
Universal Neural Optimal Transport

Jonathan Geuter 1 2 * Gregor Kornhardt 3 * Ingimar Tomasson 3 * Vaios Laschos 4

Abstract
Optimal Transport (OT) problems are a corner-
stone of many applications, but solving them
is computationally expensive. To address this
problem, we propose UNOT (Universal Neural
Optimal Transport), a novel framework capable
of accurately predicting (entropic) OT distances
and plans between discrete measures for a given
cost function. UNOT builds on Fourier Neural
Operators, a universal class of neural networks
that map between function spaces and that are
discretization-invariant, which enables our net-
work to process measures of variable resolutions.
The network is trained adversarially using a sec-
ond, generating network and a self-supervised
bootstrapping loss. We ground UNOT in an ex-
tensive theoretical framework. Through experi-
ments on Euclidean and non-Euclidean domains,
we show that our network not only accurately
predicts OT distances and plans across a wide
range of datasets, but also captures the geometry
of the Wasserstein space correctly. Furthermore,
we show that our network can be used as a state-
of-the-art initialization for the Sinkhorn algorithm
with speedups of up to 7.4×, significantly outper-
forming existing approaches.

1. Introduction
Optimal Transport (Villani, 2009; Peyré & Cuturi, 2019)
plays an increasing role in various areas in machine learn-
ing, such as domain adaptation (Courty et al., 2017), single-
cell genomics (Schiebinger et al., 2019), imitation learn-
ing (Dadashi et al., 2020), imaging (Schmitz et al., 2018),
dataset adaptation (Alvarez-Melis & Fusi, 2021), and signal
processing (Kolouri et al., 2017). Oftentimes, an entropic

*Equal contribution 1Harvard John A. Paulson School of En-
gineering and Applied Sciences 2Kempner Institute at Harvard
University 3Department of Mathematics, Technische Universität
Berlin, Germany 4Weierstrass Institute, Berlin, Germany. Corre-
spondence to: Jonathan Geuter <jonathan.geuter@gmx.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

MNIST CIFAR MNIST
CIFAR

LFW-BEAR LFW BEAR
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Re
la

tiv
e

Er
ro

r

28x28 28x28 28x28 64x64 64x64 64x64

Ones
Gauss
UNOT

Figure 1. Errors on the OT distance after a single Sinkhorn itera-
tion for the default initialization (Ones), the Gaussian one (Thorn-
ton & Cuturi, 2022), and ours (UNOT), for c(x,y) = ∥x− y∥2.

regularizer is added, as this allows for efficient computation
of the solution via the Sinkhorn algorithm (Cuturi, 2013).
The entropic OT problem between probability measures
µ ∈ P(X), ν ∈ P(Y) on Polish spaces X , Y , given a cost
function c : X × Y → R ∪ {∞}, is defined as

OTϵ(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c dπ − ϵKL(π||µ⊗ ν), (1)

where Π(µ, ν) is the set of all transport plans (i.e. mea-
sures on X × Y that admit µ resp. ν as their marginals),
KL(π||µ⊗ ν) =

∫
log(π/µ⊗ ν)dπ is the KL divergence

of π from µ⊗ ν, and ϵ > 0 is a regularizing coefficient.1

Many of these applications require solving problem (1) re-
peatedly, such as in single-cell perturbations (Bunne et al.,
2022; 2023b;a), Natural Language Processing (Xu et al.,
2018), flow matching with OT couplings (Tong et al., 2024;
Pooladian et al., 2023), or even seismology (Engquist &
Froese, 2013). However, solving OT problems is computa-
tionally expensive, and fast approximation methods are an
active area of research. Variations of the transport problem,
such as (generalized) sliced Wasserstein distances (Kolouri
et al., 2015; 2019), reduce computational complexity at

1For a background on OT, see Appendix A.

1

Universal Neural Optimal Transport

the cost of accuracy via random projections. Two previous
works are aimed at predicting good initializations for the
Sinkhorn algorithm, which can iteratively solve problem (1).
In (Thornton & Cuturi, 2022), initializations are computed
from OT problems between Gaussians. (Amos et al., 2023)
train a neural network to predict transport plans and costs
via the entropic dual OT problem (Section 2). While their
framework shares some similarities with ours (see Section
5), it is inherently limited to measures of fixed dimension
from the training dataset. Instead, we present a Universal
Neural OT (UNOT) solver which, given discrete measures
µ ∈ P(X) and ν ∈ P(Y) of variable resolution (viewed as
discretizations of continuous measures; see Section 3.1), can
accurately predict the OT cost and plan associated with prob-
lem (1). To this end, we leverage Fourier Neural Operators
(FNOs) (Kovachki et al., 2024), a discretization-invariant
class of neural networks that can process inputs of variable
sizes. An FNO Sϕ is trained to predict a solution to the dual
OT problem (Section 2) given two measures (µ,ν), from
which the primal problem (1) can be solved. Training is
self-supervised with an adversarial generator network Gθ

which creates training distributions Gθ(z) = (µ,ν) from
z ∼ ρz = N (0, I) (see Section 3.4). We want to high-
light that in contrast to most neural OT frameworks, such
as (Bunne et al., 2023a; Uscidda & Cuturi, 2023; Korotin
et al., 2023), we generalize across OT problems (given a
fixed cost). GeONet (Gracyk & Chen, 2024) also uses Neu-
ral Operators to learn Wasserstein geodesics. In Section 4,
we show that UNOT significantly outperforms GeONet on
approximating geodesics, despite not being trained on them.

Our contributions are as follows:
• present UNOT, the first neural OT solver capable of

generalizing across datasets and input dimensions

• introduce a generator Gθ (Section 3.3) which can prov-
ably generate any discrete distribution (of fixed dimen-
sion) during training (in fact, we prove this result for a
very general class of residual networks, see Theorem 3
and Corollary 4)

• propose a self-supervised bootstrapping loss which
provably minimizes the loss against the ground truth
dual potentials (Proposition 5)

• show that UNOT can accurately predict OT distances
across various datasets, costs, and domains of different
dimensions up to a few percent error, and that it accu-
rately captures the geometry of the Wasserstein space
by approximating barycenters (Section 4)

• approximate Wasserstein geodesics through barycen-
ters and OT plans predicted by UNOT (Section 4)

• demonstrate how UNOT sets a new state-of-the-art for
initializing the Sinkhorn algorithm while maintaining
its desirable properties, such as parallelizability and
differentiability (Section 4)

2. Background
We give a brief overview of optimal transport, and how it
relates to UNOT. For a more thorough introduction, see
Appendix A.1 or (Peyré & Cuturi, 2019; Villani, 2009).

Notation. We write vectors in bold (x, u, etc.) and matrices
in capitals (X , U , etc.). 1n ∈ Rn denotes the all-ones
vector, ∆n−1 the simplex in Rn, and all elements in ∆n−1

with positive entries are denoted by ∆n−1
>0 . P(X) denotes

the space of probability measures on X , and Pp(X) the
set of probability measures with finite p-th moments. For
µ ∈ P(X) and a map T , we denote by T#µ the pushforward
of µ under T , i.e. the measure µ ◦ T−1. S2 = {x ∈ R3 :
∥x∥ = 1} is the unit sphere in R3.

2.1. Optimal Transport

Unregularized Optimal Transport. The unregularized
problem takes the form infπ∈Π(µ,ν)

∫
X×Y c(x, y)dπ(x, y),

akin to (1) without the regularization term. In the case where
X = Y , c(x, y) = d(x, y)p for p ≥ 1 and a metric d on X ,
the Wasserstein-p distance is defined as

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
X×X

d(x, y)pdπ(x, y)
) 1

p

, (2)

which is indeed a distance on the space Pp(X) of Borel
measures with finite p-th moments (Villani, 2009).

Dual Optimal Transport Problem. The regularized Kan-
torovich problem (1) admits a dual formulation:

sup
f∈L1(µ),g∈L1(ν)

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y)− ıϵ(f, g),

(3)
where

ıϵ(f, g) = ϵ

∫
X×Y

e
1
ϵ (f(x)+g(y)−c(x,y)) − 1dµ(x)dν(y).

It can be shown that if c ∈ L1(µ ⊗ ν), the values of the
primal (1) and the dual (3) coincide (Nutz, 2022).

Disrete Optimal Transport. We want to apply UNOT
to discretizations of measures µ ∈ P(X), ν ∈ P(Y)
(see Section 3.1). To this end, consider measures µ and
ν that are supported on finitely many points x1, ..., xm ∈ X ,
y1, ..., yn ∈ Y resp, i.e. µ =

∑m
i=1 aiδxi

, ν =
∑n

j=1 bjδyj
.

By abusing notation, we can write µ ∈ Rm
≥0 and ν ∈ Rn

≥0.2

Note that the dual potentials in problem (3) are elements in
L1(µ) resp. L1(ν), hence we can abuse notation again and
consider the potentials f ∈ Rm and g ∈ Rn to be vectors
as well. This point of view gives rise to discrete optimal

2Whenever we view a discrete measure or a function as a vector,
we will use bold characters.

2

Universal Neural Optimal Transport

transport. We set C ∈ Rm×n via Cij = c(xi, yj), and view
transport plans as matrices Π ∈ Rm×n (see Appendix A.1
for a more thorough introduction to discrete OT). The fol-
lowing proposition shows that the plan Π can be recovered
from the dual vectors f and g (Peyré & Cuturi, 2019).

Proposition 1. Define the Gibbs kernel K = exp(−C/ϵ).
The unique solution Π of the discrete OT problem is given
by

Π = diag(u)Kdiag(v) (4)

for two positive scaling vectors u and v unique up to a
scaling constant (i.e. λu, 1

λv for λ > 0). Furthermore,
(u,v) are linked to a solution (f , g) of the dual problem
via

(u,v) = (exp(f/ϵ), exp(g/ϵ)) .

In Section 3.1, we show how the solution to the entropic
dual between discrete (µn,νn) converges to the solution of
the continuous dual (3) as (µn,νn) converge to continuous
measures (µ, ν) in some way, which will be crucial for the
design of our network Sϕ.

2.2. The Sinkhorn Algorithm

The Sinkhorn Algorithm 1 can iteratively solve the discrete
dual problem and was introduced in (Cuturi, 2013). It re-
quires an initialization v0 ∈ Rn, which is typically set to
1n, and µ and ν to be positive everywhere.

Algorithm 1 Sinkhorn(µ,ν > 0,K = exp(−C/ϵ), ϵ,v0)
1: for l = 0, ..., N do
2: ul+1 ← µ./Kvl

3: vl+1 ← ν./K⊤ul+1

4: end for
5: Π← diag(ul)Kdiag(vl), OTϵ(µ,ν)← ⟨C,Π⟩
6: return u, v, Π, OTϵ(µ,ν)

In the algorithm, ./ is to be understood as element-wise
division. Sinkhorn and Knopp (Sinkhorn & Knopp, 1967)
showed that the iterates ul and vl from the algorithm con-
verge to the vectors u and v from Proposition 1.

2.3. Predicting Dual Potentials

Given discrete measures µ and ν, UNOT should ultimately
be used to approximate the associated transport plan and
cost. However, given an optimal dual potential v, the corre-
sponding potential u can be computed as

u = µ./Kv, (5)

which also holds at convergence of the Sinkhorn algorithm.
Thus, solving for the m × n-dimensional plan Π can be
reduced to a n-dimensional problem over v. Since com-
putations in the log space tend to be more stable (Peyré &

Cuturi, 2019), we will instead let UNOT predict the dual
potential g = ϵ log(v), i.e.

Sϕ(µ,ν) = g, µ ∈ P(X),ν ∈ P(Y).

The prediction g can then be used to solve the entropic OT
problem via the relationship (5) and Proposition 1, or to
initialize the Sinkhorn algorithm via v0 = exp(g/ϵ).

Note that the solution to the entropic dual is not unique (see
Proposition 1). How we account for this non-uniqueness is
explained in Section 3.4. However, when endowing Rm ×
Rn with the equivalence relation (u1,v1) ∼ (u2,v2) ⇔
∃λ > 0 : (u1,v1) = (λu2,

1
λv2) (i.e. accounting for the

non-uniqueness of the dual solution), the map (µ,ν) 7→ v,
mapping two measures to the associated dual potential in
the quotient space, is Lipschitz continuous (Carlier et al.,
2022), which supports its learnability by a neural network.

3. Universal Neural Optimal Transport
Consider the OT problem between two (grayscale) images,
encoded as vectors in µn,νn ∈ Rn. These can be viewed
as discrete measures on P([0, 1]2), which discretize contin-
uous measures µ, ν ∈ P([0, 1]2), where the discretization
depends on the resolution of the image, and the continu-
ous measures correspond to the images at ”infinite” resolu-
tion. UNOT should predict the corresponding dual potential
gn ∈ Rn solving (3) independent of the resolution n.3 In
Section 3.1, we establish a convergence result for the dual
potentials as n→∞, which justifies the use of Neural Oper-
ators (Kovachki et al., 2024) as a parametrization of Sϕ; also
see Section 3.2. Furthermore, as we want UNOT to work
across datasets, we require a generator Gθ that can provably
generate any pair of distributions during training (Section
3.3). In Section 3.4, we construct an adversarial training ob-
jective for Sϕ and Gθ . Further details about hyperparameter
and architecture choices can be found in Appendix C. The
implementation and model weights are available at https:
//github.com/GregorKornhardt/UNOT.

3.1. Convergence of Dual Potentials

In this section, we prove convergence of the discrete dual
potentials gn as n goes to infinity. For brevity, this section
is kept informal; see Appendix B for a formal treatment.
Assume now that X = Y ⊆ RN is compact, and c(x, y) is
Lipschitz continuous in both its arguments. For absolutely
continuous µ, ν ∈ P(X), denote by (µn)n∈N, (νn)n∈N ⊂
P(X) discretizing sequences of µ and ν (formally defined in

3Note that while we consider images as an example, the learn-
ing task is the same for any setting where discrete measures of
varying resolution share an underlying continuous cost function,
which arises in settings such as single-cell genomics, fluid dynam-
ics, point cloud processing, or economics.

3

https://github.com/GregorKornhardt/UNOT
https://github.com/GregorKornhardt/UNOT

Universal Neural Optimal Transport

Appendix B). While a solution (fn, gn) of the discrete dual
problem between µn and νn is only defined µn - resp. νn -
a.e., it can be canonically extended to all of X (Feydy et al.,
2018) (see Appendix B for details). The following proposi-
tion shows that the extended potentials (fn, gn) converge to
the solution (f, g) of the continuous entropic problem.
Proposition 2. (Informal) Let (µn)n∈N, (νn)n∈N be dis-
cretizing sequences for absolutely continuous µ, ν ∈ P(X).
Let (fn, gn) be the (unique) extended dual potentials of
(µn, νn) such that fn(x0) = 0 for some x0 ∈ X and all n.
Let (f, g) be the (unique) dual potentials of (µ, ν) such that
f(x0) = 0. Then fn and gn converge uniformly to f and g
on all of X .

A formal version and its proof can be found in Appendix B.
This proposition is crucial in designing our network Sϕ, as
we discuss in the following section.

3.2. Fourier Neural Operators

Fourier Neural Operators (FNOs) (Kovachki et al., 2024)
are neural networks mapping between infinite-dimensional
function spaces. More precisely, a neural operator is a map
F : A → U between Banach spaces A and U of functions
a ∈ A : Da → Rd′

a and u : Du → Rd′
u respectively, for

bounded domains Da ⊂ Rda and Du ⊂ Rdu . An input
function a ∈ A evaluated at points x1, ...,xn ∈ Rda can be
encoded as a vector a = [a(x1), ..., a(xn)] ∈ Rn×d′

a ; the
same applies to the output function u ∈ U , which can be
written as u = [u(y1), ..., u(ym)] ∈ Rm×d′

u , correspond-
ing to the values at y1, ...,ym ∈ Rdu . At its core, an FNO
applies a sequence of L ”kernel layers” to the input vector a.
In each of these layers, a fixed number of Fourier features of
the discrete Fourier transform of the input is computed, the
features are transformed by a (C-valued) linear layer (we
use a two-layer network in practice instead, as we found
it to improve performance), and then mapped back by the
inverse Fourier transform. Importantly, neural operators
are by construction discretization-invariant when inputs and
outputs correspond to discretizations of underlying func-
tions. This is exactly what Proposition 2 guarantees: the
dual potentials corresponding to measures µn and νn con-
verge uniformly to the continuous potentials corresponding
to the limiting distributions µ and ν as the resolution of
µn and νn increases. Hence, FNOs are a natural choice of
architecture in our setting. More details on FNOs, and how
we implemented Sϕ, can be found in Appendix A.5.

3.3. Generating Measures for Training

UNOT is trained on pairs of distributions generated by a
generator network Gθ of the following form:

Gθ : Rd → P(X)× P(X)
z ∼ ρz 7→ R [ReLU (NNθ(z) + λ Id,d′(z)) + δ] , (6)

where ρz = N (0, Id) is a Gaussian prior, NNθ is a trainable
neural network (in practice, we use a 5-layer fully connected
MLP, see Appendix C), Id,d′ is an interpolation operator
matching the generator’s output dimension d′ and acting as
a skip connection reminiscent of ResNets (He et al., 2016),
and λ > 0 is a constant for the skip connection. δ > 0
is a small constant needed to generate our targets with the
Sinkhorn algorithm, as outlined in Section 3.4. R denotes
renormalizing to two probability measures and downsam-
pling them to random dimensions in a set range, such that Sϕ
trains on measures of varying resolutions, which is known to
improve NO training (Li et al., 2024a). More specifically, if
we write [x1,x2] = ReLU (NNθ(z) + λ Id,d′(z)) + δ for
two vectors x1 and x2 of equal size (say both with n sam-
ples), R first maps them to [x1/

∑
i(x1)i,x2/

∑
i(x2)i]

and then uses 2D bilinear interpolation to downsample them
to m samples each. The generator is universal in the follow-
ing sense:

Theorem 3. Let 0 < λ ≤ 1 and Gθ : Rd → Rd be defined
via

Gθ(z) = ReLU (NNθ(z) + λz) ,

where z ∼ ρz = N (0, I), and where NNθ : Rd → Rd is
Lipschitz continuous with Lip(NNθ) = L < λ. Then Gθ

is Lipschitz continuous with Lip(q) < L+ λ, and G̃(z) :=
NNθ(z) + λz is invertible on Rd. Furthermore, for any
x ∈ Rd

≥0 it holds

ρGθ#ρz (x) ≥
1

(L+ λ)d
N
(
G̃θ

−1
(x)|0, I

)
.

In other words, Gθ#ρz has positive density at any non-
negative x ∈ Rd

≥0.

This shows that any pair of discrete probability measures
(µ,ν) of joint dimension d can be generated by Gθ. A di-
rect consequence of the theorem is an extension to functions
that are compositions of functions G̃θ as above, which cov-
ers a wide class of ResNets. Both proofs can be found in
Appendix B.

Corollary 4. Let G̃θ = G̃θ1 ◦ G̃θ1 ◦ ... ◦ G̃θR
be a compo-

sition of functions G̃θi
, each of which is of the form as in

Theorem 3. Let z ∼ ρz = N (0, I). Then

ρG̃θ#ρz
(x) ≥ 1

(L+ λ)Rd
N
(
G̃θ

−1
(x)|0, I

)
for any x ∈ Rd. As in Theorem 3, this also holds for any
x ∈ Rd

≥0 if G̃θ is followed by a ReLU activation.

Although the more general Corollary 4 is not needed for our
purposes, it might be of independent interest to the research
community. Note that the generator in Theorem 3 does not
exactly match our generator’s architecture. A discussion of
how the theorem relates to our setting, as well as further
details on the generator, can be found in Appendix C.

4

Universal Neural Optimal Transport

Figure 2. Generated pair of training samples (lighter=more mass).

Figure 2 shows a pair of samples generated by Gθ. The
generator seems to layer highly structured shapes with more
blurry ones. More examples, as well as an analysis of the
performance of Sϕ on samples generated by Gθ over the
course of training, can be found in Appendix D.6.

3.4. UNOT Training Algorithm

Given a pair of distributions (µ,ν) = Gθ(z) (in this
section, we will remove the subscript n for clarity),
Sϕ(µ,ν) =: gϕ should predict the true dual potential
g associated with µ and ν. Hence, we could simply
compute the true potential g with the Sinkhorn algorithm
and use L2(gϕ, g) := ∥gϕ − g∥22 as our training loss.
However, it would be prohibitively expensive to run the
Sinkhorn algorithm until convergence. Hence, we instead
employ a bootstrapping loss on the prediction gϕ. Let
τk : (µ,ν, gϕ) 7→ gτk denote running the Sinkhorn al-
gorithm on (µ,ν) with initialization v0 = exp(gϕ/ϵ) for
a very small number of iterations k, i.e. warmstarting the
Sinkhorn algorithm with the current prediction gϕ, and re-
turning ϵ log v = gϕ.4 To ensure uniqueness and improve
training, we shift gτk to have zero sum; this corresponds to
the non-uniqueness of the dual potentials, see Proposition
1. Minimizing L2(gϕ, gτk) implies minimizing the ground
truth loss L2(gϕ, g) against the true potential g.

Proposition 5. For two discrete measures (µ,ν) with n
particles, let g be an optimal dual potential, gϕ = Sϕ(µ,ν),
and gτk = τk(µ,ν, gϕ). Without loss of generality, assume
that

∑
i gi =

∑
i gτk i = 0. Then

L2(gϕ, g) ≤ c(K, k, n) L2(gϕ, gτk)

for some constant c(K, k, n) > 1 depending only on the
Gibbs kernel K, k and n.

The proposition shows that minimizing L2(gϕ, gτk) implies
minimizing L2(gϕ, g), i.e. the loss between the prediction
and the ground truth potential. The proof is based on the
Hilbert projective metric (Peyré & Cuturi, 2019) and can be
found in Appendix B.

Training objective. Having defined the loss for Sϕ, as well

4The Sinkhorn algorithm requires input measures to be positive;
this is the reason we add the constant δ > 0 in the generator.

Algorithm 2 UNOT Training Algorithm
1: in cost c, reg parameter ϵ, prior ρz , learning rates {αi}i,
{βi}i, Sinkhorn target generator τk

2: for i = 1, 2, ..., T do
3: z ← sample(ρz)
4: (µ,ν)← Gθ(z)
5: for mini-batch (µb,νb) in (µ,ν) do
6: gϕ ← Sϕ(µ

b,νb)
7: gτk ← τk(µ

b,νb, gϕ)
8: ϕ← ϕ− αi∇ϕ L2(gτk , gϕ)
9: end for

10: for mini-batch zb in z do
11: (µθ,νθ)← Gθ(z

b)
12: gθ ← Sϕ(µθ,νθ)
13: gτk ← τk(µθ,νθ, gθ)
14: θ ← θ + βi∇θ L2(gτk , gθ)
15: end for
16: end for

as the target generation procedure, the training objective
for Sϕ and Gθ consists of Sϕ trying to minimize the loss
L2(gϕ, g), while Gθ attempts to maximize it, similar to
the training objective in GANs (Goodfellow et al., 2014).
Putting everything together, our adversarial training objec-
tive for Sϕ and Gθ reads

max
θ

min
ϕ

Ez∼ρz [L2 (τk (G(z),S(G(z))) ,Sϕ(Gθ(z)))] ,

(7)
where S and G without subscripts denote no gradient track-
ing, as the target is not backpropagated through. The train-
ing algorithm can be seen in Algorithm 2. In practice, train-
ing will be batched, which we omitted for clarity. Note
that vectors g with subscripts θ or ϕ are backpropagated
through with respect to these parameters, whereas target
vectors (with subscript τk) are not.

4. Experiments
Training Details. We test UNOT in three different settings:
a) with c(x,y) = ∥x− y∥22 on the unit square X = [0, 1]2;
b) with c(x,y) = ∥x− y∥2 on [0, 1]2; c) with the spher-
ical distance c(x,y) = arccos(⟨x,y⟩) on the unit sphere
S2 = {x ∈ R3 : ∥x∥ = 1}. For each of these settings, we
train a separate model on 200M samples z, where training
samples (µ,ν) are between 10×10 and 64×64 dimensional
(randomly downsampled in Gθ). Training takes around 35h
on an H100 GPU. Sϕ is an FNO with 26M parameters op-
timized with AdamW (Loshchilov & Hutter, 2019); Gθ is
a fully connected MLP with 272k parameters optimized
with Adam (Kingma & Ba, 2017). In the spherical setting
c(x,y) = arccos(⟨x,y⟩) we parametrize Sϕ with a Spher-
ical FNO (SFNO) (Bonev et al., 2023) instead, which is
essentially an FNO adapted to the sphere; for more details

5

Universal Neural Optimal Transport

Table 1. Mean number of iterations needed to achieve 0.01 relative
error on the OT distance for c(x,y) = ∥x− y∥2.

UNOT (OURS) ONES GAUSS

MNIST 3± 5 16± 9 10± 7
CIFAR 3± 6 80± 22 52± 19
CIFAR-MNIST 4± 4 32± 15 13± 9
LFW 7± 8 78± 20 35± 14
BEAR 4± 6 41± 16 25± 13
LFW-BEAR 4± 6 53± 18 29± 13

Table 2. Relative speedup of Sinkhorn with UNOT and cost
c(x,y) = ∥x− y∥2. Time in s to achieve 0.01 relative error
on the OT distance.

UNOT (OURS) ONES SPEEDUP

MNIST 1.2 · 10−3 1.5 · 10−3 1.25
CIFAR 9.5 · 10−4 7.1 · 10−3 7.4
CIFAR-MNIST 1.3 · 10−3 2.7 · 10−3 2.07
LFW 3.0 · 10−3 1.5 · 10−2 5
BEAR 2.6 · 10−3 1.0 · 10−2 3.8
LFW-BEAR 2.7 · 10−3 1.2 · 10−2 4.4

on FNOs and SFNOs see Appendix A.5. We highlight that
Sϕ is relatively small, such that its runtime vanishes com-
pared to the runtime of even just a few Sinkhorn iterations,
making it much cheaper to run than Sinkhorn (see Section
4.1). We set k (the number of Sinkhorn iterations in τk) to
5, and ϵ = 0.01. Additional training details can be found in
Appendix C.

We demonstrate the performance of the three models on vari-
ous tasks, such as predicting transport distances, initializing
the Sinkhorn algorithm, computing Sinkhorn divergence
barycenters, and approximating Wasserstein geodesics. For
the Euclidean settings a) and b) (from above), we view im-
ages as discrete distributions on the unit square, and test on
MNIST (28×28), grayscale CIFAR10 (28×28), the teddy
bear class from the Google Quick, Draw! dataset (64×64),
and Labeled Faces in the Wild (LFW, 64×64), as well as
cross-datasets CIFAR-MNIST and LFW-Bear (where µ
comes from one dataset and ν from the other). For the
spherical setting c), we project these images onto the unit
sphere in R3 (for details, see Appendix D.1). Unless oth-
erwise noted, we perform a single Sinkhorn iteration on
g = Sϕ(µ,ν) in all experiments in order to compute the
second potential f . Errors are averaged over 500 samples.
Additional experiments, including a sweep over input sizes
10× 10 to 64× 64, as well as variants of UNOT for fixed
input dimension or variable ϵ, can be found in Appendix D.

4.1. Predicting Transport Distances

We compare the convergence of the Sinkhorn algorithm in
terms of relative error on the transport distance OTϵ(µ,ν)
for our learned initialization v0 = exp(Sϕ(µ,ν)/ϵ) to

0.0

0.1

0.2

0.3
MNIST(28x28) CIFAR(28x28) MNIST-CIFAR(28x28)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3
LFW(64x64)

0 10 20 30 40 50
Iteration

BEAR(64x64)

0 10 20 30 40 50
Iteration

LFW-BEAR(64x64)

Re
la

tiv
e

Er
ro

r

UNOT Gauss Ones

Figure 3. Relative error on the OT distance for Sinkhorn with our
initialization (UNOT), compared to the default (Ones) and Gaus-
sian initialization (Gauss) (Thornton & Cuturi, 2022).

the default initialization 1n and the Gaussian initializa-
tion from (Thornton & Cuturi, 2022), which is based on
closed-form solutions for Gaussian distributions. Note
that the Gaussian initialization is only valid for c(x,y) =
∥x− y∥2, hence we omit it when c(x,y) = ∥x− y∥ or
c(x,y) = arccos(⟨x,y⟩).5 We do not compare to Meta
OT (Amos et al., 2023) here, as their approach is inher-
ently dataset dependent and breaks down when testing on
out-of-distribution data.6 For completeness, we include a
detailed comparison in Appendix D.2, which shows that
UNOT significantly outperforms Meta OT on all datasets
except MNIST, the training dataset of Meta OT. Surprisingly,
UNOT also almost matches Meta OT on MNIST, despite
not having seen any MNIST samples during training, while
Meta OT was explicitly trained on them.

Figure 1 (Section 1) shows the relative error on OTϵ(µ,ν)

after a single Sinkhorn iteration for c(x,y) = ∥x− y∥2,
and Figure 4 shows the same plot for c(x,y) = ∥x− y∥ on
the square, and c(x,y) = arccos(⟨x,y⟩) on the sphere. In
Figure 3, we plot the relative error on the OT distance over
the number of Sinkhorn iterations for c(x,y) = ∥x− y∥2
(for the equivalent plots for the other cost functions, please
see Appendix D.7), demonstrating that UNOT can be used
as a state-of-the-art initialization. Table 1 shows the average
number of Sinkhorn iterations needed to achieve 0.01 rela-
tive error on OTϵ(µ,ν) for c(x,y) = ∥x− y∥2. In Table
2 we show the relative speedup achieved by initializing the
Sinkhorn algorithm with UNOT implemented in JAX over
the default initialization (on a batch size of 64 in float32

5If the cost function is not ∥x− y∥2, the Gaussian initializa-
tion is not theoretically justified. Empirically, we noted that it
behaves similar to the default initialization in these cases.

6We note that it should be possible to finetune UNOT on spe-
cific datasets as well; however, we have not tested this.

6

https://github.com/googlecreativelab/quickdraw-dataset

Universal Neural Optimal Transport

MNIST CIFAR MNIST
CIFAR

LFW-BEAR LFW BEAR
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Re
la

tiv
e

Er
ro

r

28x28 28x28 28x28 64x64 64x64 64x64

Ones
UNOT

MNIST CIFAR MNIST
CIFAR

LFW-BEAR LFW BEAR
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Re
la

tiv
e

Er
ro

r

28x28 28x28 28x28 64x64 64x64 64x64

Ones
UNOT

Figure 4. Error on the OT distance after a single Sinkhorn iteration with UNOT vs. the default initialization (Ones) for cost ∥x− y∥ on
the square [0, 1]2 (left) and arccos(⟨x,y⟩) on the sphere {x ∈ R3 : ∥x∥ = 1} (right).

Ou
rs

Tr
ue

Figure 5. Sinkhorn divergence barycenters computed with UNOT
via eq. (10) (top) vs. ground truth (bottom) of between 5 to 10
MNIST samples of the same digit per barycenter.

on an NVIDIA 4090). We achieve an average speedup of
3.57 on 28× 28 datasets and 4.4 on 64× 64 datasets.7 For
comparison, the relative speedup achieved in (Amos et al.,
2023) was 1.96 (for a model trained only on MNIST).

4.2. Sinkhorn Divergence Barycenters

The Wasserstein barycenter for a set of measures
{ν1, ..., νN} ⊂ P2(X) and λ ∈ ∆n−1 is defined as

µ = argmin
µ′∈P2(X)

∑
i

λiW
2
2 (µ

′, νi). (8)

7We did not optimize the network Sϕ much for efficiency,
and more efficient implementations likely exist. Note that FNOs
process complex numbers, but PyTorch is heavily optimized for
real number operations. With kernel support for complex numbers,
UNOT will likely be much faster. In addition, computation times
can vary significantly across hardware, batch sizes, precision, etc.

To make this problem tractable, consider the Sinkhorn di-
vergence barycenter

µ = argmin
µ′∈P2(X)

∑
i

λi SDϵ(µ
′, νi), (9)

where the Sinkhorn divergence8 between µ and ν is

SDϵ(µ, ν) = OTϵ(µ, ν)−
1

2
OTϵ(µ, µ)−

1

2
OTϵ(ν, ν).

Now for discrete measures µ,ν, denote by (f , g) the dual
potentials for OTϵ(µ,ν), and by p that for OTϵ(µ,µ).9

Writing µ =
∑

i aiδxi for some a ∈ Rn, the gradient of
(9) w.r.t a is given by (cf. (Feydy et al., 2018)):

∇aSDϵ(µ,ν) = f − p. (10)

Hence, we can solve (9) with (projected) gradient descent,
where Sϕ predicts f and p in (10).10 Further details and
a pseudocode can be found in Appendix A.2. Through-
out this section, we set c(x,y) = ∥x− y∥2, and always
run 200 gradient steps using gradients from (10). Figure
5 shows UNOT barycenters vs. the true barycenters (com-
puted with the POT library) of between 5 and 10 MNIST
samples of the same digit per barycenter. In Appendix D.7,
we also provide quantitative results for barycenters with
different initializations. In Figure 6, we show barycenters
computed between four shapes. UNOT accurately predict-
ing barycenters demonstrates it captures the geometry of the
Wasserstein space beyond predicting distances.

8It can be seen as a debiased version of OTϵ(µ, ν), and we
use it as an approximation of the squared Wasserstein distance.

9If both measures are identical, the dual potentials can be cho-
sen to be identical as well.

10To be precise, this solves the barycenter problem on the dis-
crete space {x1, ..., xn}.

7

Universal Neural Optimal Transport

Figure 6. UNOT barycenters computed between four shapes (cor-
ners) by linearly interpolating λ = (λ1, λ2, λ3, λ4) from eq. (9)
between the four unit vectors, and solving via eq. (10) with UNOT.

4.3. Calculating Geodesics

Let µ, ν ∈ P2(X) be two measures such that ν = T#µ for
an optimal transport map T : X → X (which exists for
the non-entropic optimal transport problem under certain
conditions, see Appendix A.1). The Wasserstein geodesic
between µ and ν, also called McCann interpolation, is the
constant-speed geodesic between µ and ν and given by

µt : [0, 1]→ P2(X), t 7→ [(1− t)Id + tT]#µ.

It can be interpreted as the shortest path between µ and ν.
The Wasserstein barycenter (8) between (µ, (1 − t)) and
(ν, t) (i.e. where 1−t and t are the weights λi from equation
(8)) turns out to be equal to µt (Agueh & Carlier, 2011).
This gives us two methods to approximate the Wasserstein
geodesic between µ and ν: Either by iteratively computing
barycenters as in Section 4.2, or by computing the (entropic)
transport plan from equation (4) as an approximation to
T (we are leaving out some technicalities for brevity here,
which can be found in Appendix A.3). We compare the
geodesics computed by UNOT to the ground truth geodesic
(obtained from the true OT plan), as well as to GeONet
(Gracyk & Chen, 2024), a recently proposed framework that
also uses Neural Operators to learn Wasserstein geodesics
directly by parametrizing a coupled PDE system encoding
the optimality conditions of the dynamic OT problem. Akin
to (Amos et al., 2023), GeONet is inherently dataset depen-
dent. Figure 8 shows the McCann interpolation between
two MNIST digits using the ground truth OT plan, the OT
plan computed by UNOT, barycenters computed by UNOT,
and the GeONet geodesic, where we use the UNOT model
trained with c(x,y) = ∥x− y∥2 again. We see that despite

Figure 7. Sinkhorn divergence particle flow between distributions
of images, from noise to LFW (64x64). Gradients computed via
eq. (11) and (10) with UNOT. Bottom row is target images.

GeONet being trained to predict geodesics on MNIST, while
UNOT does not train on geodesics, nor on MNIST, both
geodesics computed by UNOT are significantly closer to the
ground truth than the GeONet geodesic.

4.4. Wasserstein on Wasserstein Gradient Flow

Oftentimes in machine learning, the distributions of interest
are not images, but distributions over images, such as in
generative modeling. In this experiment, we show that
UNOT can successfully transport distributions over images
as well. Let µ̂, ν̂ ∈ P2((P2([0, 1]

2), c),W2), i.e. the space
of distributions over images equipped with the Wasserstein
distance (and P([0, 1]2) being equipped with c(x,y) =

∥x− y∥2). Denote by ŜDϵ(µ̂, ν̂) the Sinkhorn divergence
between µ̂ and ν̂, where we use SDϵ(µ, ν) as the ground
cost between µ, ν ∈ P2([0, 1]

2) as an approximation of
W 2

2 (µ, ν). Writing µ̂ = 1
n

∑n
i δµi

, ν̂ = 1
n

∑n
j δνj

for
µi, νj ∈ P2([0, 1]

2), we let UNOT approximate the particle
flow ∂

∂t µ̂t = −∇µ̂t [ŜDϵ(µ̂t, ν̂)], for which we can derive
the gradient via (see (Li et al., 2024b)):

∂ŜDϵ(µ̂, ν̂)

∂µk
=
∑
j

∂ SDϵ(µk, νj)

∂µk
Πkj , k = 1, ..., n,

(11)
where Πkj is an optimal transport plan between µk and νj .
These gradients can be approximated by UNOT via equation
(10) as before; further details can be found in Appendix A.4.
In Figure 7, we plot the particle flow from Gaussian noise
µ̂ to a distribution ν̂ over 10 images, where we visualize µ̂t

after every 10 gradient steps (using AdamW (Loshchilov &
Hutter, 2019) with gradients computed via equation (10)).
We can see that the UNOT flow converges quickly.

8

Universal Neural Optimal Transport

Figure 8. McCann interpolations computed with the true OT plan,
UNOT OT plan, UNOT barycenters, and GeONet (top to bottom).

5. Related Work
Neural OT. Typically, neural OT approaches aim at solving
individual instances of (high-dimensional) OT problems. In
(Korotin et al., 2023), a maximin formulation for the dual
problem is derived and two networks, parametrizing the
transport plan and the dual potential resp., are trained adver-
sarially. In (Bunne et al., 2023a), transport maps between
continuous input distributions conditioned on a context vari-
able are learned. Another interesting recent paper (Uscidda
& Cuturi, 2023) suggests a universal regularizer, called the
Monge gap, to learn OT maps and distances. Unlike these
works, we focus on generalizing across OT problems.

Initializing Sinkhorn. There exists very little literature on
initializing the Sinkhorn algorithm. (Thornton & Cuturi,
2022) propose using dual vectors recovered from the unreg-
ularized 1D optimal transport problem, or from closed-form
transport maps in a Gaussian (mixture) setting, and were
able to significantly speed up convergence. (Amos et al.,
2023) propose a neural approach, training a single network
to predict the optimal dual potential f of the discrete dual
problem, and their loss is simply the (negative) dual ob-
jective (3). This approach works well when training on
low-dimensional datasets such as MNIST, and is elegant as
it does not require ground truth potentials, i.e. is fully unsu-
pervised, but it is not able to generalize to out-of-distribution
data, and can only be used for input measures of fixed size.

OT for Machine Learning. Leveraging OT to formulate
new machine learning methods has seen a surge in pop-
ularity in recent years, and it has been applied to a wide
range of problems. Relevant works include the celebrated
Wasserstein GAN (Arjovsky et al., 2017), multi-label learn-
ing (Frogner et al., 2015), inverse problems in physics (En-
gquist & Yang, 2019), point cloud processing (Geuter et al.,
2025; Fishman et al., 2025), or few-shot image classifica-

tion to compute distances between images (Zhang et al.,
2020). In flow matching OT can be used to straighten paths
(Lipman et al., 2023; Tong et al., 2024; Pooladian et al.,
2023). Approximating Wasserstein gradient flows with the
JKO scheme has been explored in numerous works (Alvarez-
Melis & Fusi, 2021; Alvarez-Melis et al., 2022; Bunne et al.,
2022; Choi et al., 2024). The theory of Wasserstein gra-
dient flows has also been used to study learning dynamics
in various settings, such as for overparametrized two-layer
networks (Chizat & Bach, 2018) or simplified transformers
(Geshkovski et al., 2024).

Generative Adversarial Networks. GANs (Goodfellow
et al., 2014), like other types of generative models, aim at
generating samples from a distribution ρdata, given access
to a finite number of samples. In contrast, we do not have
access to samples from the target distribution. However,
our loss function (7) shares similarities with the adversarial
GAN loss. Given prior samples z ∼ ρz and data samples
x ∼ ρdata, the GAN objective for a generator G is

min
G

max
D

Ex∼ρdata [logD(x)]+Ez∼ρz [log(1−D(G(z)))] ,

where D is the discriminator, which predicts the probability
that a sample came from the target distribution rather than
the generator. Note that while our generator maximizes the
objective, the GAN generator minimizes it.

6. Discussion
We presented UNOT, a neural OT solver capable of solving
entropic OT problems universally across datasets, for a given
cost function. Leveraging Neural Operators, UNOT can pro-
cess distributions of varying resolutions supported on grids.
UNOT’s training involves a generator network Gθ produc-
ing synthetic training samples for the predictive network Sϕ,
where both networks are trained jointly via a self-supervised
adversarial loss. Sϕ predicts the potential of the dual OT
problem, and our training objective provably minimizes the
loss w.r.t. the ground truth potentials. We show that UNOT
is universal in the sense that the generator can create any
discrete distributions during training, and empirically verify
this through experiments on Euclidean and non-Euclidean
image datasets of varying resolutions. UNOT consistently
predicts OT distances up to 1-3% relative error, and approx-
imates barycenters and geodesics in Wasserstein space by
solving for the OT plan. Furthermore, we demonstrate that
UNOT can be used as a state-of-the-art initialization for
the Sinkhorn algorithm, achieving speedups of up to 7.4×.
Current limitations are that UNOT does not extrapolate well
to measures with significantly higher resolutions than the
training samples, nor generalizes to cost functions other than
the training cost. Scaling UNOT to higher resolutions, as
well as applying it to other data modalities or non-uniform
grids, are interesting directions for future research.

9

Universal Neural Optimal Transport

Acknowledgements
For this work, VL has been funded by Deutsche Forschungs-
gemeinschaft (DFG) - Project-ID 318763901 - SFB1294.
GK acknowledges funding within the BMBF project
VI-Screen-PRO (Teilvorhaben: Mathematische Bildverar-
beitung und maschinelles Lernen) VC3-23/13N17309.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, as optimal transport has a vast
range of applications, but none of these we feel must be
specifically highlighted here.

References
Agueh, M. and Carlier, G. Barycenters in the Wasserstein

space. SIAM Journal on Mathematical Analysis, 43(2):
904–924, 2011. doi: 10.1137/100805741. URL https:
//doi.org/10.1137/100805741.

Alvarez-Melis, D. and Fusi, N. Dataset Dynamics via Gradi-
ent Flows in Probability Space. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 219–230. PMLR, 18–
24 Jul 2021. URL https://proceedings.mlr.
press/v139/alvarez-melis21a.html.

Alvarez-Melis, D., Schiff, Y., and Mroueh, Y. Optimizing
Functionals on the Space of Probabilities with Input Con-
vex Neural Networks. Transactions on Machine Learning
Research, 2022. URL https://openreview.net/
forum?id=dpOYN7o8Jm.

Amos, B., Luise, G., Cohen, S., and Redko, I. Meta
Optimal Transport. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 791–813. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/amos23a.html.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein
Generative Adversarial Networks. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 214–223. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.
press/v70/arjovsky17a.html.

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Duvenaud,
D., and Jacobsen, J.-H. Invertible Residual Networks.

Proceedings of the International Conference on Machine
Learning, 2019. doi: 10.48550/ARXIV.1811.00995. URL
https://arxiv.org/abs/1811.00995.

Bonciocat, A.-I. and Sturm, K.-T. Mass transportation and
rough curvature bounds for discrete spaces. Journal of
Functional Analysis, 256(9):2944–2966, 2009. ISSN
0022-1236. doi: https://doi.org/10.1016/j.jfa.2009.01.
029. URL https://www.sciencedirect.com/
science/article/pii/S0022123609000305.

Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M.,
Kashinath, K., and Anandkumar, A. Spherical Fourier
Neural Operators: Learning Stable Dynamics on the
Sphere, 2023. URL https://arxiv.org/abs/
2306.03838.

Bunne, C., Papaxanthos, L., Krause, A., and Cuturi,
M. Proximal Optimal Transport Modeling of Popula-
tion Dynamics. In Proceedings of The 25th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 151 of Proceedings of Machine Learn-
ing Research, pp. 6511–6528. PMLR, 28–30 Mar
2022. URL https://proceedings.mlr.press/
v151/bunne22a.html.

Bunne, C., Krause, A., and Cuturi, M. Supervised Training
of Conditional Monge Maps, 2023a. URL https://
arxiv.org/abs/2206.14262.

Bunne, C., Stark, S. G., Gut, G., et al. Learning single-
cell perturbation responses using neural optimal transport.
Nature Methods, 20:1759–1768, 2023b. doi: 10.1038/
s41592-023-01969-x. URL https://doi.org/10.
1038/s41592-023-01969-x.

Carlier, G., Chizat, L., and Laborde, M. Lipschitz Continuity
of the Schrödinger Map in Entropic Optimal Transport,
2022.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D.,
and Holtham, E. Reversible architectures for arbitrarily
deep residual neural networks, 2017.

Chewi, S., Niles-Weed, J., and Rigollet, P. Statistical op-
timal transport, 2024. URL https://arxiv.org/
abs/2407.18163.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport, 2018. URL https://arxiv.org/abs/
1805.09545.

Choi, J., Choi, J., and Kang, M. Scalable Wasserstein
Gradient Flow for Generative Modeling through Un-
balanced Optimal Transport, 2024. URL https://
arxiv.org/abs/2402.05443.

10

https://doi.org/10.1137/100805741
https://doi.org/10.1137/100805741
https://proceedings.mlr.press/v139/alvarez-melis21a.html
https://proceedings.mlr.press/v139/alvarez-melis21a.html
https://openreview.net/forum?id=dpOYN7o8Jm
https://openreview.net/forum?id=dpOYN7o8Jm
https://proceedings.mlr.press/v202/amos23a.html
https://proceedings.mlr.press/v202/amos23a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://arxiv.org/abs/1811.00995
https://www.sciencedirect.com/science/article/pii/S0022123609000305
https://www.sciencedirect.com/science/article/pii/S0022123609000305
https://arxiv.org/abs/2306.03838
https://arxiv.org/abs/2306.03838
https://proceedings.mlr.press/v151/bunne22a.html
https://proceedings.mlr.press/v151/bunne22a.html
https://arxiv.org/abs/2206.14262
https://arxiv.org/abs/2206.14262
https://doi.org/10.1038/s41592-023-01969-x
https://doi.org/10.1038/s41592-023-01969-x
https://arxiv.org/abs/2407.18163
https://arxiv.org/abs/2407.18163
https://arxiv.org/abs/1805.09545
https://arxiv.org/abs/1805.09545
https://arxiv.org/abs/2402.05443
https://arxiv.org/abs/2402.05443

Universal Neural Optimal Transport

Courty, N., Flamary, R., Habrard, A., and Rako-
tomamonjy, A. Joint distribution optimal trans-
portation for domain adaptation. In Advances
in Neural Information Processing Systems, vol-
ume 30, 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
0070d23b06b1486a538c0eaa45dd167a-Paper.
pdf.

Cuturi, M. Sinkhorn Distances: Lightspeed Compu-
tation of Optimal Transport. In Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger,
K. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.
neurips.cc/paper/2013/file/
af21d0c97db2e27e13572cbf59eb343d-Paper.
pdf.

Dadashi, R., Hussenot, L., Geist, M., and Pietquin, O.
Primal Wasserstein Imitation Learning, 2020. URL
https://arxiv.org/abs/2006.04678.

Engquist, B. and Froese, B. D. Application of the Wasser-
stein metric to seismic signals, 2013. URL https:
//arxiv.org/abs/1311.4581.

Engquist, B. and Yang, Y. Seismis imaging and
optimal transport. Communications in Informa-
tion and Systems, 19(2):95–145, 2019. URL
https://www.intlpress.com/site/pub/
pages/journals/items/cis/content/
vols/0019/0002/a001/index.php.

Fefferman, C., Mitter, S., and Narayanan, H. Test-
ing the manifold hypothesis. Journal of the Amer-
ican Mathematical Society, 29(4):983–1049, 2016.
URL https://www.ams.org/journals/jams/
2016-29-04/S0894-0347-2016-00852-4/.

Feydy, J., Séjourné, T., Vialard, F.-X., ichi Amari, S.,
Trouvé, A., and Peyré, G. Interpolating between Optimal
Transport and MMD using Sinkhorn Divergences, 2018.
URL https://arxiv.org/abs/1810.08278.

Fishman, N., Gowri, G., Yin, P., Gootenberg, J., and Abu-
dayyeh, O. Generative Distribution Embeddings, 2025.
URL https://arxiv.org/abs/2505.18150.

Franklin, J. and Lorenz, J. On the scaling of multidimen-
sional matrices. Linear Algebra and its Applications,
114-115:717–735, mar-apr 1989. URL https://doi.
org/10.1016/0024-3795(89)90490-4.

Frogner, C., Zhang, C., Mobahi, H., Araya, M.,
and Poggio, T. A. Learning with a Wasserstein
Loss. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates,

Inc., 2015. URL https://proceedings.
neurips.cc/paper/2015/file/
a9eb812238f753132652ae09963a05e9-Paper.
pdf.

Geshkovski, B., Letrouit, C., Polyanskiy, Y., and Rigollet, P.
A mathematical perspective on transformers, 2024. URL
https://arxiv.org/abs/2312.10794.

Geuter, J., Bonet, C., Korba, A., and Alvarez-Melis,
D. DDEQs: Distributional Deep Equilibrium Models
through Wasserstein Gradient Flows. In Proceedings
of the 28th International Conference on Artificial In-
telligence and Statistics (AISTATS 2025), 2025. URL
https://arxiv.org/abs/2503.01140.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative Adversarial Nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger,
K. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.
pdf.

Goswami, S., Bora, A., Yu, Y., and Karniadakis, G. E.
Physics-informed deep neural operator networks, 2022.
URL https://arxiv.org/abs/2207.05748.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. Reg-
ularisation of Neural Networks by Enforcing Lipschitz
Continuity, 2020.

Gracyk, A. and Chen, X. GeONet: a neural operator for
learning the Wasserstein geodesic, 2024. URL https:
//arxiv.org/abs/2209.14440.

Hashan, A. M. Facial expression images, 2022. URL
https://www.kaggle.com/ds/2366449.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Jacobsen, J.-H., Smeulders, A., and Oyallon, E. i-RevNet:
Deep Invertible Networks, 2018.

Kingma, D. P. and Ba, J. Adam: A Method for Stochas-
tic Optimization, 2017. URL https://arxiv.org/
abs/1412.6980.

Kolouri, S., Zou, Y., and Rohde, G. K. Sliced Wasser-
stein Kernels for Probability Distributions, 2015. URL
https://arxiv.org/abs/1511.03198.

11

https://proceedings.neurips.cc/paper/2017/file/0070d23b06b1486a538c0eaa45dd167a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0070d23b06b1486a538c0eaa45dd167a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0070d23b06b1486a538c0eaa45dd167a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0070d23b06b1486a538c0eaa45dd167a-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://arxiv.org/abs/2006.04678
https://arxiv.org/abs/1311.4581
https://arxiv.org/abs/1311.4581
https://www.intlpress.com/site/pub/pages/journals/items/cis/content/vols/0019/0002/a001/index.php
https://www.intlpress.com/site/pub/pages/journals/items/cis/content/vols/0019/0002/a001/index.php
https://www.intlpress.com/site/pub/pages/journals/items/cis/content/vols/0019/0002/a001/index.php
https://www.ams.org/journals/jams/2016-29-04/S0894-0347-2016-00852-4/
https://www.ams.org/journals/jams/2016-29-04/S0894-0347-2016-00852-4/
https://arxiv.org/abs/1810.08278
https://arxiv.org/abs/2505.18150
https://doi.org/10.1016/0024-3795(89)90490-4
https://doi.org/10.1016/0024-3795(89)90490-4
https://proceedings.neurips.cc/paper/2015/file/a9eb812238f753132652ae09963a05e9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a9eb812238f753132652ae09963a05e9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a9eb812238f753132652ae09963a05e9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/a9eb812238f753132652ae09963a05e9-Paper.pdf
https://arxiv.org/abs/2312.10794
https://arxiv.org/abs/2503.01140
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/2207.05748
https://arxiv.org/abs/2209.14440
https://arxiv.org/abs/2209.14440
https://www.kaggle.com/ds/2366449
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1511.03198

Universal Neural Optimal Transport

Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D., and Rohde,
G. K. Optimal Mass Transport: Signal processing and
machine-learning applications. IEEE Signal Processing
Magazine, 34(4):43–59, 2017. doi: 10.1109/MSP.2017.
2695801.

Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R.,
and Rohde, G. Generalized Sliced Wasserstein
Distances. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.
(eds.), Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
f0935e4cd5920aa6c7c996a5ee53a70f-Paper.
pdf.

Korotin, A., Selikhanovych, D., and Burnaev, E. Neural
optimal transport, 2023. URL https://arxiv.org/
abs/2201.12220.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural Op-
erator: Learning Maps Between Function Spaces, 2024.
URL https://arxiv.org/abs/2108.08481.

Li, S., Yu, X., Xing, W., Kirby, M., Narayan, A., and Zhe,
S. Multi-Resolution Active Learning of Fourier Neural
Operators, 2024a. URL https://arxiv.org/abs/
2309.16971.

Li, X., Lu, F., Tao, M., and Ye, F. X. F. Robust first
and second-order differentiation for regularized optimal
transport, 2024b. URL https://arxiv.org/abs/
2407.02015.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations, 2020. URL https://arxiv.org/abs/
2003.03485.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions, 2021. URL https://arxiv.org/abs/
2010.08895.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling, 2023.
URL https://arxiv.org/abs/2210.02747.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay
Regularization, 2019. URL https://arxiv.org/
abs/1711.05101.

Nutz, M. Introduction to Entropic Optimal Transport,
2022. URL https://www.math.columbia.edu/
˜mnutz/docs/EOT_lecture_notes.pdf.

Peyré, G. and Cuturi, M. Computational Optimal Trans-
port: With Applications to Data Science. Foundations
and Trends® in Machine Learning, 11(5-6):355–607,
2019. ISSN 1935-8237. doi: 10.1561/2200000073. URL
http://dx.doi.org/10.1561/2200000073.

Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C.,
Amos, B., Lipman, Y., and Chen, R. T. Q. Multisam-
ple flow matching: Straightening flows with minibatch
couplings, 2023. URL https://arxiv.org/abs/
2304.14772.

Santambrogio, F. Optimal transport for applied mathemati-
cians. Birkäuser, NY, 55(58-63):94, 2015.

Santambrogio, F. Euclidean, Metric, and Wasserstein gradi-
ent flows: an overview, 2016. URL https://arxiv.
org/abs/1609.03890.

Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subra-
manian, V., Solomon, A., Gould, J., Liu, S., Lin, S.,
Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet,
P., Hochedlinger, K., Jaenisch, R., Regev, A., , and Lan-
der, E. S. Optimal-Transport Analysis of Single-Cell
Gene Expression Identifies Developmental Trajectories
in Reprogramming. Cell, 176(4):928–943, 2019.

Schmitz, M. A., Heitz, M., Bonneel, N., Ngolè, F., Coeur-
jolly, D., Cuturi, M., Peyré, G., and Starck, J.-L. Wasser-
stein Dictionary Learning: Optimal Transport-Based Un-
supervised Nonlinear Dictionary Learning. SIAM Jour-
nal on Imaging Sciences, 11(1):643–678, jan 2018. doi:
10.1137/17m1140431. URL https://doi.org/10.
1137%2F17m1140431.

Serrurier, M., Mamalet, F., Fel, T., Béthune, L., and Boissin,
T. On the explainable properties of 1-Lipschitz Neural
Networks: An Optimal Transport Perspective, 2023.

Sinkhorn, R. and Knopp, P. Concerning nonnegative Ma-
trices and doubly stochastic Matrices. Pacific Journal of
Mathematics, 21(2), 1967.

Thornton, J. and Cuturi, M. Rethinking Initialization of
the Sinkhorn Algorithm, 2022. URL https://arxiv.
org/abs/2206.07630.

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang,
Y., Rector-Brooks, J., Wolf, G., and Bengio, Y. Im-
proving and generalizing flow-based generative models
with minibatch optimal transport, 2024. URL https:
//arxiv.org/abs/2302.00482.

Uscidda, T. and Cuturi, M. The Monge Gap: A Regularizer
to Learn All Transport Maps, 2023.

Villani, C. Optimal Transport Old and New. Springer, 2009.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/f0935e4cd5920aa6c7c996a5ee53a70f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f0935e4cd5920aa6c7c996a5ee53a70f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f0935e4cd5920aa6c7c996a5ee53a70f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f0935e4cd5920aa6c7c996a5ee53a70f-Paper.pdf
https://arxiv.org/abs/2201.12220
https://arxiv.org/abs/2201.12220
https://arxiv.org/abs/2108.08481
https://arxiv.org/abs/2309.16971
https://arxiv.org/abs/2309.16971
https://arxiv.org/abs/2407.02015
https://arxiv.org/abs/2407.02015
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://www.math.columbia.edu/~mnutz/docs/EOT_lecture_notes.pdf
https://www.math.columbia.edu/~mnutz/docs/EOT_lecture_notes.pdf
http://dx.doi.org/10.1561/2200000073
https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/1609.03890
https://arxiv.org/abs/1609.03890
https://doi.org/10.1137%2F17m1140431
https://doi.org/10.1137%2F17m1140431
https://arxiv.org/abs/2206.07630
https://arxiv.org/abs/2206.07630
https://arxiv.org/abs/2302.00482
https://arxiv.org/abs/2302.00482

Universal Neural Optimal Transport

Xu, H., Wang, W., Liu, W., and Carin, L. Distilled
Wasserstein Learning for Word Embedding and Topic
Modeling. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
22fb0cee7e1f3bde58293de743871417-Paper.
pdf.

Zhang, C., Cai, Y., Lin, G., and Shen, C. DeepEMD:
Few-Shot Image Classification With Differentiable Earth
Mover’s Distance and Structured Classifiers. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 12200–12210, 2020. doi:
10.1109/CVPR42600.2020.01222.

13

https://proceedings.neurips.cc/paper_files/paper/2018/file/22fb0cee7e1f3bde58293de743871417-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/22fb0cee7e1f3bde58293de743871417-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/22fb0cee7e1f3bde58293de743871417-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/22fb0cee7e1f3bde58293de743871417-Paper.pdf

Universal Neural Optimal Transport

The Appendix is structured as follows: In Appendix A we give a more thorough background on OT, as well as additional
technical details for our experiments on computing barycenters and geodesics. Appendix B contains all proofs omitted in the
paper. In Appendix C, we provide additional training details, and Appendix D contains additional experiments and materials.

A. Background
A.1. Optimal Transport

In this section, we recall some properties of optimal transport. First, we define the unregularized continuous problems for
completeness.

Problem A.1 (Kantorovich Optimal Transport Problem). For µ ∈ P(X), ν ∈ P(Y), and a cost c : X ×Y → R ∪ {∞} the
Kantorovich problem takes the form

inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y) (12)

The infimum in (12) is called the transport cost, and the minimizer π, if it exists, the optimal transport plan.

The continuous dual problem is similar to the regularized dual (3). For a more thorough overview of OT, we refer the reader
to (Villani, 2009; Peyré & Cuturi, 2019; Chewi et al., 2024).

Problem A.2 (Dual Optimal Transport Problem). For µ, ν and c as before, the dual problem reads

sup
f∈L1(µ),g∈L1(ν)

f+g≤c

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y),

where f + g ≤ c is to be understood as f(x) + g(y) ≤ c(x, y) for all x, y.

An important concept in optimal transport are transport maps.

Definition A.3 (Transport Maps). A map T : X → Y is called a transport map between µ and ν if ν = T#µ. If there exists
an optimal transport plan π such that π = (Id, T)#µ, T is called an optimal transport map.

Of course, not every transport plan admits a transport map; however, every transport map yields an optimal transport plan
via π = (Id, T)#µ. For sufficient conditions for the existence of both transport plans and maps, we refer the reader to
(Villani, 2009).

In the paper we mentioned that if µ and ν are supported on finitely many points, one can rewrite the problems A.1 and A.2
with vectors. We now define the discrete problems carefully.

Problem A.4 (Discrete Optimal Transport Problem). For two discrete measures µ ∈ ∆m−1 and ν ∈ ∆n−1, and a cost
matrix C ∈ Rm×n, the discrete OT problem is defined as

L(µ,ν) := min
Π∈Π(µ,ν)

⟨C,Π⟩

Here, Π(µ,ν) denotes the set of all transport plans between µ and ν, i.e. matrices Π ∈ Rm×n
≥0 s.t. Π1n = µ and

Π⊤1m = ν. The problem has a dual formulation:

Problem A.5 (Discrete Dual Optimal Transport Problem). For two discrete measures µ ∈ ∆m−1 and ν ∈ ∆n−1, and a
cost matrix C ∈ Rm×n, the discrete dual OT problem is defined as

D(µ,ν) := max
f∈Rm, g∈Rn

f+g≤C

⟨f ,µ⟩+ ⟨g,ν⟩

Here, f + g ≤ C is to be understood as fi + gj ≤ Cij for all i ∈ JmK, j ∈ JnK. In the special case where X = Y and C
corresponds to a metric, i.e. Cij = d(xi, yj), the Wasserstein distance of order p between µ and ν for p ∈ [1,∞) is defined
as:

Wp(µ,ν) =

 min
π∈Π(µ,ν)

∑
i,j

Cp
ijΠij

 1
p

.

14

Universal Neural Optimal Transport

This definition coincides with the definition from the paper for continuous measures, if they are supported on finitely many
points.

For completeness, we also state the entropically regularized primal and dual problem in the discrete case. The discrete
problem is typically formulated with an entropy term instead of the KL divergence as in equation (1), but the two can be
shown to be equivalent (Chewi et al., 2024).

Definition A.6 (Entropy). For a matrix P = [pij]ij ∈ Rm×n, we define its entropy H(P) as

H(P) := −
m∑
i=1

n∑
j=1

pij log pij

if all entries are positive, and H(P) := −∞ if at least one entry is negative. For entries pij = 0, we use the convention
0 log 0 = 0, as x log x x→0−−−→ 0.

The entropic optimal transport problem is defined as follows.

Problem A.7 (Entropic Discrete Optimal Transport Problem). For ϵ > 0, the entropic optimal transport problem is defined
as:

OTϵ(µ,ν) := min
Π∈Π(µ,ν)

⟨C,Π⟩ − ϵH(Π).

Note that this is identical to the unregularized optimal transport problem, except that the unregularized one does not contain
the regularization term −ϵH(Π). As the objective in Problem A.7 is ϵ-strongly convex, the problem admits a unique
solution (Peyré & Cuturi, 2019).

The Gibbs kernel is defined as K = exp(−C/ϵ). Then the entropic dual problem reads:

Problem A.8 (Entropic Discrete Dual Problem).

max
fϵ∈Rm, gϵ∈Rn

⟨fϵ,µ⟩+ ⟨gϵ,ν⟩ − ϵ
〈
efϵ/ϵ,Kegϵ/ϵ

〉
.

Again, without the regularization term −ϵ
〈
efϵ/ϵ,Kegϵ/ϵ

〉
, this equals the regular optimal transport dual; note, however,

that the unregularized dual is subject to the constraint f + g ≤ C.

In both the continuous, as well as the discrete setting, there is duality, i.e. the optima of the primal and dual problems
coincide. In addition, the optimizers are intrinsically linked, akin to Proposition 1 for the discrete entropic problem. We
refer the reader to (Villani, 2009; Peyré & Cuturi, 2019) for more details.

A.2. Calculating the Barycenter

Recall the Sinkhorn divergence barycenter for a set of discrete measures {ν1, ...,νN} ⊂ P2(X),

µ = argmin
µ′∈P2(X)

∑
i

αi SDϵ(µ
′,νi).

For a solution (f , g) to the dual problem A.8 between two measures µ =
∑

i aiδxi
and ν =

∑
j bjδyj

, it holds

SDϵ(µ,ν) = ⟨µ,f − p⟩+ ⟨ν, g − q⟩,

see (Feydy et al., 2018). Here, p and q are the optimal potentials for (µ,µ) and (ν,ν) resp. (if both measures in the OT
problem are the same, the dual potentials can be chosen to be equal).

From this identity, we immediately get

∇a SDϵ(µ,ν) = f − p.

Note that this is not a gradient with respect to the measure µ; instead, we view µ as a vector, and compute the gradient w.r.t.
the entries in that vector. This means we essentially compute the barycenter on the discrete space {x1, ..., xn}.

15

Universal Neural Optimal Transport

A pseudocode for how to approximate the Sinkhorn divergence barycenter with UNOT is given in Algorithm 3. Note that
instead of using softmax to project back to probability measures, one could also just rescale; however, softmax proved
better in practice. We also run a single Sinkhorn iteration on the output of Sϕ in practice, as it improved visual quality of the
barycenters; however, this is not strictly needed.

Algorithm 3 Barycenter Computation
1: in set of measures {νi}i ⊂ ∆n−1, initial µ0 ∈ ∆n−1, weights λ ∈ ∆n−1

2: µ← µ0

3: for i = 1, 2, ..., T do
4: p← Sϕ(µ,µ)
5: for νi in {νi}i do
6: fi ← Sϕ(νi,µ) //switch the order of the arguments to get fi instead of gi
7: end for
8: µ← softmax (µ−

∑
i λi(fi − pk))

9: end for

Barycenters can be far when Transport Distances are close. We now give a simple example that illustrates that merely
predicting transport distances accurately does not necessarily imply predicting barycenters accurately, at least in the
nonregularized setting. Let µ be the measure with mass 1/2 at the two points (0,−1) and (0, 1) in R2. Let ν1 be the
measure with mass 1/2 at each of the points (−1, 0) and (1,−ϵ) for a small ϵ > 0, and ν2 a measure with mass 1/2 at each
of the two points (−1, 0) and (1, ϵ). Then as ϵ goes to 0, the transport distances between between µ and ν1 resp. µ and ν2

become arbitrarily close. However, the unique Wasserstein-p barycenter (for p > 1) between µ and ν1 has mass 1/2 at each
of the points (−1/2, 1/2) and (1/2,−(1 + ϵ)/2), whereas the barycenter between µ and ν2 has mass 1/2 at each of the
points (−1/2,−1/2) and (1/2, (1 + ϵ)/2), so no matter how small ϵ gets, the barycenters will always be far apart.

A.3. Geodesics

In Section 4.3, we saw that the McCann interpolation between two measures µ, ν ∈ P2(X) is a constant-speed geodesic. In
this section, we provide additional background on constant-speed geodesics, and establish a connection between constant-
speed geodesics in P2([0, 1]

2) and the notion of strong-ϵ quasi-geodesics in the discretized space P([[n]]
2

n). This makes our
approximation of geodesics as in Section 4.3 more rigorous.

First, we recall the definition of constant-speed geodesics.

Definition A.9. A curve ω : [0, 1]→ (P2(X),W2) is called constant-speed geodesic between ω(0) and ω(1) if it satisfies

W2(ω(t), ω(s)) = |t− s|W2(ω(0), ω(1)), ∀t, s ∈ [0, 1].

It turns out that for convex X ⊂ Rd, constant-speed geodesics are equivalent to push-forwards under transport plans, and if
the starting point ω(0) is absolutely continuous, this is equal to the McCann interpolation.

Theorem A.10. Let X ⊂ Rd be convex. Then a curve ω : [0, 1] → (P2(X),W2) is a constant-speed geodesic between
ω(0) and ω(1) if and only if it is of the form

ω(t) = (pt)#π

for an optimal transport plan π between ω(0) and ω(1), where the interpolation pt is given by pt(x, y) = (1− t)x+ ty. If,
in addition, ω(0) is absolutely continuous, then we can write

ω(t) = [(1− t) Id+tT]#ω(0)

for an optimal transport map T from ω(0) to ω(1).

This theorem holds, in fact, for any Wasserstein-p space for p > 1, see (Santambrogio, 2016).

Now, denote by µt the McCann interpolation between µ and ν. As mentioned in Section 4.2, we can express µt as the
following barycenter:

µt = argmin
µ′∈P2(X)

(
(1− t)W 2

2 (µ
′, µ) + tW 2

2 (µ
′, ν)

)
,

16

Universal Neural Optimal Transport

which we approximate by the Sinkhorn Divergence barycenter

µt = argmin
µ′∈P2(X)

((1− t) SDϵ(µ
′, µ) + tSDϵ(µ

′, ν)) , (13)

which is justified by the fact that Sinkhorn Divergences converge to the OT cost as ϵ→ 0, and that they are reliable loss
functions, in the sense that weak convergence of a sequence of measures is equivalent to convergence of the Sinkhorn
divergence, see (Feydy et al., 2018). As also shown in (Feydy et al., 2018), the gradient of the Sinkhorn Divergence w.r.t.
the vector a, when writing a discrete measure µ as µ =

∑
i aiδxi

, is given by

∇aSDϵ(µ,ν) = f − p. (14)

However, if we now do a simple gradient descent on (13) using (14), we are not actually computing the barycenter on the
space P2(X) anymore, as we only consider gradients w.r.t. a, which does not allow particles to move, but merely to teleport
mass to other particles. In particular, if X is a discrete space, there exist no constant-speed geodesics between different
points anymore, as can easily be seen from the following example. Let µ0 = δx0 and µ1 = δx1 be two Dirac measures for
some x0, x1 ∈ X . Assume there would exist a constant speed geodesic ω joining µ0 and µ1. Then for t > 0,

W2(ω(t), ω(0)) = tW2(ω(1), ω(0)).

However, since the space is discrete, this implies that x0 = x1, i.e. the only constant-speed geodesics are constant. We
therefore work with the following approximation of geodesics.

Definition A.11 (Quasi-Isometry). Let (X1, d1) and (X2, d2) be metric spaces. f : X1 → X2 is called a (λ, ϵ)-quasi-
isometry if there exist λ ≥ 0 and ϵ > 0 such that for all x, y ∈ X1

1

λ
d1(x, y)− ϵ ≤ d2(f(x), f(y)) ≤ λd1(x, y) + ϵ

If in addition there exists a C > 0 such that for all z ∈ X2 there exist an x ∈ X1 such that d2(f(x), z) ≤ C, f is called
quasi-isometry.

We can then use this to define quasi-geodesics. (Bonciocat & Sturm, 2009) introduced a similar concept called h-rough
geodesics, for which they just used the upper bound.

Definition A.12 (Strong-ϵ Quasi-Geodesics). A strong-ϵ quasi-geodesic in a metric space (X , d) is a map γ : [0, 1]→ X
such that for all s, t ∈ [0, 1],

d(γ0, γ1)|t− s| − ϵ ≤ d(γt, γs) ≤ d(γ0, γ1)|t− s|+ ϵ.

Now let X = [0, 1]2, and denote by [[n]]2

n ⊂ [0, 1]2 the discrete space consisting of all xi of the form xi =
(

1
2n ,

1
2n

)
+

k
(
1
n , 0
)
+ j

(
0, 1

n

)
, for k, j = 0, ..., n− 1. We can then show that (P2([0, 1]

2),W2) is quasi-isometric to (P([[n]]
2

n),W2).

Proposition A.13. The metric space (P2([0, 1]
2),W2) is (1, 1√

2n
)-quasi-isometric to (P([[n]]

2

n),W2), i.e. there exist an

f : (P2([0, 1]
2),W2)→ (P([[n]]

2

n),W2) such that for all µ, ν ∈ P2([0, 1]) it holds that

W2(µ, ν)−
1√
2n
≤W2(f(µ), f(ν)) ≤W2(µ, ν) +

1√
2n

.

Proof. We split the space [0, 1]2 into squares via N(xi) := (xi + [− 1
2n ,

1
2n]

2). We define f : P([0, 1]2)→ P([[n]]
2

n) by

f(µ) =
∑
xi∈X

(∫
N(xi)

dµ

)
δxi .

17

Universal Neural Optimal Transport

By triangle inequality, we have

W2(f(µ), f(ν)) ≤W2(µ, ν) +W2(µ, f(µ)) +W2(ν, f(ν))

W2(µ, ν) ≤W2(f(µ), f(ν)) +W2(µ, f(µ)) +W2(ν, f(ν))

For any measure µ ∈ P([0, 1]), denoting by T : [0, 1]2 → [[n]]2

n the map that sends each point to the corresponding midpoint
xi, we get

W 2
2 (µ, f(µ)) ≤

∫
[0,1]2

|T (x)− x|2dµ ≤
∫
[0,1]2

2

4n2
dµ =

2

4n2
.

Therefore we have a (1, 1√
2n

)-quasi-isometry between both spaces.

We also need to show that there exist a C > 0 such that for all µ ∈ P([[n]]
2

n) there exist a ν ∈ P([0, 1]2) with

W2(f(ν), µ) < C.

Choosing C = 1√
2n

and ν = µ concludes the proof.

We immediately get the following corollary.

Corollary A.14. Constant-speed geodesics P2([0, 1]
2) are strong-ϵ quasi-geodesics in P([[n]]2/n).

This justifies doing gradient descent on (13) using the discrete space gradient (14) to approximate the geodesic, as we can
approximate the constant-speed geodesic with a strong-ϵ-quasi-geodesic in the discrete space.

A.4. Wasserstein on Wasserstein Distance

In this section, we provide additional details on how to solve the particle flow

∂

∂t
µ̂t = −∇µ̂t

[ŜDϵ(µ̂t, ν̂)] (15)

from Section 4.4. Recall that µ̂, ν̂ ∈ P2(P2([0, 1]
2, c),W2), µ̂ = 1

n

∑
i δµi

, ν̂ = 1
n

∑
j δνj

for µi, νj ∈ P2([0, 1]
2). From

(Li et al., 2024b), we get that
∂ŜDϵ(µ̂, ν̂)

∂µk
=
∑
j

∂ SDϵ(µk, νj)

∂µk
Πkj ,

where Πkj is an optimal transport plan between µk and νj . Now as in the previous section, we can approximate
∂ SDϵ(µk,νj)

∂µk
= fkj − pk, where fkj is the dual potential from OTϵ(µk, νj), and pk that of OTϵ(µk, µk). As before,

we can approximate these gradients with UNOT, which lets us solve (15) with a simple gradient descent scheme, as shown
in Section A.2. As in Section A.2, we add a single Sinkhorn iteration on the predictions made by Sϕ as it improves visual
quality, but this is not strictly necessary.

A.5. Fourier Neural Operators

In this section, we describe FNOs in more detail. The main breakthrough for Neural Operators came in the combination
with approximating solutions to partial differential equations (PDEs) (Li et al., 2020; 2021; Goswami et al., 2022). Many
problems, including PDEs, can be numerically solved by discretizing infinite-dimensional input and output functions.
Neural Operators are a class of neural networks that parametrize functions F : A → U , where A and U are Banach spaces
whose elements are functions a : Da → Rd′

a and u : Du → Rd′
u respectively, for bounded domains Da ⊂ Rda and

Du ⊂ Rdu . One of the main advantages of Neural Operators is that they can generalize over different grid discretizations,
unlike traditional neural networks, which makes them particularly well-suited for solving PDEs,11 and they are universal
approximators for continuous operators acting on Banach spaces (Kovachki et al., 2024). While our space P([0, 1]2) is not

11For example, an FNO could be used to solve PDEs of the form ∆u = a with Dirichlet boundary conditions, for which we get a
unique solution u for every a. The FNO then maps each a ∈ A to the corresponding solution u ∈ U .

18

Universal Neural Optimal Transport

+

Layer 1 Layer LLayer 2

Figure 9. Fourier Neural Operator architecture, adapted from (Kovachki et al., 2024). The input measures (µ,ν) are passed through a
point-wise lifting operator P which is then followed by L Fourier operators and point-wise non-linearity operators. After the last Fourier
layer, we project back to the output potential g with a point-wise operator Q.

technically a Banach space, the space of finite signed measures with the total variation norm is, and P([0, 1]2) is a subset.
We note that approximation theory for Neural Operators usually

A neural operator usually has the following form:

F : A → U
a 7→ Q ◦BL ◦ ◦B1 ◦ P (a),

which in our setting becomes

Sϕ : P([0, 1]2)× P([0, 1]2)→ L1([0, 1]2)

(µ,ν) 7→ Q ◦BL ◦ ◦B1 ◦ P (µ,ν).

Here, P is a lifting map, Bi are the kernel layers, and Q is a projection back to the target space.

Different versions of neural operators have been proposed, which mostly differ in how the kernel layers Bi are defined. Our
network Sϕ is parametrized as a Fourier Neural Operator (FNO) (Kovachki et al., 2024), where the kernel layers act on
Fourier features of the inputs. We outline details for all the layers in the following.

• Lifting (P). The lifting map is a pointwise map {a : Da → Rd′
a} 7→ {v0 : D0 → Rdv0}, which maps the input a to a

function v0 by mapping points in Rd′
a to points in Rdv0 . We use a 2D convolutional layer for P , and in our setting,

Da = [0, 1]2 × [0, 1]2, as we can view elements in P([0, 1]2) as maps [0, 1]2 → R when dealing with discretizations of
measures.

• Iterative Fourier Layer (Bi). The network has L Fourier layers Bi. In each of them, we map {vi : Di → Rdvi} 7→
{vi+1 : Di+1 → Rdvi+1} by first applying the (discrete) Fourier transform F from which we select a fixed number of
Fourier features, then a neural network NN on these features, and then the inverse Fourier transform F−1. Note that
the Fourier features are complex, hence the network NN is also complex (with multiplications in C). Each Fourier
layer also contains a bypass layer, which is similar to a skip connection, but contains a layer W which is typically a 2D
convolution; cmp Figure 9. Hence, the output of the Fourier layer is given by σ(F−1(NN(F(v)) + b+Wv), where
σ is an activation.

• Projection (Q). The projection Q is the analogue to the lifting layer, mapping the hidden representation to the output
function {vL : DL → RdvL} 7→ {u : Du → Rd′

u}. In our setting, Du = [0, 1]2.

In contrast to (Kovachki et al., 2024), we found that a Fourier layer containing a two-layer neural network NN instead of
just a linear layer worked better in practice. Our bypass layer is still a linear layer W .

On the unit sphere S2, we use Spherical FNOs (SFNOs) (Bonev et al., 2023) instead of regular FNOs, which respect the
geometry of S2. SFNOs leverage the Fourier transform on the sphere FS2

, which can be viewed as a change of basis into

19

Universal Neural Optimal Transport

an orthogonal basis of L2(S2), instead of the regular Fourier transform F for flat geometries. Everything else about our
architecture remains the same.

Details on hyperparameter choices can be found in Appendix C.

20

Universal Neural Optimal Transport

B. Proofs
This section contains all proofs, as well as further technical details omitted in the paper. For convenience, we restate the
statements from the paper.

We start off by rigorously restating Proposition 2. Let X ⊂ RN be a compact set. We start off with a natural definition of
discretization of a continuous measure, which applies, for example, to discrete images as discretizations of an underlying
”ground truth” continuous image.

Definition B.1 (Discretization of Measures). Let µ ∈ P(X) be an absolutely continuous measure, and let Xn =
{xn

1 , ..., x
n
n} ⊂ X . The discretization of µ on Xn is defined as the measure µn ∈ P(X) supported on Xn, where

µn(x
n
i) =

∫
Ωi

dµ,

with
Ωn

i = {x ∈ X : ∥x− xn
i ∥ ≤ ∥x− y∥ ∀y ∈ X}.

Note that the intersections Ωn
i ∩ Ωn

j have Lebesgue measure zero, so this is well-defined.

We cannot guarantee that an arbitrary sequence of discretizations µn converges weakly to µ as n→∞; simply consider the
case where all the xn

i are identical for all n and i. Hence, we need to ensure that the discretization is uniform over all of X
in some way.

Definition B.2 (Uniform Discretization). Let Xn = {xn
i , ..., x

n
n} be subsets of X for all n ∈ N. Then we call the sequence

(Xn)n∈N a uniform discretization of X if for all x ∈ X ,

lim
n→∞

min
i=1,...,n

∥x− xn
i ∥ = 0.

While this may seem like a ”pointwise discretization” at first, it turns out to be uniform, as an Arzelà-Ascoli type argument
shows.

Theorem B.3. Let X ⊂ Rd be compact, and let {Xn}n≥1 be a sequence of finite subsets of X with |Xn| = n for each n.
The following are equivalent:

1. lim
n→∞

sup
x∈X

min
y∈Xn

∥x− y∥ = 0.

2. ∀x ∈ X : lim
n→∞

min
y∈Xn

∥x− y∥ = 0.

Proof. (1) =⇒ (2). If supx∈X miny∈Xn
∥x− y∥ → 0, then in particular for each fixed x ∈ X we have

min
y∈Xn

∥x− y∥ ≤ sup
z∈X

min
y∈Xn

∥z − y∥ −→ 0.

(2) =⇒ (1). Define
fn(x) = min

y∈Xn

∥x− y∥, x ∈ X .

By hypothesis (2), fn(x)→ 0 for every x ∈ X . Moreover for any x, z ∈ X ,∣∣fn(x)− fn(z)
∣∣ = ∣∣min

y∈Xn

∥x− y∥ − min
y∈Xn

∥z − y∥
∣∣ ≤ ∥x− z∥,

so {fn} is equicontinuous on the compact set X . Since fn → 0 pointwise, the Arzelà–Ascoli theorem upgrades to uniform
convergence of the entire sequence (instead of just a subsequence):

lim
n→∞

sup
x∈X

fn(x) = lim
n→∞

sup
x∈X

min
y∈Xn

∥x− y∥ = 0.

Hence (1) holds, completing the proof.

21

Universal Neural Optimal Transport

Note that condition (1) in Theorem B.3 is equivalent to Definition 1 of a ”discrete refinement” in (Kovachki et al., 2024).

The following lemma holds.

Lemma B.4 (Weak Convergence of Discretizations of Measures). Let µ ∈ X be absolutely continuous, and (µn)n∈N be a
sequence of discretizations of µ supported on a uniform discretization (Xn)n∈N of X . Then µn converges weakly to µ.

Proof. Let f ∈ Cb(X) be a test function. We have to show that∫
X
fdµn

n→∞−−−−→
∫
X
fdµ.

Since X is compact and f : X → R is continuous, by the Heine–Cantor theorem f is uniformly continuous. Hence, for
every ε > 0 there exists δ > 0 such that

∥x− y∥ < δ =⇒ |f(x)− f(y)| < ε for all x, y ∈ X .

Since
sup
x∈X

min
1≤i≤n

∥x− xn
i ∥ −−−−→

n→∞
0,

we can choose n′ such that for all n ≥ n′,
sup
x∈X

min
1≤i≤n

∥x− xn
i ∥ < δ.

In particular, for each x ∈ X , there is some xn
i ∈ Xn with ∥x− xn

i ∥ < δ, giving

|f(x)− f(xn
i)| < ε whenever ∥x− xn

i ∥ < δ. (16)

Let
Ωn

i =
{
x ∈ X : ∥x− xn

i ∥ ≤ ∥x− xn
j ∥ for all j = 1, . . . , n

}
as above. These sets form a partition of X (up to measure-zero boundaries). Then for all n ≥ n′, we have (using equation
(16)): ∣∣∣∣ ∫

X
f dµn −

∫
X
f dµ

∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

∫
Ωn

i

(
f(xn

i)− f(x)
)

dµ(x)

∣∣∣∣∣
≤

n∑
i=1

∫
Ωn

i

∣∣f(xn
i)− f(x)

∣∣ dµ(x)
≤

n∑
i=1

ϵµ(Ωn
i)

= ϵ,

and letting ϵ→ 0 finishes the proof.

In Proposition 2, we used the ”canonical extension” for dual potentials. For a pair of dual variables (f, g) solving the dual
problem (3) between µ and ν, their canonical extensions are defined by f and g satisfying the following conditions:

f(x) = −ϵ log
∫
X
exp

(
1

ϵ
(g(y)− c(x, y))

)
dν(y),

g(x) = −ϵ log
∫
X
exp

(
1

ϵ
(f(y)− c(x, y))

)
dµ(y).

We refer to (Santambrogio, 2015; Feydy et al., 2018) for more details.

We can now state and prove a formal version of Proposition 2.

22

Universal Neural Optimal Transport

Proposition 2. (Formal) Let c(x, y) : X×X → R be Lipschitz continuous in both its arguments, andX ⊂ RN compact. Let
(µn)n∈N, (νn)n∈N be discretization sequences for absolutely continuous µ, ν ∈ P(X), supported on a uniform discretization
(Xn)n∈N of X . Let (fn, gn) be the (unique) extended dual potentials of (µn, νn) such that fn(x0) = 0 for some x0 ∈ X
and all n. Let (f, g) be the (unique) dual potentials of (µ, ν) such that f(x0) = 0. Then fn and gn converge uniformly to f
and g on all of X .

Proof. By Lemma B.4, we know that µn ⇀ µ and νn ⇀ ν. The statement now follows immediately from Proposition 13 in
(Feydy et al., 2018).

Theorem 3. Let 0 < λ ≤ 1 and Gθ : Rd → Rd be defined via

Gθ(z) = ReLU (NNθ(z) + λz) ,

where z ∼ ρz = N (0, I), and where NNθ : Rd → Rd is Lipschitz continuous with Lip(NNθ) = L < λ. Then Gθ is
Lipschitz continuous with Lip(q) < L+ λ, and G̃(z) := NNθ(z) + λz is invertible on Rd. Furthermore, for any x ∈ Rd

≥0

it holds

ρGθ#ρz (x) ≥
1

(L+ λ)d
N
(
G̃θ

−1
(x)|0, I

)
.

In other words, Gθ#ρz has positive density at any non-negative x ∈ Rd
≥0.

Proof. Since the Lipschitz constant of the sum of two functions is bounded by the sum of the Lipschitz constants of the two
functions, we have

Lip(G̃θ) ≤ L+ λ.

From Theorem 1 in (Behrmann et al., 2019), it follows that G̃θ is invertible, and Lemma 2 therein implies

Lip(G̃θ
−1

) ≤ 1

λ− L
.

The Lipschitz continuity of G̃θ
−1

implies that for any h, z ∈ Rd with h ̸= 0, we have

∥∥∥∇G̃θ(z)h
∥∥∥ = lim

t→0

∥∥∥∥∥ G̃θ(z + th)− G̃θ(z)

t

∥∥∥∥∥
≥ 1

Lip(G̃θ
−1

)
lim
t→0

∥∥∥∥∥ G̃θ
−1

(G̃θ(z + th))− G̃θ
−1

(G̃θ(z))

t

∥∥∥∥∥
=

1

Lip(G̃θ
−1

)
∥h∥

> 0,

which shows that∇G̃θ is invertible everywhere. Hence, by the inverse function theorem, we get

∇G̃θ
−1

(x) = ∇G̃θ
−1

(G̃θ(G̃θ
−1

(x))) = (∇G̃θ(G̃θ
−1

(x)))−1

for any x ∈ Rd. Furthermore, similar to above, we have

∥∥∥∇G̃θ(z)ei

∥∥∥ = lim
t→0

∥∥∥∥∥ G̃θ(z + tei)− G̃θ(z)

t

∥∥∥∥∥ ≤ Lip(G̃θ) lim
t→0

∥∥∥∥z + tei − z

t

∥∥∥∥ ≤ L+ λ,

where ei is the ith unit vector. Hence, we get from Hadamard’s inequality that

|det∇G̃θ(z)| ≤ Πi

∥∥∥∇G̃θ(z)ei

∥∥∥ ≤ Πi(L+ λ) = (L+ λ)d.

23

Universal Neural Optimal Transport

Putting everything together, by change of variables, we get for any x ∈ Rd:

ρG̃θ#ρz
(x) = ρz(G̃θ

−1
(x))

∣∣∣det∇G̃θ
−1

(x)
∣∣∣

= ρz(G̃θ
−1

(x))
∣∣∣det∇G̃θ(G̃θ

−1
(x))

∣∣∣−1

≥ 1

(L+ λ)d
ρz(G̃θ

−1
(x))

=
1

(L+ λ)d
N (G̃θ

−1
(x)|0, I).

Now clearly, if x ∈ Rd
≥0, then

ρGθ#ρz (x) ≥ ρG̃θ#ρz
(x),

as for any z with G̃(z) = x, we also have G(z) = x. Thus, we also have

ρGθ#ρz (x) ≥
1

(L+ λ)d
N (G̃θ

−1
(x)|0, I),

which finishes the proof.

Corollary 4. Let G̃θ = G̃θ1
◦ G̃θ1

◦ ... ◦ G̃θR
be a composition of functions G̃θi

, each of which is of the form as in Theorem
3. Let z ∼ ρz = N (0, I). Then

ρG̃θ#ρz
(x) ≥ 1

(L+ λ)Rd
N
(
G̃θ

−1
(x)|0, I

)
for any x ∈ Rd. As in Theorem 3, this also holds for any x ∈ Rd

≥0 if G̃θ is followed by a ReLU activation.

Proof. Consider the case where G̃θ = G̃1
θ1
◦ G̃2

θ2
. Then for any x ∈ Rd, we get from the proof of Theorem 3 above:

ρG̃θ#ρz
(x) ≥ 1

(L+ λ)d
ρG̃2

θ2#ρz
((G̃1

θ1
)
−1

(x))

≥ 1

(L+ λ)2d
N
((

G̃2
θ2

)−1
((

G̃1
θ1

)−1

(x)

)
|0, I

)
=

1

(L+ λ)2d
N (G̃θ

−1
(x)|0, I).

The claim now follows by induction over the layers of G̃θ . Note that if G̃θ is followed by a ReLU activation, this inequality
also holds for any x ∈ Rd

≥0, similar to Theorem 3.

Next, we prove Proposition 5. The proof is based on the Hilbert projective metric. For two vectors u,v ∈ Rn
+, it is defined

as
dH(u,v) := max

i
[log(ui)− log(vi)]−min

i
[log(ui)− log(vi)],

and can be shown to be a distance on the projective cone Rn
+/ ∼, where u ∼ u′ if u = ru′ for some r > 0 (Peyré & Cuturi,

2019; Franklin & Lorenz, 1989). For f = log(u) and g = log(v), we thus define the following loss:

LH(f , g) := max
i

[fi − gi]−min
i
[fi − gi].

Lemma B.5. Let f , g ∈ Rn. Then
LH(f , g) ≤

√
2∥f − g∥2.

If, in addition,
∑

i fi =
∑

i gi = 0, then
∥f − g∥2 ≤

√
n LH(f , g).

24

Universal Neural Optimal Transport

Proof. Let h = f − g. For the first inequality, observe that LH(f , g) = maxi hi −mini hi. Let j∗ and k∗ be the indices
achieving maxi hi and mini hi, respectively. Define the vector e such that ej∗ = 1, ek∗ = −1, and ei = 0 for all other i.
Then:

LH(f , g) = e · h ≤ ∥e∥2 ∥h∥2 =
√
2 ∥f − g∥2 .

Now assume that
∑

i fi =
∑

i gi = 0. Set M = maxi hi and m = mini hi. If all hi = 0, both statements are trivial.
Hence, assume at least one of the hi is not zero. Since

∑
i hi =

∑
i fi − gi = 0, this implies M > 0 and m < 0. For any

index i, hi ≤M , and thus
(hi)

2 ≤M2 ≤ (M −m)2 = LH(f , g)2.

Summing over all indices, we have:

∥f − g∥22 = ∥h∥22 =

n∑
i=1

(hi)
2 ≤ n · LH(f , g)2.

Taking the square root yields:
∥f − g∥2 ≤

√
n LH(f , g).

This finishes the proof.

Proposition 5. For two discrete measures (µ,ν) with n particles, let g be a potential solving the dual problem, gϕ =
Sϕ(µ,ν), and gτk = τk(µ,ν, gϕ) the target. Without loss of generality, assume that

∑
i gi =

∑
i gτk i = 0. Then

L2(gϕ, g) ≤ c(K, k, n) L2(gϕ, gτk)

for some constant c(K, k, n) > 1 depending only on the Gibbs kernel K, k and n.

Proof. We first show a similar inequality as in Proposition 5 for the Hilbert loss. A well-known fact about the Hilbert metric
is that positive matrices (in our case, the Gibb’s kernel K) act as strict contractions on positive vectors with respect to the
Hilbert metric (cf. Theorem 4.1 in (Peyré & Cuturi, 2019)). More precisely, we have

dH(Kv,Kv′) ≤ λ(K)dH(v,v′)

for any positive vectors v,v′ ∈ Rn, where

λ(K) :=

√
η(K)− 1√
η(K) + 1

, η(K) := max
i,j,k,l

KikKjl

KjkKil
.

The same inequality also holds for K⊤ in place of K. Note that by definition, η(K) ≥ 1, hence 0 < λ(K) < 1. Now
consider a starting vector v0 to the Sinkhorn algorithm, and let vl denote the lth iterate of the vector. Denote by v⋆ the limit
liml→∞ vl of the algorithm. Then (letting ′/′ denote element-wise division):

dH(vl+1,v⋆) = dH
(
ν/K⊤ul+1,ν/K⊤u⋆

)
= dH

(
K⊤ul+1,K⊤u⋆

)
≤ λ(K)dH(ul+1,u⋆)

= λ(K)dH
(
µ/Kvl,µ/Kv⋆

)
= λ(K)dH

(
Kvl,Kv⋆

)
≤ λ(K)2dH

(
vl,v⋆

)
,

where we used the Hilbert metric inequality twice, once on K and once on K⊤. Iteratively applying this inequality and
translating into log-space notation, this gives us

LH(gτk , g) ≤ λ(K)2k LH(gϕ, g).

For now, assume that
∑

i gϕi = 0. By triangle inequality,

LH(gϕ, g) ≤ LH(gϕ, gτk) + LH(gτk , g) ≤ LH(gϕ, gτk) + λ(K)2k LH(gϕ, g),

25

Universal Neural Optimal Transport

which gives us

LH(gϕ, g) ≤
1

1− λ(K)2k
LH(gϕ, gτk) =: c(K, k) LH(gϕ, gτk).

Combining this with Lemma B.5 yields

∥gϕ − g∥2 ≤
√
nLH(gϕ, g) ≤

√
nc(K, k)LH(gϕ, gτk) ≤ 2

√
nc(K, k) ∥gϕ − gτk∥2 = c(K, k, n) ∥gϕ − gτk∥2 , (17)

from which the claim follows by squaring both sides. We are left with proving the general case when
∑

i gϕi ̸= 0. Write
gϕ = ĝϕ + ḡϕ, where ḡϕ is equal to 1

n

∑
i gϕi in each entry, s.t. ĝϕ sums to zero. We then get

L2(gϕ, g) = ∥ĝϕ − g∥2 + ∥ḡϕ∥2 , (18)

as
⟨ĝϕ − g, ḡϕ⟩ = 0.

Similarly, we get
L2(gϕ, gτk) = ∥ĝϕ − gτk∥

2
+ ∥ḡϕ∥2 . (19)

Combining equations (17), (18) and (19), we get

L2(gϕ, g) = ∥ĝϕ − g∥2 + ∥ḡϕ∥2

≤ cL2(ĝϕ, gτk) + ∥ḡϕ∥
2

= c
(
L2(gϕ, gτk)− ∥ḡϕ∥

2
)
+ ∥ḡϕ∥2

= cL2(gϕ, gτk) + (1− c) ∥ḡϕ∥2

≤ cL2(gϕ, gτk),

where the last inequality follows from the fact that 1− c < 0. This finishes the proof.

Remark B.6. Looking at the proof of Proposition 5, one might wonder why we didn’t opt for the Hilbert projective metric
as the loss directly. We tried using it instead of L2, and it works quite well, but training with L2 seems to have an edge,
probably because the indifference of the Hilbert projetive metric to constant shifts is not a helpful inductive bias for deep
learning.

26

Universal Neural Optimal Transport

C. Training Details
Generator Architecture. Recall that the generator is of the form

Gθ : Rd → P(X)× P(X)

z ∼ ρz 7→ R [ReLU (NNθ(z) + λ Id,d′(z)) + δ] ,

where we set λ = 1.0, δ = 1e-6 (note we first normalize, then add δ, and then normalize again in practice), and z is of size
2 · 10× 10. R normalizes and randomly downsizes output distributions to resolutions between 10× 10 and 64× 64 (per
distribution). This improves generalization of the FNO Sϕ across resolutions, which is true for FNOs in general (Li et al.,
2024a). NNθ is a five-layer fully connected MLP, where all hidden layers are of dimension 0.04 · 642, and the output is of
dimension 2 · 642. All layers except the output layer contain Batch Normalization and ELU activations; the last layer has a
sigmoid activation only. We note the architecture might seem strange, as the network is relatively deep, while the hidden
layers are relatively narrow. However, this architecture worked best amongst an extensive sweep of architectures.

Applying Theorem 3. In the following, we discuss the relation between our generator Gθ and Theorem 3 in more detail.
Note that Theorem 3 is not directly applicable to our setting for a few reasons: First, we add a small constant η to the
generator’s output. This constant ensures that all training samples are positive everywhere, and vastly improves learning
speed as it ensures that all inputs are active. However, this is not restrictive of the problem, as the Sinkhorn algorithm
requires inputs to be positive anyways. Second, in Theorem 3 both in- and outputs to Gθ have the same dimension. This
could be achieved in our setting by choosing the input dimension equal to the output dimension, i.e. Id,n equal to the
identity. However, in practice, using lower-dimensional inputs achieves significantly better results. This can be argued for
by the manifold hypothesis (Fefferman et al., 2016), i.e. the fact that typically, datasets live on low-dimensional manifolds
embedded in high-dimensional spaces. Depending on the application, i.e. the expected target dataset dimension, the
dimension of the input can be adjusted accordingly. Finally, note that the theorem assumes that NNθ is Lipschitz continuous
with Lipschitz constant L < λ, where λ is the scaling factor of the skip connection. We do not enforce this constraint, as not
doing so yields empirically better results. Still, Theorem 3 goes to show that our algorithm’s performance is not bottlenecked
by the generator’s inability to generalize. We note that a bound on the Lipschitz constant is not necessary for invertibility of
ResNets; other approaches have been suggested in the literature, e.g. through the lens of ODEs (Chang et al., 2017) or by
partitioning input dimensions (Jacobsen et al., 2018). It is also possible to directly divide by the Lipschitz constant of each
layer (Serrurier et al., 2023); these approaches could be studied in future research.

We will now describe how one can bound the Lipschitz constant of the generator. Since λ = 1.0, we need to make sure that
the Lipschitz constant of netθ is smaller than 1 in order for Theorem 3 to be applicable. Since the Lipschitz constant of a
composition of functions is bounded by the product of the Lipschitz constants of each component function, this means we
have to bound the product of the Lipschitz constants of components of netθ. ELU is Lipschitz continuous with constant 1,
whereas sigmoid’s Lipschitz constant is 0.25. Furthermore, for a batch normalization layer BN, we have

∥BN(x)− BN(y)∥ =
∥∥∥∥x− µb

σb
− y − µb

σb

∥∥∥∥ =
1

σb
∥x− y∥ ,

where µb and σb denote the empirical mean and standard deviation of the batch. Since we draw our data from a standard
normal Gaussian, we have E[σb] = 1, i.e. in expectation, the batch normalization layer is Lipschitz with constant 1. Hence,
all that remains is to bound the product of Lipschitz constants of the three linear layers by (any number smaller than) 4
(because the constant of sigmoid is 0.25, this will ensure that the network has a Lipschitz constant smaller than 1), for which
it suffices to bound the operator norms of the weight matrix of each layer. In practice, these can be approximated with
the power method as in (Gouk et al., 2020) to find a lower bound on the Lipschitz constant of each linear layer, and these
bounds can be used to add a soft constraint to the loss. Empirically, this suffices to bound the Lipschitz constant of the
generator. Alternatively, one can use a hard constraint as outlined in (Behrmann et al., 2019). However, empirically, this
proved detrimental to training, hence we did not control the Lipschitz constant during our training. Yet, Theorem 3 is still of
value, as it goes to show that our algorithm’s performance is not bottlenecked by the generator’s inability to generalize. We
leave properly enforcing the Lipschitz constraint for future research.

Architecture of Sϕ. Our FNO architecture follows the general structure outlined in Section A.5. We set dvi = 64 for all i;
recall this is the hidden dimension in the Fourier layer. We set the number of Fourier features selected from the Fourier
transform to 10× 10, i.e. 10 along each of the two dimensions of the domain. The (complex) weight matrices of the neural
network in Fourier space, i.e. the one acting on the Fourier features, are tensors of shape (dvi , 4dvi , Nmodesx , Nmodesy) =

27

Universal Neural Optimal Transport

(64, 256, 10, 10) and (4dvi , dvi , Nmodesx , Nmodesy) = (256, 64, 10, 10) respectively, i.e. the hidden dimension is four
times the hidden dimension of vi. Note that since these are complex layers, each layer has two (real) weight tensors of this
shape, one for the real and one for the complex part. These layers are the only complex layers in the network Sϕ. The inputs
to the layer are of shape (dvi , Nmodesx , Nmodesy) = (64, 10, 10) (in C) and multiplied along all dimensions by the weights,
i.e. for input x̂ ∈ C64,10,10 and weight matrix A ∈ C64,256,10,10 (the first of the two layers):

ŷo,n,m =
∑
i

Ai,o,n,mx̂i,n,m.

The activation used within this network, as well as after each Fourier block, is GeLU. The lifting layer P , bypass layer W ,
and projection layer Q are 2D convolutions with kernel size 1.

Hyperparameters. In Table 3 we present all relevant hyperparameters again for convenience.

Table 3. Training hyperparameters.

Hyperparameter Value
params Gθ 272k
layers Gϕ 5
hidden dims Gϕ (164, 164, 164, 164)
δ (eq. (6)) 1e-6
λ (eq. (6)) 1
d (dimension of latent z) 2 · 10× 10 = 200
optimizer Gϕ Adam
activations Gϕ ELU
β1 (initial learning rate Gθ) 0.001
learning rate decay Gθ 1
weight decay Gϕ 0
params Sϕ 26M
Number of Fourier layers 4
dvi (dim. in Fourier blocks) 64
hidden dim. of Fourier NN 256
layers in Fourier NN 2
Nmodesx (# Fourier modes) 10
Nmodesy (# Fourier modes) 10
optimizer Sϕ AdamW
σ (activation in Sϕ) GeLU
α1 (initial learning rate Sϕ) 1e-4
learning rate decay Sϕ 0.9999
weight decay Sθ 1e-4
minimum training sample size 10× 10
maximum training sample size 64× 64
training samples 200M
batch size 5000
mini batch size 64
T (number batches) 40k
ϵ (for Sinkhorn targets) 0.01
k (# Sinkhorn iterations for targets) 5

Code. Source code for UNOT, including the weights for the model used in the experiments, can be found at https:
//github.com/GregorKornhardt/UNOT.

28

https://github.com/GregorKornhardt/UNOT
https://github.com/GregorKornhardt/UNOT

Universal Neural Optimal Transport

D. Additional Experiments and Materials
D.1. Test Sets

In Figure 10 we show samples from our test datasets. For some of the experiments in the appendix, we included two
additional datasets, the ”cars” class which is also from the Quick, Draw! dataset, and the Facial Expressions dataset (Hashan,
2022), which consists of 48×48-dimensional greyscale images. The datasets are very diverse, and range in dimensionality
from very low (MNIST) to fairly low (BEARS, CARS), medium high (CIFAR) and very high (EXPRESSIONS, LFW).

Figure 11 shows samples from our spherical datasets (where only part of the sphere is visible here). To create a grid on the
sphere, we sample elevation angles θ uniformly in

[
−π

2 ,
π
2

]
and azimuthal angles φ uniformly in

[
0, 2π

]
. Concretely, we set

θi = −π

2
+

i

n− 1
π, φj =

2π j

n− 1
, i, j = 0, . . . , n− 1,

and form the n× n grid
{
(θi, φj)

}
i,j

. Each pair (θi, φj) is mapped to a point on the sphere by

x = cos(θi) cos(φj), y = cos(θi) sin(φj), z = sin(θi).

M
NI

ST
CI

FA
R

LF
W

BE
AR

CA
R

EX
PR

ES
SI

ON
S

Figure 10. Test dataset samples on the unit square.

D.2. Comparison with Meta OT

We trained a Meta OT (Amos et al., 2023) network with the official GitHub implementation12 and compared it against
UNOT on our test datasets, where we rescaled all datasets to 28 × 28, as Meta OT does not natively support inputs of
varying sizes. In Table D.2, we report the relative errors on the OT distance (in %) after a single Sinkhorn iteration.

12https://github.com/facebookresearch/meta-ot

29

https://www.kaggle.com/datasets/mhantor/facial-expression
https://github.com/facebookresearch/meta-ot

Universal Neural Optimal Transport

Figure 11. Test dataset samples on the sphere.

Table 4. Relative Errors on the OT distance (in %) after a single Sinkhorn iteration with UNOT’s initialization, compared to Meta OT
(Amos et al., 2023), the Gaussian initialization (Thornton & Cuturi, 2022), and the default initialization. Datasets rescaled to 28× 28
such that the Meta OT network can process them.

MNIST CIFAR MNIST-CIFAR LFW BEAR LFW-BEAR
UNOT (ours) 2.7± 2.4 1.3± 1.1 2.8± 2.6 1.5± 1.3 2.0± 1.6 1.8± 1.3
MetaOT 2.4± 1.8 23.1± 15.7 11.4± 5.8 24.6± 15.7 11.8± 8.3 31.0± 14.8
Gauss 18.1± 10.0 19.7± 7.6 32.2± 8.7 21.1± 6.5 20.4± 8.3 19.3± 6.4
Ones 39.5± 13.4 47.4± 20.2 74.5± 6.9 56.9± 15.4 54.2± 13.5 66.4± 10.8

We see that UNOT outperforms Meta OT on all datasets except MNIST, which is to be expected, as Meta OT is explicitly
trained on MNIST, while UNOT is not trained on any MNIST data. However, surprisingly, we see that UNOT almost
matches Meta OT’s performance on MNIST, suggesting strong coverage of MNIST-like distributions by our generator
network during training.

D.3. MLP-UNOT

We mention that in applications of fixed-size distributions, one can replace the Neural Operator with an MLP and achieve
similar results for a fraction of the training cost. We note that since the MLP acts on a fixed discrete space one does not need
to have equispaced samples. In experiments, we found the MLP approach to also be very reliable for fixed-size inputs, and
to vastly outperform the standard initialization of the Sinkhorn algorithm. Notably, it can be trained in just a few minutes to
relative errors below 5%.

30

Universal Neural Optimal Transport

D.4. Generalization across Resolutions

In this section, we show that UNOT successfully generalizes across resolutions. To this end, we downsample resp. upsample
our test datasets to resolutions between 10× 10 and 64× 64. Figure 12 shows the relative errors on the transport distance
over this range of resolutions after a single Sinkhorn iteration, compared against the default and the Gaussian initializations.
(In Section D.5, we also provide some results on upsampling the dimension of the data beyond 64× 64, i.e. beyond the
largest resolution that the network saw during training.) We see that UNOT generalizes very well across all resolutions
between 10× 10 and 64× 64.

0.0

0.2

0.4

0.6

0.8

M
N

IS
T

MNIST CIFAR BEAR LFW EXPRESSIONS CAR

0.0

0.2

0.4

0.6

0.8

C
IF

A
R

0.0

0.2

0.4

0.6

0.8

B
E

A
R

0.0

0.2

0.4

0.6

0.8

LF
W

0.0

0.2

0.4

0.6

0.8

E
X

P
R

E
S

S
IO

N
S

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

C
A

R

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

Resolution

R
el

at
iv

e
E

rr
or

UNOT Gauss Ones

Figure 12. Relative error on the transport distance over the image resolution, ranging from 10× 10 to 64× 64.

31

Universal Neural Optimal Transport

D.5. Variable Epsilon

In this section, we provide experimental results on a variant of UNOT that also receives the parameter ϵ as an input. Instead
of the pair of measures (µ,ν) encoded as a tensor of size (B, 2, n, n), we use an input size of (B, 3, n, n), where the third
channel is equal to ϵ everywhere. During training, we sample epsilon randomly per sample from a distribution with values
between 0.01 and 1. Otherwise, training is identical to the training of regular UNOT. In Figure 13, we plot the relative
errors over ϵ ranging from 0.01 to 1 on the x-axis, and the resolution of the data ranging from 10× 10 to 70× 70 on the
y-axis (where we downsample resp. upsample the data to these dimensions, cf. Section D.4; note that we still only trained
on image resolutions between 10× 10 and 64× 64). This variant of UNOT seems to do surprisingly well across different
values of ϵ and across a wide range of resolutions, with relatively stable performance across different values of ϵ. However,
we can see that when the resolution gets smaller than around 15× 15, or close to 70× 70, the error increases.

10
20
30
40
50
60
70

M
NI

ST

MNIST CIFAR BEAR LFW EXPRESSIONS CAR

10
20
30
40
50
60
70

CI
FA

R

10
20
30
40
50
60
70

BE
AR

10
20
30
40
50
60
70

LF
W

10
20
30
40
50
60
70

EX
PR

ES
SI

ON
S

0.01 0.1 110
20
30
40
50
60
70

CA
R

0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 Regularization Parameter

Re
so

lu
tio

n

Figure 13. Relative error on the transport distance, over the resolution and varying values of ϵ.

32

Universal Neural Optimal Transport

D.6. Generated Measures

Figure 14 shows images created by the generator. The generator creates very different images over the course of training,
including highly structured distributions, large areas of mass, and distributions with mass concentrated in very small areas.

Figure 14. Pairs of training samples before and after 20%, 40%, 60%, 80%, and 100% of training, from left to right (lighter=more mass).
Top row: actual training images; bottom row: training samples visualized with a smaller skip constant λ to accentuate learned features.

In Table D.6, we also report the average OT distance error of samples created by the generator at various stages of training.
We can see that the generator indeed creates samples that are initially difficult, but that it quickly picks up on them, and by
the end of training is capable of predictions for samples from all stages of training.

Table 5. Relative error on OT distance for samples created after 10, 20, ..., 70% of training. Errors for all samples computed at the time of
their creation (i.e., after 10, 20, ...% of training) and at the end of training.

Error after ...% of Training 0% 10% 20% 30% 40% 50% 60% 70%
At Generation 53.2% 3.1% 2.1% 1.6% 1.8% 1.7% 2.1% 1.9%
At End of Training 2.0% 1.6% 1.4% 1.1% 1.6% 1.5% 2.0% 1.9%

33

Universal Neural Optimal Transport

D.7. Additional Experiments

We provide additional results from our experiments in this section. In Table 6, we show the average Wasserstein-2 distance
of barycenters computed by gradient descent using equation (10) to the true barycenter, where we compute the gradient in
equation (10) from the different initializations and a single Sinkhorn iteration. Figures 15 and 16 show the relative error
on the OT distance over Sinkhorn iterations for c(x,y) = ∥x− y∥ (on the square) and c(x,y) = arccos(⟨x,y⟩) (on the
sphere) resp., complementing Figure 3.

In Figure 17, we plot the relative error on the transport distance w.r.t. computation time when initializing the Sinkhorn
algorithm with UNOT, and compare against the default initialization. We see that particularly on higher dimensional data,
UNOT is significantly faster than Sinkhorn. However, interestingly, on MNIST the default initialization actually seems to be
faster. We note that these results heavily depend on the hardware used, and that we did not optimize our FNO architecture for
performance, so a more efficient architecture would probably lead to even more significant speedups. We have not included
the initialization from (Thornton & Cuturi, 2022) in the plots, as it was very slow for us, even slower than the standard
initialization, despite our best efforts to implement it as efficiently as possible. However, from (Thornton & Cuturi, 2022;
Amos et al., 2023) it seems like the speedup should be somewhere between 1.1x and 2x, depending on the dataset, which
would make it significantly slower than UNOT on most of our datasets. We mention again that FNOs process complex
numbers, but PyTorch is heavily optimized for real number operations. With kernel support for complex numbers, UNOT
will likely be much faster.

Finally, in Figures 18 and 19, we plot the marginal constraint violation (MCV), defined as∥∥1⊤mΠ− ν⊤
∥∥
1
+ ∥Π1n − µ∥1
2

(20)

for a transport plan Π, again for a single Sinkhorn iteration (Figure 18) and over iterations (Figure 19). The MCV measures
how far the transport plan is from the marginals µ and ν. It is often used as a stopping criterion for the Sinkhorn algorithm,
as the ground truth OT distance is unknown in practice. We compute the predicted transport plan for UNOT via equation (4).

Table 6. Average W2 distance from the predicted barycenter to the true barycenter on MNIST after 100 gradient steps.
W2 Distance

UNOT (Ours) 0.021± 0.011
Gauss 0.033± 0.018
Ones 0.057± 0.034

0.00

0.05

0.10

0.15

0.20

0.25

0.30
MNIST(28x28)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
CIFAR(28x28)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
MNIST-CIFAR(28x28)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6
LFW(64x64)

0 10 20 30 40 50
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30
BEAR(64x64)

0 10 20 30 40 50
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30
LFW-BEAR(64x64)

Re
la

tiv
e

Er
ro

r

UNOT Ones

Figure 15. Relative Error on the OT distance on the unit square with c(x,y) = ∥x− y∥ for the UNOT initialization compared to the
default one, over number of Sinkhorn iterations. Note the y-axis has been rescaled for CIFAR and LFW to fit the curve for the default
initialization, and that the Gaussian initialization does not exist for the Euclidean cost function.

34

Universal Neural Optimal Transport

0.0

0.1

0.2

0.3
MNIST(28x28) CIFAR(28x28) MNIST-CIFAR(28x28)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3
LFW(64x64)

0 10 20 30 40 50
Iteration

BEAR(64x64)

0 10 20 30 40 50
Iteration

LFW-BEAR(64x64)

Re
la

tiv
e

Er
ro

r

UNOT Ones

Figure 16. Relative Error on the OT distance on the unit sphere with c(x,y) = arccos(⟨x,y⟩) for the UNOT initialization compared to
the default one, over number of Sinkhorn iterations. Note that the Gaussian initialization does not exist for the spherical cost function.

Figure 17. Comparison of relative errors on the transport distance over computation time in seconds. Evaluated on an NVIDIA 4090. The
x-offset of the UNOT curves corresponds to the time needed for the forward pass through Sϕ.

35

Universal Neural Optimal Transport

MNIST CIFAR MNIST
CIFAR

LFW-BEAR LFW BEAR
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ar

gi
na

l C
on

st
ra

in
t V

io
la

tio
n

28x28 28x28 28x28 64x64 64x64 64x64

Ones
Gauss
UNOT

MNIST CIFAR MNIST
CIFAR

LFW-BEAR LFW BEAR
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ar

gi
na

l C
on

st
ra

in
t V

io
la

tio
n

28x28 28x28 28x28 64x64 64x64 64x64

Ones
UNOT

MNIST CIFAR MNIST
CIFAR

LFW-BEAR LFW BEAR
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ar

gi
na

l C
on

st
ra

in
t V

io
la

tio
n

28x28 28x28 28x28 64x64 64x64 64x64

Ones
UNOT

Figure 18. Average marginal constraint violation (see eq. (20)) after a single Sinkhorn iteration, for the unit square domain with
c(x,y) = ∥x− y∥2 (top) and c(x,y) = ∥x− y∥ (middle), and the unit sphere with c(x,y) = arccos(⟨x,y⟩) (bottom). Note that the
Gaussian initialization exists only for the squared Euclidean distance cost.

36

Universal Neural Optimal Transport

0.0

0.1

0.2

0.3
MNIST(28x28) CIFAR(28x28) MNIST-CIFAR(28x28)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3
LFW(64x64)

0 10 20 30 40 50
Iteration

BEAR(64x64)

0 10 20 30 40 50
Iteration

LFW-BEAR(64x64)
M

ar
gi

na
l C

on
st

ra
in

t V
io

la
tio

n

UNOT Gauss Ones

0.0

0.1

0.2

0.3
MNIST(28x28) CIFAR(28x28) MNIST-CIFAR(28x28)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3
LFW(64x64)

0 10 20 30 40 50
Iteration

BEAR(64x64)

0 10 20 30 40 50
Iteration

LFW-BEAR(64x64)

M
ar

gi
na

l C
on

st
ra

in
t V

io
la

tio
n

UNOT Ones

0.0

0.1

0.2

0.3
MNIST(28x28) CIFAR(28x28) MNIST-CIFAR(28x28)

0 10 20 30 40 50
Iteration

0.0

0.1

0.2

0.3
LFW(64x64)

0 10 20 30 40 50
Iteration

BEAR(64x64)

0 10 20 30 40 50
Iteration

LFW-BEAR(64x64)

M
ar

gi
na

l C
on

st
ra

in
t V

io
la

tio
n

UNOT Ones

Figure 19. Average marginal constraint violation (see eq. (20)) over number of Sinkhorn iterations, for the unit square domain with
c(x,y) = ∥x− y∥2 (top) and c(x,y) = ∥x− y∥ (middle), and the unit sphere with c(x,y) = arccos(⟨x,y⟩) (bottom). Note that the
Gaussian initialization exists only for the squared Euclidean distance cost.

37

