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1 Introduction

In 2023 Moschella et al.[1] introduced Relative Rep-
resentations (RR) as the first framework enabling
zero-shot stitching of neural components, showing
that latent spaces from independently trained mod-
els can communicate through relative similarity to
shared anchors due to similar internal representa-
tions[2]. Building on this foundation, we aim to
improve its robustness and practical applicability.
Since data points are defined through their relations
to anchors, the quality of RRs depend critically on
how well the anchors describe the latent manifold.
Each anchor must be situated in a semantic context
that captures both broad dissimilarities and fine-
grained local relations. For instance, the embedding
of “King” should be close to “Queen” and “Castle”
but distant from “Banana” and “Space”. Hence, the
anchor set should comprehensively cover the latent
space while representing well-defined prototypes of
their semantic areas for the sake of robustness across
spaces.

In the original formulation, anchors were randomly
chosen, and the RR was calculated using cosine sim-
ilarity. While enough random points tend to cover a
space, they provide no guarantee of optimal coverage
or anchor robustness.

Moreover, cosine similarity, though efficient in high-
dimensional settings, discards vector norms, which
can encode information such as feature confidence[3],
and remains sensitive to translations in the embed-
ding space - especially near the origin where embed-
dings tend to concentrate[4].

2 Method

2.1 Learning anchors as mixtures

(PARAM)

We parameterize each anchor as a convex mixture
of examples from a shared subset. Let Xy, € R**¢
denote the subset (rows are embeddings) and let
P € R™*F be a row-stochastic weight matrix (im-
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plemented via a row-softmax). An anchor set is 040
k
A = P Xgu, a; = Zpij xj, 041
j=1
which provides flexible, denoised placements. Given o042
multiple encoder banks {X(®}, we reuse the same 023
P to form bank-specific anchors A®) = P XS;L; RR o044
features are then computed per bank with a differen- oas
tiable similarity. Pairwise alignment losses between o046
banks act on their RR features, and gradients flow oa7
through the similarity into P. 048
2.2 Whitened Inner Product (WIP) o
A suitable RR similarity should be robust to trans- oso
lation, rotation, and anisotropic scaling across em- os1
bedding spaces, and must be differentiable to train os2
P. The similarity used in this paper is a whitened o053
inner product. . 054
Let i be the empirical mean and ¥ the empirical oss
covariance of the target bank. We use a shrinkage ose
covariance 057
- tr(S _
Ty o= (1-N)3 + )\%IJreI, L =352 oss
For an embedding x and anchor a;, the WIP score os9
is 060
WIP T y—1

si ' (x) = ((@—p)L, (ai—p)L) = (x—p)" 3" (a;oq).
WIP is translation-invariant (via x — p), anisotropic- oe2
scale—invariant (via whitening by L), and rotation- o063
invariant (inner product in the whitened space). By osa
retaining this magnitude information while account- oes
ing for local covariance structure, WIP captures both oes
geometric orientation and local variance - yielding o7
more robust relative representations. 068
Training losses 069
On top of WIP RR features, we combine three align- o7o
ment objectives across encoder banks: (i) Soft Jac- o71
card loss promotes fine-grained similarity inside clus- o72
ters by encouraging similar anchor-wise activations o073
across encoders; (i) Barlow Twins [5] enforces in- o7a
variance to encoder-specific distortions while reduc- o7s
ing redundancy between RR dimensions; and (iii) o7e
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Alignment-Uniformity [6] pulls corresponding points
closer in RR space without collapsing all features
into a degenerate solution.

These losses act in complementary ways: Soft Jac-
card preserves local similarity patterns, Barlow
Twins stabilizes global feature structure, and Align-
ment—Uniformity balances clustering with diversity.
We further regularize anchors with an anchor cohe-
sion loss, which biases each anchor to be explained
primarily by nearby points (in the whitened space),
reducing noise from distant, unrelated samples. The
result is anchors that cover the space while remain-
ing well localized and stable across embedding vari-
ations. Expressing each anchor as a weighted combi-
nation of its closest datapoints improves robustness
to encoder-specific shifts and enhances generaliza-
tion to unseen spaces.

3 Experiments and Results

The method is evaluated in a zero-shot image classi-
fication setting following the Moschella et al. (2023)
framework.

Each zero-shot configuration consists of frozen en-
coders that generate absolute embeddings. These
embeddings are subsequently projected into their re-
spective relative representation spaces using a shared
set of parallel anchors. A relative decoder is trained
on one of these spaces, and since the decoder op-
erates within the shared relative representation do-
main, embeddings from the remaining encoders can
be directly employed within the same classifier -
thereby enabling zero-shot transfer across encoders.
For generalization purposes, the encoder that is zero-
shotted on the relative decoder is excluded when
training the PARAM anchors.

Zero shot F1: PARAM vs Random Cosine

Macro F1-Score (%)

=~ Absolute Classification F1
s0 = PARAM(wip)
== Random(Cos)

ReXNet-100 (Not Zero-Shot) ViT-small ViT-Base

Relative Decoder

ViT-8ase-RS50

Figure 1. F1 score of zero-shot classification of rela-
tive embeddings from a pretrained RexNet-100 encoder.
The classifiers are trained on relative embeddings from
pretrained ViT-small, ViT-Base, and ViT-Base-R50 en-
coders.

The results are directly comparing the method described
in Moschella et al. (2023) to the proposed PARAM
method.
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4 Discussion and Limitations

Figure 1 shows that the proposed PARAM relative
representation method can substantially increase
zero-shot classification performance compared to us-
ing random anchors and cosine similarity. Similar
performance increases were observed in preliminary
cross-lingual and other zero-shot experiments.

A noteworthy observation is that this is the first
empirical demonstration of zero-shot performance
outperforming a same-architecture absolute classi-
fier trained on the regular encoder (the dotted line
above RexNet-100).

This shows that instead of training a classifier di-
rectly on a simple encoder, it is possible to im-
prove classification performance by zero-shotting to
a classifier trained on higher-quality embeddings. In
addition, the small gaps from the zero-shot perfor-
mance to the absolute performance indicate that
high-quality embeddings are mostly important for
training a competent classifier. Then, when it comes
to using the classifier, the results show that, in some
cases, using a lighter encoder can mimic close to a
similar performance.

This opens up the possibility of training a single high-
quality classifier on relative representations derived
from a strong encoder and subsequently deploying it
at inference across a range of lighter or task-specific
encoders without retraining. Such a setup could
significantly reduce training and maintenance costs
while retaining much of the performance of large
models. The setup highlights the potential of Rela~
tive Representations not only for zero-shot transfer
but also as a means of decoupling encoder complex-
ity from downstream classifier performance.

There are a couple of things to consider when imple-
menting relative representations that were discov-
ered in this research process. In a few settings, such
as cross-lingual transfer, parallel points must be cre-
ated manually as opposed to the CIFAR experiment.
Preliminary research hints at a positive correlation
between the number of parallel points and zero-shot
performance.

Moreover, while fully parallel data provides the most
stable alignment, preliminary observations suggest
that fully parallel points might not be needed. We
are researching partial or class-level parallel sets that
could contribute meaningfully to anchor consistency.
This indicates that relative representations could
extend beyond strictly parallel datasets - potentially
allowing zero-shot stitching even in settings where
zero parallel points are available.

Moschella et al. (2023) demonstrated that relative
representations enable zero-shot stitching of neural
components. This work extends the foundation with
a robust relative space and the ability to decouple
encoder complexity from downstream inference.
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