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1 Introduction001

In 2023 Moschella et al.[1] introduced Relative Rep-002

resentations (RR) as the first framework enabling003

zero-shot stitching of neural components, showing004

that latent spaces from independently trained mod-005

els can communicate through relative similarity to006

shared anchors due to similar internal representa-007

tions[2]. Building on this foundation, we aim to008

improve its robustness and practical applicability.009

Since data points are defined through their relations010

to anchors, the quality of RRs depend critically on011

how well the anchors describe the latent manifold.012

Each anchor must be situated in a semantic context013

that captures both broad dissimilarities and fine-014

grained local relations. For instance, the embedding015

of “King” should be close to “Queen” and “Castle”016

but distant from “Banana” and “Space”. Hence, the017

anchor set should comprehensively cover the latent018

space while representing well-defined prototypes of019

their semantic areas for the sake of robustness across020

spaces.021

In the original formulation, anchors were randomly022

chosen, and the RR was calculated using cosine sim-023

ilarity. While enough random points tend to cover a024

space, they provide no guarantee of optimal coverage025

or anchor robustness.026

Moreover, cosine similarity, though efficient in high-027

dimensional settings, discards vector norms, which028

can encode information such as feature confidence[3],029

and remains sensitive to translations in the embed-030

ding space - especially near the origin where embed-031

dings tend to concentrate[4].032

2 Method033

2.1 Learning anchors as mixtures034

(PARAM)035

We parameterize each anchor as a convex mixture036

of examples from a shared subset. Let Xsub ∈ Rk×d
037

denote the subset (rows are embeddings) and let038

P ∈ Rm×k be a row-stochastic weight matrix (im-039
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plemented via a row-softmax). An anchor set is 040

A = P Xsub, ai =

k∑
j=1

pij xj , 041

which provides flexible, denoised placements. Given 042

multiple encoder banks {X(b)}, we reuse the same 043

P to form bank-specific anchors A(b) = P X
(b)
sub; RR 044

features are then computed per bank with a differen- 045

tiable similarity. Pairwise alignment losses between 046

banks act on their RR features, and gradients flow 047

through the similarity into P . 048

2.2 Whitened Inner Product (WIP) 049

A suitable RR similarity should be robust to trans- 050

lation, rotation, and anisotropic scaling across em- 051

bedding spaces, and must be differentiable to train 052

P . The similarity used in this paper is a whitened 053

inner product. 054

Let µ be the empirical mean and Σ̂ the empirical 055

covariance of the target bank. We use a shrinkage 056

covariance 057

Σλ = (1−λ) Σ̂ + λ
tr(Σ̂)

d
I + εI, L = Σ

−1/2
λ . 058

For an embedding x and anchor ai, the WIP score 059

is 060

sWIP
i (x) =

〈
(x−µ)L, (ai−µ)L

〉
= (x−µ)⊤ Σ−1

λ (ai−µ).061

WIP is translation-invariant (via x−µ), anisotropic- 062

scale–invariant (via whitening by L), and rotation- 063

invariant (inner product in the whitened space). By 064

retaining this magnitude information while account- 065

ing for local covariance structure, WIP captures both 066

geometric orientation and local variance - yielding 067

more robust relative representations. 068

Training losses 069

On top of WIP RR features, we combine three align- 070

ment objectives across encoder banks: (i) Soft Jac- 071

card loss promotes fine-grained similarity inside clus- 072

ters by encouraging similar anchor-wise activations 073

across encoders; (ii) Barlow Twins [5] enforces in- 074

variance to encoder-specific distortions while reduc- 075

ing redundancy between RR dimensions; and (iii) 076
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Alignment–Uniformity [6] pulls corresponding points077

closer in RR space without collapsing all features078

into a degenerate solution.079

These losses act in complementary ways: Soft Jac-080

card preserves local similarity patterns, Barlow081

Twins stabilizes global feature structure, and Align-082

ment–Uniformity balances clustering with diversity.083

We further regularize anchors with an anchor cohe-084

sion loss, which biases each anchor to be explained085

primarily by nearby points (in the whitened space),086

reducing noise from distant, unrelated samples. The087

result is anchors that cover the space while remain-088

ing well localized and stable across embedding vari-089

ations. Expressing each anchor as a weighted combi-090

nation of its closest datapoints improves robustness091

to encoder-specific shifts and enhances generaliza-092

tion to unseen spaces.093

3 Experiments and Results094

The method is evaluated in a zero-shot image classi-095

fication setting following the Moschella et al. (2023)096

framework.097

Each zero-shot configuration consists of frozen en-098

coders that generate absolute embeddings. These099

embeddings are subsequently projected into their re-100

spective relative representation spaces using a shared101

set of parallel anchors. A relative decoder is trained102

on one of these spaces, and since the decoder op-103

erates within the shared relative representation do-104

main, embeddings from the remaining encoders can105

be directly employed within the same classifier -106

thereby enabling zero-shot transfer across encoders.107

For generalization purposes, the encoder that is zero-108

shotted on the relative decoder is excluded when109

training the PARAM anchors.110

Figure 1. F1 score of zero-shot classification of rela-
tive embeddings from a pretrained RexNet-100 encoder.
The classifiers are trained on relative embeddings from
pretrained ViT-small, ViT-Base, and ViT-Base-R50 en-
coders.
The results are directly comparing the method described
in Moschella et al. (2023) to the proposed PARAM
method.

4 Discussion and Limitations 111

Figure 1 shows that the proposed PARAM relative 112

representation method can substantially increase 113

zero-shot classification performance compared to us- 114

ing random anchors and cosine similarity. Similar 115

performance increases were observed in preliminary 116

cross-lingual and other zero-shot experiments. 117

A noteworthy observation is that this is the first 118

empirical demonstration of zero-shot performance 119

outperforming a same-architecture absolute classi- 120

fier trained on the regular encoder (the dotted line 121

above RexNet-100). 122

This shows that instead of training a classifier di- 123

rectly on a simple encoder, it is possible to im- 124

prove classification performance by zero-shotting to 125

a classifier trained on higher-quality embeddings. In 126

addition, the small gaps from the zero-shot perfor- 127

mance to the absolute performance indicate that 128

high-quality embeddings are mostly important for 129

training a competent classifier. Then, when it comes 130

to using the classifier, the results show that, in some 131

cases, using a lighter encoder can mimic close to a 132

similar performance. 133

This opens up the possibility of training a single high- 134

quality classifier on relative representations derived 135

from a strong encoder and subsequently deploying it 136

at inference across a range of lighter or task-specific 137

encoders without retraining. Such a setup could 138

significantly reduce training and maintenance costs 139

while retaining much of the performance of large 140

models. The setup highlights the potential of Rela- 141

tive Representations not only for zero-shot transfer 142

but also as a means of decoupling encoder complex- 143

ity from downstream classifier performance. 144

There are a couple of things to consider when imple- 145

menting relative representations that were discov- 146

ered in this research process. In a few settings, such 147

as cross-lingual transfer, parallel points must be cre- 148

ated manually as opposed to the CIFAR experiment. 149

Preliminary research hints at a positive correlation 150

between the number of parallel points and zero-shot 151

performance. 152

Moreover, while fully parallel data provides the most 153

stable alignment, preliminary observations suggest 154

that fully parallel points might not be needed. We 155

are researching partial or class-level parallel sets that 156

could contribute meaningfully to anchor consistency. 157

This indicates that relative representations could 158

extend beyond strictly parallel datasets - potentially 159

allowing zero-shot stitching even in settings where 160

zero parallel points are available. 161

Moschella et al. (2023) demonstrated that relative 162

representations enable zero-shot stitching of neural 163

components. This work extends the foundation with 164

a robust relative space and the ability to decouple 165

encoder complexity from downstream inference. 166
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