
for WaNet and Blended, we employ a more general trig-
ger reverse-engineering algorithm proposed by Xiang et al.
(2020), which estimates a common additive perturbation
in the internal layer of the classifier (see Apdx. C.5.3 for
more details). For the N2N attack, we introduce a trivial
generalization of UMD by sequentially selecting multiple
clusters (by repeating lines 5-13 of Alg. 1 multiple times).
Each cluster is then inferred by the same anomaly detection
procedure in Sec. 4.2.2, where the “null” statistics are those
not belonging to any clusters. Intuitively, these clusters will
either be associated with one of the N triggers or be the
non-backdoor class pairs and rejected by anomaly detection.

Table 7. Using the class pairs detected by UMD to mitigate the
2to2, 5to5, 8to8, and A2Ar attacks on CIFAR-10, based on the
method by Wang et al. (2019). All the backdoored classifiers are
“fixed” as reflected by the low average ASR (%) with negligible
degradation in the average ACC (%).

2to2 5to5 8to8 A2Ar
ASR (Avg) 98.1→1.4 93.3→1.4 91.2→7.2 89.9→11.2
ACC (Avg) 92.4→92.2 92.7→92.3 92.8→92.3 93.7→91.9

In Tab. 5, we show the effectiveness of UMD against the
WaNet trigger and the Blended trigger for a variety of X2X
attacks. In Tab. 6, we show that UMD can also detect
the four adaptive attacks with generally high MIA. Notably,
although UMD always selects at least two putative backdoor
class pairs for inference, it still detects the O2O attack (with
only one backdoor class pair) well, thanks to the (almost
inevitable) collateral damage which introduces additional
“backdoor class pairs” (see Apdx. E.1 for more details).
Moreover, for the 10 N2N attacks, the generalized UMD
that selects 5 clusters of candidate backdoor class pairs
correctly identifies 28 out of the 10x3 triggers, with only 2
clusters falsely recognized as associated with the backdoor.

5.5. Backdoor Mitigation
The backdoor class pairs detected by UMD can be used to
“fix” the backdoored model. This process is called backdoor
mitigation or Trojan removal (ICLR, 2022). Here, we use
the method proposed by Wang et al. (2019) to mitigate the
2to2, 5to5, 8to8, and A2Ar attacks on CIFAR-10 that are
detected by UMD. For each class pair being detected, we
embed the reverse-engineered trigger into clean samples
from the source class but without changing their labels.
By fine-tuning using these samples, together with some
clean samples without the trigger (to maintain the ACC), the
model will learn to predict correctly even if a test sample
is embedded with the trigger, i.e. the backdoor will be
“unlearned”. This is shown in Tab. 7, where for all attack
settings, the average ASR drops to ≤ 11.2% with negligible
degradation in the average ACC – the models are fixed.

6. Conclusion
We proposed UMD, the first unsupervised backdoor model
detector against X2X attacks. We defined TR and proved
its intrinsic property in distinguishing backdoor class pairs
from non-backdoor class pairs. Our UMD first selects a set
of putative backdoor class pairs based on the TR statistics
by solving a clustering problem we proposed, and then
uses a robust, unsupervised anomaly detector to infer both
the presence of the attack and the backdoor class pairs.
Empirically, we show that UMD performs well on three
datasets against X2X attacks with diverse settings.
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A. Ethics Statement
The main purpose of this research is to understand the behavior of deep learning systems facing malicious activities and
enhance their safety without degrading their utility. The X2X backdoor attack considered in this paper is the union of many
well-known backdoor attacks with different settings – all these attacks are open-sourced. Thus, our work will be beneficial
to the community in defending against these attacks via detection. However, we do not claim that our detector is effective
against all backdoor attacks that may appear in the future. In fact, there is no published backdoor detector making such a
claim, just like that there is no published backdoor attack proved to be evasive against all future detectors. The code related
to this work can be found at: https://github.com/polaris-73/MT-Detection Finally, the paper is written
by humans without the involvement of large language models.

B. Analysis of TR and Proofs
Here, we present the complete analysis showing that the TR statistic is intrinsically suitable for detecting backdoor class
pairs. Such an intrinsic property of TR is not possessed by many popular statistics for backdoor model detection. For
example, the (patch) size of the reverse-engineered triggers used by Wang et al. (2019) is based on the premise that the
actual trigger used by the attacker is small.

Our main theoretical results are summarized in Thm. 4.2 in Sec. 4.1 (also restated as Thm. B.5 below). Intuitively, the
theorem says that the trigger reverse-engineered for a backdoor class pair will likely induce a small classification loss to
all the other backdoor class pairs. Thus, empirically, we will likely observe a large TR statistic (possibly close to 1) from
one backdoor class pair to another. In the following, we first present the complete problem settings that will facilitate our
analysis. Then we prove Thm. 4.2.

B.1. Complete Settings

Set of class pairs: We consider an arbitrary set of class pairs A′ = {a1, · · · , ak} (k ≤ |Y|) satisfying:

• For ∀a = (s, t) ∈ A′, s ̸= t (i.e. condition (1) in Def. 3.1);

• If |A′|> 1, for any ai = (si, ti) ∈ A′ and aj = (sj , tj) ∈ A′, si ̸= sj if ai ̸= aj (i.e. condition (2) in Def. 3.1);

• PA(a) > 0 for ∀a ∈ A′ (i.e. positive probability for all class pairs in A′).

Note that here, we do not specify if any class pair a ∈ A′ is a backdoor class pair or not.

Random variables: Following the main paper, we use X ∈ X and Y ∈ Y to denote the random variables for samples and
labels respectively. A ∈ A′ denotes the random variable for class pairs in A′. Moreover, for any trigger embedding function
δ, we use Xδ ≜ δ(X) to denote the random variable for samples generated from X by embedding a trigger using δ. Then,
each δ specifies a conditional distribution PXδ|X . In summary of the above, we have the following dependency:

(A,X, Y,Xδ) ∼ PA · PXY |A · PXδ|X (10)

Set of estimators/classifiers: Considering that TR is defined in terms of the (expected) classification loss on samples with
a (reverse-engineered) trigger embedded (see Eq. (2)), we use F to represent the set of estimators (i.e. classifiers in our
problem) for estimating Y from the trigger-embedded sample Xδ with arbitrary δ. For example, F may contain all classifiers
with the same architecture as the one to be inspected (i.e. the classifier that will also be used for trigger reverse-engineering)
but with different parameter values. For convenience, we also define ∆ as the set of all trigger embedding functions. For
example, for image perturbation triggers, ∆ may include perturbations with different shapes and sizes. For another example,
for sample-specific triggers, ∆ may be the set of all autoencoders with the same architecture but different parameter values.
Moreover, we define a set G ≜ ∆×F of “end-to-end” functions, such that each g ∈ G can be represented by g = f ◦ δ for
some δ ∈ ∆ and f ∈ F . These sets of estimators and their relation to the random variables we have defined previously are
illustrated in Fig. 4.

Bayes classifiers: Bayes classifier refers to the classifier with the minimum classification loss when predicting/estimating
the label of a random input sample (Devroye et al., 1996). Typically, the Bayes classifier (usually with respect to a space of
classifiers) is specified by the joint distribution of the input and the label. For example, in the main paper, given a trigger
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Figure 4. Illustration of the estimators/classifiers and their relation to the random variables.

embedding function δ, we denote the (set of) Bayes classifier(s) for estimating Y from Xδ (with joint distribution PXδY ) as
Fδ ⊂ F (see Eq. (3)). And we denote the associated Bayes risk as RF (Y |Xδ) (see Eq. (4)). Here, among all “end-to-end”
classifiers in G for estimating Y from X (by first embedding a trigger and then classifying), where X,Y ∼ PXY , we denote
the set of Bayes classifiers (i.e. with the smallest classification loss) as:

G∗ = {g ∈ G|EPXY
[l(Y, g(X))] = RG(Y |X)} (11)

where
RG(Y |X) = min

g∈G
EPXY

[l(Y, g(X))] (12)

denotes the associated Bayes risk. Similarly, for each class pair a ∈ A′ with conditional joint distribution PXY |a for sample
X and label Y , we denote the set of Bayes classifiers, with respect to the set G, for estimating Y from X given a as:

G∗
a = {g ∈ G|EPXY |a [l(Y, g(X))] = RG

a (Y |X)} (13)

where
RG

a (Y |X) = min
g∈G

EPXY |a [l(Y, g(X))] (14)

is the associated Bayes risk with conditioning on a. Finally, for each class pair a ∈ A′ and any δ ∈ ∆, the set of Bayes
classifiers, with respect to F , for estimating Y from Xδ (both conditioned on a) can be written as:

Fδ
a = {f ∈ F|EP

XδY |a
[l(Y, f(Xδ))] = RF

a (Y |Xδ)}. (15)

where
RF

a (Y |Xδ) = min
f∈F

EP
XδY |a

[l(Y, f(Xδ))] (16)

is the associated Bayes risk conditioned on a.

B.2. Proof of Thm. 4.2

To begin with, we show a mild assumption required by the theorem:

Assumption B.1. ∃g ∈ G∗ satisfying g ∈ G∗
a for ∀a ∈ A′.

Remarks: The assumption basically says that there exists a Bayes classifier g for estimating Y from X (unconditionally)
that is also Bayes when X and Y are both conditioned on some arbitrary class pair a ∈ A′. For convenience, we define
B = {(s, t) ∈ Y × Y|s = t} as the set of all “identical” pairs. Then, the assumption is guaranteed to hold if the samples
together with their (correct) labels following the joint distribution PXY |B are perfectly separable by some classifier f ∈ F .
To see this, let’s first consider the case where A′ = B. We can easily construct the desired function g = f ◦ δ from f ,
with δ being an identity mapping. Then, given that EPXY |B [l(Y, f(X))] = 0 for l being the 0-1 loss (which is due to that
X,Y ∼ PXY |B is perfectly separable by f ), EPXY |B [l(Y, g(X))] = 0 will also hold since δ(X) = X by our construction.
Since the loss is defined to be non-negative, we will then have EPXY |a [l(Y, g(X))] = 0 for ∀a ∈ A′ = B. Next, we consider
the case where A′ ̸= B. We first construct an injective mapping ϕ : A′ → B, such that for any a = (s, t) ∈ A′ and
a′ = (s′, t′) = ϕ(a) ∈ B (with s′ = t′ by the definition of B), a′ = ϕ(a) if and only if s = s′. The existence of such ϕ
is guaranteed by that: (a) both A′ and B satisfy condition (1) in Def. 3.1 (see the definition of A′ in Sec. B.1), and (b)
|A′|≤ |B|= |Y| (which allows each element in A′ to have an image in B). Thus, we can easily rearrange the output neurons
of f based on the mapping ϕ. In particular, for any a = (s, t) ∈ A′ and its associated a′ = (s′, t′) = ϕ(a), we relabel class
t′ (where t′ = s′ = s) to class t. If two different class pairs ai = (si, t) ∈ A′ and aj = (sj , t) ∈ A′ share the same target
class t, the rearranged classifier will predict to class t if f predicts to any of si and sj . Then, we will also obtain a desired
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classifier g satisfying Assumption B.1 by affiliating an identity trigger embedding function δ to the classifier rearranged
from f following the procedure above.

In the proof of Thm. 4.2, we will also need the following lemmas.

Lemma B.2. (Generalized Data Processing Inequality (Xu & Raginsky, 2022)) Suppose random variables Xδ and Y are
conditionally independent given X . Then, for any loss function l, we have:

RF (Y |Xδ) ≥ RG(Y |X).

Lemma B.3. There always exists δ such that

RF (Y |Xδ) = RG(Y |X).

Moreover, for each a ∈ A′, there also exists δ such that

RF
a (Y |Xδ) = RG

a (Y |X).

Proof. For the unconditional case, we construct δ = f−1 ◦ g∗ with arbitrary f ∈ F and arbitrary g∗ ∈ G∗, such that
Xδ = δ(X) = f−1(g∗(X)). Then, we have

RG(Y |X) = EPXY
[l(Y, g∗(X))] ▷ Eq. (11) and (12)

= EPXY ·P
Xδ|X

[l(Y, f(Xδ))] ▷ Construction of δ

≥ RF (Y |Xδ) ▷ Eq. (3) and (4)

According to Lemma B.2, since Xδ and Y are indeed conditionally independent given X , equality must hold in above for
the constructed δ.

For the conditional case and for each a ∈ A′, a similar proof can be applied with δ constructed by choosing g∗ from G∗
a .

Lemma B.4. If δ minimizes RF (Y |Xδ), then, for any a ∈ A′: (1) RF
a (Y |Xδ) = RG

a (Y |X); (2) Fδ ⊂ Fδ
a .

Proof. Considering an arbitrary f∗ ∈ Fδ and an arbitrary g∗ ∈ G∗ satisfying g∗ ∈ G∗
a for ∀a ∈ A′ (existence of such g∗ is

guaranteed by Assumption B.1), for the estimation of Y from both X and Xδ , we have the following relationship between
the Bayes risks with and without conditioning:

RG(Y |X) = EPXY
[l(Y, g∗(X))] ▷ Eq. (11) and (12)

=
∑
a∈A′

PA(a)EPXY |a [l(Y, g
∗(X))] ▷ Conditioning

=
∑
a∈A′

PA(a)R
G
a (Y |X) ▷ Eq. (13) and (14)

RF (Y |Xδ) = EP
XδY

[l(Y, f∗(Xδ))] ▷ Eq. (3) and (4)

=
∑
a∈A′

PA(a)EP
XδY |a

[l(Y, f∗(Xδ))] ▷ Conditioning

≥
∑
a∈A′

PA(a)R
F
a (Y |Xδ) ▷ Eq. (15) and (16)

Combining the above, we have:

RF (Y |Xδ)−RG(Y |X) ≥
∑
a∈A′

PA(a)(R
F
a (Y |Xδ)−RG

a (Y |X)) (17)

≥ 0 ▷ Lemma B.2
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Since that δ minimizes RF (Y |Xδ) is given, by Lemma B.2 and Lemma B.3, we have RF (Y |Xδ)−RG(Y |X) = 0. Thus,
the inequalities above both become equality. Since PA(a) > 0 for ∀a ∈ A′ (see the settings of A′ in Sec. B.1), item (1) of
the lemma, i.e. RF

a (Y |Xδ) = RG
a (Y |X) for ∀a ∈ A′, is proved.

Next, we prove item (2) of the lemma by contradiction. Assume that there exist a ∈ A′ and f ′ ∈ Fδ such that f ′ /∈ Fδ
a .

Then,

RF (Y |Xδ) = EP
XδY

[l(Y, f ′(Xδ))] ▷ Eq. (3) and (4)

=
∑

a′∈A′\a

PA(a
′)EP

XδY |a′ [l(Y, f
′(Xδ))] + PA(a)EP

XδY |a
[l(Y, f ′(Xδ))] ▷ Conditioning

>
∑

a′∈A′\a

PA(a
′)RF

a′(Y |Xδ) + PA(a)R
F
a (Y |Xδ) ▷ Eq. (16) and f ′ /∈ Fδ

a

=
∑

a′∈A′

PA(a
′)RF

a′(Y |Xδ)

Thus, the inequality (17) becomes strict and moreover, RF (Y |Xδ)−RG(Y |X) > 0. Here, we have reached a contradiction
since RF (Y |Xδ)−RG(Y |X) = 0 must hold when δ minimizes RF (Y |Xδ) as discussed above.

Theorem B.5. (Restatement of Thm. 4.2) For any class pair a ∈ A′, consider a trigger embedding function δ that
minimizes RF

a (Y |Xδ). Then, δ minimizes:

min
f∈Fδ

a

∑
a′∈A′\a

PA|A ̸=a(a
′)EP

XδY |a′ [l(Y, f(X
δ))]

if and only if δ also minimizes RF (Y |Xδ).

Proof. For any δ ∈ ∆ and a ∈ A′, we have the following lower bound for the minimum:

min
f∈Fδ

a

∑
a′∈A′\a

PA|A̸=a(a
′)EP

XδY |a′ [l(Y, f(X
δ))]

≥
∑

a′∈A′\a

PA|A̸=a(a
′)RF

a′(Y |Xδ) ▷ Eq. (16) (∗)

≥
∑

a′∈A′\a

PA|A̸=a(a
′)RG

a′(Y |X) ▷ Lemma B.2 (∗∗)

Proof of sufficiency We show that if δ minimizes RF (Y |Xδ), the lower bound above will be reached, i.e. equality holds
for both (∗) and (∗∗). First, by item (2) of Lemma B.4, there exist f∗ ∈ Fδ

a satisfying f∗ ∈ Fδ
a′ for ∀a′ ∈ A′ \ a. Thus,

based on Eq. (15), equality holds for (∗). Next, by item (1) of Lemma B.4, equality holds for (∗∗).

Proof of necessity We prove by contradiction. Suppose δ does not minimize RF (Y |Xδ), by Lemma B.2 and Lemma B.3,
we will have:

RF (Y |Xδ)−RG(Y |X) > 0

Then, based on inequality (17), at least one of the following must hold:

(A) RF (Y |Xδ) >
∑

a′∈A′

PA(a
′)RF

a′(Y |Xδ)

or (B) RF
a′(Y |Xδ)−RG

a′(Y |X) > 0 for some a′ ∈ A′

If (B) holds, we will further have RF
a′(Y |Xδ) − RG

a′(Y |X) > 0 for some a′ ∈ A′ \ a. This is because for the given a,
RF

a (Y |Xδ) − RG
a (Y |X) = 0 due to both that δ minimizes RF

a (Y |Xδ) and the existence of such minimum (based on
Lemma B.3). Then, equality cannot be achieved for (∗∗) and we have reached a contradiction.
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But if (B) does not hold, (A) must hold. Again, for (∗) being equal, there must exist f∗ ∈ Fδ
a satisfying f∗ ∈ Fδ

a′ for
∀a′ ∈ A′ \ a. In other words, there exists (at least one) f∗ ∈ ∪a′∈A′Fδ

a′ ̸= ∅. Thus, we have:

RF (Y |Xδ) ≤ EP
XδY

[l(Y, f∗(Xδ))] ▷ Eq. (4)

=
∑

a′∈A′

PA(a
′)EP

XδY |a′ [l(Y, f
∗(Xδ))] ▷ Conditioning

=
∑

a′∈A′

PA(a
′)RF

a′(Y |Xδ) ▷ Eq. (16)

This is a clear contradiction with (A).
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C. Supplementary of the Main Experiments on Backdoor Model Detection
C.1. Details for the Datasets

CIFAR-10 is a benchmark dataset with 32× 32 color images from 10 classes for different categories of objects (Krizhevsky,
2012). The training set contains 50,000 images and the test set contains 10,000 images, both evenly distributed in the 10
classes.

GTSRB is an image dataset for German traffic signs from 43 classes (Stallkamp et al., 2012). The training set and the test
set contain 39,209 and 12,630 images respectively. The image sizes vary in a relatively large range. Thus, we resize all the
images to 32× 32 in our experiments for convenience.

Imagenette consists of 224× 224 color images from ten selected classes of the ImageNet dataset (Deng et al., 2009) that are
easily classified. The training set and the test set contain 9,469 and 3,925 images respectively.

C.2. Details for the Backdoor Triggers

In our experiments in Sec. 5, we considered a global, perturbation-based trigger with a big ‘X’ shape (dubbed “Pert”), and a
local patch trigger (dubbed “Patch”). The Pert trigger is generated by positively perturbing each pixel on both diagonals of
the image by the same perturbation size for all three color channels. For CIFAR-10, GTSRB, and Imagenette, we set the
perturbation size to 5/255, 15/255, and 15/255, respectively. For the Patch trigger, we replace a small area of the image (for
all three channels) with an image patch with the same shape and size. For CIFAR-10, GTSRB, and Imagenette, we use
3× 3, 2× 2, and 8× 8 square patches respectively. For each attack, the location for the patch replacement and the color for
each pixel in the patch are both randomly selected. Examples of both triggers and the image embedded with each trigger
(compared with the original, trigger-free image) are shown in Fig. 5.

Figure 5. Top: example of the Pert trigger (amplified to 50/255 perturbation size for better visualization), an image (from CIFAR-10)
embedded with the Pert trigger (with perturbation size 5/255), and the original clean image without the trigger. Bottom: example of the
Patch trigger, an image (also from CIFAR-10) embedded with the Patch trigger, and the original clean image without the trigger.

C.3. Training Configurations and Attack Effectiveness

For all three datasets, the training is performed on the training set specified in Apdx. C.1. For CIFAR-10 and Imagenette, the
training images are augmented by random horizontal flipping. For GTSRB, the training images are augmented by random
rotation of ±5 degrees. We use ResNet-18 (He et al., 2016) as the model architecture for CIFAR-10 and Imagenette. For
GTSRB, we use the model with the top performance on the leaderboard (Leaderboard, 2018). For CIFAR-10, GTSRB, and
Imagenette, training is performed using the Adam optimizer (D. P. Kingma, 2015) for 200, 100, and 80 epochs, respectively,
with a learning rate of 10−3 and a mini-batch size of 64. When there is no attack, this training configuration achieves around
93%, 98%, and 88% accuracy (ACC) for the three datasets, respectively. The same set of configurations is also used for
training the classifiers under the attacks we created. The effectiveness of an attack is jointly measured by the ASR and
ACC of the model. The ASR for an X2X attack is the misclassification rate from the backdoor source classes to their
designated target class when the samples from these source classes are embedded with the backdoor trigger. In Tab. 8, for
each combination of the dataset, trigger, and attack setting, we show the average and the minimum ASR, together with the
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Table 8. The average (avg) and the minimum (min) ASR and ACC for each combination of the trigger and the attack setting on CIFAR-10,
GTSRB, and Imagenette, and the average and the minimum ACC for the benign classifiers on each dataset for reference. The ASRs and
the ACCs are all in percentage. All attacks we created are successful with ASR ≥ 78%.

(a) CIFAR-10

Setting Attack avg ASR min ASR avg ACC min ACC
Benign - - - 93.54 93.24

A2O Patch 99.73 98.08 93.08 92.59
Pert 97.87 95.87 93.06 92.76

2to2 Patch 97.90 95.80 92.76 91.70
Pert 98.06 95.60 91.85 91.62

5to5 Patch 93.49 90.20 93.14 92.66
Pert 93.10 87.12 91.91 91.48

8to8 Patch 91.71 90.12 93.15 92.62
Pert 90.06 87.85 91.96 91.34

A2Ar Patch 91.44 89.88 93.32 92.92
Pert 87.27 86.62 93.35 93.08

(b) GTSRB

Setting Attack avg ASR min ASR avg ACC min ACC
Benign - - - 98.46 98.27

A2O Patch 99.99 99.93 98.12 97.69
Pert 98.45 98.01 97.63 97.36

20to20 Patch 96.82 93.86 98.16 97.88
Pert 95.49 93.92 98.05 97.60

30to30 Patch 95.85 91.75 98.13 97.77
Pert 93.67 90.35 98.14 97.69

40to40 Patch 94.10 88.37 98.02 97.66
Pert 93.58 92.11 98.10 97.78

A2Ar Patch 94.44 93.37 98.14 97.89
Pert 93.55 92.13 98.26 98.04

(c) ImageNette

Setting Attack avg ASR min ASR avg ACC min ACC
Benign - - - 88.81 87.95

A2O Patch 99.51 99.14 88.36 87.57
Pert 99.70 99.53 88.52 88.20

3to3 Patch 90.19 83.06 87.74 85.43
Pert 92.66 89.71 88.36 87.85

5to5 Patch 81.04 78.26 87.46 85.89
Pert 88.71 86.17 88.58 87.90

8to8 Patch - - - -
Pert 83.47 79.05 87.91 86.42

A2Ar Patch - - - -
Pert 82.31 81.20 88.17 87.44

average and the minimum ACC for the ten classifiers we trained. As a reference, the average and the minimum ACC for the
ten benign classifiers for each dataset are also shown in Tab. 8.

C.4. Review of the Model Detection Methods Compared in Our Experiments

Neural Cleanse (NC) is a typical reverse-engineering-based model detection method (Wang et al., 2019). It assumes an
A2O attack and reverse-engineers a patch trigger with a size as small as possible for each putative target class using the
algorithm described in Sec. C.5.2. The premise behind NC is that the backdoor trigger will likely have a small size for human
imperceptibility (which is generally true in practice), while the minimum size of a common patch that induces a large fraction
of images to be misclassified to a non-backdoor target class will likely be large. With a trigger reverse-engineered for each
class, NC adopts an unsupervised, MAD-based anomaly detector to infer if, for any class, the size of the reverse-engineered
trigger is abnormally small based on a derived anomaly score. The classifier is deemed to be attacked if the anomaly score
is larger than a prescribed threshold (which indicates the existence of a reverse-engineered trigger with abnormally small
size). In our experiments, we use 20 clean images per class for detection and setting the threshold of the anomaly score
to 2 (Wang et al., 2019). Note that this threshold, though claimed to be associated with a 95% detection confidence level,
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implicitly assumes that the estimation of the MAD uses only a single null statistic, while the actual anomaly detection
procedure of NC uses all the trigger size statistics for the estimation of MAD. Moreover, threshold 2 is associated with the
assumption that an anomaly may exist on both tails of the null distribution, i.e. both overly small and overly large trigger
sizes are considered outliers, though a true detection should only be triggered by abnormally small trigger sizes (i.e. the
small outliers). Differently, our UMD determines a (single-tailed) confidence threshold based on the actual number of null
statistics used for the estimation of MAD (see Sec. 4.2.2), which is more robust than NC to the changes of the domain size.
Note that based on Eq. (9), the same threshold 2 used by NC will be obtained if we set N = 1 (for a single null statistic)
and β = 0.025 (for a single-tailed 0.025 significance level). Despite the issue with the detection threshold, NC is not able to
detect most X2X attacks except A2O attacks3 by design. Moreover, NC is not implemented with class pair detection since
once an attack is detected, all the class pairs with the target class being the detected target class will be treated as backdoor
class pairs (by the definition of A2O attacks).

ABS is also a reverse-engineering-based detector that assumes an A2O setting for potential attacks (Liu et al., 2019). But
before reverse-engineering the trigger, ABS first identifies a subset of neurons (e.g.) from the penultimate layer with the
largest “stimulation” to particular neurons in the output layer. That is, for any of these identified neurons, a large activation
will subsequently lead to a large value for some neurons in the output layer. Thus, ABS performs trigger reverse-engineering
with a constraint to only boost the activation of these selected neurons. The premise behind the design is that backdoor
triggers will likely cause a large activation for some neurons in the intermediate layers. Then, for each putative target class,
the reverse-engineered trigger is embedded into a set of clean images and a REASR score is obtained as the misclassification
fraction to the target class for these trigger-embedded images. In the inference step, a larger REASR indicates that the
classifier is more likely to be attacked. Note that REASR is actually the “transferability” of the reverse-engineered trigger
from one group of samples to another with respect to the same target class. It is different from our TR statistic designed for
each ordered pair of class pairs and does not endow ABS with the capability to detect general X2X attacks except A2O
attacks. In our experiments, we follow the descriptions in the original ABS paper by using one image per class and selecting
10 neurons from the penultimate layer of each classifier for detection. For each putative target class, 30% of the images are
used for trigger reverse-engineering, and the remaining 70% images are used to compute the REASR score. Since ABS does
not propose a practical method to select a threshold for the REASR score in an unsupervised fashion, in our experiments,
based on the resulting REASR scores, we choose the threshold for ABS that keeps an approximately 95% false detection rate
across all three datasets (for a fair comparison with other methods adopting the same confidence level) while maximizing
the overall true positive rate.

PT-RED detects imperceptible, perturbation-based triggers by performing trigger reverse-engineering for each class pair.
However, its inference step, which is based on probabilistic modeling with a threshold that controls the false detection
rate, relies on the assumption of a single backdoor target class. Thus, it is capable of detecting X-to-one attacks with an
inference of the source classes. But still, PT-RED cannot handle X2X attacks with more than one backdoor target class. In
our experiments, we use 10 images per class for PT-RED and set the desired false detection rate to 5% (i.e. 95% confidence)
based on the original paper.

MNTD trains a binary4 meta-classifier on features extracted from a large number of shadow classifiers with and without
attack. Given a classifier to be inspected, features extracted from the classifier following the same procedure as for the
shadow classifiers are fed into the meta-classifier to produce a score – if a score is larger than a prescribed threshold, the
classifier is deemed to be attacked, otherwise, it is not attacked. However, for the unsupervised model detection problem, a
proper threshold is hard to choose. Thus, in our experiments, we choose a threshold based on the resulting scores to fix a 5%
false detection rate (i.e. 95% confidence) while maximizing the true detection rate for a fair comparison with other methods.
Moreover, since MNTD cannot cover the enormous space of attack settings for the X2X attack (see Fig. 2) when training
the shadow classifiers, its effectiveness largely depends on the generalization capability of the attack settings (as well as the
model architecture, the trigger, and so on) from the shadow classifiers to the actual classifier being attacked. Thus, based
on the design, it is questionable for MNTD to detect X2X attacks with arbitrary settings. In our experiments, we train a
meta-classifier for each dataset using the code provided by the authors of META. In particular, the shadow classifiers with
the attack are trained in the A2O setting. From our empirical results in Tab. 2, MNTD does not perform well even against
A2O attacks, showing a poor generalization of the model architecture from the shadow models to the actual models to be

3A variant of NC with class-pair-wise trigger reverse-engineering was suggested by Wang et al. (2019) for detecting X2O attacks but
without adequate evaluation on complicated datasets beyond MNIST (Lecun et al., 1998).

4A one-class variant of MNTD is also proposed as a baseline by Xu et al. (2021). However, the performance of this variant is not
comparable to MNTD with the binary meta-classifier, thus is not evaluated in our experiments.
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inspected. Finally, MNTD only performs model detection without the inference of backdoor class pairs.

K-Arm focuses on solving the trigger reverse-engineering problem for each putative target class without knowing the actual
number of source classes. Again, it well-addresses the X-to-one attacks, but cannot detect X2X attacks with more than one
target class. Moreover, K-Arm uses the reverse-engineered trigger size for detection inference, which requires supervision
for picking a threshold. In our experiments, we pick a threshold for K-Arm for each dataset and for each trigger type to
control the false detection rate to 5% while maximizing the true positive rate. For the reverse-engineering step, we use 40
images per class. Finally, like all the other methods reviewed above, K-Arm is not implemented with backdoor class pair
inference.

C.5. Trigger Reverse-Engineering Algorithms

In this paper, we have considered three trigger reverse-engineering algorithms. In our experiments in Sec. 5, we equip
UMD with the algorithms used by PT-RED (Xiang et al., 2020) and NC (Wang et al., 2019) to address the perturbation
trigger and the patch trigger respectively. In our experiments in Sec. 5.4, we show that UMD can even incorporate with
the intermediate-layer trigger reverse-engineering technique (Xiang et al., 2020) to address the stronger sample-specific
backdoor attack. Here, we introduce these algorithms in detail.

C.5.1. REVERSE-ENGINEERING PERTURBATION TRIGGERS

Perturbation triggers take the form δ(X) = [X + v]c for the embedding function where v is a perturbation with a small
||v||2 for human imperceptibility and [·]c is a clipping function. Thus, reverse-engineering a perturbation trigger solves
problem (1) with d(X, δ(X)) = ||X − δ(X)||2≈ ||v||2, i.e.:

minimize
v

||v||2

subject to v ∈ argmin
v′

EPXY |a [l(Y, f([X + v′]c))]

Empirically, for class pair a = (s, t) and l being the 0-1 loss, the above problem can be reformulated as (Xiang et al., 2020):

minimize
v

||v||2

subject to
1

|Ds|
∑
x∈Ds

1[f([x+ v]c) = t] ≥ π
(18)

where Ds is the subset of samples in Dc from class s, 1[·] is the indicator function (for counting the number of misclassifica-
tions from class s to class t), and π is a targeted misclassification fraction (which approximates one minus the Bayes error
rate in practice). Typically, π is set large for a relatively large “pair ASR” assumed for a successful attack. But an overly
large π may not be achievable for a backdoor class pair even with the actual trigger used by the attacker. In practice, π can
be set large but not clearly larger than the ACC of the classifier to be inspected (which can be evaluated on the small dataset
possessed by the defender). The reasons are the following. For X2X attacks with an A2Ar setting, the ASR of a successful
attack will not likely exceed the ACC. For X2X attacks with other settings, the ASR of a successful attack may be larger
than the ACC (even close to 100%). Since there is no prior knowledge about the attack setting, having a large π without
exceeding the ACC much will enlarge the probability for the trigger reverse-engineered for backdoor class pairs being close
to the actual trigger used by the attacker. Thus, in our experiments, we set π = 0.9 for all datasets, which is sufficiently
large without clearly exceeding the ACC of the classifiers to be inspected.

To solve (18) in practice, we minimize the following differentiable surrogate objective function using stochastic gradient
descent (Xiang et al., 2020):

Jpert
st (v) = − 1

|Ds|
∑
x∈Ds

p(t|[x+ v]c), (19)

with learning rate 10−4 and initial v = 0. p(t|x) denotes the classifier’s posterior for class t for arbitrary input x ∈ X . The
minimization of Eq. (19) terminates when π misclassification is achieved on Ds.

C.5.2. REVERSE-ENGINEERING PATCH TRIGGERS

Patch triggers take the form δ(X) = (1 −m) ⊙X +m ⊙ u, where u is a small image patch, m is a binary mask, and
⊙ represents element-wise multiplication. For human imperceptibility, the patch size, which is solely determined by m,
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is usually small. Thus, the distance metric in problem (1) can be specified by d(X, δ(X)) = ||X − δ(X)||0≈ ||m||0.
Accordingly, for each class pair a = (s, t), we solve:

minimize
{m,u}

||m||0

subject to {u,m} ∈ argmin
{u′,m′}

EPXY |a [l(Y, f((1−m′)⊙X +m′ ⊙ u′))]

Similarly, the problem above can be reformulated as the following:

minimize
{m,u}

||m||0

subject to
1

|Ds|
∑
x∈Ds

1[f((1−m)⊙ x+m⊙ u)) = t] ≥ π
(20)

Again, we set π = 0.9 for all datasets considered in our experiments. Then, problem (20) can be solved by minimizing the
surrogate objective function proposed by NC (Wang et al., 2019):

Jpatch
st (u,m) = − 1

|Ds|
∑
x∈Ds

log p(t|(1−m)⊙X +m⊙ u)) + λ||m||1, (21)

where λ is the Lagrange multiplier and the patch size is measured using the ℓ1 norm (instead of the ℓ0 norm in problem (20))
for differentiability. As suggested by Wang et al. (2019), the mask m and the patch u are both initialized to be image-wide
and with initial values around 0.5 (for pixel values in [0, 1]) when minimizing Eq. (21). The multiplier λ is adjusted based
on whether the π misclassification fraction from class s to class t (i.e. the constraint of problem (20) is achieved). More
details about such adjustment and the learning rate can be found in the original implementation provided by Wang et al.
(2019). To avoid poor local optimum when minimizing Eq. (21), we solve problem (20) for multiple times (e.g. 5 trials
for CIFAR-10 and Imagenette and 3 trials for GTSRB), each with a randomly initialized m and u. The solution with the
minimum ||m||1 over all trials is deemed to be the reverse-engineered trigger.

C.5.3. REVERSE-ENGINEERING SAMPLE-SPECIFIC TRIGGERS

In fact, sample-specific triggers still use a common δ, which may be as sophisticated as an autoencoder, for trigger embedding.
The term “sample-specific” actually refers to that δ(xi)− xi and δ(xj)− xj are different for different samples xi and xj .
Unfortunately, accurate estimation of δ (e.g. estimating all the parameters of δ if it is an autoencoder) for a sample-specific
trigger is still an open problem. But using the method proposed by Xiang et al. (2020), we can estimate a simple additive
perturbation in the intermediate layer of the classifier to approximate δ. More specifically, suppose f = f2 ◦ f1 where
f1 : X → Z maps an input to the intermediate feature space Z and f2 : Z → Y maps an intermediate feature to the output
space Y . For each class pair a = (s, t), we solve:

minimize
w

||w||2

subject to
1

|Ds|
∑
x∈Ds

1[f2(f1(x) + w) = t] ≥ π

by minimizing:

J inter
st (w) = − 1

|Ds|
∑
x∈Ds

p′(t|f1(x) + w),

using the same settings as for perturbation reverse-engineering in the input layer. Here, p′(t|·) denotes the posterior of
class t for intermediate features. In the experiments in Sec. 5.4, our UMD uses this technique to reverse-engineer the
sample-specific trigger embedded by WaNet at the output layer of the first “block” of ResNet-18 (with four “blocks” in
total) (He et al., 2016) and achieves excellent detection performance in both model inference and pair inference.

C.6. Additional Results: Detection Performance of UMD with Different Choice of Confidence Level

In Sec. 5 of the main paper, we showed the detection performance of UMD for a 95% confidence level for a fair comparison
with the SOTA baselines. Here, in Tab. 9, we show the model detection performance (via MIA) of UMD for a range of
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confidence levels from 0.6 to 0.999. Clearly, more aggressive confidence thresholds (with a confidence level < 0.95%)
slightly increase the true positive rate (i.e. an increment in MIA for classifiers being attacked) at the cost of a slight increment
in the false positive rate (i.e. a decrement in MIA for benign classifiers). On the other hand, more conservative thresholds
(with a confidence level > 0.95%) slightly reduce the false positive rate, but the true positive rate is not affected much. The
results show that UMD prefers a more conservative confidence level since the attacks are typically associated with a large
anomaly score if the putative backdoor class pairs are correctly selected.

Table 9. MIA of our UMD for confidence levels (i.e. 1− β) 0.6, 0.8, 0.9, 0.95, 0.99, and 0.999. Large confidence thresholds are helpful to
reduce the false positive rate without much degradation in the true positive rate.

(a) CIFAR-10

Setting benign A2O 2to2 5to5 8to8 A2Ar
1− β = 0.6 0.70 0.95 0.90 0.95 0.85 1.0
1− β = 0.8 0.80 0.95 0.90 0.95 0.85 1.0
1− β = 0.9 0.80 0.90 0.90 0.95 0.85 0.95
1− β = 0.95 0.90 0.90 0.90 0.95 0.85 0.95
1− β = 0.99 0.90 0.90 0.85 0.95 0.85 0.95
1− β = 0.999 0.90 0.90 0.85 0.95 0.85 0.90

(b) GTSRB

Setting benign A2O 20to20 30to30 40to40 A2Ar
1− β = 0.6 0.80 0.95 0.80 0.90 0.95 1.0
1− β = 0.8 0.80 0.95 0.80 0.90 0.95 1.0
1− β = 0.9 0.80 0.95 0.80 0.90 0.90 1.0
1− β = 0.95 0.90 0.95 0.80 0.90 0.90 1.0
1− β = 0.99 0.90 0.95 0.80 0.85 0.90 0.95
1− β = 0.999 0.90 0.95 0.80 0.85 0.90 0.95

(c) ImageNette

Setting benign A2O 3to3 5to5 8to8 A2Ar
1− β = 0.6 0.80 0.95 0.80 0.80 0.90 1.0
1− β = 0.8 0.80 0.95 0.80 0.80 0.90 1.0
1− β = 0.9 0.80 0.95 0.80 0.80 0.80 1.0
1− β = 0.95 0.80 0.90 0.75 0.80 0.80 1.0
1− β = 0.99 0.80 0.90 0.75 0.75 0.80 0.9
1− β = 0.999 1.0 0.90 0.60 0.75 0.70 0.8
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D. Supplementary of the Ablation Study
D.1. Baseline Variants of UMD

In this section, we provide details for the two baseline variants of UMD. The first baseline variant, UMD†, directly uses the
perturbation or patch size of the reverse-engineered trigger for each class pair for anomaly detection, without using our
TR statistic. Since UMD† does not select a subset of putative backdoor class pairs, all the trigger statistics are used for the
estimation of MAD, i.e.:

σ† = meda∈Y×Y\B(|z−1
a −meda′∈Y×Y\Bz

−1
a′ |)

Note that the set B contains all class pairs with the same source class and target class – trigger reverse-engineering is not
performed for these class pairs. Then, an anomaly score is computed for each statistic by:

r†(z) = (z−1 −meda∈Y×Y\Bz
−1
a )/(1.4826 · σ†)

If for any class pair a, the anomaly score r†(za) is larger than the confidence threshold determined by Eq. (9), we say that
the classifier is attacked. And the K class pairs with the largest anomaly score are detected as the backdoor class pairs. K
is the number of classes in the domain, which is also the largest number of class pairs that an X2X backdoor attack may
involve.

The second baseline variant, UMD‡, uses TR, but in a naive way. For each class pair a detected by UMD†, UMD‡ performs a
“double check” to see if the maximum “mutual-transferability” of a with all the other class pairs, i.e. maxa′ ̸=a(Taa′ + Ta′a),
is in the top K of all class pairs. If this is true, class pair a is admitted as a backdoor class pair; otherwise, a is deemed a
non-backdoor class pair. Again, if there is at least one backdoor class pair being detected, the classifier is deemed to be
attacked.

D.2. Additional Results for UMD Compared with the Two Baseline Variants

As shown in Sec. 5.3 of the main paper, the two baseline variants achieve an overly large false positive rate in model
inference, though the confidence threshold is set for a 5% false positive rate. Especially, the variant UMD† tends to predict
any given classifier to be “attacked”. In Tab. 10, we show MIA for the two baseline variants and also our UMD for a range
of confidence levels in [0.95, 0.99, 0.999]. Based on the results, even for extremely conservative confidence thresholds, the
two baseline variants still have significantly high false positive rates (i.e. low MIA on benign classifiers). Indeed, an even
larger confidence threshold may result in a meaningful false positive rate for the two variants while keeping a high true
positive rate (i.e. a good separability between statistics for classifiers with and without attack), but such a threshold will be
unknown to the defender a priori – the defender will likely set a reasonable confidence level (e.g. near 95%).

Table 10. MIA for UMD†, UMD‡, and our UMD for confidence levels 0.95, 0.99, 0.999.
1− β = 0.95

2to2 5to5 8to8 A2Ar Benign
UMD† 1.0 1.0 1.0 1.0 0
UMD‡ 1.0 1.0 1.0 1.0 0.4
UMD 1.0 1.0 0.9 0.9 0.9

1− β = 0.99
2to2 5to5 8to8 A2Ar Benign

UMD† 1.0 1.0 1.0 1.0 0
UMD‡ 1.0 1.0 1.0 1.0 0.6
UMD 1.0 1.0 0.9 0.9 0.9

1− β = 0.999
2to2 5to5 8to8 A2Ar Benign

UMD† 1.0 1.0 1.0 1.0 0
UMD‡ 1.0 1.0 1.0 1.0 0.7
UMD 0.9 1.0 0.9 0.9 0.9

24



UMD: Unsupervised Model Detection for X2X Backdoor Attacks

E. Others
E.1. Collateral Damage for O2O Attacks

Since our UMD will always select at least two different class pairs for inference, we are interested in its detection capability
against attacks with only one backdoor class pair, i.e. an O2O attack. In Tab. 6, we show that UMD achieves relatively good
performance against O2O attacks. This is because, for O2O attacks, non-backdoor class pairs may suffer from collateral
damage, such that samples from the source class will be misclassified to the target class when the backdoor trigger used by
the attacker is embedded. Thus, in addition to the true backdoor class pairs, there will exist effective “backdoor” class pairs
that are not involved in the attack deliberately. These class pairs typically share the same target class as the true backdoor
class pair, since a relation between the backdoor trigger and the adversarial target class has been established when the
classifier is trained on the poisoned training set. In Fig. E.1, for all ten O2O attacks, we show the histogram of the pair-based
ASR (i.e. the fraction of samples from the source class being misclassified to the target class when the backdoor trigger is
embedded) for all non-backdoor class pairs sharing the same target class as the true backdoor class pair. There are several
“non-backdoor” class pairs that have a pair-based ASR even larger than 80%.

Figure 6. Collateral damage of O2O attacks. Some non-backdoor class pairs achieve as high as 80% ASR due to the attack.

E.2. Performance of UMD against X2X Attacks with Different Numbers of Images for Poisoning

In this section, we show the performance of UMD against X2X attacks with different numbers of poisoning images. We
train three groups of classifiers with the A2Ar setting and the perturbation trigger on CIFAR-10, but with 1500, 6000, and
10000 poisoning images respectively. As shown in Fig. E.2, the average ASR of the attack grows with the number of
poisoning samples, though still not exceeding the clean test accuracy, which is around 93%. As shown in Tab. 11, UMD
achieves generally stable detection performance for all these choices of the number of poisoning images. For attacks with
1500 poisoning images, we observe a drop in the average PDR (though still with a perfect MIA). This is because, with
only 1500 images for poisoning, not every backdoor class pair achieves a sufficiently large ASR – these class pairs are less
distinguishable from non-backdoor class pairs than backdoor class pairs with high ASR, and thus are more difficult to detect.

Table 11. MIA and average PDR for UMD against A2Ar attacks on CIFAR-10 with 1500, 3000, 6000, and 10000 poisoned images.

No. images 1,500 3,000 6,000 10,000
MIA PDR MIA PDR MIA PDR MIA PDR

UMD 1.0 0.70 0.90 0.92 1.0 0.84 0.90 0.92

E.3. Intuition Behind the Objective Function in Problem (6)

In Fig. E.3, we show a real TR-map for an A2A attack on CIFAR-10. Our clustering problem aims to find a “core” with the
maximum “brightness” and an associated “periphary” with the maximum “darkness” (Borgatti & Everett, 2000).
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Figure 7. ASR for A2Ar attacks with different numbers of poisoning images on CIFAR-10.

Figure 8. A real TR-map for an A2A attack on CIFAR-10. The orders of the 90 class pairs are the same for both axes.

E.4. Computational Cost of UMD

Empirically, each model inference on CIFAR-10, GTSRB, and Imagenette requires around 0.3h, 2.5h, and 4.3h, respectively,
as measured on a single RTX 2080 Ti card. As an off-line detection procedure, this time cost is acceptable compared with
the training time on each dataset. The main computational cost is induced by the need to determine for each of the K(K−1)
class pairs whether it is involved in a backdoor attack – trigger reverse-engineering is performed for each class pair. Since
there is no constraint on the trigger reverse-engineering algorithm used by UMD, the efficiency of UMD can potentially be
improved, e.g., by adopting the warm-up strategy by Shen et al. (2021) or the weighted-sum strategy by Xiang et al. (2021)
to accelerate the trigger reverse-engineering process.
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