From Logits to Hierarchies: Hierarchical Clustering made Simple

Emanuele Palumbo ' > Moritz Vandenhirtz> Alain Ryser

Abstract

The hierarchical structure inherent in many real-
world datasets makes the modeling of such hier-
archies a crucial objective in both unsupervised
and supervised machine learning. While recent
advancements have introduced deep architectures
specifically designed for hierarchical clustering,
we adopt a critical perspective on this line of re-
search. Our findings reveal that these methods
face significant limitations in scalability and per-
formance when applied to realistic datasets. Given
these findings, we present an alternative approach
and introduce a lightweight method that builds
on pre-trained non-hierarchical clustering models.
Remarkably, our approach outperforms special-
ized deep models for hierarchical clustering, and
it is broadly applicable to any pre-trained cluster-
ing model that outputs logits, without requiring
any fine-tuning. To highlight the generality of our
approach, we extend its application to a super-
vised setting, demonstrating its ability to recover
meaningful hierarchies from a pre-trained Ima-
geNet classifier. Our results establish a practical
and effective alternative to existing deep hierar-
chical clustering methods, with significant advan-
tages in efficiency, scalability and performance.

1. Introduction

Modeling hierarchical structures in the data is a long-
standing goal in machine learning research (Bengio et al.,
2013; Jordan & Mitchell, 2015). In many real-world sce-
narios, data is inherently organized in hierarchies, such
as phylogenetic trees (Linnzus, 1758; Sneath & Sokal,
1962; Penny, 2004), tumor subclasses (S¢rlie et al., 2001)
and social networks (Ravasz & Barabasi, 2003; Crockett
et al., 2017). In unsupervised learning, hierarchical clus-

*Shared last authorship 'ETH Al Center, Zurich. *Department
of Computer Science, ETH Zurich. Correspondence to: Emanuele
Palumbo <emanuele.palumbo@inf.ethz.ch>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2 Imant Daunhawer* > Julia E. Vogt* 2

tering can provide more accurate insights than flat (i.e.,
non-hierarchical) clustering methods by introducing mul-
tiple levels of granularity and alleviating the need for a
fixed number of clusters specified a priori (Bertsimas et al.,
2021; Chami et al., 2020). This aids scientific understand-
ing and interpretability by providing a more informative
representation (Lipton, 2018; Marcinkevics & Vogt, 2020).
The benefits of modeling hierarchies in the data extend to
supervised scenarios. For example, interpretable methods
based on decision trees (Breiman, 2001; Tanno et al., 2019)
hierarchically partition the data so that points in each split
are linearly separable into classes. More recent work lever-
ages hierarchies in the data to improve supervised methods
(Bertinetto et al., 2020; Goren et al., 2024; Karthik et al.,
2021) or for self-supervision (Long & van Noord, 2023).

Among classic algorithms for hierarchical clustering, ag-
glomerative methods have been the most widely adopted.
These methods compute pairwise distances between data
points, often in a lower-dimensional representation space.
Starting from the instance level, a hierarchy is then built
based on the pairwise distances by recursive agglomeration
of similar points or clusters together in a bottom-up fash-
ion (Murtagh & Contreras, 2011). More recently, a revived
interest in hierarchical clustering has sparked novel, sophis-
ticated approaches using deep architectures (Mautz et al.,
2020; Goyal et al., 2017; Shin et al., 2019; Vikram et al.,
2019; Manduchi et al., 2023). These approaches require spe-
cialized architectures and complex training schemes. In this
work, we uncover two key limitations of these approaches.
First, we find that these methods struggle to handle large-
scale datasets, failing to deliver satisfactory performance.
This is in part due to their high computational demands and
in part due to the difficulty in modeling a large number of
clusters. Second, we observe a notable gap in performance
at the leaf level compared to non-hierarchical models. This
is particularly problematic, as the advantage of introducing
a hierarchy should not come at the expense of the quality of
clustering at the leaf-level granularity. These limitations un-
derscore the need for more scalable and effective approaches
for hierarchical clustering.

Given these findings, we take a critical perspective on re-
cent research on deep hierarchical clustering and offer a
straightforward yet effective alternative. Rather than de-
signing specialized hierarchical clustering models, we de-

From Logits to Hierarchies: Hierarchical Clustering made Simple

velop a lightweight method to perform hierarchical clus-
tering given a pre-trained flat model. In particular, we
show that a lightweight algorithm implemented on top of
(non-hierarchical) pre-trained models produces hierarchical
clustering results that markedly outperform state-of-the-art
dedicated models. Notably, our algorithm, which we name
Logits to Hierarchies (L2H), only uses logits and requires
no fine-tuning of the pre-trained model. Hence, it generally
applies to black-box models even without access to internal
representations (e.g., API calls to proprietary models) and
bypasses the costly computation of pairwise distances be-
tween data points. Moreover, it also applies to supervised
models, for which the inferred hierarchy of classes can aid
model interpretability, e.g., for discovering potential biases
such as spurious correlations between classes.

In summary, we make the following key contributions:

* We reveal significant limitations of recently proposed
deep specialized methods for hierarchical clustering,
highlighting their weaknesses on large-scale datasets
and their subpar performance at the leaf level compared
to non-hierarchical approaches.

* As an alternative approach, we propose a straightfor-
ward algorithm for hierarchical clustering that from
the logits of a pre-trained flat model derives a hierar-
chical structure of clusters. Our method markedly out-
performs specialized hierarchical models and has low
computational requirements. With logits as its input, it
computes a hierarchical clustering on ImageNet-sized
datasets in under a minute on a CPU.

* To demonstrate how our method also applies to super-
vised models, we provide a case study on ImageNet,
showing how the inferred hierarchy of classes recovers
parts of the WordNet hierarchy, and helps to discover
potential spurious correlations in the pre-trained model
or biases in existing categorizations.

2. Related Work

Hierarchical clustering aims to learn clusters of data points
that are organized in a hierarchical structure. The methods
used can be broadly categorized into agglomerative and di-
visive approaches (Nielsen, 2016). The former tackle the
problem with a bottom-up approach and iteratively agglom-
erate clusters into larger ones until a full hierarchy is built
in the form of a dendrogram, starting with each datapoint
being a separate cluster (Murtagh & Contreras, 2011). The
similarity of data points is measured according to a distance
function, which for high-dimensional data is often defined
on a lower-dimensional representation space. Multiple link-
age methods have been proposed to compute the distance
between clusters of data points formed at a given step of the

algorithm (Sneath, 1957; Ward, 1963). As examples, single,
average, and complete linkage characterize the distance be-
tween two clusters as the minimum, average, and maximum
distance between their data points, respectively. Since these
algorithms can be costly, particularly in high-dimensional
spaces, approximate versions have been developed for faster
computation (Abboud et al., 2019; Cochez & Mou, 2015).
Notably, linkage methods are still widely applied in many
domains as, for instance, in medical research (Nguyen et al.,
2024; Senevirathna et al., 2023; Resende et al., 2023). Re-
cent work also adopts them to assess how well the repre-
sentations from pre-trained encoders generalize to cluster
unseen datasets (Lowe et al., 2024).

On the other hand, divisive algorithms start with all objects
belonging to the same cluster and recursively split them into
subclusters. While early approaches are mostly based on
heuristics, Dasgupta. (2016) proposed the Dasgupta cost: an
objective function for evaluating a hierarchical clustering,
with a divisive approach to provide an approximately opti-
mal solution. HypHC introduces a continuous relaxation
of Dasgupta’s discrete optimization problem with provable
guarantees via hyperbolic embeddings that better reflect the
geometry of trees compared to Euclidean representations
(Chami et al., 2020; Liu et al., 2019). More recently, re-
search has focused on developing deep learning approaches
for hierarchical clustering with specialized architectures
(Mautz et al., 2020; Goyal et al., 2017; Shin et al., 2019;
Vikram et al., 2019; Manduchi et al., 2023). Among these,
DeepECT learns a hierarchical clustering on top of the em-
bedding space of a jointly optimized autoencoder (Mautz
et al., 2020). TreeVAE (Manduchi et al., 2023), on the other
hand, learns a hierarchical clustering in the latent space of a
variational autoencoder and provides a generative model that
adheres to the learned hierarchy, thereby enabling sample
generation in a structured manner (Manduchi et al., 2023).
However, these approaches have mostly been tested on sim-
ple datasets, far from realistic settings. In our experiments in
Section 4.1, we show that they present important limitations
when deployed on more challenging datasets. We find these
limitations to be linked to their high computational demands
and their difficulty in modeling hierarchies that consist of a
large number of leaf clusters.

Finally, the benefits of modeling a hierarchy in the data are
not restricted to the unsupervised setup (Khrulkov et al.,
2020; Linderman et al., 2023; Sinha et al., 2024). In particu-
lar, recent research focuses on leveraging a tree structure in
the classes to assess and reduce the severity of misclassifi-
cation of supervised models (Karthik et al., 2021). This can
lead to safer models in cost-sensitive scenarios (Bertinetto
et al., 2020) and allow a classifier to predict at different
levels of the hierarchy depending on the required confi-
dence (Goren et al., 2024). The visualization of hierarchies
also provides global explanations of a model’s functionality,

From Logits to Hierarchies: Hierarchical Clustering made Simple

thereby improving a user’s understanding of the model be-
havior and fostering trust (Chakraborty et al., 2017; Lipton,
2018).

3. Method

In this work, we take a critical perspective on a recent line
of research on hierarchical clustering. After uncovering
important limitations of recent hierarchical clustering ap-
proaches with deep specialized architectures, we propose
an alternative strategy. Namely, rather than designing ad-
hoc complex methods, we focus on adapting pre-trained flat
models to output a hierarchy with minimal overhead. To
this end, we introduce a lightweight algorithm to leverage
the information contained in the logits of a pre-trained flat
clustering model to output a hierarchy of clusters. In the
following, we describe the proposed procedure and also pro-
vide a graphical illustration as well as detailed pseudocode.

Let D = {x1,...,xy} be a dataset consisting of N data
points and fy be a non-hierarchical model trained to parti-
tion D into K clusters. We assume that fy outputs unnor-
malized logits, from which the cluster assignment k* for a
datapoint x is determined by taking the softmax

k* = argmax softmaxg(fg(x)) .
ke{1,....K}

We define two functions

ho(x) = argmax softmaxy(fo(x)) ,

ke{l,...,.K}
go(x) = ke{lﬁé}f}{} softmaxy (fo(x)) ,

of which hy computes the cluster assignment for a datapoint
x, while gy computes the predicted probability of the cluster
assignment for the datapoint x.

A key idea behind our method is a simple yet effective way
to determine the relatedness of clusters, or groups of clus-
ters, while iteratively grouping them together to construct
a hierarchy. Intuitively, to assess which group of clusters
G’ is most related to a given group G, we propose the fol-
lowing strategy: for data points assigned to clusters in G,
we determine which group G’ would have the majority of
these data points reassigned to, if clusters in G were not
available.lFormally, we define the following functions to
compute cluster assignments and corresponding predicted
probabilities, restricting only to a subset of the total set of
clusters.

‘We start with a masked version of the softmax function
exp(v;) if i
je{1,....k G XP(v5) ifi¢g G

0 ifi e G

m_softmax(v; G) = {

IThis passage is primarily for intuition and not strictly accu-
rate. To be precise, we do not look at reassignments but rather at
predicted probabilities of reassignments (see Equation (2)).

given a K -dimensional vector v and aset G C {1,..., K}.
This function restricts the softmax operation to the elements
of v atindexes in {1,..., K} \ G. Next, we define

hgb(fll; G) = argmax m,SOftman(fG(w)Q G))

ke{l,....K}
7(x;G) = max m_softmax x);G),
HCHE pe A, k(fo(z); G)
where the functions hy* and gg* correspond to hg and gy but
restricting the choice of viable clusters to {1,..., K}\G. In
particular, the function hj;* computes the cluster assignment
for a datapoint restricting to clusters in {1,..., K} \ G,

and gy* computes the corresponding predicted probability.
Lastly, we define

D¢ :={xeD|hy(x)=c},

i.e., the subset of data points assigned to a given cluster
c € {1,...,K}. Similarly, we denote as DY = U.cg D¢
the subset of data points assigned to a group of clusters
Gc{l,... K}

Algorithm 1 Logits to Hierarchies (L2H).
Given aggregation function A, and functions go, g5 defined as
above for pre-trained K -clustering model fo.

Input: Dataset D.

Output: Hierarchy H.

Groups initialized as single clusters

Initialize groups G = {G1, ..., Gk} where G, = {k}

Hierarchy initialized as empty list

H=[]

for step t from 1 to K — 1 do

for group G in G do
Compute group scores as in Eqn. 1

Compute s(G) := AmEDC,ceG go(x)
end for

Select group with lowest score for merging

Take G* € argming;s(G)

for cluster cin {1,..., K} \ G* do
Compute total pred. probability per cluster as in Eqn.2
Compute rp(c) = 3", o+ 08" (@ G")

hg'(z;G*)=c

end for

Select G, most related group to G™, for merging

Take G = argmaxGeg\{G*}ﬁ ZCGG rp(c)

Update groups

Update G by merging groups G* and G

Update hierarchy

Update H by adding that G* and G are merged at step ¢

end for

We describe our proposed method in Algorithm 1. At the
start of the procedure, K groups are initialized as single
clusters. > At each iteration, two groups are merged into a

Note that here cluster is used to refer to a single cluster found
by the pre-trained model, while group refers to a set of clusters
that are grouped together at a given step of the algorithm.

From Logits to Hierarchies: Hierarchical Clustering made Simple

=

[

Iteration 2

4m Mostreassigned predicted
probability
(average across clustersin
the same group)

Iteration 1

4m Mostreassigned
predicted
probability

--.

Figure 1: Illustration of the L2H algorithm. The four depicted clusters represent dogs in blue, cats in yellow, horses in red,
birds in green respectively. In the first iteration (bottom), where groups correspond to single clusters, the dog cluster is
selected for merging (shaded in grey). When recomputing predicted probabilities for samples in the dogs cluster, restricting
to the remaining clusters, the cluster of cats has the highest predicted probability of reassignment. Note how, after merging,
these two clusters are considered as a single group in the next iteration (top).

single group, constructing a tree of clusters up to the root
in K — 1 iterations. Each iteration can be split into two
stages. In the first stage, a score is computed for each group.
To compute the score for a given group G we aggregate
the predicted probabilities for the data points assigned to
clusters contained in G as

A go(=) (1)

xeD®
celG

where A is a chosen aggregation function (e.g., the sum).
Then, the lowest-scored group G* is selected for merging at
this iteration, which concludes the first stage.

In the second stage, we search for the group G that is most
related to G* to perform the merging. To do so, as men-
tioned above, we look at the subset of data points assigned
to clusters in G*: for these data points, we recompute cluster
assignments and predicted probabilities, this time restricting
to clusters not contained in G*. More formally, the total re-
assigned predicted probability to each cluster not contained
in G* is computed as

pe)i= > (@G, Vee{l,.,K}\G".
wEDG*
hy' (x;G™)=c

2

Note that this quantity can be interpreted as a measure of
relatedness between each cluster ¢ € {1,.., K} \ G*, and

the group of clusters G*. The most related group to G* is
finally selected as GT € argmax e g\ (G- ﬁ Y ecq rp(C)s
i.e., by averaging the total reassigned predicted probability
across clusters in each group and selecting the group with
the highest average.

Given that cluster assignments and corresponding predicted
probabilities can be computed via simple operations on the
logits, the whole procedure can be executed given only the
logits from a pre-trained model f, for the dataset D. For
further clarification, we provide a graphical illustration of
the proposed grouping strategy (Figure 1) and an example
Python implementation in Appendix A.

4. Experiments

In this section, we present the experimental results of our
study. In the first part, we empirically demonstrate that ex-
isting specialized deep hierarchical clustering models face
significant limitations in realistic scenarios. These limita-
tions stem from their high computational demands and their
difficulty in handling a large number of clusters. In contrast,
our proposed method demonstrates compelling results on
challenging vision datasets, achieving substantially better
performance compared to these specialized models.

While the first part of this section focuses on hierarchi-

From Logits to Hierarchies: Hierarchical Clustering made Simple

cal clustering, the second part extends our approach to su-
pervised setups. We provide a case study showcasing the
application of the L2H algorithm on top of a pre-trained
ImageNet classifier. The results illustrate its potential for
enhancing model interpretability and uncovering spurious
correlations. Moreover, they complement the results for
hierarchical clustering, demonstrating that our method can
also be applied on top of pre-trained supervised models.
Further details on datasets, implementations and metrics
can be found in Appendix B.

4.1. Hierarchical Clustering

In this section, we evaluate the performance of recent spe-
cialized hierarchical clustering approaches on three chal-
lenging vision datasets— CIFAR-10, CIFAR-100 (Lake
et al., 2015) and Food-101 (Bossard et al., 2014)— com-
paring their performance with our proposed method. We
show our results in Table 1, including metrics to evaluate
models at the leaf level and metrics to evaluate the quality
of the produced hierarchy. To compare model performance
at the leaf level, we report Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI), Accuracy and Leaf Pu-
rity (LP). To assess the quality of the hierarchical clustering,
we report two metrics: Dendrogram Purity (DP) and Least
Hierarchical Distance (LHD). The former was introduced
in Kobren et al. (2017) and extends the notion of purity,
normally evaluated at the leaf level, to assess the quality of
a tree clustering: higher purity corresponds to higher quality
of the hierarchy. Note that this metric was recently adopted
in Manduchi et al. (2023) to benchmark deep hierarchical
clustering models. Least Hierarchical Distance, on the other
hand, measures the average minimal log-distance in the hi-
erarchy between any pair of data points that have the same
true label but different cluster assignments. A better hier-
archy corresponds to a lower LHD. More details about our
metrics can be found in Appendix B.3. For each dataset, we
implement our L2H algorithm on top of two pre-trained flat
clustering models, namely TURTLE (Gadetsky et al., 2024)
and TEMI (Adaloglou et al., 2023). These are two recent
clustering methods (see Appendix B.2 for more details),
both of which are not designed to produce a hierarchy of
clusters but only a flat clustering.

The results in Table 1 uncover the aforementioned limita-
tions of recent deep hierarchical clustering methods (Deep-
ECT, TreeVAE), which fail to achieve satisfactory perfor-
mance even on moderately challenging datasets such as
CIFAR-10. The results prove that these approaches strug-
gle at modeling deep hierarchies, producing overly shallow
trees in datasets with a large number of classes such as
CIFAR-100 or Food-101. This is also linked to their high
computational complexity. For instance, TreeVAE learns a
hierarchical generative model with leaf-specific decoders:
this choice helps its performance in a generative scenario

but impacts its scalability to large-scale datasets (see Table 2
for more details). Moreover, the comparison in terms of
flat clustering metrics highlights that deep hierarchical mod-
els produce clusterings at the leaf level that are much less
accurate than those obtained with non-hierarchical models.?

In contrast to alternative approaches, our proposed method
recovers high-quality hierarchies for all three datasets when
implemented with both TEMI or TURTLE as the backbone
model. The results in the hierarchical metrics demonstrate
that our method markedly outperforms existing approaches,
with a consistent margin over costly deep learning special-
ized models. These findings demonstrate that the L2H algo-
rithm can leverage the information embedded in the logits
of a pre-trained flat clustering model to model an accurate
hierarchy of the clusters. Most importantly, they show that
our approach outperforms sophisticated deep hierarchical
models while being more scalable and efficient. Note as
well that our method does not require any fine-tuning of the
pre-trained model, nor access to the internal representations.
By construction, it retains the clustering performance of the
pre-trained model at the leaf level, which matches state-of-
the-art in our results. Importantly, the efficacy of our method
is not hindered by the presence of a large number of classes
in the dataset, as we witness for other methods. In particular,
in Appendix C we show that our method achieves remark-
able hierarchical clustering results on datasets as large as
ImageNet-1k (Deng et al., 2009). As well we show in Ap-
pendix C that our approach is applicable across different
choices for the backbone model, and notably, it outperforms
deep specialized hierarchical approaches even when the cho-
sen backbone model yields weaker clustering performance
at the leaf level than TURTLE or TEMI. We also report
additional ablations, and in particular we validate the robust-
ness of our approach with respect to the hyperparameter K,
corresponding to the number of clusters at the leaf level of
the hierarchy.

In practice, hierarchical clustering results are often used as
a visualization tool and to analyze the structure of a dataset
at different levels of granularity. Hence, to evaluate our
proposed approach, we visualize and inspect the hierarchy
obtained with L2H-TURTLE on the CIFAR-100 dataset
in Figure 2. Note that given the absence of leaf labels,
we associate a class label to each leaf by looking at the
most frequent label among the data points in the given leaf.
While an off-the-shelf ground-truth hierarchy is not avail-
able for the CIFAR-100 dataset, the authors organize the
100 classes in 20 superclasses. Hence, we color-code the in-
ferred leaf labels in the hierarchy by superclasses and check
if the hierarchical clustering recovers this global structure.
Notably, the global structure of the superclasses is largely

3In constrast, our approach retains the strong performance of
the backbone model (TURTLE or TEMI) at the leaf level.

From Logits to Hierarchies: Hierarchical Clustering made Simple

\ Flat Hierarchical Inference on

‘ # leaves

test set
[NMI (1) ARI () ACC () LP (1)|DP () LHD ({)] est se
CIFAR-10 Agglomerative | 0.074 0.038 0.211 0.246 | 0.121 0.549 10 X
HypHC| 0.019 0.009 0.134 0.359 | 0.104 0.569 10 X
DeepECT | 0.006 0.002 0.110 0.110 | 0.101 0.369 2-3 v
TreeVAE | 0.414 0.313 0.497 0.523 | 0.341 0.410 10 v
L2H-TEMI | 0.907 0.906 0.956 0.957 | 0.902 0.348 10 v
L2H-Turtle | 0.985 0.989 0.995 0.995 | 0.988 0.277 10 v
CIFAR-100 Agglomerative | 0.223 0.020 0.090 0.131 | 0.019 0.428 100 X
HypHC| 0.072 0.004 0.031 0.560 | 0.011 0.499 100 X
DeepECT | 0.016 0.005 0.070 0.070 | 0.052 0.121 2-3 v
TreeVAE | 0.199 0.098 0.228 0.242 | 0.103 0.484 20 v
L2H-TEMI| 0.778 0.565 0.682 0.701 | 0.502 0.298 100 v
L2H-Turtle | 0.917 0.831 0.896 0.897 | 0.803 0.235 100 v
Food-101 Agglomerative | 0.082 0.004 0.039 0.045 | 0.011 0.438 101 X
HypHC| 0.035 0.002 0.022 0.630 | 0.011 0.573 101 X
DeepECT | 0.003 0.000 0.011 0.011 | 0.010 0.333 2-3 v
TreeVAE| 0.114 0.017 0.057 0.058 | 0.016 0.483 20 v
L2H-TEMI| 0.917 0.841 0.904 0913 | 0.801 0.270 101 v
L2H-Turtle | 0.894 0.800 0.876 0.877 | 0.758 0.297 101 v

Table 1: Quantitative comparison of hierarchical clustering performance on three datasets (CIFAR-10, CIFAR-100, Food-
101). We report as a baseline agglomerative clustering, deep hierarchical specialized models (DeepECT, TreeVAE), and our
L2H method applied on top of two state-of-the-art flat models (TEMI, TURTLE). We also indicate the number of leaves in
the hiearchy modelled by each approach, and whether a given method can perform inference on a hold-out test set. We bold
best results for each metric and underline results that are artifacts of degenerate solutions with shallow hierarchies. Notably
the application of L2H does not affect flat clustering performance, retaining the clustering performance of the pre-trained
model (TURTLE, TEMI) at the leaf level.

\ Dataset
CIFAR-10 CIFAR-100 Food-101 ImageNet1K
K =10 K =100 K =101 K =1000
Ny =50000 Ny =50000 Ny =75750 Ny = 1281167
L2H | < 0.01 < 0.01 < 0.01 0.45£0.0
Agglomerative <0.1 < 0.1 0.8 -
HypHC| 163.7+4.0 153.3+£19.4 195.3+3.2 -
DeepECT | 24.1+15.1 26.2+9.8 67.5 £ 36.6 -
TreeVAE | 364.1 £ 76.8 756.3 +178.6 2293.7 +211.7 -
L2H-TURTLE| 1.6+0.0 1.6 +0.0 1.7£0.0 5.25+0.0

Table 2: Training time (in minutes) for our proposed method compared to baselines for hierarchical clustering on CIFAR-10,
CIFAR-100, and Food-101 datasets. At the top, we report the runtime for the L2H algorithm alone. Below, we report the
runtime of the TURTLE model plus our L2H algorithm to produce a hierarchy, compared with the runtime of each baseline
model. Results are averaged over three runs and include standard deviations.

reflected in the visualized hierarchy. Most interesting is that
the outliers, for which the color does not coincide with the
neighboring leaves, still reflect meaningful semantic asso-
ciations. For instance, whale and dolphin—despite being
aquatic mammals—are grouped with fish species. However,
this is not surprising, given their adaptation exclusively to
aquatic environments and the presence of similar traits to
fishes, like streamlined bodies. On the contrary, mammals
such as otter, beaver, and seal, which are only semi-aquatic,

are grouped with other small to medium-sized terrestrial
mammals, emphasizing size and communal characteristics
like the presence of limbs and fur. Another example is the
characterization of worm and snake alongside in the hierar-
chy. Although snakes are reptiles, their elongated, limbless
bodies visually resemble those of non-insect invertebrates
like worms. This showcased analysis confirms the efficacy
of our method in recovering a tree structure that follows
meaningful semantic associations. The results indicate that

From Logits to Hierarchies: Hierarchical Clustering made Simple

ooNS
sead
aumlda\a‘
preoafet
uoIsInaIR
clock
lamp
cup
bow;
Plate

possum”
¥ A
s‘\u\ne\

(@t

Jueydaje
gezuRdWILY
\owed
ame?

boryg

s
$
$
FSo &
K
& ~6§ §°A‘ @‘* Colored ranges
3 K
& g? & [[] People
& & D Furniture
&
@
& & [T Fruits & vegetables

<e?
pat
coud
eysoraPe’
pridge
castle
house
forest

pine tree

D Electronic devices

D Food containers

D Vehicles 2

D Vehicles 1

D Large natural outdoor scenes
D Large man-made outdoor things
D Trees

D Insects

D Non-insect invertebrates
D Large omnivores and herbivores
D Large carnivores

D Small mammals

wiuowtrEe D Medium-sized mammals
8k treq Flowers
aple treg : Fish
. Large aquatic mammals
D Reptiles

Figure 2: Visualization of the hierarchical clustering produced by L2ZH-TURTLE on the CIFAR-100 dataset. The inferred
hierarchy is represented as a circular tree. On the lowest level, the leaves are annotated by reporting the most frequent label
for the samples in each leaf. Leaves are color-coded according to the 20 superclasses in the dataset.

our method produces hierarchies that enable detailed ex-
ploration of the structure in the data at varying levels of
granularity. Inspecting the hierarchy gives valuable insights
for interpretability, revealing underlying associations by the
model.

We end this section with a comparison in terms of the com-
putational cost of our method compared with alternative
models, and in particular with specialized deep learning
approaches for hierarchical clustering. As the results in
Table 2 show, our proposed L2H algorithm is extremely
lightweight. To compare with the efficiency of alternative
methods, we also measure the overall runtime to perform
hierarchical clustering with LZH-TURTLE, which includes
the runtime to train the TURTLE model, as an example of
backbone model. Our approach allows us to perform hierar-
chical clustering extremely efficiently, even on large-scale
datasets such as ImageNet- 1k, with a total training time of
a few minutes. Note that, due to the combined efficiency of
our method and state-of-the-art flat clustering models like
TURTLE, the overall runtime scales seamlessly with dataset
size and number of leaves in the hierarchy. Conversely,

deep hierarchical approaches exhibit a significantly higher
computational cost. Moreover, as with TreeVAE, increasing
dataset size and number of classes markedly increases the
computational burden. Finally, it is to note that TURTLE,
as well as TEMI, leverages CLIP embeddings for training.
Hence, to further validate the superior efficiency and effi-
cacy of our method compared to alternative deep specialized
approaches, in Appendix C we compare our results with
the ones obtained by training TreeVAE using CLIP embed-
dings. These results again validate that our L2H approach
achieves markedly superior performance when compared
models have access to foundation model embeddings for
training. Once again, this gain in performance comes also
with much higher computational efficiency.

4.2. Case Study: Pre-trained ImageNet Classifier

In this section we complement the results from the previous
section by showing that our method can be applied in a
supervised setup, producing a hierarchy given the logits of a
pre-trained classifier. Specifically, we use the ImageNet-1k
dataset (Deng et al., 2009), which comprises over a million

From Logits to Hierarchies: Hierarchical Clustering made Simple

(a) Complete tree (1K classes)

262
oo po®
oununa 0
aapeID
-junco
ouse finch
b aMbing
ol/?e/

g 5

lor,

2 8 ¢

4, % & o
NS Fo &
bo % K & ¢
Y &
% R
o %, &
Yy, S
2) & o
& o
’ e & “e"“\c‘
o+ R
”ﬁ’sc,,u(ek
4
. Macgy,. puste"
Ulphur- stone
""Crested cockatoq, ruddy WS
lorikeet- oystercatcher
African grey’ ed-backed sandpiper
touca™ dowitche,
oo "eshapy
&
e U, -
.
oo B e, iy
% Yy %00,
¥ Yy
S A
PO %
M 5
s & 3 %
SRS 5% %,
¢
& &ttt
§ & 5583188 2 2
& g x 2 8% % = 5,
< 5 § 2 c %
g = %

(b) Subtree of birds (58 classes)

Figure 3: Visualization of inferred hierarchy for the ImageNet-1K dataset. The hierarchy is represented as a circular tree,
where the leaf nodes are organized in a circle. Figure 3a shows the complete tree colored by the corresponding WordNet
hypernyms “artifact” and “organism”, which are the largest two superclasses in the ImageNet dataset. Figure 3b shows the
subtree of birds colored by different bird species if they comprise more than one class. The results show that our method
recovers a significant portion of the global and local hierarchical structure of the ImageNet dataset.

images and a thousand distinct classes, with an underlying
hierarchical structure organized according to the WordNet
hierarchy. We apply the L2H algorithm on the logits of a
pre-trained ImageNet classifier to model the hierarchy of
classes. As a pre-trained classifier, we use the Internlmage
model (Wang et al., 2023).

Figure 3a illustrates the inferred hierarchy for the thou-
sand ImageNet classes. The colors indicate whether a leaf
node corresponds to the superclass “artifact” or “organism”,
which are the largest two superclasses that can be deter-
mined based on the corresponding WordNet hypernyms
of each class in ImageNet. Overall, we observe a distinct
separation between the two superclasses in the inferred tree.

In addition, Figure 3b shows a subtree of the inferred hi-
erarchy that comprises different bird species. Specifically,
it shows 58 of the 60 classes of birds contained in the Im-
ageNet dataset. The leaf nodes are colored by different
clades of bird species (based on the WordNet hierarchy),
showing that the inferred hierarchy groups together related
species. For example, the group “aquatic bird” is almost
completely represented in one of the two main branches,
which further splits into a separate cluster for “parrots” and
another one for “bird of prey”. The other main branch of
the tree subdivides further into “passerine” and “game bird”
forming distinct clusters.

Overall, our results suggest that the inferred hierarchy recov-
ers a significant portion of the global and local hierarchical
structure of the ImageNet dataset given the logits of a pre-
trained ImageNet classifier trained with non-hierarchical
labels. Yet, the inferred tree also reveals interesting outliers.
For example, in Figure 3a, there is a distinct subtree for
snow-related artifacts (e.g., dogsled, snowmobile, bobsled)
within a large branch of the tree that comprises organisms.
Further investigation shows that this group of artifacts is
merged with arctic animals (e.g., malamute, Siberian husky,
Eskimo dog), which reveals a spurious correlation between
classes and highlights potential biases of the pre-trained
model. Likewise, in Figure 3b, we see potential outliers
such as “bustard” among game birds. Interestingly, this con-
stitutes an example where our method reveals an ambiguity
in the WordNet hierarchy, which classifies “bustard” as a
wading bird, while it is usually defined as a terrestrial game
bird, like in our inferred categorization.

5. Conclusion

In this work, we uncover significant limitations of exist-
ing deep hierarchical clustering models, demonstrating
that these methods face important challenges in scaling
to large-scale datasets, falling short of delivering satisfac-
tory performance. As an alternative approach, we propose

From Logits to Hierarchies: Hierarchical Clustering made Simple

a lightweight yet effective procedure for hierarchical clus-
tering based on pre-trained non-hierarchical models. No-
tably, our solution proves to be markedly more effective and
significantly more computationally efficient than existing
methods. Specifically, we demonstrate that our method can
successfully handle large datasets with hundreds of classes,
taking an important step for the practical applicability of
hierarchical clustering methods in realistic settings. More-
over, we show that the usefulness of our approach extends to
supervised setups by implementing it on top of a pre-trained
classifier to recover a meaningful hierarchy of classes. A
case study on ImageNet shows that our approach provides
relevant insights for interpretability, and can reveal potential
biases in the pre-trained model or spurious correlation in
the data.

Our proposed method is general and may be applied to differ-
ent data types beyond vision, which we leave as an opportu-
nity for future work. Another direction for future work is the
investigation of strategies for automatically selecting mean-
ingful levels of the inferred hierarchy. Hierarchical clus-
tering presents important advantages over non-hierarchical
clustering by simultaneously capturing the structure in the
data at multiple levels of granularity. However, manually
inspecting the hierarchy is still necessary to extract valuable
insights. Thus, future work could investigate strategies to
partly bypass this process, automatically selecting levels of
the hierarchy that provide the most meaningful clustering.
Our proposed method relies on the assumption that logits
from a pre-trained flat model can be used as a proxy to mea-
sure cluster similarities. While empirically supported by our
experimental results, this assumption may not always hold,
for instance if the pre-trained model is poorly calibrated.

Acknowledgements

EP is supported by a fellowship from the ETH AI Center,
and received funding from the grant #2021-911 of the Strate-
gic Focal Area “Personalized Health and Related Technolo-
gies (PHRT)” of the ETH Domain (Swiss Federal Institutes
of Technology). AR is supported by the StimuL.oop grant
#1-007811-002 and the Vontobel Foundation. The authors
are grateful to Laura Manduchi for useful discussions.

Impact Statement

As other ML models, clustering methods—such as the ones
explored in this work—are vulnerable to the risk of reflect-
ing potential biases and spurious correlations from the data
they are trained on. However, hierarchical approaches offer
a promising direction for mitigating these risks by enhanc-
ing the interpretability and transparency of clustering and
classification outcomes.

References

Abboud, A., Cohen-Addad, V., and Houdrouge, H. Sub-
quadratic high-dimensional hierarchical clustering. In Ad-
vances in Neural Information Processing Systems, 2019.

Adaloglou, N., Michels, F., Kalisch, H., and Kollmann,
M. Exploring the limits of deep image clustering using
pretrained models. In British Machine Vision Conference,
2023.

Bengio, Y., Courville, A. C., and Vincent, P. Representation
learning: A review and new perspectives. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2013.

Bertinetto, L., Mueller, R., Tertikas, K., Samangooei, S.,
and Lord, N. A. Making better mistakes: Leveraging
class hierarchies with deep networks. In Computer Vision
and Pattern Recognition, 2020.

Bertsimas, D., Orfanoudaki, A., and Wiberg, H. Inter-
pretable clustering: an optimization approach. Machine
Learning, 2021.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101 —
Mining discriminative components with random forests.
In European Conference on Computer Vision, 2014.

Breiman, L. Random forests. Machine Learning, 2001.

Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne,
D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A.,
Julier, S., Rao, R. M., et al. Interpretability of deep
learning models: A survey of results. In IEEE smart-
world, ubiquitous intelligence & computing, advanced &
trusted computed, scalable computing & communications,
cloud & big data computing, Internet of people and smart
city innovation (smartworld/SCALCOM/UIC/ATC/CBD-
com/IOP/SCI), 2017.

Chami, L., Gu, A., Chatziafratis, V., and Ré, C. From trees
to continuous embeddings and back: Hyperbolic hier-
archical clustering. In Advances in Neural Information
Processing Systems, 2020.

Cochez, M. and Mou, H. Twister tries: Approximate hier-
archical agglomerative clustering for average distance in
linear time. In ACM SIGMOD International Conference
on Management of Data, 2015.

Crockett, K., Mclean, D., Latham, A., and Alnajran, N.
Cluster analysis of twitter data: A review of algorithms.
In International Conference on Agents and Artificial In-
telligence, 2017.

Dasgupta., S. A cost function for similarity-based hier-
archical clustering. In ACM symposium on Theory of
Computing, 2016.

From Logits to Hierarchies: Hierarchical Clustering made Simple

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009.

Gadetsky, A., Jiang, Y., and Brbic, M. Let go of your labels
with unsupervised transfer. In International Conference
on Machine Learning, 2024.

Goren, S., Galil, I., and El-Yaniv, R. Hierarchical selective
classification. Advances in Neural Information Process-
ing, 2024.

Goyal, P, Hu, Z., Liang, X., Wang, C., and Xing, E. Non-
parametric variational auto-encoders for hierarchical rep-
resentation learning. In International Conference on Com-
puter Vision (ICCV), 2017.

Jordan, M. I. and Mitchell, T. M. Machine learning: Trends,
perspectives, and prospects. Science, 2015.

Karthik, S., Prabhu, A., Dokania, P. K., and Gandhi, V. No
cost likelihood manipulation at test time for making better
mistakes in deep networks. In International Conference
on Learning Representations, 2021.

Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets,
L., and Lempitsky, V. Hyperbolic image embeddings. In
Computer Vision and Pattern Recognition, 2020.

Kobren, A., Monath, N., Krishnamurthy, A., and McCallum,
A. A hierarchical algorithm for extreme clustering. In
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 2015.

Letunic, I. and Bork, P. Interactive tree of life (TOL) v6:
recent updates to the phylogenetic tree display and anno-
tation tool. Nucleic Acids Research, 52, 2024.

Linderman, R., Zhang, J., Inkawhich, N., Li, H., and Chen,
Y. Fine-grain inference on out-of-distribution data with
hierarchical classification. In Conference on Lifelong
Learning Agents (CoLLAs), 2023.

Linnzus, C. Systema naturce per regna tria naturce, secun-
dum classes, ordines, genera, species, cum characteribus,
differentiis, synonymis, locis, volume 1. Salvius, Holmi&
(Stockholm), 10th edition, 1758.

Lipton, Z. C. The mythos of model interpretability: In
machine learning, the concept of interpretability is both
important and slippery. ACM Queue, 2018.

Liu, Q., Nickel, M., and Kiela, D. Hyperbolic graph neural
networks. In Advances in Neural Information Processing
Systems, 2019.

10

Long, T. and van Noord, N. Cross-modal scalable hyper-
bolic hierarchical clustering. In International Conference
on Computer Vision (ICCV), 2023.

Lowe, S. C., Haurum, J. B., Oore, S., Moeslund, T. B.,
and Taylor, G. W. An empirical study into clustering
of unseen datasets with self-supervised encoders. arXiv
preprint arXiv:2406.02465, 2024.

Manduchi, L., Vandenhirtz, M., Ryser, A., and Vogt, J.
Tree variational autoencoders. In Advances in Neural
Information Processing Systems, 2023.

Marcinkevics, R. and Vogt, J. E. Interpretability and ex-
plainability: A machine learning zoo mini-tour. arXiv
preprint arXiv:2012.01805, 2020.

Mautz, D., Plant, C., and Bohm, C. DeepECT: The deep
embedded cluster tree. Data Science and Engineering,
2020.

Miller, G. A. Wordnet: a lexical database for english. Com-
mun. ACM, 1995.

Murtagh, F. and Contreras, P. Algorithms for hierarchi-
cal clustering: an overview. WIREs Data Mining and
Knowledge Discovery, 2011.

Nguyen, Y., Nocturne, G., Henry, J., Ng, W.-F., Belkhir,
R., Desmoulins, F., Bergé, E., Morel, J., Perdriger, A.,
Dernis, E., Devauchelle-Pensec, V., Séne, D., Dieudé,
P., Couderc, M., Fauchais, A.-L., Larroche, C., Vittecoq,
0., Salliot, C., Hachulla, E., Le Guern, V., Gottenberg,
J.-E., Mariette, X., and Seror, R. Identification of distinct
subgroups of Sjogren’s disease by cluster analysis based
on clinical and biological manifestations: data from the
cross-sectional paris-saclay and the prospective assess
cohorts. The Lancet Rheumatology, 2024.

Nielsen, F. Hierarchical clustering. Introduction to HPC
with MPI for Data Science, 2016.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 2011.

Penny, D. Inferring Phylogenies.—Joseph Felsenstein. 2003.
Sinauer Associates, Sunderland, Massachusetts. System-
atic Biology, 2004.

Ravasz, E. and Barabdsi, A.-L. Hierarchical organization in
complex networks. Physical review E, 2003.

Resende, V., Tsilimigras, D. 1., Endo, Y., Guglielmi, A.,
Ratti, F., Aldrighetti, L., Marques, H. P., Soubrane, O.,

From Logits to Hierarchies: Hierarchical Clustering made Simple

Lam, V., Poultsides, G. A., Popescu, 1., Alexandrescu, S.,
Gleisner, A., Martel, G., Hugh, T., Endo, I., Shen, F., and
Pawlik, T. M. Machine-based learning hierarchical cluster
analysis: Sex-based differences in prognosis following
resection of hepatocellular carcinoma. World Journal of
Surgery, 2023.

Senevirathna, A. M., Pohl, A. J., Jordan, M. J., Edwards,
W. B., and Ferber, R. Differences in kinetic variables
between injured and uninjured rearfoot runners: A hierar-
chical cluster analysis. Scandinavian Journal of Medicine
& Science in Sports, 2023.

Shin, S.-J., Song, K., and Moon, I.-C. Hierarchically clus-
tered representation learning. In AAAI Conference on
Artificial Intelligence, 2019.

Sinha, A., Zeng, S., Yamada, M., and Zhao, H. Learning
structured representations with hyperbolic embeddings.

In Advances in Neural Information Processing Systems,
2024.

Sneath, P. H. The application of computers to taxonomy.
Microbiology, 1957.

Sneath, P. H. A. and Sokal, R. R. Numerical taxonomy.
Nature, 1962.

Serlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S.,
Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M.,
Jeffrey, S. S., Thorsen, T., Quist, H., Matese, J. C., Brown,
P. O., Botstein, D., Lgnning, P. E., and Bgrresen-Dale,
A. L. Gene expression patterns of breast carcinomas
distinguish tumor subclasses with clinical implications.
Proceedings of the National Academy of Sciences of the
United States of America, 2001.

Tanno, R., Arulkumaran, K., Alexander, D. C., Criminisi,
A., and Nori, A. Adaptive neural trees. In International
Conference on Machine Learning, 2019.

Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie,
S., and Mac Aodha, O. Benchmarking representation
learning for natural world image collections. In Computer
Vision and Pattern Recognition, 2021.

Vandenhirtz, M., Barkmann, F., Manduchi, L., Vogt, J. E.,
and Boeva, V. sctree: Discovering cellular hierarchies
in the presence of batch effects in scrna-seq data. arXiv
preprint arXiv:2406.19300, 2024.

Vikram, S., Hoffman, M. D., and Johnson, M. J. The loracs
prior for vaes: Letting the trees speak for the data. In
International Conference on Artificial Intelligence and
Statistics, 2019.

Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu,
X., Lu, T, Lu, L., Li, H., et al. Internimage: Exploring

11

large-scale vision foundation models with deformable
convolutions. Computer Vision and Pattern Recognition,
2023.

Ward, J. H. Hierarchical grouping to optimize an objective
function. Journal of the American Statistical Association,
1963.

Yunfan, L., Mouxing, Y., Dezhong, P., Taihao, L., Jiantao,
H., and Xi, P. Twin contrastive learning for online clus-
tering. International Journal of Computer Vision, 2022.

From Logits to Hierarchies: Hierarchical Clustering made Simple

Appendix
A. Code Implementation of the L2H Algorithm

In Figure 4, we provide a Python implementation of the L2H algorithm proposed in this work using standard scientific
computing libraries (NumPy, SciPy). As stated in Section 3, our algorithm only requires the logits as input. It can be
executed on the CPU even for large datasets, e.g., with a runtime of less than a minute for ImageNet. Note that our procedure
can be applied to any pre-trained unsupervised model to perform hierarchical clustering. Further, it can also be applied to
logits from a supervised model to infer a hierarchy of classes. We store the hierarchy as a list comprised of groups of clusters
that are merged iteratively. The aggregation function for computing the score per group is a design choice (as described in
Appendix B.2) that can be viewed as a hyperparameter.

import numpy as np
from scipy.special import softmax

def L2H(logits):
wnn
L2H Algorithm.
Args:
logits: Logits from model (N x K) where N number of datapoints 1in the dataset
and K is the number of clusters
Returns:
steps: Merging steps characterizing the hierarchy

wnn
Number of clusters is equal to size of last dimension in the logits
K = logits.shape[-1]

Initialize groups of clusters to single clusters

groups = [(c,) for c in range (K)]
ialize list of steps t
steps = []

terize hierarchy

Given the logits for the whole dataset, compute assignments and predicted probabilities
softmaxed_logits = softmax(logits, axis=-1)
assignments = np.argmax (softmaxed_logits, axis=-1)
pred_probs = np.max (softmaxed_logits, axis=-1)
for step in range(l, K):
Compute score for for each group (which hosen aggregat function)
score_per_gr = {}
for group in groups:
score_per_gr[group] = sum([np.mean(pred_probs[assignments == c]) for c in group])
Get the group with the lowest score (lsg), will be merged at this iteration

lsg = min(score_per_gr, key=score_per_gr.get)

Get the logits for datapoints assigned to the lowest sco
logits_1lsg = logits[np.where(np.isin(assignments, lsg)) [0]
#

Reassign datapoi clusters not in 1lsg,

and re-compute predicted probabilities

msm_logits_lsg = np.zeros_like (logits_1sg)

cls_not_in_lsg = [c for ¢ in range(K) if c not in lsg]

cls_in_1lsg = [c for c in range(K) if c in 1lsg]

msm_logits_lsg[:, cls_not_in_1lsg] = softmax(logits_1lsg[:, cls_not_in_lsg], axis=-1)

nts in Isg to only

’
’

msm_logits_lsg[:, cls_in_1lsg] = O.

reassignments = np.argmax (msm_logits_lsg, axis=-1)

re_pred_probs = np.max (msm_logits_lsg, axis=-1)

Cc e the total reassigned predicted proba and average across

c 2rs in ea en select the group w

re_pp_per_group = {
group: np.mean([np.sum(re_pred_probs|[reassignments == c]) for c¢ in group]) for
group in groups if group != lsg

}
mtg = max (re_pp_per_group, key=re_pp_per_group.get)
Merge ‘lsg” ate “groups’.
groups = [gr for gr in groups if gr not in [lsg, mtgl] + [lsg + mtg]
Add m
steps.append((lsg, mtg))
return steps

with ‘mtg’ and upd,

>rging in current iterat 1 to steps

Figure 4: Python code implementation for the L2H algorithm presented in Section 3. Note that we choose the aggregation
function when computing the score per group as described in Appendix B.2.

12

From Logits to Hierarchies: Hierarchical Clustering made Simple

B. Experimental Details
B.1. Datasets

In this work, we run experiments on five challenging vision datasets, namely CIFAR-10 and CIFAR-100 (Lake et al.,
2015), Food-101 (Bossard et al., 2014), ImageNet1K (Deng et al., 2009), and as well INaturalist21(Van Horn et al., 2021)
introduced in Appendix C. CIFAR-10 and CIFAR-100 are well-established object classification datasets. The CIFAR-10
dataset consists of 60000 32x32 colored images, divided in 10 classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck. The train/test splits contain 50000 and 10000 images respectively. Similarly, also the CIFAR-100 dataset
consists of 60000 32x32 colored images. However, they are organized into 100 classes. In addition, the 100 classes are
grouped into 20 superclasses. As for CIFAR-10, the train/test splits also contain 50000 and 10000 images respectively. The
Food101 dataset is a fine-grained classification dataset of food images, consisting of 101000 images for 101 classes. Images
are high-resolution, up to 512 pixels side length. Images are split between 75750 training samples and 25250 test images.
The ImageNet-1k dataset, widely used in computer vision, consists of 1000 classes organized according to the WordNet
hierarchy (Miller, 1995), with 1281167 training and 50000 test samples, respectively. The INaturalist21 dataset (Van Horn
et al., 2021) contains 2.7 million images of natural species labelled at different taxonomy levels.

B.2. Implementation Details

For our hierarchical clustering experiments, to train the TURTLE and TEMI models on all considered datasets we use the
official code provided by the authors with recommended choices for hyperparameters (Gadetsky et al., 2024; Adaloglou et al.,
2023). In particular, TEMI employs CLIPViTL/14 representations of the data, while TURTLE employs both CLIPViTL/14
and DINOV2 ViT-g/14 representations. For more details on TURTLE trained using two representation spaces, see the
original paper (Gadetsky et al., 2024). We train both TEMI and TURTLE with a number of clusters K equal to the true
number of classes in each dataset (unless explicitly stated otherwise, e.g. in the sensitivity analysis reported in Figure 5). For
each dataset, we train models on the training set, then report metrics on the test set. Note that the L2H algorithm takes as
input logits from the training set to infer the hierarchy, while metrics that evaluate the quality of the hierarchy are computed
on the test set. As the aggregation function A in the L2H algorithm (see Section 3) we employ

A @)=Y 5 Y)

wceeg ce@ xeDe

which we find to work well experimentally. However, other choices are possible (see also Table 7). We implement
TreeVAE (Manduchi et al., 2023) with their contrastive approach using the provided PyTorch codebase with corresponding
defaults. The splitting criterion is set to the number of samples, an inductive bias that benefits this baseline method, since all
datasets are balanced (Manduchi et al., 2023; Vandenhirtz et al., 2024). We set the number of clusters to 10 for CIFAR-10
and to 20 for the rest, due to the computational complexity, as seen in Table 2, as well as memory complexity, since every
additional leaf adds a new decoder. DeepECT (Mautz et al., 2020) is also implemented using their provided codebase with
the augmented version. Note that similar to the results shown in Manduchi et al. (2023), for colored datasets, DeepECT fails
to grow trees, as they always collapse, indicating that DeepECT fails to find meaningful splits. We implement agglomerative
clustering using the scikit-learn library (Pedregosa et al., 2011), and fit the model using PCA embeddings of the datasets
with 50 components and Ward’s criterion (Ward, 1963) as the linkage method. Using the author’s original codebase, we
further train Hyperbolic Hierarchical Clustering (Liu et al., 2019) on CLIP embeddings of the respective datasets. The
authors do not describe how to retrieve cluster assignments using their method, so we follow the agglomerative clustering
procedure and assume the leaves of the last K tree nodes created to form a cluster, where K corresponds to the chosen
number of clusters.

B.3. Metrics

Here we provide more details on the metrics reported in our experiments in Section 4.1. In our comparisons, we evaluate
models both on flat and hierarchical clustering.

Flat clustering To assess model performance in flat clustering, for each model we take the clustering at the level of the
hierarchy where the number of clusters corresponds to the true number of classes K in a given dataset. If the number of
leaves at the leaf level of the hierarchy is smaller than K, as is the case for, e.g., TreeVAE and DeepECT on CIFAR-100,
we consider the clustering at the leaf level. For flat clustering comparisons, we resort to well-established metrics, namely

13

From Logits to Hierarchies: Hierarchical Clustering made Simple

NMI, ARI, Accuracy, and Purity of the clusters (i.e., Leaf Purity). To compute accuracy and leaf purity, we resort to recent
implementations in (Gadetsky et al., 2024) and (Manduchi et al., 2023), respectively.

Hierarchical clustering To assess the quality of a learned hierarchy, and compare the results of different models in
hierarchical clustering, we resort to two metrics. Dendrogram Purity (DP), introduced in (Kobren et al., 2017), extends
the notion of leaf purity to evaluate the purity of hierarchical clusters, and was recently adopted to benchmark hierarchical
clustering models (Manduchi et al., 2023). Following the notation of (Kobren et al., 2017), let C* denote the true K -clustering
(i.e., true class labeling) of a dataset D. Then define

P = {($i7$j)V£CZ',£Cj c D7{Ei # ZTj | C*(LCZ) = C*(itj)}

as the set of pairs of data points that belong to the same true cluster. Dendrogram Purity (DP) is then defined for a hierchical
clustering H as

K
DP(H) = ﬁ Z Z pur(lvs(LCA(z;, z;)),Cp,),

k=1 (z;,x,;)€C)

where LCA(x1, x2) computes the least common ancestor node of data points -y and x5 in H, 1vs(z) returns the set of leaves
of the sub-tree rooted at any internal node z, pur(S1, S2) = |S1 N S2|/|S1], and C}; is the set of data points belonging to the
true cluster k. One possible caveat of this metric is its high correlation with Leaf Purity: with a high leaf purity, most pairs
of samples sharing the true label will inevitably fall into the same leaf. To address this, we introduce an additional metric for
evaluation, namely Least Hierarchical Distance. With a similar notation as above we define

P = {(xi,xj)in,xj €D,z #xj | C(x:) = C*(x)) Nl(zi;H) # l(xj;’H)}

where the function [(z;) returns the cluster prediction for datapoint x at the leaf level of H. Hence P* is the set of all
pairs of points sharing the same true label that are not assigned to the same leaf in H. Least Hierarchical Distance is then
defined for a hierarchical clustering H as

1 log, (td(l(xi; H), Uz, H))) — 1

LHD(H) = = Y e

P _ logy(K) — 1

Pl 0 S &:(K)
where td(l1, l2) computes the number of edges in the shortest path that connects two leaves [, [5 in the tree defined by .
Different from Dendrogram Purity, Least Hierarchical Distance only takes into consideration pairs of data points with the
same true label that do not fall into the same leaf. Hence, it does not exhibit a strong correlation with Leaf Purity, being
more specific to the quality of the hierarchy rather than influenced by the clustering at the leaf level.

C. Additional Results and Visualizations

Table 3 presents the results of our L2H algorithm implemented on top of the TURTLE backbone model for hierarchical
clustering on the ImageNet1K dataset (Deng et al., 2009). These results complement the ones shown in Table 1, demonstrating
that our method achieves outstanding performance for hierarchical clustering, even on datasets with large scale and numerous
classes. It is worth noting that a direct comparison with alternative approaches (e.g., DeepECT, TreeVAE) is not feasible
in this setting, as these methods lack the scalability to handle datasets of this magnitude and complexity. The quantitative
results underscore the effectiveness of our method, successfully uncovering a meaningful hierarchical structure in a dataset
of this size and complexity.

| NMI(1) ARI() ACC(f) LP(1) | DP({) LHD(]) |
L2H-TURTLE | 0.882 0.621 0.726 0.744 | 0.560 0.210 |

Table 3: Hierarchical clustering performance of our L2H method applied on top of the TURTLE pre-trained model on the
ImageNet1K dataset.

In Table 4, we present results obtained by applying our proposed approach using an alternative backbone model to TEMI
and TURTLE, namely the TCL flat clustering model (Yunfan et al., 2022). Unlike TEMI and TURTLE, TCL does not

14

From Logits to Hierarchies: Hierarchical Clustering made Simple

rely on pre-trained foundation model representations. This ablation highlights the generality of our method, demonstrating
that it can be effectively applied with diverse choices of the backbone model. Notably, our approach maintains good
hierarchical clustering performance even when the underlying backbone exhibits weaker flat clustering capabilities than
TEMI or TURTLE, still outperforming deep specialized hierarchical approaches (see Table 1).

| Flat Hierarchical |

[NMI (1) ARI (1) ACC (1) LP () [DP (1) LHD (1)
CIFAR-10 L2H—TCL\ 0.785 0.744 0.868 0.877 \ 0.733 0.398

|
|
CIFAR-100 L2H-TCL| 0.547 0.215 0343 0437 | 0218 0351 |

Food-101 L2H-TCL| 0.455 0.168 0279 0.348 | 0117 0.396 |

Table 4: Results obtained applying our L2H method with the TCL model used as backbone on CIFAR-10, CIFAR-100,
Food-101 datasets.

In this work, we apply our L2H algorithm on top of flat models (TURTLE and TEMI) that both leverage CLIP embeddings
to cluster the data. Hence, for further comparisons in Table 5 we report the results obtained with agglomerative clustering
with Ward’s linkage performed on pre-trained CLIP embeddings from CIFAR-10, CIFAR-100, and Food-101 datasets.
While leveraging pre-trained CLIP embeddings improves the performance of agglomerative clustering, a direct comparison
with the performance of L2ZH-TEMI (see Table 1), which is also solely based on CLIP embeddings, shows that our method
still markedly outperforms this baseline.

| Flat Hierarchical |

|NMI (1) ARL(1) ACC (1) LP(1)|DP (1) LHD ({)
CIFAR-10 Agg. (CLIP embeddings)‘ 0.799 0.724 0.805 0.826 ‘ 0.716 0.442

|
|
CIFAR-100 Agg. (CLIP embeddings)| 0.690 0.386 0.531 0.637 | 0341 0.343 |
|

Food-101 Agg. (CLIP embeddings) | 0.868 0.730 0.837 0.872 | 0.703 0.299

Table 5: Quantitative results for flat and hierarchical clustering performance of agglomerative clustering performed on CLIP
embeddings.

To provide further comparisons that complement the results in Section 4.1, Table 6 presents results on the CIFAR-100 dataset
comparing our proposed approach alongside two additional methods. First, we evaluate TreeVAE (Manduchi et al., 2023)
trained on CLIP embeddings of CIFAR-100, demonstrating that our method achieves substantially better performance. We
include this comparison as both TEMI and TURTLE have access to CLIP embeddings for training. Hence this comparison
shows that, even in a setup where deep specialized hierarchical approaches share access to foundation model embeddings, our
proposed approach achieves significantly better performance with much higher efficiency. In particular, training TreeVAE in
this setup requires hours on a GPU, while training L2ZH-TURTLE requires under two minutes. Furthermore, we include a
comparison with the recent method introduced by Lowe et al. (2024), which combines UMAP dimensionality reduction
with Ward’s agglomerative clustering for zero-shot clustering with pre-trained embeddings. Since this approach relies on
agglomerative clustering, it presents the drawback of not allowing inference on a separate test set. Hence, we both train and
evaluate the this method on the test set, which results in an unfair advantage. Despite this, our method still significantly
outperforms this additional baseline.

| NMI(1) ARI(1) ACC() LP(f) DP(f) LHD(})

TreeVAE+CLIP 0.665 0.285 0.255 0.255 0.181 0.285
Lowe et al (2024) 0.753 0.499 0.616 0.664 0.445 0.303
L2H-TEMI 0.778 0.565 0.682 0.701 0.502 0.298
L2H-TURTLE 0.917 0.831 0.896 0.897 0.803 0.235

Table 6: Performance comparison on the CIFAR-100 dataset of our L2H approach, using TURTLE and TEMI as backbone
models, with the method from Lowe et al (2024) and TreeVAE trained on CLIP embeddings. Hierarchical and flat clustering
metrics are reported.

15

From Logits to Hierarchies: Hierarchical Clustering made Simple

In Table 7, we provide an ablation that reports the results of LZH-TURTLE on the hierarchical clustering experiments from
Section 4.1 with different choices for the aggregation function A in the L2H algorithm. The results indicate that tweaks in
the aggregation function alter performance, though without abrupt changes in the metrics. These results also motivate our
designated choice of aggregation function—corresponding to the last row—which works well experimentally.

A CIFAR-10 CIFAR-100 Food-101
DP (1) LHD (1) DP (1) LHD ({) DP (1) LHD (1)

See Spepego(®) | 0988 0258 0801 0.244 0758 0.294

LOHTURTLE | &7 2oceG 17 Lwepe g0(@)| 0988 0248 0793 0.283 0751 0335

> e D] Lwepe 9o(®) | 0.988 0277 0803 0235 0758 0.297

Table 7: Results for hierarchical clustering, in terms of Dendrogram Purity and Least Hierarchical Distance, implementing
the L2H algorithm with different choices for the aggregation function A, on top of the TURTLE model.

In Figure 5 we provide an ablation to test the sensitivity of our approach to the value of the hyperparameter K, cor-
responding to the number of leaves in the hierarchy and the number of clusters set for the pre-trained flat model. In
particular, we report the results for L2ZH-TURTLE on the CIFAR-100 dataset varying the value of K across the range
{85,90, 95,100, 105,110, 115}. Note that this range is symmetric around the true number of classes/clusters equal to 100.
Therefore, we both explore the case of over- and under-estimating the true number of clusters at the leaf level of the hierarchy.
We report the results for both flat (NMI, ARI, ACC, LP) and hierarchical (DP, LHD) metrics. Best performance across all
metrics is achieved when K is set to the true number of clusters, while the performance gracefully degrades when K is set
to be an over- or under-estimated value. This demonstrates the robustness and stability of our approach with respect to this
hyperparameter, which is particularly important in practical settings where the exact true number of classes is not known a
priori. Finally, we find the log-normalized TURTLE model loss to be indicative of the true value of K, with the minimum
value achieved when K equals the true number of clusters. In practical settings, one can consider using this metric to select
the value of K when a value/proxy for the true number of clusters is not available.

Next, we perform an experiment to test whether, with datasets that are inherently hierarchical, implementing our approach
can yield an advantage over flat clustering with the backbone model. To do so, we consider the INaturalist21 dataset
(Van Horn et al., 2021), which contains 2.7 million images of natural species labelled at different taxonomy levels (1103
families, 273 orders, 51 classes, 13 phylums, 3 kingdoms). We train TURTLE to model clusters at the more fine-grained
Jfamily taxonomy level (K fqm4y = 1103). Then we implement our L2H procedure on top, and use the produced hierarchy
to make clustering predictions at coarser taxonomy levels. For instance, K4 — 1 steps from the end of the procedure
(see Algorithm 1), we have a K,,4.--clustering of the data points, and we test its performance on the test set (at the order
taxonomy level). Then, we train instances of TURTLE at each coarse taxonomy level, i.e., K € {273,51,13, 3}, and report
the corresponding test set performance for comparison. Notably, training TURTLE at the fine-grained level, and using our
L2H approach to construct a hierarchy and make predictions at more coarse levels, achieves better clustering performance
than training separate TURTLE models at each taxonomy level. Note that this performance improvement also comes with
much lower compute time, as only a single instance of the TURTLE model is trained (at the finest-grained taxonomy level).
We report the results in Table 8.

Model | Family | Order | Class | Phylum | Kingdom |

| nmi ari acc Ip |nmi ari acc Ip |nmi ari acc Ip |nmi ari acc Ip | nmi ar acc Ip

TURTLE 0.552 0.052 0.140 0.373|0.512 0.075 0.172 0.562|0.498 0.101 0.203 0.827|0.514 0.244 0.268 0.893|0.479 0.461 0.663 0.873
L2H-TURTLE|0.552 0.052 0.140 0.373|0.517 0.097 0.181 0.572{0.497 0.123 0.229 0.797|0.515 0.294 0.385 0.877|0.561 0.562 0.734 0.920

Table 8: Comparison on the INaturalist21 dataset between the clustering performance of our L2H approach at coarse levels
of the hierarchy, and the results obtained by training an instance of the backbone model at each coarse level. Results are
averaged across five independent runs, bolding the best results and results that are statistically indistinguishable from the
best.

16

From Logits to Hierarchies: Hierarchical Clustering made Simple

NMI(1) ARI(1) ACC (1)
0.92 { 0.900 0.90
—eo— NMI 0.825 » ARI —e— ACC
0.91 0.875 0.88
0.800 1
- | — 0.850 0.86
$0.90 < 0.775 ot %
= <« <0825 0.84
0.89 :
0.750 0.2
0.800 i
0.88 1 0.725 0.80
0.775 i
85 90 95 100 105 110 115 85 90 95 100 105 110 115 85 90 95 100 105 110 115 85 90 95 100 105 110 115
K K K K
DP (1) LHD (1) Log-Norm Loss ()
) T
0.80 » DP LHD ! 0.94 Log-Norm Loss
| 0.26 | 2
i i S
0.75 i | 20,93
o !) | 3
] i 50.24 i S
0.70 ! ' ©0.92 |
]] o]
]] - 1
i 0.22] |
0.65 ! i 0.91
85 90 95 100 105 110 115 85 90 95 100 105 110 115 85 90 95 100 105 110 115
K K K

Figure 5: Sensitivity analysis for LZH-TURTLE on the CIFAR-100 dataset with respect to the K hyperparameter, which
corresponds to the number of leaves in the hierarchy and the number of clusters set for training the pre-trained flat model
(TURTLE in this case). Note that the true number of clusters is equal to 100. Results for both flat (NMI, ARI, ACC, LP)
and hierarchical (DP, LHD) metrics are included, with standard deviations across five independent runs reported as shaded
areas around the line indicating mean values. We also include the log-normalized TURTLE model loss—reported in the
rightmost plot in the bottom row—that proves to be indicative for model selection with respect to the K hyperparameter.

Finally, we provide an ablation where we test a slightly different merging strategy for our L2H algorithm. In par-
ticular, instead of selecting the lowest-scoring group G* € argming.gs(G) and merging it with the most related
group GT ¢ argmax ;e g\ {G*}‘%‘ > ccc Tp(c) (see details in Section 3), we directly consider all possible pairs of
groups for merging, and merge the pair G*, G that results in the highest value for IG—lﬂ > ect TP(c), where rp(c) =
Y weDS*, hi (3G)=c gy (x; G*) (as also defined in Equation (2)). We report the results with this alternative merging
strategy in Table 9, only reporting hierarchical clustering metrics, as the merging strategy does not impact the flat level
clustering. Results show that considering all pairs of groups for merging at each step, which also results in a computational
overhead, does not bring benefits in performance.

| DP (1) LHD (1)

L2H-TURTLE (alt) | 0.797 0.246
L2H-TURTLE | 0.803 0.235

Table 9: Performance comparison on the CIFAR-100 dataset of our L2H approach, using TURTLE as backbone model,
comparing the merging strategy described in Algorithm 1 with an alternative merging strategy where at each step all pairs of
groups of clusters are considered for merging.

In Figures 6, 7, 8, we provide additional visualizations for the hierarchies obtained with our proposed method in our
hierarchical clustering experiments, complementing the quantitative and qualitative evidence shown in Section 4.1. Note
that, to produce these visualizations, as well as the other visualizations of hierarchies in this paper we used the iTOL tool
(Letunic & Bork, 2024). Leaves are matched to the original labels by checking the most frequent label among data points
contained in the leaf. In addition to the matched label, we report the purity of each leaf in percentage.

In Figure 9, we provide additional results for the ImageNet case study (Section 4.2) with different colorings for the inferred
hierarchy, supplementing our results from Section 4.2. These visualizations show where the subtree of birds (used in
Figure 3b) is located within the complete tree and in relation to other superclasses, such as mammals, reptiles, dogs, and
clothing.

17

From Logits to Hierarchies: Hierarchical Clustering made Simple

—

E—

ship 99.54
airplane 99.32
automobile 99.26
truck 99.46

4‘—4:

4‘—4:

frog 99.82
deer 99.58
bird 99.64
horse 99.80
cat 99.56

dog 99.36

Figure 6: Visualization of the hierarchical clustering produced by L2ZH-TURTLE for the CIFAR-10 dataset

s = o
2 g 2 2
% 2 T 5 2 o
B ° 2 8 g' : 2 T 5 ~ &
= ~ ~
3 3% 3 23200358 5 R 5 &
2 g 2 & 5, 9 B x o0 x S § o s S
2 6 o L @ 2 %9 g 7 3 s & ¢ X
2 % 0 @ G o x & S 3 2 o oS 9
% & © F @ p P o & 3 0 F L O 3 @ o
3 © 7 I L I F O X g "
Q & 9 o oz o a s &5 §&§ ¢ % o
% S %, R B s &y
s S0 0w P 9 &
% e e % $ &8s,
4 s B 0D § & X
% B B D §F &
% ¢)
% % D & <}°\ G
4 8\9 e & q/\
0,) STw 2 A
% P S S
T e L
9/'7;7 ‘Q, v& &
6@?6 . 7 Cd o
6, 7> N G-
n 2 S
e . @ o o
“on, e o8 ¥
q,,@ 9. © 20
o4 O
65 «° o®
0%
0% <
a%lj
<€
”8r327 gAS“
. i
Caver 5, Ll 9
8, 4T
\ou
Seal gg 52 aper 9
sh . o
rew g 7
0.65 pridge 91 9
Mouse 84,71 9
. castle 93.5
orcUpi
porcupine 94.49 house 89.09
skunk 99.58 forest 77.45
.32 .
fox 98.3 Pine tree 79,32
87 .
possum 93 Willow, tr ee 76.67
98.37 o
(accoo® ” K treg 66.99
A
el 9
Sauiv Pl trog
s Y
oot o Miree
1 6 Sup, .61
0 o o er
o o 0y, .45
o$© o)
¢ 1° ey, -5
c,oé‘\e > %y, 796
<© &q/\' 0%) -2
) 7
W a8 ey 7
IO . %
REC s %, %
& &8 2 %
& P o o & %
OIS YR
& o %, 6 %,
e & & o . Oéd\ ‘%;,’ N
& %, Q. E
S & & o % o, © %
& Y B %
Ny S ©] 1 Q 4
DR N A " R B % D
F IV & g % % B %
S S o9 2 x5 g & % o 2
€ © 5 &~ g % % T T o9 @
& & b N J N o ¢ 0 2 %8 % S X Z N2
S 5 ¥ ? $ © XN a g 2 2% ¢z 2 F 3
$ §552385%2 %93 9 %
S S £ & = ° 2 2 @9 ® O 3 .
& S T © © ® T 3 53 © =2 R ®
k< ® 5 0 8 o 8 w ©
Qo qg)_ © o o
£ 8 5
o
[=}
o

Figure 7: Visualization of the hierarchical clustering produced by L2ZH-TURTLE for the CIFAR-100 dataset.

18

From Logits to Hierarchies: Hierarchical Clustering made Simple

3
o 2
(=} hod
Q o] S 2
2 2 g Z 2 o
2 3 2 § o 3 8
2 % 8 ¥ & §
3 o
SR ER RN
s 2 < Q
8535 2:588 %8
g8 g 2585935 9«
% 2 g @ & & & § & § 2
e o ui g g s 8§y .
FTE LS8 T & g
& § & o @
S g o o
F L s S
TS5 L
[< 3
$ &
F L P »
£ 3 N
K & 8
O o)
F & N
& @ >
& & g\
& 0
& @8
Qo*
N
© NG 'LF)Q
N f
° 00‘\6 H
a(\(\ 20+
i 3’55&
ees® AR
X O
0
!
s e ®
7933
N)p\ep‘97)
- 2
pread pudding s
Ceviche 86,1, Carrot cake 76.10
Sushi 91.38 Red velvet cake 70.05
Sashimi 92.85 Chocolate mousse 46.61
Beef carpaccio 93.41 Tiramisu 73,10
8 Choc
peet salad 912) Olate mousse 3.,
03 Tozep
reewsaad 9 " Yogurt 97 gg
9554 € cream g
ese a\a¢ . 8.69
cav" Obsy, € roy
He ! san
of Dwicy,
9.5
“mp,,
A,
g, %255
‘;;5'/7 Sa,
A, ‘9/;% "y,
Wy et
& e Ds %2
%, 9% %,)
Qs Sy % 0
o, &
%, %
s 0y %y,
% s 7, 4
o & % &
Z, o, X &
Q % %,) Q.
s % G, T ¥
S % Yo %
DY SN AN
o & % % % @ 6
2% 5 2 V% B
v @ F 2 2 T e G
g e 0o I 5 = 2 Q T, 0,
A - S S S-S A - S
§ 8§ 2z 3 S 3 % & A
= 3 S 0 =2 ﬁ o
£ 8 3 ¢& 3 5 % 3 ©
g &
FEr e’
S 2 3 ()
ER

Figure 8: Visualization of the hierarchical clustering produced by L2ZH-TURTLE for the Food-101 dataset.

19

From Logits to Hierarchies: Hierarchical Clustering made Simple

\}\ \\
WordNet hypernym \\\\

[] bird

[dog N\

N
[] clothing \

WordNet hypernym \

[bird \
] mammal N\
[] repile A

(b) Colored by bird, mammal, and reptile

Figure 9: Visualization of the hierarchy produced by our method in the experiment on ImageNet from Section 4.2. We show
the complete tree of 1k classes colored by the corresponding WordNet hypernyms “bird”, “dog”, and “clothing” (Figure 9a)
and by “bird”, “mammal”, and “reptile” (Figure 9b).

20

