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Hypergraph-based Temporal Modelling of Repeated Intent for
Sequential Recommendation

Anonymous Author(s)

ABSTRACT
In sequential recommendation scenarios, user intent is a key driver
of consumption behavior. However, consumption intents are usually
latent and hence, difficult to leverage for recommender systems.
Additionally, intents can be of repeated nature (e. g., yearly shopping
for christmas gifts or buying a new phone), which has not been
exploited by previous approaches. To navigate these impediments
we propose the HyperHawkes model which models user sessions via
hypergraphs and extracts user intents via contrastive clustering. We
use Hawkes Processes to model the temporal dynamics of intents,
namely repeated consumption patterns and long-term interests of
users. For short-term interest adaption, which is more fine-grained
than intent-level modeling, we use a multi-level attention mixture
network and fuse long-term and short-term signals. We use the
generalized expectation-maximization (EM) framework for training
the model by alternating between intent representation learning
and optimizing parameters of the long- and short-term modules.
Extensive experiments on four real-world datasets from different
domains show that HyperHawkes significantly outperforms existing
state-of-the-art methods.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Recommender Systems, Sequential Recommendation, Graph Neural
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1 INTRODUCTION
Recommender systems have long become essential in filtering in-
formation effectively, for instance on video-sharing websites, e-
commerce platforms, online bookstores, and social networks. With
the abundance of online information, recommender systems have
gained increasing importance by discovering and leveraging the
underlying (latent) intents of users to cater to their preferences. In
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Figure 1: A toy example of an e-commerce retailer scenario with
repeated user intents.

recent years, there has been a growing trend in modeling user se-
quential behaviors, which aims to capture short-term user interest
and longer-term sequential patterns including popularity trends and
interest drifts [42]. While traditional recommendation methods focus
on static user preference modeling [16, 45], Sequential Recommen-
dation (SR) models dynamically characterize user behaviors [18, 24],
aiming to accurately predict users’ interests in items based on their
historical interactions and their corresponding points in time, allow-
ing for more accurate and timely recommendations [8, 54].

The majority of previous works in SR order items by interac-
tion timestamps and focus on sequential patterns to predict the next
potential item. Early works adopt Markov chains to provide rec-
ommendations based on the 𝐿 previous interactions via an 𝐿-order
Markov chain [15, 46]. Also, Recurrent Neural Networks (RNN)
and Convolutional Neural Networks (CNN) have been applied to
model long- and short-term dependencies in a user interaction se-
quence [18, 67]. More recent methods rely on the self-attention
mechanism and transformer-based models for capturing complex
sequential dependencies for next-item recommendations [24, 49].
Another line of work explicitly focuses on modeling temporal dy-
namics in item sequences based on interaction timestamps [31, 66].
The availability of temporal information also enables models to learn
about global events (e. g., Christmas) [56] and the periodicity of
items [4, 54]. Previous works in the field model the temporal dynam-
ics on an item level or rely on additional category and knowledge-
graph information to represent user intent [19, 55]. However, these
approaches come with several downsides: Learning temporal dy-
namics on the item level is often difficult due to data sparsity and
ignores co-occurring item consumption patterns across all users.
Also, valuable meta-information for learning user intents is not al-
ways available and mostly ignores personal user preferences like
preferred brands, price restrictions, or re-consumption behavior.

To fill the aforementioned gaps, we propose to extract latent user
intents from the user interaction sequences and model personalized
temporal dynamics including repeat consumption on the user intent
level. Consider the example in Figure 1. During each session, User
A interacts with the system by e.g., viewing or purchasing items

1
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with different intents, and in this example, their interest is solely
focused on the items relevant to their current intent. From the user’s
interaction history, it is apparent that the intent of consuming phone
accessories is of repeated nature and is connected to the lifetime of
a screen protector for the phone. Explicitly modeling this behavior
increases the ability to recommend suitable phone accessories after
a certain period (e. g., two months).

Repeat consumption occurs due to people’s habits. For instance,
we frequently purchase the same items, dine at the same restaurants,
and listen to the same songs and artists often with a certain intent [1].
To empirically analyze the intent repeat consumption in the real
world, we extract sets of frequently co-occurring item sets via the
FP-Max algorithm [13]. For each active user (a user with at least 20
item interactions) we compute maximum frequent item sets (appear-
ing twice or more in the user history) with a size larger than 1 to
capture intent-level interactions. Then, we compute the maximum
support of all repeated intents per user, where a support of 0.5 of an
item set means this intent is apparent in 50% of the user’s sessions.
Figure 2 displays the distribution of intent repeat consumption with
different maximum support values for four real-world benchmark
datasets from different domains. Although there is a large portion of
users with non-repeating intents, it is clear to see that intent repeat
consumption is prevalent, and also constitutes a significant portion
of interactions in certain domains.

To bridge this described gap of modeling temporal dynamics of
user intents we propose the Hypergraph-based Hawkes Processes
(HyperHawkes) model for sequential recommendation. Our ap-
proach leverages hypergraphs and soft clustering to extract latent
user intent representations from the user interaction data. Based on
these user intent representations our temporal excitation module
learns the dynamics of user intents and item consumption behavior
based on Hawkes Processes [14], a temporal point process to model
discrete events in a continuous-time regime. We propose a novel time
decay function to represent the excitation strength between historical
intent and item behaviors and their corresponding time intervals. To
capture short-term interest changes on the item level, we additionally
compute short-term interest scores based on an attention mixture
network, which captures the influence of the last interacted items
in the current session. These steps ensure that our model effectively
combines long-term and short-term user interest, and models both
intent- and item-level temporal dynamics. We summarize our main
technical contributions as follows:

• We propose a novel global item hypergraph construction strategy
for learning intent-based item representations and employ soft
clustering to extract latent user intents.

• We integrate Hawkes Processes (temporal point processes) to
model long-term temporal dynamics on intent level; further, we
fuse short-term interests for increased personalized recommenda-
tion performance.

• We conduct extensive experiments showing that our proposed
model achieves significant performance improvements over a
large number of state-of-the-art competitors on four datasets from
different domains.1

1Code: https://anonymous.4open.science/r/HyperHawkes-2FB8
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Figure 2: Distribution of maximal support of intents (item sets
with size >= 2) of active users per dataset. We randomly sampled
1000 users per dataset to ensure comparability between datasets.

2 RELATED WORK
In this section, we review related work, which includes sequential
recommendation, user intent, and temporal information learning.

2.1 Sequential Recommendation
Sequential recommendation aims to recommend items to the user
by modeling their past behavior sequences and characterize their
dynamic interests [24, 39, 42, 46]. Earlier approaches in this field are
based on nearest-neighbor methods [12, 21], factorization machine-
based methods [44] and Markov Chains [15]. In recent years the
advances of deep learning also led to the deployment of many
deep sequential recommendation models including CNN-based mod-
els [50, 67], RNN-based models [18, 65] and self-attention based
models [10, 24, 49]. SASRec [24] and BERT4Rec [49] both uti-
lize the transformer architecture [53] to model correlations among
context information in SR. Recently, many works focused on using
contrastive self-supervised learning (SSL) to enhance the mutual
information between positive samples while increasing the discrimi-
nation of negatives [38, 41, 51, 63, 73].

2.2 User Intent for Recommendation
In recent times an increasing body of work studied users’ intents for
improving sequential recommendations [29, 30]. Works in session-
based recommendation learn different purchase purposes via a mixture-
channel purpose routing network [57], use a multi-intent translation
graph neural network to mine user intents [35] or employ a dual-
intent network to recommend new items [22]. Work in [71] pro-
poses an attention mixture network based on user intents to achieve
multi-level reasoning over item transitions. Another area of research
focuses on understanding the sequential patterns in users’ interaction
behaviors over longer periods. DSSRec [36] introduces a seq2seq
training strategy that utilizes multiple future interactions as super-
vision and incorporates an intent variable derived from both the
user’s past and future behavior sequences. In ICLRec [7] user intents
are represented by latent variables and learned via clustering. The
learned intents are leveraged into SR models via contrastive SSL to

2
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maximize the agreement between the representation of a sequence
and its corresponding intent.

2.3 Temporal Information, Repeated Consumption
Time-sensitive recommendation considers the temporal information
of item interactions as context features or models temporal decay ef-
fects of historical interactions via point processes. In TimeSVD++ [62],
timestamps are divided into bins and combined with a collaborative-
filtering framework. In tensor factorization methods time is viewed
as an extra dimension in the user-item interaction matrix [5, 25, 64].
Other works focus on capturing trends and user-evolving patterns via
attention-based temporal modules [8, 9, 43, 66]. Li et al. [31] extend
SASRec by modeling the user-specific time intervals in the item
sequence. Recently, TGSRec [11] designs a continuous-time bipar-
tite graph, which captures temporal dynamics within the sequential
patterns of user-item interactions. Another line of work applies the
Hawkes Process framework [14] to model the temporal decay effects
of historical interactions [6, 74], which also increases the capability
of the model to predict repeating item interactions [4, 19, 54, 55].

Different from previous works, we not only leverage that repeated
interactions occur at intent levels but also show that incorporating
personal user information is crucial for learning temporal dynamics.
Additionally, our model addresses the gaps in the current understand-
ing of user intents, especially in terms of capturing repeated and
periodic patterns, modeling user intents through a hypergraph and
soft clustering techniques based on user session information, which
significantly enhances personalized recommendation performance.

3 PRELIMINARIES
3.1 Problem Definition and Notations
In sequential interaction scenarios, the observed user-item interac-
tion data is represented by a set of tuples {(𝑢, 𝑣, 𝑡)}, indicating that
user 𝑢 ∈ U interacted with item 𝑣 ∈ V at timestamp 𝑡 . The in-
teractions are sorted chronologically to form a user’s interaction
sequence 𝐼𝑡𝑢 = [(𝑣1, 𝑡1), (𝑣2, 𝑡2) . . . , (𝑣𝑛, 𝑡𝑛)], where 𝑛 is the num-
ber of interactions of user 𝑢 until timestamp 𝑡 . Based on the vary-
ing time intervals between interactions, the sequence 𝑆𝑢 can be
divided into subsequences (or sessions) whenever the time inter-
val between two interactions exceeds a threshold 𝛿 (e. g., a day or
hour). The resulting session interaction sequence can be represented
as 𝑆𝑢 = [𝑠𝑢1 , 𝑠

𝑢
2 , . . . , 𝑠

𝑢
𝑙
], where 𝑠𝑢

𝑙
represents the 𝑙-th interaction

subsequence of user 𝑢 containing items from V. The objective of
sequential recommendation is to predict the item from the item set
V that the user 𝑢 is most likely to interact with at a given timestamp
𝑡 , given their sequence 𝑆𝑢 .

3.2 Hawkes Processes for Sequential Modeling
A temporal point process is a stochastic process consisting of discrete
events localized in the continuous-time domain. In sequential recom-
mendation, the times at which a user interacts with a specific item can
be represented as a series of historical events 𝐻𝑡 = [𝑡1, 𝑡2, . . . , 𝑡𝑛].
To model the time of the next event based on previous events, a
conditional intensity function 𝜆(𝑡 |𝐻𝑡 ) is introduced. This function
represents a stochastic model for the occurrence of the next event
given all previous event times and thereby, affects the characteris-
tics of the temporal point process. In Hawkes Processes [14], the

intensity function takes the form of

𝜆(𝑡) = 𝜆𝐵𝑎𝑠𝑒 + 𝛼
∑︁
𝑡𝑖<𝑡

𝜑 (𝑡 − 𝑡𝑖 ), (1)

where 𝜆𝐵𝑎𝑠𝑒 represents the base intensity and each historical event
has a self-exciting effect on the current intensity controlled by the
triggering kernel 𝜑 which determines how each past event boosts the
event intensity over time. The parameter 𝛼 determines the degree of
excitation. In the context of sequential recommendation, the base
intensity represents the user’s basic interest in a target item, and
the self-exciting term indicates the cumulative impact of historical
interactions on the user’s interest over time.

4 PROPOSED METHOD (HYPERHAWKES)
As illustrated in Figure 3 our HyperHawkes model consists of sev-
eral major components, including the intent-based global item graph,
and a hypergraph-based aggregation layer to generate intent-based
item representations for the soft clustering component. The clustered
intent-based item representations serve as inputs to the temporal
module, which is responsible for capturing users’ long-term inter-
ests. To model short-term interest we employ an attention-mixture
network and combine both long-term and short-term signals in the
final prediction layer. In the following, we will detail each compo-
nent.

4.1 Intent-based Hypergraph Network
As user intents are latent by definition and hence are difficult to
extract, we propose to induce structural bias via hypergraph model-
ing to support the underlying soft clustering process to find useful
intent representations. Compared to a simple graph with an adja-
cency matrix reflecting the pairwise relationship between two nodes,
hyperedges in hypergaphs can connect more than two nodes and are
therefore suitable to model user intents, since item interactions on
an intent level naturally comprise a set of items. We assume that in
each user session, the user interacts with the system based on one
or more intents. To build our intent-based global item hypergraph
G = (V, E) with E = {𝜀𝑖 } being the set of hyperedges, we apply
the following procedure: First, we extract data-driven user intents as
frequently occurring item sets across all training user sessions with
a length >= 2 via the FP-Max algorithm [13], where the minimum
support is set to 𝛾 . The threshold parameter 𝛾 filters for reliable user
intents and drops noisy intents not supported by many other user
sessions [38]. For each of the extracted intents, we connect all the
corresponding items via a hyperedge 𝜀𝑖 ∈ E to build our global
hypergraph. Each hyperedge 𝜀𝑖 has a weight𝑤𝑖 attached, indicating
the frequency of the extracted intent in the dataset.

To generate intent-based global item representations we design a
simple hypergraph aggregation layer. For the item 𝑣𝑖 ’s base embed-
ding x(0)

𝑖
, we map its corresponding identifier into a dense embed-

ding vector h𝑣𝑖 ∈ R𝑑 , where 𝑑 indicates the dimension. To aggregate
information from neighboring nodes we employ the following hy-
pergraph convolution with symmetric normalization in our HGCN
component:

X(𝑙+1) = D−1HWB−1H⊤X(𝑙 ) , (2)
3
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Figure 3: Overall architecture of HyperHawkes: In the E-step of the EM algorithm, our approach extracts latent intent representations
via soft clustering of hypergraph-based item embeddings. In the M-step, we compute long-term user preference scores via Hawkes
Processes based on the user base excitation from an attentive FISM and self-exciting effects of intents. We fuse short-term scores from
the attention-mixture network and the long-term scores to get the preference score of the user for an item.

where H is the incidence matrix, W is the diagonal hyperedge weight
matrix, and D and B are the corresponding degree matrices. Com-
pared to the hypergraph convolution presented in [3] we do not
make use of learnable weights and a non-linear activation func-
tion, since these components are not essential for recommender
systems [59, 61]. To combine node embeddings over multiple layers
and increase the receptive field of a node we average the node em-
beddings over 𝐿 layers to get the final intent-based hypergraph item
representations:

X(𝐿) =
1

𝐿 + 1

𝐿∑︁
𝑙=0

X𝑙 . (3)

4.2 Intent Representation Learning
On the user interaction sequence level, it is easily observed that
user sessions exhibit multiple, dynamically shifting intents, where
items can also belong to more than one specific intent alone [7,
48]. Additionally, these intents are not confined solely to individual
sessions but are also prevalent among users with similar preferences.
Therefore, directly utilizing session representation distributions for
intent representations will result in a loss of information. To mitigate
this, we introduce a soft clustering component to disentangle latent
intents and effectively cluster items to intents.

For our soft clustering component we adopt a soft version of
the Lloyd’s 𝑘-means algorithm [58]. Let x𝑗 represent the intent-

based hypergraph representation x(𝐿)
𝑗

of item 𝑣 𝑗 and 𝜇𝑘 represent
the center of intent cluster 𝑘 . The variable 𝑟 𝑗𝑘 denotes the probability

to which item 𝑣 𝑗 is assigned to intent cluster 𝑘. In the standard 𝑘-
means algorithm, this assignment is binary, but we relax it to allow
fractional values such that

∑
𝑘 𝑟 𝑗𝑘 = 1 for all 𝑗 . Specifically, we

define

𝑟 𝑗𝑘 =
exp(−𝛽 ∥x𝑗 − 𝜇𝑘 ∥)∑
ℓ exp(−𝛽 ∥x𝑗 − 𝜇ℓ ∥)

, (4)

which provides a soft-min assignment of each point to the cluster
centers based on distance. We use negative cosine similarity as a
distance norm ∥·∥. Here, 𝛽 is an inverse-temperature hyperparameter;
taking 𝛽 → ∞ recovers the standard 𝑘-means assignment. The intent
cluster centers can be optimized via an iterative process similar to
the traditional 𝑘-means updates by alternately setting

𝜇𝑘 =

∑
𝑗 𝑟 𝑗𝑘x𝑗∑
𝑗 𝑟 𝑗𝑘

∀𝑘 = 1, . . . , 𝐾 (5)

and

𝑟 𝑗𝑘 =
exp(−𝛽 ∥x𝑗 − 𝜇𝑘 ∥)∑
ℓ exp(−𝛽 ∥x𝑗 − 𝜇ℓ ∥)

∀𝑘 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝑛. (6)

These iterations converge to a fixed point where 𝜇 remains un-
changed between successive updates. As a result, we have soft intent
cluster assignments for each item p𝑗 ∈ P corresponding to prob-
abilities that item 𝑣 𝑗 belongs to one of the intent clusters 𝐾 . This
probability distribution p𝑗 serves as the latent intent representation
of item 𝑣 𝑗 .

Since the intent representations p𝑗 ∈ P are latent by definition
we face the issue that without the cluster representations, we cannot
estimate our model parameters 𝜃 and without 𝜃 we are not able

4
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to find a result for the soft cluster assignment probabilities P. It
has been shown that a generalized Expectation-Maximization (EM)
framework can resolve this situation [7, 34]. In its basic idea, EM
starts with an initial guess of 𝜃 and estimates the expected values of
our cluster assignments P in the E-step. In the M-step we maximize
the objective w.r.t. the model parameters 𝜃 given the expected values
of P. These steps are repeated until the likelihood cannot increase
anymore. For detailed derivations of the EM framework under the
sequential recommendation scenario we refer to [7, 34].

4.3 Repeated Long-term Intent Consumption
We employ Hawkes Processes to model the temporal dynamics of
long-term interactions on intent level. As defined in Equation 1 𝜆𝐵𝑎𝑠𝑒
reflects the long-term base interest of a user in a specific item at
a given point in time 𝑡 , whereas the second part accounts for the
self-exciting effects 𝜆𝑒 and can capture repeated intent behaviors.
We detail these two components in the following.

4.3.1 User Base Preference. Users often have diverse or even
contrastive preferences (e. g., romantic and horror movies). Hence,
using a single embedding vector to represent the long-term user
interest is a limiting factor [60]. Previous works mitigate this issue
by generating a global and non-causal representation of each user
interaction sequence. Previous works [23, 33] built the preference
representation of a user for an interacted item by a uniform aggre-
gation of the representation of the other items in the interaction
sequence. In our approach, we incorporate an attentive user rep-
resentation aggregation (AURA) to compute the basic strength of
the Hawkes Process 𝜇 which computes user representations flexibly
based on the current target item representation h𝑣 :

𝜆𝐵𝑎𝑠𝑒 (𝑢, 𝑣) = h𝑢 +
∑︁

𝑗∈𝐼𝑢\{𝑣}

exp(h⊺
𝑗
h𝑣)∑

𝑗 ′∈𝐼𝑢\{𝑣} exp(h
⊺
𝑗 ′h𝑣)

h𝑣 (7)

where h𝑢 ∈ R𝑑 defines the latent user representation and is fused
with the long-term preference of user𝑢 for item 𝑣 which is a weighted
aggregation of the item representations in the user interaction se-
quence 𝐼𝑢 .

4.3.2 Intent Excitation Learning. The trigger kernel of the inten-
sity function in the Hawkes Process captures the changing excitation
over time. Our goal is to leverage the time dynamics of a user’s next
intent and how previous intents can trigger subsequent interactions.
The Hawkes Process simulates the time dynamics to predict the
probability of the next event. In our approach, we consider inter-
action events with the same underlying intent for self-excitation.
Particularly, we define intent excitation learning as follows:

𝜆𝐼𝑛𝑡𝑒𝑛𝑡 (𝑢, 𝑣, 𝑡) = 𝛼𝑘
∑︁

(𝑣′,𝑡 ′ ) ∈𝐼 𝑡𝑢

𝐼𝐾 (p𝑣, p𝑣′ )𝜑 (𝑡 − 𝑡 ′) (8)

where 𝐼𝐾 denotes the indicator function which returns 1 if item 𝑣

and 𝑣 ′ belong to the same intent cluster and are in different user
sessions, otherwise it returns 0. Since we use a soft clustering ap-
proach to assign intent cluster probabilities to each item we use the
Kullback–Leibler divergence for finding items that correspond to
the same intent clusters:

𝐼𝐾 (p𝑣, p𝑣′ ) =
∑︁
𝑥∈X

p𝑣 log
(
p𝑣
p𝑣′

)
> 𝛿, (9)

where 𝛿 is a parameter to limit the probability distribution dis-
tances per intent cluster assignment. The cluster-related parameter
𝛼𝑘 weights the degree of excitation. The temporal kernel function
𝜑 (·) changes with the time interval Δ𝑡 = 𝑡 − 𝑡 ′ between items of the
same intent and is defined as:

𝜑 (Δ𝑡) = (1 − 𝜋𝑘 )𝐸 (Δ𝑡 |1/𝛽𝑘 ) + 𝜋𝑘𝑁 (Δ𝑡 |𝜇𝑘 , 𝜎𝑘 ), (10)

where we leverage an exponential distribution with intent-based pa-
rameter 𝛽𝑘 to model short-term intent repeat consumption behavior,
which diminishes quickly over time. For long-term repeated behavior
we employ a normal distribution with mean 𝜇𝑘 and standard devia-
tion 𝜎𝑘 which are also intent representation-based parameters. Using
normal distributions to simulate the user dynamic interest changes
captures real-world scenarios like item lifecycles and repeated item
consumption behavior [19, 54]. The coefficient 𝜋𝑘 balances the two
distributions. We learn the corresponding parameters of the distribu-
tions Θ𝐼𝑛𝑡𝑒𝑛𝑡 = {𝛼𝑘 , 𝛽𝑘 , 𝜇𝑘 , 𝜎𝑘 , 𝜋𝑘 } by a non-linear transformation
of the user representation h𝑢 , item representation h𝑣 and the intent
representation p𝑣 :

Θ𝐼𝑛𝑡𝑒𝑛𝑡 = M(h𝑢 | |h𝑣 | |p𝑣), (11)

where M(·) is implemented as a two-layer neural network and | |
denotes the vector concatenation operation. Compared to previous
approaches [19, 54] our distribution parameters are not related to
item identifiers, but to the corresponding item and intent representa-
tions. Hence, our model learns the temporal dynamics on both, item
and intent level, and is able to leverage denser input signals, since
the number of intents is usually smaller than the number of items in
a dataset. Additionally, the incorporation of the user representation
to compute the distribution parameters allows our model to learn
user-specific repetition behavior which can vary across intents. For
instance, one user buys a new phone including accessories every
year whereas another user only buys a new phone if the old one is
broken and therefore has a longer intent cycle phase.

We introduced the base intensity 𝜆𝐵𝑎𝑠𝑒 (𝑢, 𝑣) as well as the long-
term self-excitations 𝜆𝐼𝑛𝑡𝑒𝑛𝑡 (𝑢, 𝑣, 𝑡) on intent level. Therefore, we
define our final long-term excitation for item 𝑣𝑖 :

𝜆𝑖 (𝑢, 𝑣𝑖 , 𝑡) = 𝜆𝐵𝑎𝑠𝑒 (𝑢, 𝑣𝑖 ) + 𝜆𝐼𝑛𝑡𝑒𝑛𝑡 (𝑢, 𝑣𝑖 , 𝑡) (12)

4.4 Attention Mixtures for Short-term User
Interest

The aforementioned components model the long-term interest and
repeated consumption behavior of a user based on intents. However,
a user intent might be of an exploratory nature, or the interest may
change dynamically during the session. To capture these dynamics of
short-term user interest, we employ an attention mixture mechanism,
which has shown to be a promising approach for session-based as
well as sequential recommendation [52, 71]. Following [71] we
generate multi-level intent queries on the groups of last items in a
user interaction sequence with length 𝑛 by employing the deep sets
operation [68] and applying linear transformations per level𝑚 ∈ 𝑀:

Q𝑀 = W𝑀

( ∑︁
{h𝑣𝑖 }𝑖=𝑛,...,𝑛−𝑀+1

)
. (13)
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These generated queries are then used to compute multi-head
attention weights as:

𝛼ℎ = softmax
(QW𝑄 (KW𝐾 )⊺√

𝑑

)
, (14)

where Q ∈ R𝑙×𝑑 is the query matrix, K ∈ R𝑛×𝑑 represents the
hidden representation of each item in the sequence and W𝑄 ,W𝐾 ∈
R𝑑×𝑑 are trainable parameters. We apply 𝐿𝑝 -pooling [20] to pool the
attention map and multiply the hidden representation of the items in
the sequence with the corresponding pooled attention weights to get
the final short-term sequence representation s𝑢 .

4.5 Prediction and Model Optimization
For the next-item prediction task we need to combine long-term
and short-term interests of users. We use the short-term sequence
representation s𝑢 to compute the short-term interest score 𝑦𝑖 =

s⊺𝑢 h𝑣𝑖 , for item 𝑣𝑖 . Then, we add the long-term excitation score 𝜆𝑖
and the short-term interest score 𝑦𝑖 to get the final preference score:

𝑦𝑖 = 𝜆𝑖 + 𝑦𝑖 . (15)

To learn the parameters of our recommendation model in the
M-step of the EM algorithm we adopt the pairwise ranking (BPR)
loss for optimization as follows:

L𝐵𝑃𝑅 = −
∑︁
𝑢∈U

𝑁𝑢∑︁
𝑖=1

log 𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ), (16)

where 𝜎 denotes the sigmoid function and 𝑦𝑢 𝑗 reflects the preference
score of user 𝑢 to a randomly sampled negative item 𝑗 ∉ 𝐼𝑡𝑢 .

5 EXPERIMENTS AND RESULTS
In this section, we provide the setup and results of extensive experi-
ments to evaluate our proposed model, where we compare Hyper-
Hawkes to various state-of-the-art models in SR. Given our overall
goal of investigating the impact of intent repeat-consumption and
fusing short- and long-term interests of users, we aim to answer the
following research questions:
• RQ1: How does our proposed HyperHawkes compare to other

state-of-the-art SR methods on different datasets?
• RQ2: How do different components in HyperHawkes contribute

to the performance?
• RQ3: How sensitive is HyperHawkes to different hyperparameter

settings (e. g., 𝐿, 𝐾)?

5.1 Experimental Setup
5.1.1 Datasets and Preprocessing. To evaluate the performance
of our approach, we conduct experiments on four representative
datasets from the e-commerce, food delivery, and music domains [17,
27]. Ta-Feng2 is a dataset containing Chinese grocery store trans-
action data from 2001. SMM3 chronicles user behavior captured
over the span of five months from January 15 to May 15, 2023
from a large online store [47]. For this industrial-scale dataset, we
sample 20,000 random users to maintain consistency with the other
datasets. The DHRD (Delivery Hero Recommendation Dataset)4 is

2https://www.kaggle.com/retailrocket/ecommerce-dataset
3https://disk.yandex.ru/d/fSEBIQYZusAAuw/datasets/data_smm
4https://github.com/deliveryhero/dh-reco-dataset

a dataset presented in [2] and comprises food delivery orders from
three distinct cities, encompassing different vendors and dishes. For
our evaluation, we use the data related to the city of Stockholm.
Lastly, the NowPlaying dataset comes from the music domain and
is described in [70]. This dataset includes music listening behavior
of users based on Twitter data. It is worth noting, that we do not
provide evaluation for the widely used Amazon review datasets [37],
the MovieLens datasets5, or the Yelp review datasets6, since those
datasets are rating/review-based and therefore do not include re-
peated item consumptions, making them unsuitable for the scenario
of repeated intent modeling [17, 27].

Table 1: Dataset statistics (after preprocessing): Number of users,
items, interactions, average sequence length and sparsity.

Dataset Ta-Feng SMM DHRD NowPlaying

|U| 26,162 12,098 42,774 11,310
|V| 15,642 22,167 20,883 15,905
# Interactions 0.78m 0.87m 0.52m 1.12m
Avg. length 29.99 71.97 12.30 86.39
Sparsity 99.80% 99.67% 99.94% 99.45%

We follow the preprocessing steps as shown in [7, 19] for the four
datasets. To be more specific, we keep the 5-core datasets, where
users and items with less than 5 interactions are filtered out. Table 1
provides an overview of the datasets after preprocessing. To split the
datasets, we follow common practice in sequential recommendation
and use interactions with the second latest time for validation and
interactions with the latest timestamp for testing.

5.1.2 Evaluation Metrics. Following previous works [17, 28, 69],
we use the whole item set without negative sampling to rank the pre-
dictions. We adopt HR@{5,20} (Hit Ratio) and NDCG@{5,20} (Nor-
malized Discounted Cumulative Gain) to evaluate the quality of the
recommendation results.

5.1.3 Baseline Methods. We compare HyperHawkes with the
following representative baseline and state-of-the-art methods for
sequential recommendation:

Static models: BPR-MF [45] is a non-sequential model and char-
acterizes the pairwise interactions via matrix factorization.

Standard sequential & Transformer models: As standard se-
quential models we include GRU4Rec [18], an RNN-based method
and SASRec [24] as transformer-based baseline method for SR.

Temporal & intent-based models: SLRC [54] is a widely used
model and one of the first to model item repeat consumption. It com-
bines matrix factorization with a temporal point process, effectively
capturing short-term and product lifetime effects. RepeatNet [43]
proposes a novel repeat-explore mechanism to balance repeated
and new item consumption. For intent-based methods, we include
HIDE [32] which models intents via session hypergraphs. Other
state-of-the-art approaches include ICLRec [7] and ICSRec [40],
where user intents are learned via clustering and Atten-Mixer [71],
where intents are modelled via a multi-level network.

5https://grouplens.org/datasets/movielens
6https://www.yelp.com/dataset

6

https://www.kaggle.com/retailrocket/ecommerce-dataset
https://disk.yandex.ru/d/fSEBIQYZusAAuw/datasets/data_smm
https://github.com/deliveryhero/dh-reco-dataset
https://grouplens.org/datasets/movielens
https://www.yelp.com/dataset
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Table 2: Model performance on all four datasets (± standard deviation for HyperHawkes). All improvements of HyperHawkes over the
second best model are significant (paired t-test, 𝑝 < .05), best results are in boldface and the second-best results are underlined.

Dataset Metric BPR-MF GRU4Rec SASRec SLRC RepeatNet HIDE ICLRec Atten-Mixer ICSRec HyperHawkes Improv.

Ta-Feng

HR@5 0.0699 0.0657 0.0812 0.0714 0.0432 0.0616 0.0746 0.0878 0.0784 0.1108±0.0015 26.19%
HR@20 0.0943 0.1215 0.1629 0.1284 0.1006 0.0853 0.1415 0.1645 0.1566 0.1984±0.0030 20.60%
NDCG@5 0.0541 0.0459 0.0528 0.0488 0.0307 0.0419 0.0527 0.0605 0.0519 0.0765±0.0014 26.44%
NDCG@20 0.0610 0.0616 0.0761 0.0650 0.0469 0.0485 0.0716 0.0823 0.0742 0.1015±0.0015 23.32%

SMM

HR@5 0.0542 0.0586 0.0876 0.1170 0.1291 0.0391 0.0526 0.0817 0.0686 0.1483±0.0019 14.87%
HR@20 0.1056 0.1323 0.1687 0.1853 0.1968 0.0781 0.1101 0.1638 0.1505 0.2444±0.0009 24.19%
NDCG@5 0.0373 0.0393 0.0606 0.0840 0.0972 0.0272 0.0357 0.0561 0.0427 0.1018±0.0002 4.73%
NDCG@20 0.0516 0.0602 0.0836 0.1037 0.1175 0.0383 0.0520 0.0793 0.0656 0.1294±0.0004 10.13%

DHRD

HR@5 0.2156 0.1439 0.2065 0.2775 0.2702 0.1878 0.2554 0.2211 0.2129 0.2982±0.0055 7.45%
HR@20 0.3805 0.3214 0.4651 0.4158 0.3211 0.2625 0.4544 0.4295 0.4715 0.4830±0.0019 2.43%
NDCG@5 0.1488 0.0946 0.1303 0.2031 0.1983 0.1356 0.1740 0.1489 0.1323 0.2089±0.0031 2.85%
NDCG@20 0.1963 0.1450 0.2039 0.2430 0.2142 0.1572 0.2312 0.2084 0.2145 0.2621±0.0069 7.86%

NowPlaying

HR@5 0.1272 0.0992 0.1229 0.1756 0.1765 0.1079 0.1654 0.1475 0.1375 0.1842±0.0011 4.36%
HR@20 0.2730 0.2327 0.2715 0.3117 0.2996 0.1984 0.3135 0.3011 0.2931 0.3526±0.0006 12.47%
NDCG@5 0.0879 0.0650 0.0802 0.1197 0.1217 0.0787 0.1156 0.1028 0.0929 0.1242±0.0007 2.05%
NDCG@20 0.1289 0.1025 0.1221 0.1589 0.1581 0.1042 0.1574 0.1462 0.1368 0.1713±0.0008 8.43%

5.1.4 Implementation Details. For a fair comparison, we rely on
the RecBole framework [72] to implement our approach, using the
provided implementations of the baseline models or re-implementing
them accordingly. For all baseline models and our model, the embed-
ding size is set to 64 and the batch size to 512. We do not limit the
number of training epochs per model, but adopt an early-stopping
strategy, which stops training after five consecutive rounds of per-
formance decrease on the validation set. Each baseline model is
optimized according to its corresponding hyperparameters.

For the optimization of HyperHawkes, we use Adam [26] with
a learning rate of 0.001. The number of layers 𝐿 in the HGCN
component and number of intent clusters 𝐾 are searched in the
ranges of {1, 2, 3, 4, 5} and {2, 4, . . . , 128} respectively. For the atten-
tion mixture network, we search the number of heads in the range of
{1, 2, 4, 8} and the number of levels𝑀 in {1, 2, . . . , 10}. The threshold
parameters 𝛾 and 𝛿 are set to 5e−4 and 1e−12, correspondingly. Our
implementation is based on PyTorch 1.13.1 and Python 3.8.16. All
experiments are performed on a workstation with an AMD Ryzen
2950X, a GeForce RTX 2070, and 256 GB main memory. We publish
the code and the pre-processed datasets on GitHub7.

5.2 Performance Comparison (RQ1)
In Table 2 we report the results of the the performance comparison
of HyperHawkes and the proposed baselines. Surprisingly, the re-
sults do not affirm that sequential models generally outperform non-
sequential methods since BPR-MF shows competing performance
compared to GRU4Rec or SASRec. This displays the importance
of learning temporal dynamics of repeated user behavior and the
incorporation of user intent.

Advanced time-sensitive sequential models often incorporate ad-
ditional temporal signals to augment recommendation performance.
For instance, TiSASRec integrates both the item positions and
time intervals in a sequence, yielding superior performance than
its transformer-based counterpart SASRec. We further observe that

7https://anonymous.4open.science/r/HyperHawkes-2FB8

leveraging contrastive SSL in transformer-based architectures can
improve performance, as exhibited by ICLRec which optimizes se-
quence representations via contrastive SSL at the user intent level.
Also, the other intent-based method Atten-Mixer shows significant
performance gains over standard sequential models. Among the base-
line methods, SLRC and RepeatNet exhibit improved performance
even over more sophisticated temporal and intent-based models,
underpinning their robustness in recommendation tasks and their
ability to model item repeat consumption.

Our model, HyperHawkes, triumphs over all other methods across
all datasets, marking a significant advancement in the domain. The
average improvements compared with the best baseline per dataset
range from 2.43% to 24.19% in HR@20 and from 7.86% to 23.32%
in NDCG@20. We attribute this increase in performance to the
ability of our approach to effectively model long-term intent repeat
behavior and short-term user interest, which we show in detail in
our ablation study.

In terms of efficiency and model complexity, we report the train-
ing time per epoch on the Ta-Feng dataset as a practical proxy
for model complexity. Intent-based models like HIDE, ICLRec,
Atten-Mixer and ICSRec require 2231.63, 254.21, 13.10 and 174.17
seconds/epoch, respectively. SLRC and RepeatNet, which focus
on repeat consumption, need 13.31s and 29.64s, correspondingly.
Our HyperHawkes takes 27.75s per epoch on training and therefore,
is more efficient than most of the other sequential neural network
models, while substantially outperforming these models in recom-
mendation performance. A similar trend in model complexity is also
seen for the other datasets.

5.3 Ablation Study (RQ2)
HyperHawkes contains several components including a hypergraph-
based graph convolutional network (HGCN), soft clustering (SC),
user base interest (LT-UE), intent excitation learning (LT-SINE),
and a short-term attention mixture network (ST-ATM). To verify
the effectiveness of each component, we conduct an ablation study

7
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Table 3: Ablation study of HyperHawkes. The symbol ↓ indicates
a performance drop of more than 10%, ND = NDCG.

Model
Dataset Ta-Feng NowPlaying

HR@20 ND@20 HR@20 ND@20

(A) w/o LT-SINE 0.1632↓ 0.0842↓ 0.3331 0.1637
(B) w/o LT-UE 0.1818 0.0911↓ 0.3241 0.1570
(C) w/o HGCN 0.1901 0.0969 0.3145↓ 0.1544↓
(D) w/o SC 0.1732↓ 0.0867↓ 0.3377 0.1666
(E) only ST-ATM 0.1668↓ 0.0841↓ 0.2954↓ 0.1451↓
(F) w/o ST-ATM 0.0914↓ 0.0558↓ 0.3314 0.1625

HyperHawkes 0.1984 0.1015 0.3526 0.1713

on two datasets. Table 3 displays the result of the ablation study
on the Ta-Feng and NowPlaying datasets. These two datasets were
chosen due to their different domains and characteristics in terms of
repeat consumption (e. g., e-commerce vs. music streaming). From
(A) and (B) we can see the impact of different components in the
Hawkes Process for modeling temporal dynamics. Eliminating the
intent excitation learning (A) or the user base preference (B), each
notably diminishes the performance of the recommendation model
to a similar extent. This shows the importance of extracting latent
intents and modeling repeat behavior on the intent level compared
to the item level only. We also investigate the effect of our proposed
hypergraph-based network in (C), where removing the component
also leads to a significant performance drop. This backs our assump-
tion that inducing structural bias through the HGCN supports the
soft clustering process and leads to more representative cluster/intent
representations. Similar effects can be observed when dropping the
soft clustering component in (D) and using a standard 𝑘-means in-
stead, which showcases the benefit of disentangling user intents via
soft probability distributions. Lastly, we explore the effects of the
short-term attention mixture network. Relying only on the short-term
component without any consideration of long-term effects (E) results
in a noticeable performance drop. Dropping the short-term compo-
nent (F) from HyperHawkes shows a substantial decline compared to
the full model, reflecting the critical role of short-term user behavior
understanding. The incorporation of both short-term and long-term
effects leads to the best overall performance. The ablation study
results for the other two datasets SMM and DHRD are consistent
with these findings, but are not reported due to space constraints.

5.4 Impact of Hyper-Parameters (RQ3)
In this section, we investigate the impact of different hyper-parameters.
We focus on the number of layers 𝐿 in the HGCN and the number of
intent clusters 𝐾 , since these hyper-parameters are related to the in-
tent excitation learning, which has shown to have the highest impact
on the performance of the final model (see Section 5.3). Figure 4a
shows the performance of our model with different settings of layers
𝐿 on the Ta-Feng and NowPlaying datasets. A higher number of
layers in the hypergraph-based network does not necessarily lead
to an increase in performance due to oversmoothing, where node
representations converge to the same values. We can find a sweet
spot layer setting 𝐿 of 3 (Ta-Feng) and 2 (NowPlaying).
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Figure 4: Impact of hyper-parameters in HyperHawkes.

Our main contribution comprises the temporal modeling of user
intents, where those user intents are extracted by soft clustering.
Therefore, we have to define the number of clusters 𝐾 before the
training of the model. Given the heterogeneity of datasets, this hyper-
parameter needs to be carefully tuned to extract useful intent repre-
sentations, or in other words, 𝐾 needs to be tailored to the character-
istics of each dataset individually. Figure 4b shows the performance
differences between runs with a different number of intent clusters.
As the datasets stem from completely different domains, their best-
performing setting also vary. For Ta-Feng its 16 clusters and for
NowPlaying the best setting is 32 clusters.

6 CONCLUSION
In this paper, we propose HyperHawkes, a novel Hypergraph-based
Hawkes Process model to comprehensively model temporal dynam-
ics of user intents for generating personalized sequential recom-
mendations. We extract intent representations via soft clustering
of hypergraph-based item representations. Our model learns the
long-term excitation of intents and items via Hawkes Processes and
models short-term interests of users via a custom attention mixture
component. The corresponding user preference scores from the long-
term and short-term components are fused to provide temporal and
personalized recommendations. The steps of finding clusters and
learning temporal dynamics are alternately optimized under a gener-
alized EM framework. Our extensive experimental results on four
real-world datasets demonstrate the effectiveness of our proposed
model over state-of-the-art methods. Our approach outperforms all
other state-of-the-art methods, which only model repeated consump-
tion on item level or use intents for contrastive learning purposes, in
each of the provided metrics. The ablation study showed the impact
of each component and that modeling repeat consumption is more
important than focusing on short-term interest shifts of users. In
future work, we aim to explore the temporal aspects of the extracted
user intents for explainability purposes.
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