

Parameterized Anchor Representations via Adaptive Matrices (PARAM) for Relative-Representations

Oscar Thorsted Svendsen^{*1}, Nikolaj Holst Jakobsen^{*1}, Hiba Nassar^{†1}, and Fabian Mager^{†1}

¹Technical University of Denmark

{s224177, s234818, hibna, fmager}@dtu.dk

001 1 Introduction

002 In 2023 Moschella et al.[1] introduced Relative Rep-
003 resentations (RR) as the first framework enabling
004 zero-shot stitching of neural components, showing
005 that latent spaces from independently trained mod-
006 els can communicate through relative similarity to
007 shared anchors due to similar internal representa-
008 tions[2]. Building on this foundation, we aim to
009 improve its robustness and practical applicability.
010 Since data points are defined through their relations
011 to anchors, the quality of RRs depend critically on
012 how well the anchors describe the latent manifold.
013 Each anchor must be situated in a semantic context
014 that captures both broad dissimilarities and fine-
015 grained local relations. For instance, the embedding
016 of “King” should be close to “Queen” and “Castle”
017 but distant from “Banana” and “Space”. Hence, the
018 anchor set should comprehensively cover the latent
019 space while representing well-defined prototypes of
020 their semantic areas for the sake of robustness across
021 spaces.

022 In the original formulation, anchors were randomly
023 chosen, and the RR was calculated using cosine sim-
024 ilarity. While enough random points tend to cover a
025 space, they provide no guarantee of optimal coverage
026 or anchor robustness.

027 Moreover, cosine similarity, though efficient in high-
028 dimensional settings, discards vector norms, which
029 can encode information such as feature confidence[3],
030 and remains sensitive to translations in the embed-
031 ding space - especially near the origin where embed-
032 dings tend to concentrate[4].

033 2 Method

034 2.1 Learning anchors as mixtures 035 (PARAM)

036 We parameterize each anchor as a convex mixture
037 of examples from a shared subset. Let $X_{\text{sub}} \in \mathbb{R}^{k \times d}$
038 denote the subset (rows are embeddings) and let
039 $P \in \mathbb{R}^{m \times k}$ be a row-stochastic weight matrix (im-

^{*}These authors contributed equally to this work and share first authorship.

[†]These authors advised the project.

plemented via a row-softmax). An anchor set is

$$A = P X_{\text{sub}}, \quad a_i = \sum_{j=1}^k p_{ij} x_j, \quad 040$$

which provides flexible, denoised placements. Given
multiple encoder banks $\{X^{(b)}\}$, we reuse the same
 P to form bank-specific anchors $A^{(b)} = P X_{\text{sub}}^{(b)}$; RR
features are then computed per bank with a differentiable
similarity. Pairwise alignment losses between
banks act on their RR features, and gradients flow
through the similarity into P .

042 2.2 Whitened Inner Product (WIP)

043 A suitable RR similarity should be robust to trans-
044 lation, rotation, and anisotropic scaling across em-
045 bedding spaces, and must be differentiable to train
046 P . The similarity used in this paper is a *whitened*
047 *inner product*.

048 Let μ be the empirical mean and $\hat{\Sigma}$ the empirical
049 covariance of the target bank. We use a shrinkage
050 covariance

$$\Sigma_\lambda = (1-\lambda) \hat{\Sigma} + \lambda \frac{\text{tr}(\hat{\Sigma})}{d} I + \varepsilon I, \quad L = \Sigma_\lambda^{-1/2}. \quad 058$$

059 For an embedding x and anchor a_i , the WIP score
060 is

$$s_i^{\text{WIP}}(x) = \langle (x - \mu) L, (a_i - \mu) L \rangle = (x - \mu)^\top \Sigma_\lambda^{-1} (a_i - \mu). \quad 061$$

062 WIP is translation-invariant (via $x - \mu$), anisotropic-
063 scale-invariant (via whitening by L), and rotation-
064 invariant (inner product in the whitened space). By
065 retaining this magnitude information while account-
066 ing for local covariance structure, WIP captures both
067 geometric orientation and local variance - yielding
068 more robust relative representations.

069 Training losses

070 On top of WIP RR features, we combine three align-
071 ment objectives across encoder banks: (i) *Soft Jac-
072 card* loss promotes fine-grained similarity inside clus-
073 ters by encouraging similar anchor-wise activations
074 across encoders; (ii) *Barlow Twins* [5] enforces in-
075 variance to encoder-specific distortions while reduc-
076 ing redundancy between RR dimensions; and (iii)

077 *Alignment–Uniformity* [6] pulls corresponding points
 078 closer in RR space without collapsing all features
 079 into a degenerate solution.
 080 These losses act in complementary ways: Soft Jac-
 081 card preserves local similarity patterns, Barlow
 082 Twins stabilizes global feature structure, and Align-
 083 ment–Uniformity balances clustering with diversity.
 084 We further regularize anchors with an *anchor cohe-*
 085 *sion* loss, which biases each anchor to be explained
 086 primarily by nearby points (in the whitened space),
 087 reducing noise from distant, unrelated samples. The
 088 result is anchors that cover the space while remain-
 089 ing well localized and stable across embedding vari-
 090 ations. Expressing each anchor as a weighted combi-
 091 nation of its closest datapoints improves robustness
 092 to encoder-specific shifts and enhances generaliza-
 093 tion to unseen spaces.

094 3 Experiments and Results

095 The method is evaluated in a zero-shot image classi-
 096 fication setting following the Moschella et al. (2023)
 097 framework.
 098 Each zero-shot configuration consists of frozen en-
 099 coders that generate absolute embeddings. These
 100 embeddings are subsequently projected into their re-
 101 spective relative representation spaces using a shared
 102 set of parallel anchors. A relative decoder is trained
 103 on one of these spaces, and since the decoder op-
 104 erates within the shared relative representation do-
 105 main, embeddings from the remaining encoders can
 106 be directly employed within the same classifier -
 107 thereby enabling zero-shot transfer across encoders.
 108 For generalization purposes, the encoder that is zero-
 109 shoted on the relative decoder is excluded when
 110 training the PARAM anchors.

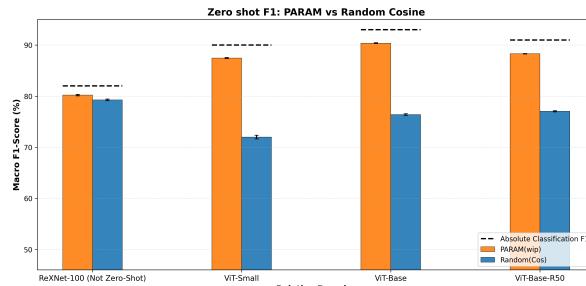


Figure 1. F1 score of zero-shot classification of relative embeddings from a pretrained *RexNet-100* encoder. The classifiers are trained on relative embeddings from pretrained *ViT-small*, *ViT-Base*, and *ViT-Base-R50* encoders.

The results are directly comparing the method described in Moschella et al. (2023) to the proposed PARAM method.

4 Discussion and Limitations

Figure 1 shows that the proposed PARAM relative representation method can substantially increase zero-shot classification performance compared to using random anchors and cosine similarity. Similar performance increases were observed in preliminary cross-lingual and other zero-shot experiments. A noteworthy observation is that this is the first empirical demonstration of zero-shot performance outperforming a same-architecture absolute classifier trained on the regular encoder (the dotted line above RexNet-100). This shows that instead of training a classifier directly on a simple encoder, it is possible to improve classification performance by zero-shotting to a classifier trained on higher-quality embeddings. In addition, the small gaps from the zero-shot performance to the absolute performance indicate that high-quality embeddings are mostly important for training a competent classifier. Then, when it comes to using the classifier, the results show that, in some cases, using a lighter encoder can mimic close to a similar performance.

This opens up the possibility of training a single high-quality classifier on relative representations derived from a strong encoder and subsequently deploying it at inference across a range of lighter or task-specific encoders without retraining. Such a setup could significantly reduce training and maintenance costs while retaining much of the performance of large models. The setup highlights the potential of Relative Representations not only for zero-shot transfer but also as a means of decoupling encoder complexity from downstream classifier performance.

There are a couple of things to consider when implementing relative representations that were discovered in this research process. In a few settings, such as cross-lingual transfer, parallel points must be created manually as opposed to the CIFAR experiment. Preliminary research hints at a positive correlation between the number of parallel points and zero-shot performance.

Moreover, while fully parallel data provides the most stable alignment, preliminary observations suggest that fully parallel points might not be needed. We are researching partial or class-level parallel sets that could contribute meaningfully to anchor consistency. This indicates that relative representations could extend beyond strictly parallel datasets - potentially allowing zero-shot stitching even in settings where zero parallel points are available.

Moschella et al. (2023) demonstrated that relative representations enable zero-shot stitching of neural components. This work extends the foundation with a robust relative space and the ability to decouple encoder complexity from downstream inference.

167

References

168 [1] L. Moschella, V. Maiorca, M. Fumero, A.
169 Norelli, F. Locatello, and E. Rodolà. “Rela-
170 tive Representations Enable Zero-Shot Latent
171 Space Communication”. In: *ICLR* (2023). URL:
172 <https://arxiv.org/abs/2209.15430>.

173 [2] S. Kornblith, M. Norouzi, H. Lee, and G. E. Hin-
174 ton. “Similarity of Neural Network Represen-
175 tations Revisited”. In: *Proceedings of the 36th*
176 *International Conference on Machine Learning*.
177 2019. URL: <https://arxiv.org/abs/1905.00414>.

179 [3] K. Gourgoulias, N. Ghalyan, M. Labonne, Y.
180 Satsangi, S. Moran, and J. Sabelja. “Esti-
181 mating class separability of text embeddings
182 with persistent homology”. In: *TMLR* (2024).
183 URL: <https://openreview.net/pdf?id=8DWrIMuLya>.

185 [4] P. Nazari, S. Damrich, and F. Hamprecht. “Ge-
186 ometric Autoencoders – What You See is What
187 You Decode”. In: *Proc. ICML 2023*. Shows
188 vanilla AEs keep a dense cluster near the ori-
189 gin. 2023. URL: <https://proceedings.mlr.press/v202/nazari23a.html>.

191 [5] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S.
192 Deny. “Barlow Twins: Self-Supervised Learning
193 via Redundancy Reduction”. In: *arXiv preprint*
194 *arXiv:2103.03230* (2021). URL: <https://arxiv.org/abs/2103.03230>.

196 [6] T. Wang and P. Isola. “Understanding Con-
197 trastive Representation Learning through Align-
198 ment and Uniformity on the Hypersphere”. In:
199 *arXiv preprint arXiv:2005.10242* (2020). URL:
200 <https://arxiv.org/abs/2005.10242>.