
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2026

THE CELL MUST GO ON: AGAR.IO FOR

CONTINUAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual reinforcement learning (RL) concerns agents that are expected to learn
continually, rather than converge to a policy that is then fixed for evaluation. Such
an approach is well suited to environments the agent perceives as changing, which
renders any static policy ineffective over time. The few simulators explicitly de-
signed for empirical research in continual RL are often limited in scope or com-
plexity, and it is now common for researchers to modify episodic RL environments
by artificially incorporating abrupt task changes during interaction. In this paper,
we introduce AgarCL, a research platform for continual RL that allows for a pro-
gression of increasingly sophisticated behaviour. AgarCL is based on the game
Agar.io, a non-episodic, high-dimensional problem featuring stochastic, ever-
evolving dynamics, continuous actions, and partial observability. Additionally, we
provide benchmark results reporting the performance of DQN, PPO, and SAC in
both the primary, challenging continual RL problem, and across a suite of smaller
tasks within AgarCL, each of which isolates aspects of the full environment and
allow us to characterize the challenges posed by different aspects of the game.

1 INTRODUCTION

Continual reinforcement learning (RL) is the RL setting where the agent is expected to learn continu-
ally, rather than the more traditional setting where the agent learns a policy that is then fixed for eval-
uation or deployment. Continual RL can be seen either as a problem formulation (Khetarpal et al.,
2022; Abel et al., 2023; Kumar et al., 2025) or as a solution method for problems perceived by the
agent as non-stationary. Such problems are often motivated by the big world hypothesis, which states
that the “world” is bigger than the agent (Javed & Sutton, 2024); in this case, continual adaptation
is simply a more effective approach than any fixed policy (Sutton et al., 2007; Janjua et al., 2024).

Much of the progress in RL has been driven by empirical advances, with experimental results often
shaping algorithmic innovations and research directions. As a result, evaluation platforms play a
central role in accelerating progress in the field (e.g., Todorov et al., 2012; Bellemare et al., 2013;
Beattie et al., 2016). In continual RL, most evaluation platforms are adaptations of environments
from traditional RL research, modified to reflect the idea that the world is bigger than the agent. This
is typically achieved by artificially introducing some non-stationarity to the environment—such as
periodically switching the problem faced by the agent (Powers et al., 2022; Abbas et al., 2023; Anand
& Precup, 2023; Tomilin et al., 2023)—or, more rarely, by designing new environments tailored
specifically to continual RL research, with no vestigial notion of episodes (Platanios et al., 2020).

However, both approaches have limitations. While reusing existing environments—especially
complex simulators—is appealing, introducing non-stationarity through hand-crafted switches that
are disconnected from the agent’s behaviour or the environment’s structure can feel overly artificial.
We rarely experience such abrupt phase shifts in our everyday lives. The second—designing
environments specifically for continual RL—is promising in spirit, but existing instantiations
tend to be limited in complexity or scope. Our work takes a complementary direction, aiming
to preserve these purpose-built environments’ continual, non-episodic nature while introducing
richer, ever-evolving stochastic dynamics, continuous actions, partial observability, resource-driven
competition, and a scaffolded progression of behavioural complexity in a spatially structured world.

Specifically, in this paper, we introduce a new evaluation platform based on the game Agar.io (see
Figure 1). This platform, called AgarCL, was developed with a heavy emphasis on supporting re-

1

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2026

Observation space

Symbolic:
0 1 7

Pixel-based:

Eject Split

Action set
1

⟨x, y⟩

No-op

-1

-1

1

channel 0:pellets

channel 2: viruses

channel 1: bots

channel 3: agent

2.5 13 0.8 0

Viruses

Agent

Enemy
“bot”

Pellets

Reward function

r(st-1, st) = m - mt t-1
= Δ mass

Figure 1: Agent-environment interface and main entities in AgarCL. The agent has access to one of
two observation types: pixel-based or symbolic. The pixel-based observation includes four channels
that represent different game entities: pellets, bots, viruses, and the agent itself. Alternatively, the
agent can receive a symbolic observation, consisting of pre-processed features such as the distances
to nearby enemies, pellets, and other entities. The reward function is defined as the change in the
agent’s mass between two consecutive time steps. The action space in AgarCL is hybrid: at each
time step, the agent selects an ⟨x, y⟩ coordinate mimicking where a human player would point their
mouse. Moreover, the agent decides whether to split, eject mass, or just move. In Section 3, we pro-
vide detailed descriptions of these entities and the game dynamics, including the available actions.

search on continual RL. In this environment, the agent controls circular cells within a bounded Petri
dish-like arena. The agent perceives the world through high-dimensional, pixel-based observations,1

and acts through both continuous and discrete actions. Navigation is determined by continuous ac-
tions represented as ⟨x, y⟩ coordinates, while additional affordances such as splitting or ejecting
mass are defined as discrete actions. In AgarCL, the reward is the difference in the agent’s mass
between two consecutive time steps. Thus, an effective agent has a forever-growing mass.

The dynamics of the game Agar.io are what make this environment interesting from a continual
RL perspective. The agent “lives” in an environment full of other agents.2 Agents can increase
their mass by either collecting stationary food pellets or absorbing other agents that are smaller than
they are. Consequently, an agent’s primary objective is not only to increase their mass, but also to
avoid larger cells that pose a threat. At each time step, the mass of a cell naturally decays, with the
rate of decay increasing with size—because agents have the same density in the game, more mass
implies greater size. Aside from its potential never-ending nature, and the complexity induced by
other agents’ behaviours, the key property of AgarCL that makes it interesting from a continual RL
perspective is how its dynamics change according to the agent’s mass. Bigger agents are slower, and
their observation stream is zoomed out to keep their full body visible on screen. The consequence
of an agent’s action (and even its observation stream) is constantly changing in a relatively smooth
manner. Abrupt changes are also present—as when the agent absorbs another agent, drastically
increasing its mass; when it splits itself into multiple cells on purpose; or when it splits due to a virus.
Figure 2 and a Youtube video3 depict some of the environment dynamics supported by AgarCL.

We demonstrate the feasibility of AgarCL as both an evaluation platform and a challenge problem
for continual RL by benchmarking three widely used algorithms, DQN (Mnih et al., 2015),
PPO (Schulman et al., 2017), and SAC (Haarnoja et al., 2018), across multiple variations of the
environment. In the core game, we find that none of these algorithms are able to learn an effective
policy. We also evaluate their performance on several mini-games within AgarCL that isolate
different aspects of the environment’s complexity, such as non-stationarity, exploration, and credit
assignment. These experiments provide indirect insight into the sources of failure in the full game.
Additionally, we present empirical findings that highlight persistent challenges in continual RL
research, particularly in evaluation methodology and sensitivity to hyperparameters.

1Alternative observation types, with a more symbolic flavour, providing backwards compatibility to other
platforms (Zhang et al., 2023), are also supported. We further discuss this option in Section 3.

2In AgarCL, the behaviour of other agents is determined by hand-coded policies. Future work will focus
on supporting learning across multiple agents, making this environment multi-agent.

3https://www.youtube.com/watch?v=CGpvzHIqFLA

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2026

4 5 6

a1 2 3

Figure 2: Environment dynamics and actions in AgarCL, with the agent shown in black. 1⃝ The
agent can eat smaller cells to gain mass. 2⃝ The SPLIT action divides each of the agent’s cells in half
and propels them in a chosen ⟨x, y⟩ direction, allowing slower agents to catch faster ones. Each cell
moves at a speed inversely related to its mass. 3⃝ Cells can later merge if brought close together.
Depending on mass, the agent can either 4⃝ be split by a virus or 5⃝ consume it. 6⃝ The agent can
also EJECT mass in a chosen direction. This mass can be eaten by any agent. Ejecting enough mass
into a virus spawns a new one and propels the original, enabling smaller cells to attack larger ones.

2 BACKGROUND

We use the RL formalism to describe the sequential decision-making problem posed by AgarCL. In
this problem, interactions take place in discrete time steps. The agent starts in a state S0 ∼ µ, where
µ is a start-state distribution, and S0 ∈ S. However, the agent only has access to an observation,
ω0 ∈ Ω, generated by an observation function, Φ : S → ∆(Ω). At each time step, t, the agent
takes an action, At ∈ A, and receives an observation, ωt+1 ∈ Ω, and a reward signal, Rt+1 ∈ R.
Actions are chosen according to the agent’s policy, π, a (possibly stochastic) function of previous
observations. The agent’s goal is to maximize some variant of the expected return, Gt, that is, of
the expected total sum of rewards it receives. The most common variant is the discounted return,
G

γ
t , in which later rewards are discounted by 0 ≤ γ < 1, such that G

γ
t

.
=

∑

∞

t=0
γkRt+k+1.

Alternatively, one may consider the average-reward setting: Gr̄
t

.
=

∑

∞

k=0

(

Rt+k+1 − r(π)
)

, where

r(π)
.
= limh→∞

1

h

∑h

t=1
E[Rt|ω0, A0:t−1 ∼ π], with ω0 denoting the initial observation.

The environment evolves according to the transition function p : S×A → ∆(S), which determines
how the state changes at each time step given an action. In Markov Decision Processes (MDPs;
Puterman, 2014), there is no distinction between observations and states; the observation function
can be considered the identity. However, as we discuss below, AgarCL is a partially observable
environment, with complex dynamics hidden from the agent, and is best described using the full
POMDP formalism (Kaelbling et al., 1998). This partial observability causes the agent to perceive
the environment as changing, whether due to a potential source of non-stationarity in the transition
dynamics, or simply due to partial observability. As mentioned above, our underlying assumption
is that continual RL is beneficial in this setting because it will be more effective than than any fixed
policy (see Sutton et al., 2007; Janjua et al., 2024). This also allows us to avoid placing restrictions
on agents just to ensure the environment is “bigger than the agent” (Javed & Sutton, 2024).

In this work, we use the undiscounted return as the performance metric, but we evaluate algorithms
designed for the discounted formulation, even though average reward is arguably better suited to
continuing tasks. Because our focus is on AgarCL as a research environment, not on solution
methods, we decided to leverage the much more mature literature on deep RL in the discounted case.
Note, this is not uncommon. In Atari 2600 games, for example, agents are evaluated on the score
they accumulate while they are trained to maximize the discounted expected return (Bellemare et al.,
2013; Machado et al., 2018). Additionally, for every problem, there exists a critical discount factor
such that any solution using a higher value will maximize the average reward (Blackwell, 1962).

3 AGARCL: AGAR.IO FOR CONTINUAL REINFORCEMENT LEARNING

We begin by discussing our main contribution: Agar.io for Continual RL (AgarCL). This is an envi-
ronment for research in sequential decision-making that supports settings in which the environment
is constantly changing, but not too abruptly. We believe this setting can potentially instantiate the
big world hypothesis (Javed & Sutton, 2024), and it is a setting in which learning continually is a
more effective solution than a fixed policy learned for a predetermined number of steps.

3

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Under review as a conference paper at ICLR 2026

1

4

7

Mass
×10

3

Time
×10

31 3 5

1
2

3
4

5

6

a1 2 3 4 5 6

Figure 3: First 5,000 time steps of an expert trajectory showing game progression. The agent, shown
in pink, steadily gains mass: 1⃝ starting small, it eventually passes over a virus; 2⃝ splits into smaller
cells; 3⃝ grows large enough to consume viruses and other agents; 4⃝ splits to attack, increasing its
speed. As it grows, the view zooms out to show its full body. 5⃝ The agent ultimately surpasses all
opponents in mass and 6⃝ can see the entire arena. Run recorded while one of the authors played.

3.1 THE GAME: AGAR.IO

Agar.io is a multiplayer online game in which each player controls one or more circular cells. The
game draws an analogy to a Petri dish containing interacting cells, food sources, and viruses. Players
aim to grow by absorbing smaller entities, such as static pellets and other players’ cells, while
avoiding larger opponents and strategically interacting with viruses, which can either fragment or
shield cells depending on their size (see Figure 1). Players can also split their cells for tactical
reasons, enabling simultaneous control of multiple cells. The game’s rules are simple, but complex
dynamics emerge from these interactions. Figure 2 depicts some of these game dynamics.

The arena has three types of entities: pellets, cells, and viruses. Pellets are randomly scattered, static,
have a fixed size, and grant 1 mass when consumed. Cells (or bots), can consume pellets, viruses,
and smaller cells. When consuming another cell, the player gains its mass. Viruses have a mass of
100; depending on the player’s size, a virus can either be absorbed by the cell or cause it to split.

Players start as a small cell of mass 25. If the player’s cell(s) is consumed by a larger cell, the
player’s cell is eliminated from the game. The player then respawns with the same initial mass.
While this could be perceived as an episodic task due to the repeated nature of the interaction, more
successful agents are expected to “live” much longer and not see such resets. Additionally, the cell
that absorbed the player’s cell maintains its new mass after the player has respawned, such that
actions from a previous “episode” impact the new one. Currently, our implementation supports the
single-player setting; the other players, called bots, follow heuristic-based behaviour. We made this
choice to focus on the continual aspect of the problem. We refer the reader to the GOBIGGER (Zhang
et al., 2023) research platform if they are interested in the multi-agent aspect of the game.

The ever-changing nature of the game has many sources. New pellets are generated at every time
step (10 ticks) while fewer than 500 pellets are in the arena. Likewise, new viruses are generated
at every time step whenever their count is below 10. Additionally, every cell belonging to an agent
loses 0.2% of its mass each second. As cells grow, they move more slowly. Their speed, v, is
determined by the function v = mass0.439. Thus, smaller opponents must continually evade larger
players, steer clear of corners, or use viruses for defense. Players can feed viruses until they are
large enough in order to split them toward larger players. Typically, a split occurs if a player feeds
a virus seven times. The player’s field of view also varies according to its mass, as the game needs
to depict all of its cells.4 Figure 3 depicts an example of how an Agar.io game can progress.

Due to all these dynamics, players must continuously balance the need for immediate gains with
potential long-term risks. A common tactic involves splitting a large cell to increase the chances
of consuming smaller opponents, who might otherwise be out of reach due to the large cell’s slower

4There are many additional rules in the game. When an agent has split into 14 cells, it can no longer split into
more. To prevent larger players from simply consuming all viruses, a penalty is activated when an agent con-
sumes 3 or more viruses in a row within a minute. After hitting 3 viruses, the rate of mass decay increases, accel-
erating further with each additional virus consumed. This penalty persists across respawns. Some are likely un-
necessary to capture the spirit of the game, but we mention them to emphasize our focus on replicating the orig-
inal game, which is interesting to people and free of experimenter bias as it was not designed for AI research.

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Under review as a conference paper at ICLR 2026

speed. However, this aggressive move introduces significant risks: the newly split, smaller cells can
be quickly eaten by larger opponents or even by other small, agile players. This delicate balance
between offense and defense, combined with the need to manage mass effectively, forms the core of
competitive play. The game’s design inherently promotes these strategies by ensuring that no single
approach guarantees success in every situation, requiring the agent to continually adapt to survive.

3.2 AGENT-ENVIRONMENT INTERFACE

Once the environment dynamics are defined, we must describe how an agent can interact with such
an environment. We follow the standard RL formalism where the agent-environment interaction
takes place in terms of actions, observations, and rewards. We describe those below and in Figure 1.

Reward Function To keep the reward bounded, we define the reward function as the difference in
the agent’s mass between two consecutive time steps. Formally, this is expressed as:

Rt = mt −mt−1. (1)

Importantly, the problem is non-episodic, so the agent’s death does not terminate the episode. Upon
respawning, the agent receives a reward equal to its death mass minus its initial mass. Note that this
already discourages death as a cost-free reset when the agent is bigger than its initial mass.

Observation Space How the agent perceives the environment is key in any RL problem. Here, we
emphasize a pixel-based top-down view of the environment. Such a choice requires the agent to deal
with a high-dimensional, partially observable and ever-changing observation stream. The figures
throughout the paper provide many examples of renderings of the actual observations received by
the agent, with Figure 3 particularly emphasizing the evolution of such an observation stream.

Importantly, variants of Agar.io have been used in RL research before (Wiehe et al., 2018; Ansó
et al., 2019; Zhang et al., 2023), but the setting with high-dimensional pixel-based observations
has never been studied (or supported). In previous work, the observation always consisted of some
variation of a grid-like observation. Although we do not provide results in such a setting, AgarCL
also supports using more symbolic representations such as these. We discuss both choices below.

Pixel-Based Observation: We represent the game screen, Ot, as a tensor Ot ∈ R
N×N×4, where

N × N denotes the spatial resolution of the game screen (by default, N = 128). The third
dimension corresponds to separate channels for pellets, viruses, enemies, and the agent (including
gridlines). Fig. 1 depicts an example of such an observation (the gridlines are too faint to be seen).

Grid-Like Observation: We adapted the GoBigger observation (Zhang et al., 2023) to the single-
agent setting. It is divided into two main parts: the global state and the player state. The global
state captures information such as the map size, the number of frames in the game, and the number
of frames that have passed. In the player state, we focus solely on the current agent’s information,
including its field of view, visible entities in that space, the agent’s score, and its available actions.
The overlap field is critical, as it captures details about nearby pellets, viruses, and cells (each with
associated positions, velocities, and other necessary attributes).

Action Space The action space is hybrid, and an agent can perform two types of actions simulta-
neously. The agent controls its cells by selecting a point on the screen, mimicking a human’s cursor
movement, which determines the direction in which all of its cells move. The range of these continu-
ous actions is between [−1, 1] in two dimensions, ⟨x, y⟩. Simultaneously, the agent needs to make a
discrete choice between splitting, ejecting pellets, or simply moving, with no further discrete action.

The split action divides a cell into two equal parts, each with half the original mass, provided the
produced cells have at least a mass of 25 (otherwise, it has no effect). One of the newly split cells
is propelled toward the cursor with significant momentum. After splitting, the player must manage
multiple cells simultaneously, using the cursor to navigate each cell. The eject action ejects a small
mass (called a pellet) from each cell toward the cursor. They can be consumed by cells or viruses.
Every action taken is repeated four times, and the observation received by the agent is generated by
the environment after the execution of the selected action(s) four times; we call this value frame skip.

Finally, AgarCL has stochastic dynamics. Noise sampled from a normal distribution, N (0, 1), is
added to the continuous actions the agent sends to the environment.

Technical Details Appendix C has details about AgarCL’s release, interface, and performance.

5

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS AND RESULTS

To evaluate the learning capabilities of agents in AgarCL, we use DQN (Mnih et al., 2015),
PPO (Schulman et al., 2017), and SAC (Haarnoja et al., 2018).5 These algorithms span both value-
based and policy-gradient methods to represent the performance of different classes of algorithms.

Each agent has an encoder component, ϕ, which processes 128× 128× 4 raw images. The encoder
comprises three convolutional layers with kernel sizes of 8 × 8, 4 × 4, 3 × 3, and strides of 4,
2, and 1. Each convolutional operation is followed by layer normalization (Ba et al., 2016) and a
rectified linear unit (ReLU). The final output, a 32 × 12 × 12 feature map, is flattened and passed
through a fully connected layer to produce a compact embedding. This embedding serves as the
basis for predicting both discrete and continuous actions, supporting hybrid control in the AgarCL
environment. In Appendix G, we discuss the adaptations we made to the algorithms we evaluated.

4.1 BENCHMARK RESULTS FOR CONTINUAL RL IN AGARCL

The full game is the reference setting and default setup we are introducing. It is a challenge problem
that poses many difficulties, as we discuss in the next sections. The arena size is 350 × 350 and
it contains ten viruses, eight bots, and 500 pellets, which are regenerated every 600 ticks. We
evaluated DQN, PPO, and SAC learning over 160 million frames in the environment, averaging
over 10 independent runs. Running SAC, for example, takes more than seven days in this setting.

Figure 4: Performance of established
deep RL algorithms in the full game
of AgarCL. Each curve is the average
over 10 seeds, with a moving average
computed over a window of 100 steps.

The empirical evaluation we performed strongly supports
our claim that AgarCL is a challenging evaluation plat-
form for traditional RL algorithms, as they all fail to learn
an effective policy in this environment. Figure 4 depicts
the learning curves obtained by each algorithm. We pro-
vide exact numerical values in Table 10 in Appendix J.

Hyperparameters are an essential aspect of every RL al-
gorithm, and it is important to discuss hyperparameter
tuning in continual RL problems. In truly continual RL,
the tuning strategies commonly used in RL are impracti-
cal (Mesbahi et al., 2024). How can one tune the hyperpa-
rameters of an agent that is expected to live forever? The
obvious alternative, tuning hyperparameters for a chosen
shorter interval is problematic because we incur the risk
of overfitting to that horizon, going against the idea of continual learning. This matters in practice;
for example, the hyperparameters used for 100k frames in Atari differ greatly from those used by
agents when training for 200M frames. Moreover, the performance of an algorithm is often hugely
impacted by minor hyperparameter variations, a topic we further discuss in Appendix I.2.1.

Due to the difficulty of tuning hyperparameters over a potentially unbounded timeframe and to
avoid overfitting to a specific horizon, we used the best hyperparameters we found for AgarCL’s
continual MINI-GAME 4, the setting most similar to this one (but much shorter), as discussed below.

4.2 AGARCL AS A CONTINUAL REINFORCEMENT LEARNING TESTBED

We have not yet provided evidence to support our claims that AgarCL is a potentially promising
evaluation platform for continual RL research. We do so here. Specifically, we demonstrate that fix-
ing an agent’s policy results in a decrease in performance compared to a continually learned policy.

It is hard to show that fixing the agent’s policy leads to worse performance when the algorithms we
evaluated failed to learn a reasonable policy. Thus, only to evaluate the impact of continual learning
in AgarCL, we evaluated PPO in an environment in which pellets and viruses regenerate more fre-
quently. Pellets and viruses are regenerated every 120 ticks instead of 600. We also varied the pellet
density in the arena to obtain an easier setting for this analysis. We evaluated PPO in this setting due
to its consistent outperformance over other baselines in extensive experimentation across various
settings, as discussed below. Shortly, we observed that making more pellets available to the agent in
the environment, along with the other changes mentioned above, led to learning curves that go above
zero. The performance of these agents for different numbers of pellets is available in Appendix K.

5Our implementations are available in https://github.com/AgarCL/AgarCL-Benchmark.

6

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Frames

0

2000

4000

6000

Re
tu
rn

x106

Le
ar

ni
ng

 A
ge

nt

(32M,Frozen)

(48M,Frozen)

Figure 5: Performance of fixed-policy agents
initialized from checkpoints at 32M and 48M
steps. We report the moving average over 10
random seeds with a window size of 1000 steps.

Having found an easier setting where we can
evaluate existing agents, we now evaluate the per-
formance of a fixed policy learned by a PPO agent
trained for 32 million and 48 million training
steps. We evaluated these policies in the setting
above with 1024 pellets in the arena. As shown
in Figure 5, although these fixed-policy agents
initially perform competitively, the performance
of frozen-policy agents collapses after a certain
point. This result further supports our claim that
fixed policies might not be able to adapt to the
non-stationary nature of AgarCL, and that it
might be useful for continual RL research.

It is also interesting to point out settings in which the drop did not happen. While looking for an
easier setting, we did the same experiment with fewer bots in the arena (four instead of eight). In that
case, we observed that PPO was able to learn a relatively stable policy that would collect some pellets
and consistently avoid the other bots (see Appendix L). This further supports the importance of the
different artifacts in the environment to obtain an evaluation framework for continual RL agents.

4.3 VALIDATING AGARCL THROUGH MINI-GAMES

As we established above, AgarCL is a very challenging environment. It not only requires agents
to be able to reliably learn continually, which is already a significant challenge by itself, but also
to address open problems in continual RL research, such as exploration without resets, long-term
credit assignment, and representation learning in light of a varying observation stream.

To validate and understand the proposed environment, we take a step back and evaluate existing
agents in a collection of mini-games we designed within Agar.io. These mini-games isolate specific
challenges such as non-stationarity and the non-episodic nature of the problem. Although they can
be used for diagnosing problems and understanding an agent’s behaviour, we do not necessarily rec-
ommend that researchers use them as benchmark tasks instead of the default setup presented above.

Importantly, we tuned each algorithms’ hyperparameters in every mini-game. We did so over 3 ran-
dom seeds, selecting the configuration that maximized the mean return across the final 100 episodes
of a 20-million-frame run. To avoid maximization bias, we evaluated this configuration with 10 new
trials. Details on the hyperparameter ranges and selection criteria are discussed in Appendix H.

Non-Stationarity through Mass Variation. We first consider a set of progressively challenging
mini-games that require the agent to collect pellets. The environment in such mini-games does not
have other bots or viruses. For simplicity, this first set of mini-games is episodic. Episodes were
500 and 3000 time steps long (first three vs latter three mini-games) and had a single start state.

These mini-games were designed to evaluate the impact of three different aspects of the game:
(i) (short-term) exploration, (ii) mass decay, and (iii) having a bigger mass, thus being much slower
but able to split. To simplify exploration, delayed credit assignment, and partial observability,
MINI-GAME 1 consists of collecting pellets laid out in a square path. The agent starts with a mass of
25, and there is no mass decay. This is the simplest mini-game, but it still features non-stationarity:
when the agent gains mass, it becomes larger and correspondingly slower, but all the agent needs to
learn is to follow the dense path of “breadcrumbs”. MINI-GAME 2 is the same as MINI-GAME 1,
but with mass decay (the negative amount received by the agent varies according to its mass); and
MINI-GAME 3 is the same as MINI-GAME 2, but the agent’s starting mass is 1000 (the agent is much
slower, loses more mass per step, and can split). MINI-GAME 4, 5, and 6 match the first three mini-
games, except that pellets are randomly scattered in the environment, not in a dense path the agent
can blindly follow. In these latter three mini-games, credit assignment is more delayed, partial ob-
servability matters more, and exploration is slightly more difficult (although the resets upon episode
termination still simplify the task). Screenshots of these mini-games are available in Appendix I.1.

Figure 6 presents the algorithms’ performance across these mini-games. A table with numerical
results is available in Appendix J. In the simpler problem, MINI-GAME 1, all approaches achieve
a performance that is very similar to that of a human player. Interestingly, introducing the
ever-changing dynamics already makes the problem much harder, even in the square-path task, as

7

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Under review as a conference paper at ICLR 2026

1 4 8 12 16 200

350

700

Re
tu

rn

x106

a
No Mass Decay, m0 = 25

1 4 8 12 16 200

350

700

x106

b
Mass Decay, m0 = 25

1 4 8 12 16 20-720

-350

0

350

700

x106

DQN
PPO

SAC
Random

Human Performancec
Mass Decay, m0 = 1000

Sq
ua

re

1 4.8 9.6 14.4 20
Frames

0

1400

2800

Re
tu

rn

x106

d

No Mass Decay, m0 = 25

1 4.8 9.6 14.4 20
Frames

0

800

1400

x106

e

Mass Decay, m0 = 25

1 4.8 9.6 14.4 20
Frames

-700

0

700

1400

x106

f

Mass Decay, m0 = 1000

U
ni
fo
rm

Figure 6: Performance of RL methods on episodic pellet-collection mini-games. Panels a⃝, b⃝, and
c⃝ show the performance on the square-path tasks (mini-games 1, 2, and 3), while d⃝ , e⃝, and f⃝

show the performance on randomly regenerated tasks (mini-games 4, 5, and 6). The y-axis scales
vary across plots. The dashed line marks human performance, and the green line the random policy.
The shaded region shows the 95% CI over 10 runs, computed using the t-distribution.

all agents achieve approximately half of the human performance here. Starting the agents with a
larger mass makes the problem even more challenging. These insights carry over to the mini-games
in which pellets are uniformly distributed throughout the arena. However, these mini-games seem
to be a much harder setting for the algorithms we considered and, once mass decay is introduced,
only PPO is able to learn something. Note that SAC is an algorithm 3–5× slower than PPO in terms
of wall clock time and, at least in our experiments, it is not more sample-efficient than PPO. 6

Continual Problems. We now evaluate the mini-games discussed above in the continual case.7

We removed the episodic resets, and we replenish all pellets every 600 frames. The maximum
number of pellets is 500, which are replenished randomly (still within the path for the square-path
mini-games). We re-tuned all hyperparameters in each mini-game for all algorithms evaluated.

These tasks turned out to be exceedingly difficult. Figure 8 and Table 10, with the performance of
each algorithm, can be found in Appendix J. In the square-path tasks, no agent is able to succeed,
partly due to exploration and partial observability. If the agent deviates from the square path and
loses sight of it, the agent struggles to find the path back, and without resets, it must find the path
back to continue learning. In this continual case, the uniform distribution of pellets makes the prob-
lem easier, maybe because the agent can always expect to see at least a few pellets. This is different
when we reduce the number of pellets in the environment by half, a setting in which the baselines
start to struggle. These results are available in Appendix K. Note that we trimmed the learning
process in MINI-GAME 4 when the agents achieved the maximum allowed mass; otherwise, without
mass decay, they would keep growing. As before, PPO is the most robust algorithm we considered.

Finally, it is natural to wonder if a change in network architecture to explicitly incorporate memory
into the agent would not help tackle these problems. Thus, we also evaluated PPO augmented with
a GRU (Cho et al., 2014) in these continual pellet-collection mini-games. However, we did not see
any consistent improvement that would justify such an approach, and that is why we have focused
on simpler architectures throughout this paper. We discuss these results in detail in Appendix I.2.2.

Interacting with Other Agents. We also considered mini-games where the agent is in the arena
with another bot. We evaluated the agent against many different types of simple bots with a fixed
policy. The agents we considered were never able to learn a policy that would collect enough pellets
to outsize the other bot and then absorb it. This was true even for the bots that did not chase the
agent. This is an example of how challenging exploration can be in such an environment, even for
learning basic skills that any agent should have. We further discuss these results in Appendix I.3.

Interacting with Viruses. In addition to evaluating the agents’ ability to collect pellets and to
absorb other agents, we also designed a mini-game to evaluate whether an agent could learn to use

6To obtain these results, we ran over 900 jobs lasting between 15 hours (DQN and PPO) and 23 hours (SAC).
7The word continual was deliberate. It emphasizes the non-stationary nature of the problem. Continuing

often refers to stationary problems with an infinite horizon, and continuous problems imply continuous actions.

8

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Under review as a conference paper at ICLR 2026

viruses to split bigger bots and then absorb them. Shortly, as before, the answer is no. None of the
agents was able to learn the sequence of actions required to succeed in such a task, even though we
made it as easy as possible. These failures make it clear why related work would mostly focus on
pellet-collection tasks in Agar-like environments. See Appendix I.4 for results and discussion.

5 RELATED WORK

GOBIGGER (Zhang et al., 2023) is the approach closest to ours due to its Agar-style gameplay me-
chanics. However, GOBIGGER was designed to study collective behaviours in multi-agent RL. It
focuses on supporting multiple teams of agents. It is not designed to support continual RL research;
in fact, all of its tasks are episodic. Compared to GOBIGGER, AgarCL supports additional data
streams and scales much better with more cells and pellets. Additionally, early work investigated
the feasibility of using Agar-style games as RL environments, but with a heavy emphasis on evaluat-
ing some deep RL algorithms, mostly for pellet-eating tasks (Ansó et al., 2019; Wiehe et al., 2018).

Many other platforms have been used in continual RL research. AgarCL complements these, as it
introduces features that are quite different from those of these platforms. A significant difference
between AgarCL and most other platforms is the fact that it is not designed around the notion
of episodic tasks that switch periodically like in Switching ALE (Abbas et al., 2023), Continual
World (Wolczyk et al., 2021), POET (Wang et al., 2019), MEAL (Tomilin et al., 2025), Continual
NavBench (Kobanda et al., 2025), and many MiniGrid problems (Chevalier-Boisvert et al., 2023).

The main platform supporting non-episodic continual RL research is JellyBean World (Platanios
et al., 2020), but it has much simpler dynamics, a discrete action space, and minimal non-stationarity,
primarily arising from abrupt changes in the reward function. Alternatives include bespoke adapta-
tions of problems in MuJoCo (Todorov et al., 2012) and IsaacGym (Makoviychuk et al., 2021) used
in specific investigations (e.g., Feng et al., 2022; Long et al., 2024) but that have never been made
available as an evaluation platform. Irrespective of individual features, note that AgarCL integrates
them in a way that is tightly coupled to the agent’s state and behaviour, with emergent interactions
between reward, perception, and dynamics. Replicating this with these physics engines would be
non-trivial and would not naturally yield the same continual, smoothly evolving challenges.

Finally, one can view complex environments such as NetHack (Küttler et al., 2020) or
Minecraft (Johnson et al., 2016; Guss et al., 2019) as possible evaluation frameworks for contin-
ual RL under the premise that such environments are “bigger than the agent” (Javed & Sutton,
2024). Approaching continual RL through these environments might make the problem unnecessar-
ily harder. As interesting as Nethack is, it relies on language (and human knowledge), with existing
approaches requiring additional machinery to succeed. Similarly, the vast majority of solutions in
Minecraft rely on human demonstrations, given the difficulty of exploration in such an environment.

6 CONCLUSION

We introduced AgarCL as an evaluation platform for continual RL. AgarCL captures key chal-
lenges, such as partial observability and non-stationarity, while avoiding the abrupt task switches
common in existing benchmarks. We evaluated DQN, PPO, and SAC in mini-games and the full
game, demonstrating the challenges of the latter and how the former can support development and
understanding. AgarCL has features that are important to advance research in continual RL, such as
non-episodic interaction, smooth endogenous non-stationarity, high-dimensional observations, con-
tinuous actions, and potentially infinite horizon. It highlights the limitations of standard deep RL al-
gorithms and the unique challenges of continual RL. Aside from introducing features mostly absent
in other frameworks, we have shown that AgarCL poses significant challenges to traditional RL so-
lutions, and that fixed policies seem to be unable to maintain stable performance in the environment.

This work has focused on the problem, not on existing solution methods. Thus, due to both scope and
space considerations, we have refrained from discussing algorithms introduced to tackle continual
RL problems—but see preliminary investigation of continual backprop in Appendix L.2. Another
limitation of our work is the large amount of resources it required from us in the context of deep
RL. Continual RL is particularly challenging given the timescale on which we want to evaluate
our agents. Although one of our main concerns was to provide a fast simulator to the community,
the experimentation cycle can still end up being quite long in AgarCL. We discuss the broader
implications of our work, as well as the computational resources we used, in the Appendix A and E.

9

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Under review as a conference paper at ICLR 2026

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plastic-
ity in continual deep reinforcement learning. In Conference on Lifelong Learning Agents (CoL-
LAs), 2023.

David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado Philip van Hasselt, and Satin-
der Singh. A definition of continual reinforcement learning. In Neural Information Processing
Systems (NeurIPS), 2023.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In European Conference on Computer
Vision (ECCV), 2018.

Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2023.

Nil Stolt Ansó, Anton Orell Wiehe, Madalina M. Drugan, and Marco A. Wiering. Deep reinforce-
ment learning for pellet eating in Agar.io. In International Conference on Agents and Artificial
Intelligence (ICAART), 2019.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. DeepMind Lab. CoRR, abs/1612.03801, 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

David Blackwell. Discrete Dynamic Programming. The Annals of Mathematical Statistics, 33(2):
719–726, 1962.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. CoRR, abs/1606.01540, 2016.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan K. Terry. Minigrid & Miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. In Neural
Information Processing Systems (NeurIPS), 2023.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. In EMNLP Workshop on Syntax,
Semantics and Structure in Statistical Translation, 2014.

Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy exploration. In
International Conference on Learning Representations (ICLR), 2021.

Jonathan Deaton. AgarLE: Agar.io OpenAI Gym Learning Environment, 2018.
https://github.com/jondeaton/AgarLE. Accessed: 2025-04-09.

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mah-
mood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Fan Feng, Biwei Huang, Kun Zhang, and Sara Magliacane. Factored adaptation for non-stationary
reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2022.

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. ChainerRL: A deep
reinforcement learning library. Journal of Machine Learning Research, 22(77):1–14, 2021.

10

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2026

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden R. Codel, Manuela
Veloso, and Ruslan Salakhutdinov. MineRL: A large-scale dataset of Minecraft demonstrations.
In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence (AAAI),
2018.

Muhammad Kamran Janjua, Haseeb Shah, Martha White, Erfan Miahi, Marlos C. Machado, and
Adam White. GVFs in the real world: Making predictions online for water treatment. Machine
Learning, 113(8):5151–5181, 2024.

Khurram Javed and Richard S. Sutton. The big world hypothesis and its ramifications for artificial
intelligence. In Finding the Frame Workshop at Reinforcement Learning Conference, 2024.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo Platform for ar-
tificial intelligence experimentation. In International Joint Conference on Artificial Intelligence
(IJCAI), 2016.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–
1476, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Anthony Kobanda, Odalric-Ambrym Maillard, and Rémy Portelas. A continual offline reinforce-
ment learning benchmark for navigation tasks. In IEEE Conference on Games (CoG), 2025.

Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, and Ben-
jamin Van Roy. Continual learning as computationally constrained reinforcement learning. Foun-
dations and Trends in Machine Learning, 18(5):913–1053, 2025.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Neural Information
Processing Systems (NeurIPS), 2020.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient BackProp. In Neu-
ral Networks: Tricks of the Trade - Second Edition, volume 7700 of Lecture Notes in Computer
Science, pp. 9–48. Springer, 2012.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C. Machado. Curvature explains
loss of plasticity. CoRR, abs/2312.00246, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling (eds.), European Conference on Computer Vision (ECCV), 2016.

Junfeng Long, Wenye Yu, Quanyi Li, Zirui Wang, Dahua Lin, and Jiangmiao Pang. Learning H-
Infinity locomotion control. In Conference on Robot Learning (CoRL), 2024.

Marlos C. Machado. Efficient Exploration in Reinforcement Learning through Time-Based Repre-
sentations. PhD thesis, University of Alberta, Canada, 2019.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

11

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2026

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac Gym: High
performance GPU based physics simulation for robot learning. In Neural Information Processing
Systems (NeurIPS), 2021.

Golnaz Mesbahi, Olya Mastikhina, Parham Mohammad Panahi, Martha White, and Adam White.
K-percent evaluation for lifelong RL. CoRR, abs/2404.02113, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
forcement learning. Journal of Machine Learning Research, 25(318):1–63, 2024.

Emmanouil Antonios Platanios, Abulhair Saparov, and Tom M. Mitchell. Jelly Bean World: A
testbed for never-ending learning. In International Conference on Learning Representations
(ICLR), 2020.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. CORA: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In Conference
on Lifelong Learning Agents (CoLLAs), 2022.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Neural Information Processing Systems (NeurIPS), 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Richard S. Sutton, Anna Koop, and David Silver. On the role of tracking in stationary environments.
In International Conference on Machine Learning (ICML), 2007.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. DeepMind control suite. CoRR, abs/1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

Tristan Tomilin, Meng Fang, Yudi Zhang, and Mykola Pechenizkiy. COOM: A game benchmark for
continual reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2023.

Tristan Tomilin, Luka van den Boogaard, Samuel Garcin, Bram Grooten, Meng Fang, Yali Du, and
Mykola Pechenizkiy. MEAL: A benchmark for continual multi-agent reinforcement learning.
CoRR, abs/2506.14990, 2025.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired open-ended trailblazer (POET):
endlessly generating increasingly complex and diverse learning environments and their solutions.
CoRR, abs/1901.01753, 2019.

Anton Orell Wiehe, Nil Stolt Ansó, Madalina M. Drugan, and Marco A. Wiering. Sampled policy
gradient for learning to play the game Agar.io. CoRR, abs/1809.05763, 2018.

Maciej Wolczyk, Michał Zajac, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
World: A robotic benchmark for continual reinforcement learning. In Neural Information Pro-
cessing Systems (NeurIPS), 2021.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing Yuan Luo,
Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carmelo Sferrazza, Yuval Tassa,
and Pieter Abbeel. MuJoCo Playground. CoRR, abs/2502.08844, 2025.

12

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2026

Ming Zhang, Shenghan Zhang, Zhenjie Yang, Lekai Chen, Jinliang Zheng, Chao Yang, Chuming Li,
Hang Zhou, Yazhe Niu, and Yu Liu. GoBigger: A scalable platform for cooperative-competitive
multi-agent interactive simulation. In International Conference on Learning Representations
(ICLR), 2023.

A BROADER IMPLICATIONS

This work introduces a new evaluation framework for continual RL, built around the video game
Agar.io. Given that this project is based on a video game and designed for benchmarking and evalu-
ation purposes, there are no foreseeable negative societal impacts. As with most research involving
simulated environments in AI, the risks are minimal and do not require significant mitigation.

B USE OF LARGE LANGUAGE MODELS

LLMs were only used for minor language polishing during the writing of the paper.

C SOFTWARE RELEASE AND TECHNICAL DETAILS

AgarCL is released as free, open-source software under the terms of the MIT license. It is im-
plemented on top of the AgarLE (Deaton, 2018), an incomplete implementation of Agar.io with an
OpenAI Gym (Brockman et al., 2016) interface. AgarCL’s source code is publicly available in:

https://github.com/AgarCL/AgarCL

AgarCL’s core simulation engine and is implemented in C++, rendering is handled by OpenGL.
A Python interface, built with Pybind11, is also supported. In our experiments, when looking at the
interquantile mean (IQM) over ten independent trials, a random agent, written in Python, receives
2,016 frames per second with a frame skip of 1. With a frame skip of 4 (default), the agent receives
1,163 observations per second, which represents 4,652 frames in the game and 1,163 actions
selected by the agent. We report the IQM to discard fluctuations due to other jobs in the system.
This experiment used 2 cores of an Intel Xeon Gold 6448Y CPU and one NVIDIA L40s GPU. Cor-
respondingly, the IQM when evaluating AgarCL without a GPU was 1,440 and 1,092, respectively.

D IMPLEMENTATION DETAILS IN AGARCL

In this section, we further discuss the details of the full-game experiment and the implementation of
the fixed-policy bots.

D.1 AGARCL EXPERIMENT DETAILS

In our main evaluation, we use a 128× 128 arena containing 500 pellets, 10 viruses, and 8 heuristic
bots. Upon being consumed, any agent or bot respawns immediately with an initial mass of 25,
while all other entities preserve their current state. We describe the bot heuristics in Appendix D.2.

Every 600 ticks (150 ticks if we use frame skipping of 4), pellets and viruses that have been con-
sumed or destroyed are regenerated with a uniform probability across the arena. This maintains
fixed totals of 500 and 10, respectively. Mass decay is applied at intervals of 60 ticks. We conduct
each trial for 160× 106 frames.

D.2 FIXED-POLICY BOTS

We implemented four heuristic bots in AgarCL: Aggressive, Aggressive-Shy, Hungry, and
Hungry-Shy. We did so to explore how simple rules shape emergent game dynamics. All bots
follow a fixed policy that always targets the nearest pellet but differ in their interactions with other
agents/bots. This set of behaviours allows us to assess how different action priors influence both in-
dividual success and the overall balance of the game (see Appendix I.3). The four bots’ policies are:

13

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Under review as a conference paper at ICLR 2026

• Aggressive: This bot first looks for any smaller opponent within a defined radius and
attempts to consume it; if no suitable target is found, it switches to pellet collection.

• Aggressive-Shy: Like the Aggressive bot, it will hunt smaller opponents, but if a larger
opponent approaches within its “shy” radius, it immediately flees and only returns to
hunting once the threat has passed.

• Hungry: This bot ignores other players entirely and chases the closest pellet at every step.

• Hungry-Shy: Focused on pellet foraging like the Hungry bot, it additionally monitors for
larger opponents: if one comes too close, it retreats before resuming its hunt.

E COMPUTATIONAL RESOURCES

To thoroughly evaluate our approach, we conducted an extensive hyperparameter tuning through grid
search, running over a thousand individual experiments to identify high-performing configurations
for each task. While this ensured strong performance, it came at a significant computational cost, a
limitation worth noting for future work and reproducibility.

Table 1: Compute resource utilization across four clusters.

Cluster Elapsed (days) Total CPU Usage (years) Total GPU Usage (years) Memory (32 GB units, years)

Cluster 1 3435.0 20.12 9.40 301.2
Cluster 2 1162.0 10.20 3.16 96.0
Cluster 3 162.9 1.65 0.44 14.3
Cluster 4 884.0 7.76 2.42 77.6

Total 5644.0 39.73 15.42 489.1

Cluster hardware details:

• Cluster 1: Intel Xeon Gold 6448Y CPU; NVIDIA L40s (48GB) GPU.

• Cluster 2: Intel E5-2683 v4, Silver 4216, Platinum 8160F/8260 CPUs; NVIDIA P100 (12
GB), V100 (32 GB) GPUs.

• Cluster 3: Intel Xeon Gold 6238/6248, Silver 4110, AMD EPYC 7742/7713 CPUs;
NVIDIA P100 (12 GB), V100 (16/32 GB), T4 (16 GB), A100, RTX A5000 GPUs.

• Cluster 4: Intel Xeon Gold 6148 CPU; NVIDIA V100SXM2 (16 GB) GPU.

F ADDITIONAL RELATED WORK

Continual Reinforcement Learning. There have been many attempts to formalize the continual
reinforcement learning (CRL) problem, each highlighting different aspects of non-stationarity and
lifelong adaptation. Khetarpal et al. (2022) introduce a taxonomy for continual reinforcement learn-
ing (CRL) by focusing on two fundamental dimensions of non-stationarity: ‘scope’, referring to
the extent of variation in tasks or domains, and ‘driver’, representing the main source of change.
Building on this, Abel et al. (2023) define CRL as an ongoing adaptation process, in which agents
continuously update their policies in response to evolving objectives, dynamics, or reward struc-
tures. More recently, Kumar et al. (2025) define continual learning under computation constraints
by proposing a framework that preserves the balance of past knowledge with the efficiency of on-
line updates over an extended period. Collectively, these CRL formalisms establish foundational
principles that guide the design of benchmarks and algorithms.

Existing Environments. Traditional RL testbeds (e.g., Zakka et al., 2025; Tassa et al., 2018) have
driven rapid progress in RL, but they are not tailored for CRL. Accordingly, many CRL studies resort
to switching among different games to induce non-stationarity (e.g., Abbas et al., 2023), relying on
clearly defined train-test boundaries and assuming a well-structured notion of tasks and episodes.
However, such an approach is quite often contrived and, arguably, artificial. As we advocate in this
paper, we believe slower and smoother changes are much more representative of the non-stationarity
in the problems used to motivate CRL. JellyBeanWorld (Platanios et al., 2020) is the main platform
for CRL in non-episodic settings that we are aware of. In JellyBeanWorld, agents navigate an infinite

14

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Under review as a conference paper at ICLR 2026

two-dimensional grid, interacting with various items by collecting or avoiding them. The agent’s
states are partially observable. Although JellyBeanWorld is clearly valuable for CRL research, it
has simpler observations and (discrete) dynamics, without the ever-changing nature of AgarCL.

Agar-Like Environments. Most of the results relying on Agar-like environments for evaluation
consisted of assessing basic agent capabilities, mostly related to pellet eating (Wiehe et al., 2018;
Ansó et al., 2019), without ever putting forward the environment as a key artifact. To the best of
our knowledge, GoBigger (Zhang et al., 2023) is the only other actual evaluation framework for
AI research based on the Agar.io game. It shares certain surface-level similarities with our own,
particularly in its Agar-style gameplay mechanics, but it was introduced to support a fundamentally
different problem. Its main goal is to provide a platform to study collective behaviours in multi-agent
reinforcement learning. Thus, its features consist of supporting multiple teams of agents (in the orig-
inal game, collaboration should emerge from communication) in settings with agents organized into
a few teams. The larger environment configuration supports 24 agents organized into four teams (6
each). The game is designed to be episodic, as the larger maps artificially have episodes that have at
most 14, 400 frames (12 minutes). These are all in direct contrast to the continual learning problem
we focus on, with potentially unbounded episodes and no pre-defined teams, but with a much bigger
number of agents. GoBigger also does not support pixel-based observations; it just supports some-
thing akin to our symbolic observations with information about objects’ positions and velocities. Fi-
nally, we benchmarked the frames per second (FPS) over ten independent trials using the st t6p48

configuration—the largest map setting in the GoBigger implementation. Our environment signifi-
cantly outperforms GoBigger in simulation speed, achieving an interquartile mean (IQM) of 4, 212
fps with GoBigger-style observations, compared to GoBigger’s IQM of 205 fps under the same
observation setup. This experiment was run using 2 cores of an Intel Xeon Gold 6448Y CPU.

G ALGORITHM DETAILS

In this section, we focus on the adaptations we have made to DQN, PPO, and SAC to allow them to
work somewhat effectively in AgarCL.

DQN. We used PFRL’s (Fujita et al., 2021) DQN implementation. We did so by discretizing
the continuous actions in the environment. We ended up with 24 actions: 8 directions times the
3 discrete actions. The predefined directions were: UP (0, 1), UP-RIGHT (1, 1), RIGHT (1, 0),
DOWN-RIGHT (1,−1), DOWN (0,−1), DOWN-LEFT (−1,−1), LEFT (−1, 0), and UP-LEFT (−1, 1).

As discussed throughout, the resets inherent to episodic tasks can be beneficial for exploration by
allowing agents to recover from “bad” states. However, in continual problems, the agent must
naturally recover from a “bad” state. In our experiments, we noticed that the ϵ-greedy strategy was
ineffective in the non-episodic tasks we considered. Thus, in such tasks, we introduced temporally-
extended exploration (Machado, 2019) through ϵz-greedy (Dabney et al., 2021), which achieves
temporal persistence by extending the random actions in an exploratory step over multiple steps
using a heavy-tailed duration distribution.

PPO. Our implementation extends PFRL’s to the hybrid action setting. We adopted a shared neural
network with two heads: an actor head that outputs action probabilities and a value critic head that
estimates state values. In preliminary results, we observed that this architecture was more effective
than having two independent networks. The actor head splits a 256-dimensional feature vector into
discrete and continuous branches: a softmax head for categorical action probabilities and a Gaussian
head (state-independent covariance) for continuous action means and variances, sampling both at
each timestep to form a factored joint policy. The critic head is a compact one-layer MLP producing
a scalar V (s), trained with PPO’s clipped value-function loss and generalized advantage estimation.
Finally, we relied on PPO’s entropy regularization for exploration.

SAC. Similarly to PPO, we extended PFRL’s SAC implementation to the hybrid action setting,
and we relied on the algorithm’s entropy maximization term for exploration. Unlike PPO’s single
value head, our implementation comprises three fully independent networks—one actor and two
critics—each with its own encoder, ϕ, that directly processes the raw observation. The actor mirrors

8This configuration typically includes 1000 pellets, a 144×144 arena, and 14,400 frames per episode. We
modified the GoBigger implementation to support a single player.

15

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2026

the PPO policy architecture but with an entropy regularized objective. Likewise, each critic encodes
the observation using ϕ. The resulting representation is then concatenated with the continuous
action, after which the critic predicts Q-values for each discrete action. The Q-values are selected
with respect to the actor’s sampled discrete action. By structuring the critics this way we avoid the
combinatorial explosion that would arise if we naively input every possible hybrid action pair, and
we prevent gradient interference between discrete and continuous parameters.

H TUNING DETAILS

Hyperparameter tuning is especially critical in reinforcement learning due to the inherent instability
and sensitivity of RL algorithms. Unlike supervised learning, RL involves exploration-exploitation
trade-offs, nonstationary data distributions, and delayed rewards, all of which can magnify the ef-
fects of poorly chosen hyperparameters. Parameters such as step size, discount factor, exploration
noise, entropy regularization (in policy gradient methods), and update frequencies can drastically in-
fluence the learning dynamics and final policy performance. Improper tuning can lead to divergence,
suboptimal policies, or excessive variance in performance.

H.1 DQN TUNING

For tuning DQN, we swept over the hyperparameters listed in Table 2. As discussed in the paper,
both the agent’s network and target network consist of three convolutional layers, each followed by a
ReLU activation and a Layer Normalization layer. In preliminary experiments, we found that omit-
ting Layer Normalization prevented the agent from learning altogether. All weights were initialized
using a LeCun Normal Initialization LeCun et al. (2012). Each hyperparameter combination was
trained using three different random seeds. After identifying the best hyperparameter configuration,
we conducted ten additional independent runs using the best-performing configuration (see Table 3
on the next page). As shown in Table 2, also on the next page, the discount factor, γ, the number
of epochs, the replay buffer size, and the target-network update interval were each fixed at a single
value, while the remaining hyperparameters were swept. Finally, we applied the hyperparameter
settings from continual MINI-GAME 4 to train the full-game agent.

Table 2: Values of hyperparameters that we swept over when tuning DQN.

Hyperparameter Values / Settings

Step size (--lr) 10−5, 3 · 10−5, 10−4, 3 · 10−4

Batch Accumulator (--batch accumulator) "sum", "mean"

Soft Update Coefficient (--tau) 10−2, 5−3

Batch Size (--batch-size) 32, 64

Replay Buffer Size (--replay-buffer) 105

Number of Epochs (--epochs) 1

Target Network Update Interval (--update interval) 4

Gamma (--γ) 0.99

Exploration algorithm ϵ-Greedy, ϵz-Greedy

16

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2026

Table 3: Best hyperparameters for DQN on each minigame.

Category Mini-game
Hyperparameters

Exploration Algorithm

Step Size Batch Accumulator Soft Update Coefficient Batch Size

Episodic

1⃝ 10
−4 mean 5 · 10−5

64 ϵ-Greedy

2⃝ 3 · 10−4 sum 5 · 10−5
32 ϵ-Greedy

3⃝ 10
−4 mean 5 · 10−5

32 ϵ-Greedy

4⃝ 3 · 10−4 sum 10
−2

32 ϵ-Greedy

5⃝ 10
−5 mean 10

−2
64 ϵ-Greedy

6⃝ 10
−5 mean 10

−2
64 ϵ-Greedy

Continuing

1⃝ 10
−4 sum 5 · 10−5

32 ϵz-Greedy

2⃝ 3 · 10−4 sum 10
−2

32 ϵz-Greedy

3⃝ 10
−4 mean 5 · 10−5

32 ϵz-Greedy

4⃝ 10
−4 sum 5 · 10−5

32 ϵz-Greedy

5⃝ 10
−4 mean 10

−2
32 ϵz-Greedy

6⃝ 3 · 10−4 mean 10
−2

32 ϵz-Greedy

Other Agents

7⃝-Small-Sparse1
10

−5 mean 5× 10
−2

32 ϵ-Greedy

7⃝-Normal-Dense2
3× 10

−4 mean 10
−2

64 ϵ-Greedy

8⃝-Small-Sparse1
10

−5 mean 5× 10
−2

64 ϵ-Greedy

8⃝-Normal-Dense2
1× 10

−5 sum 10
−2

64 ϵ-Greedy

Virus 9⃝ 3× 10
−4 sum 10

−2
128 ϵ-Greedy

1 Limited (Sparse) arena: 200× 200 with 200 randomly respawned pellets.
2 Normal (Dense) arena: 350× 350 with 500 randomly respawned pellets.

H.2 PPO TUNING

Hyperparameter tuning for PPO is particularly challenging due to the size of the configuration space:
minimally covering relevant combinations requires at least 324 runs per experiment. We employed
a shared neural network to learn both actor and critic, using the same architecture described in
Appendix G. All network weights are initialized using LeCun normal initialization (LeCun et al.,
2012). The policy head is a Gaussian distribution with a state-independent, learned covariance—a
configuration that is standard in PPO implementations (e.g., Henderson et al., 2018).

In Table 4, we have the choice between two reward normalization schemes as a hyperparameter. The
first is min–max normalization, which linearly rescales the raw reward rt into the range [−1, 1]:

r̃
(min–max)
t =

rt − rmin

rmax − rmin + ϵ
, (2)

where ϵ > 0 is a small constant added for numerical stability.

The second method, variance normalization, uses an exp. weighted moving average of the returns:

Gt = γ Gt−1 + rt, (3) r̃
(var–norm)
t =

rt
√

Var[Gt] + ϵ
, (4)

where Gt is the smoothed return, and normalization is performed by dividing the reward by the
square root of its running variance. This ensures that the normalized reward maintains approximately
unit variance under an exponential moving average with discount factor γ. After normalization, the
reward is clipped to lie within the fixed range [−10, 10] to limit the effect of outliers during training:

r̃
(clipped)
t = clip

(

r̃
(var–norm)
t ,−10, 10

)

. (5)

Initially, we swept over different hyperparameter combinations for PPO in some episodic settings
following Table 4. Through these experiments, we observed that a value function coefficient of 0.9,
an update interval of 5000, step sizes of either 10−5 or 3 × 10−5, and epochs set to either 10 or 15
yielded consistently strong performance. Based on sensitivity analyses across most mini-game tasks,
we narrowed down the range of hyperparameters we swept over for the other tasks. The smaller
set of hyperparameters we swept over is shown in Table 5. Table 6 shows the best-performing
hyperparameters that we used in each task at the end. Finally, we applied the hyperparameter settings
from continual MINI-GAME 4 to train the full-game agent.

17

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2026

Table 4: Values of hyperparameters that we swept over when tuning PPO.

Hyperparameter Values / Settings

Reward function (--reward) min max, variance norm

Step size (--lr) 10−5, 3× 10−5, 3× 10−4, 10−4

Epochs (--epochs) 10, 15, 20
Max gradient norm (--max-grad-norm) 0.5, 0.7, 0.9
Entropy coefficient (--entropy-coef) 0.05, 0.01, 0.1, 0.5
Clipping epsilon (--clip-eps) 0.2, 0.4
Discount factor (--gamma) 0.995
GAE parameter (--lambda) 0.97
Value-function coefficient (--value-func-coef) 0.9, 0.5
Batch size (--batch-size) 64
Update interval (--update-interval) 1024, 2048, 5000

Table 5: Updated PPO hyperparameters used for tuning.

Hyperparameter Values / Settings

Reward function (--reward) min max, variance norm

Step size (--lr) 10−5, 3× 10−5

Epochs (--epochs) 10, 15
Max gradient norm (--max-grad-norm) 0.5, 0.7, 0.9
Entropy coefficient (--entropy-coef) 0.05, 0.01, 0.1, 0.5
Clipping epsilon (--clip-eps) 0.2, 0.4
Discount factor (--gamma) 0.995
GAE parameter (--lambda) 0.97
Value-function coefficient (--value-func-coef) 0.9
Batch size (--batch-size) 64
Update interval (--update-interval) 5000

Table 6: Best hyperparameters for PPO on each minigame.

Category Mini-game
Hyperparameters

Reward Function Step Size Epochs Max Grad Norm Entropy Coef Clip Eps

Episodic

1⃝ Min Max 10
−4 15 0.7 0.01 0.4

2⃝ Min Max 10
−5 10 0.7 0.01 0.2

3⃝ Min Max 10
−5 10 0.9 0.01 0.2

4⃝ Min Max 10
−5 15 0.9 0.05 0.4

5⃝ Min Max 10
−4 10 0.7 0.01 0.4

6⃝ Min Max 3× 10
−5 10 0.5 0.05 0.2

Continuing

1⃝ Min Max 10
−4 4 0.5 0.005 0.2

2⃝ Variance Norm 10
−5 10 0.5 0.05 0.4

3⃝ Min Max 10
−4 4 0.5 0.01 0.3

4⃝ Variance Norm 10
−5 10 0.5 0.1 0.4

5⃝ Min Max 3× 10
−5 10 0.7 0.05 0.4

6⃝ Min Max 3× 10
−4 15 0.7 0.05 0.2

Other Agents

7⃝-Small-Sparse1 Min Max 3× 10
−5 10 0.5 0.05 0.4

7⃝-Normal-Dense2 Variance Norm 10
−5 10 0.9 0.1 0.4

8⃝-Small-Sparse1 Min Max 3× 10
−5 10 0.5 0.05 0.2

8⃝-Normal-Dense2 Min-Max 3× 10
−5 10 0.7 0.05 0.2

Virus 9⃝ Min Max 10
−5 10 0.7 0.01 0.4

1 Uses a 200× 200 arena with 200 randomly respawned pellets.
2 Uses a 350× 350 arena with 500 randomly respawned pellets.

18

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2026

H.3 SAC TUNING

We swept over the hyperparameter combinations in Table 7. In SAC, we employed three separate
networks. All network weights were initialized using LeCun normal initialization(LeCun et al.,
2012). Table 8 summarizes the best-performing hyperparameters across our tasks. Also, we applied
the hyperparameter settings from continual MINI-GAME 4 to train the full-game agent.

Table 7: Values of hyperparameters that we swept over when tuning SAC.

Hyperparameter Values / Settings

Step size (--lr) 10−4, 3× 10−5,10−5

Reward function (--reward) min max, variance norm

Replay buffer size (--replay-buffer) 105

Soft update coefficient (--tau) 10−2, 5× 10−3, 10−3

Max gradient norm (--max-grad-norm) 0.5, 0.7, 0.9
Temperature step size (--temperature-lr) 10−4, 3× 10−4

Update interval (--update-interval) 4
Batch size (--batch-size) 64
Discount factor (-gamma) 0.99

Table 8: Best hyperparameters for SAC on each minigame.

Category Mini-game
Hyperparameters

Reward Function Step Size Soft Update Coefficient Temperature LR Max Grad Norm

Episodic

1⃝ Min Max 3× 10
−5

0.001 10
−4

0.7

2⃝ Min Max 3× 10
−5

0.001 10
−4

0.7

3⃝ Min Max 10
−4

0.01 10
−4

0.7

4⃝ Min Max 10
−5

0.001 10
−4

0.7

5⃝ Min Max 10
−5

0.001 10
−4

0.7

6⃝ Min Max 10
−4

0.001 10
−4

0.5

Continuing

1⃝ Variance Norm 3× 10
−5

0.001 10
−4

0.5

2⃝ Variance Norm 3× 10
−5

0.001 10
−4

0.7

3⃝ Variance Norm 3× 10
−5

0.005 10
−4

0.9

4⃝ Variance Norm 10
−5

0.01 10
−4

0.5

5⃝ Variance Norm 10
−5

0.001 10
−4

0.7

6⃝ Variance Norm 3× 10
−5

0.005 10
−5

0.9

Other Agents

7⃝-Small-Sparse1 Variance Norm 10
−4

0.01 10
−4

0.9

7⃝-Normal-Dense2 Variance Norm 10
−4

0.01 10
−4

0.7

8⃝-Small-Sparse1 Variance Norm 10
−5

0.001 10
−4

0.9

8⃝-Normal-Dense2 Variance Norm 10
−5

0.005 10
−4

0.9

Virus 9⃝ Min Max 10
−5

0.01 10
−4

0.7

1 Sparse setting: 200× 200 arena with 200 pellets.
2 Dense setting: 350× 350 arena with 500 pellets.

I MINI-GAME RESULTS

In this section, we provide visualizations of the mini-games used in our evaluation (Section I.1) and
the complete set of results mentioned in the main paper. Those include results in the continual pellet
collection tasks (Section I.2), including analyses over the algorithms hyperparameter sensitivity
(Section I.2.1) and results in those mini-games when augmenting PPO with a GRU (Section I.2.2).
Additionally, we report results in the mini-games in which the agent was faced with another bot
(Section I.3) and those in which it was expected to successfully interact with viruses (Section I.4).

I.1 ILLUSTRATIVE FIGURES OF THE PELLET-COLLECTION MINI-GAMES

The mini-games for pellet collection are divided into two sets: Square and Random. The Square
mini-games require the agent to collect pellets along a square-shaped path, and it has three versions.
The simplest version involves collecting pellets only, with no additional challenges. The second

19

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2026

introduces mass decay, and in the third, the agent starts with a much bigger mass (1000 instead of
25). The set of mini-games with randomly scattered pellets uses the same variations. New pellets
appear every 600 environment ticks. Figure 7 depicts all these variants.

In
it

ia
l
M

a
s
s

2
5

1
,0
0
0

Pellet Distribution

Square Random

Figure 7: Pellet Collection mini games. They were defined in terms of the pellet distribution in the
arena, the agent’s initial mass, and whether the agent’s mass decays (which is hard to depict in an
image). Note that we do not have eight mini-games because starting with a mass of 1,000 and no
mass decay is an uninteresting setting. In each quadrant, the agent’s actual view at the beginning
of the mini-game is shown on the left, and, to provide a sense of scale, a zoomed-out perspective of
the same setting is shown on the right. The agent is depicted in blue.

I.2 CONTINUAL PROBLEMS

We discussed this setting in detail in the main paper; however, due to space constraints, we were
unable to present the complete set of results there. They are available in Figure 8 below.

Sq
ua

re

1 4 8 12
Frames

0

10000

20000

Re
tu

rn

x106

DQ
N

PPO
SAC

Random

Human Performance
d

No Mass Decay, m0 = 25

1 4 8 12 16 20
Frames

0

2500

5000

7500

x106

e
Mass Decay, m0 = 25

1 4 8 12 16 20
Frames

0

2500

5000

7500

x106

f
Mass Decay, m0 = 1000

U
ni
fo
rm

Figure 8: Performance of RL methods on continual pellet-collection mini-games. Panels a⃝, b⃝, and
c⃝ show the performance on the square-path tasks (mini-games 1, 2, and 3), while d⃝ , e⃝, and f⃝

show the performance on randomly regenerated tasks (mini-games 4, 5, and 6). Note that the y-axis
scales vary across plots. The dashed line marks human performance, and the green line marks the
random policy. The shaded region shows the 95% CI over 10 runs, computed using the t-distribution.

I.2.1 HYPERPARAMETER SENSITIVITY ACROSS MINI-GAMES

We ran thousands of GPU jobs to tune and evaluate, on a per-environment basis, the baselines
discussed in the previous section. Hyperparameter tuning is a major challenge in RL, and an even
bigger one in continual RL. Each algorithm is impacted differently by each hyperparameter. To test

20

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2026

robustness, we used hyperparameters tuned in one mini-game to evaluate performance in another.
In many tasks, PPO tuned on a particular mini-game often collapses when applied to a different
mini-game. For SAC, using hyperparameters tuned for different mini-games sometimes yields
better results than the hyperparameters optimized for the task itself! DQN, on the other hand,
demonstrates surprising robustness—cross-task hyperparameter transfers have minimal impact on
its peak performance. This big variability can be due to the complexities in hyperparameter selection
strategies (Patterson et al., 2024), including the fact that we were able to afford only three seeds per
configuration, which is certainly not enough for an accurate estimate. This is another common prac-
tice in the field that can be quite detrimental. The actual plots for these results are in Figure 9. These
results underscore a critical insight: no single hyperparameter setting is robust across all tasks.

1 4 8 12 16 200

400

800

Re
tu

rn

x106

a

DQN Performance

1 4 8 12 16 200

400

800

x106

b

PPO Performance

1 4 8 12 16 200

400

800

x106

Tuned
SD-25

SD-1000

Random

Human Performance
c

SAC_Performance

Sq
ua

re
No

 M
as

s D
ec

ay
m

=
25

1 4 8 12 16 200

400

800

Re
tu

rn

x106

d

1 4 8 12 16 200

400

800

x106

e

1 4 8 12 16 200

400

800

x106

TunedSnD_25
SD_1000

Random

Human Performance
f

Sq
ua

re
M

as
s D

ec
ay

m
=

25

1 4 8 12 16 20-800

0

800

Re
tu

rn

x106

g

1 4 8 12 16 20-800

0

800

x106

h

1 4 8 12 16 20-800

0

800

x106

Tuned

SnD
_25

SD_25

Random

Human Performance
i

Sq
ua

re
M

as
s D

ec
ay

m
=

10
00

1 4.8 9.6 14.4 200

1400

2800

Re
tu

rn

x106

j

1 4.8 9.6 14.4 200

1400

2800

x106

k

1 4.8 9.6 14.4 200

1400

2800

x106

Tuned
RD_25

RD_1000

Random

Human Performance
l

Ra
nd

om
No

 M
as

s D
ec

ay
m

=
25

1 4.8 9.6 14.4 200

700

1400

Re
tu

rn

x106

m

1 4.8 9.6 14.4 200

700

1400

x106

n

1 4.8 9.6 14.4 200

700

1400

x106

Tuned RnD_25RD_1000Random

Human Performance

o

Ra
nd
om

M
as

s D
ec

ay
m

=
25

1 4.8 9.6 14.4 20
Frames

-700

0

700

1400

Re
tu

rn

x106

p

1 4.8 9.6 14.4 20
Frames

-700

0

700

1400

x106

Tuned
RnD_25

RD_25 Random

Human Performance
q

1 4.8 9.6 14.4 20
Frames

-700

0

700

1400

x106

r

Ra
nd
om

M
as

s D
ec

ay
m

=
10

00

Figure 9: Performance of DQN, PPO, and SAC on six mini-games using cross-evaluated hyperpa-
rameters. The mini-games are grouped into two categories: the top three rows correspond to the
square path group (Square-path pellet collection tasks), and the bottom three rows to the random
group (randomly regenerated pellet tasks). For each mini-game, agents are evaluated not only us-
ing their own tuned hyperparameters but also using the hyperparameters optimized for the other
two tasks within the same group. Each row shows the performance of a baseline algorithm across
three hyperparameter configurations. For example, panels a⃝, b⃝, and c⃝ show DQN, PPO, and
SAC in MINI-GAME 1 under different hyperparameter settings. The naming convention is as fol-
lows: SD-1000 denotes a Square path setting with mass Decay and an initial mass of 1000, while
SnD-25 indicates no Decay and an initial mass of 25. Tuned is considered for the best hyperpa-
rameter on a particular mini-game. We use R instead of S on the panels for the mini-games in which
pellets were randomly spread in the environment (instead of a square).

21

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Under review as a conference paper at ICLR 2026

I.2.2 PPO AUGMENTED WITH A GRU

One might wonder whether approaches able to tackle partial observability would be effective in
AgarCL, mainly in the settings with a high degree of partial observability. As previously discussed,
PPO is the best-performing algorithm among those we considered; because of that, we decided to
evaluate PPO, augmented with a recurrent network, in the pellet collection MINI-GAMES.

Specifically, we evaluated PPO with Gated Recurrent Units (GRUs; Cho et al., 2014). The model
comprises three convolutional layers, followed by a 256-unit GRU, and a final linear layer that
splits into actor and critic heads. We re-tuned all hyperparameters for this new algorithm. All other
experimental procedures were kept the same.

As shown in Figure 10, GRUs did not lead to much improvement. It performed well in relatively
simple scenarios as MINI-GAME 1 (see panel a⃝), where it achieved human-level performance. How-
ever, it struggled in more challenging tasks, such as mini-games 2 and 3 (panels b⃝ and c⃝). Notably,
in the uniform variation (panels d⃝- f⃝), the performance of PPO with GRUs was even worse than
that of the non-recurrent version. Table 9 reports the equivalent numerical results.

Sq
ua

re
U
ni
fo
rm

Figure 10: Performance of PPO+GRU and PPO on continual pellet-collection mini-games. Panels
a⃝, b⃝, and c⃝ correspond to the square-path tasks (with no mass decay, mass decay m0 = 25,

and mass decay m0 = 1000, respectively), while panels d⃝, e⃝, and f⃝ correspond to the uniformly
regenerated pellets with the same decay settings. The shaded regions show the 95% CI over 10
evaluation runs, computed using the t-distribution. Note that the y-axis scales differ between panels.

Table 9: Performance of PPO with GRU-based recurrent architecture across six mini-games. Results are
averaged over the last 100 data points. Values in parentheses denote standard deviations.

Algorithm Mini-Game 1 Mini-Game 2 Mini-Game 3 Mini-Game 4 Mini-Game 5 Mini-Game 6

PPO 335 (3.0) 0 (0) −975 (0) 22,463 (48.9) 4,018 (126.8) 5,064 (113.6)

PPO + RNN 484 (10.0) 0 (0) −974 (0.3) 20,533 (250) 5,329 (30.9) 4,036 (22.4)

I.3 INTERACTING WITH OTHER AGENTS

Aside from pellet collection, capturing (or fleeing) other agents is a key skill an agent is expected
to have in AgarCL. In this section, we evaluate the agent in mini-games in which the agent is
expected to interact with a single other bot in the environment. To make the problem easier for
the agent, given the difficulty they faced in the continual mini-games, we conducted experiments
in an episodic setting, where each episode terminates either when the agent is eaten or after 10,000
time steps, whichever occurs first. We conducted these experiments in two configurations, LARGE-
DENSE setup and SMALL-SPARSE setup. We discuss both below.

I.3.1 LARGE-DENSE SETUP

This first setup uses a standard number of pellets (500) and a normal-sized arena (350 × 350). We
used two types of fixed-policy bots: the hungry bot, which focuses solely on collecting pellets, and

22

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Under review as a conference paper at ICLR 2026

1 10 20
Frames

0

1000

2000

Re
tu
rn

x106
DQN

Bot

Human Performance

Random

a

1 10 20
Frames

0

1000

2000

x106
PPO

Bot

Human Performance

Random

b

1 10 20
Frames

0

1000

2000

x106
SAC

Bot

Human Performance

Random

c

H
un

gr
y-
Bo

t

1 10 20
Frames

0

1000

2000

Re
tu
rn

x106

d

1 10 20
Frames

0

1000

2000

x106

e

1 10 20
Frames

0

1000

2000

x106

f

Ag
gr

es
si

ve
 B

ot

Figure 11: Performance of DQN, PPO, and SAC on episodic other-agent mini-games. Panels a⃝
and d⃝ show the performance of DQN, Panels b⃝ and e⃝ show the performance of PPO, and Panels
c⃝ and f⃝ show the performance of SAC. The top row (a⃝– c⃝) corresponds to the hungry-bot task

(mini-game 7), while the bottom row (d⃝– f⃝) corresponds to the aggressive-bot task (mini-game 8).
Each experiment features a fixed-policy bot—either hungry or aggressive—in a standard-sized arena
(350×350) with 500 pellets. Both the agent and the fixed-policy bot start with an initial mass of 25.
Shaded regions represent the 95% CI over 10 independent runs, computed using the t-distribution.

the aggressive bot, which prioritizes consuming any entity smaller than itself.

Figure 11 depicts the obtained results as well as the return obtained by the fixed-policy bot, as its
return in comparison to the learning agent is quite informative. We can see that both DQN and SAC
struggled in the presence of the aggressive and hungry bots. Gameplay videos recorded at various
evaluation checkpoints revealed that these agents frequently became stuck in corners, a failure mode
also observed in pellet collection mini-games. Consequently, the aggressive bot could consume the
learning agents quickly, as reflected by the early plateau in their return curves in panels d⃝ and f⃝.
The performance of the hungry bot in panels a⃝ and c⃝ appears slightly better, focusing on collecting
pellets rather than following the learning agents. PPO agent exhibited more robust behaviour. Panel
e⃝ shows that PPO learned to avoid the aggressive bot effectively while collecting many pellets. This

evasive strategy contributed to the steady increase observed in the agent’s return, albeit at a slower
rate than its adversary. However, in the hungry setting (panel b⃝), PPO failed to consume the bot,
even though the hungry bot did not attempt to attack it. This suggests that while PPO is effective in
terms of survival, it may not exploit opportunities to eliminate non-aggressive opponents.

These results raise the question of whether PPO’s success was due to the large arena and high pellet
density. The SMALL-SPARSE setting, discussed next, addresses this question directly.

I.3.2 SMALL-SPARSE SETUP

To limit the agent’s ability to avoid interaction with bots, we evaluated them in a smaller arena
(200 × 200) with a reduced number of pellets (250). This configuration increases the likelihood of
direct encounters between the learning agent and the fixed-policy bot.

Consistent with previous findings, the DQN and SAC baselines failed to demonstrate effective learn-
ing, irrespective of the type of bot in the environment (see Figure 12 on the next page). This is pri-
marily attributable to recurring behavioural failures, such as becoming trapped in corners or failing
to evade the bot, which are issues that persisted under these more restrictive conditions. Interest-
ingly, the PPO agent also failed to learn in this environment, regardless of whether it was paired with
the aggressive or the hungry bot. PPO could not consistently evade the aggressive bot or exploit the
passive behaviour of the hungry one. In panel e⃝, PPO’s return clearly plateaus early, while the
aggressive bot’s return steadily increases, indicating its ability to repeatedly eat the agent with ease.
Even more interesting is PPO’s performance against the hungry bot. Despite the absence of an active
threat, PPO failed to take advantage of the opportunity to survive and collect pellets. The consis-
tent flattening of the agent’s learning curves across all settings further reinforces this observation,
indicating minimal policy improvement over time.

23

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Under review as a conference paper at ICLR 2026

1 10 20
Frames

0

1000

2000

Re
tu
rn

x106
DQNBot

Human Performance

Random

a

1 10 20
Frames

0

1000

2000

x106

PPOBot

Human Performance

Random

b

1 10 20
Frames

0

1000

2000

x106
SAC

Bot

Human Performance

Random

c

H
un

gr
y-
Bo

t

1 10 20
Frames

0

1000

2000

Re
tu
rn

x106

d

1 10 20
Frames

0

1000

2000

x106

e

1 10 20
Frames

0

1000

2000

x106

f

Ag
gr

es
si

ve
 B

ot

Figure 12: Performance of RL baselines—DQN, PPO, and SAC—on episodic other-agent mini-
games. Panels a⃝ and d⃝ show the performance of DQN, Panels b⃝ and e⃝ show the performance of
PPO, and Panels c⃝ and f⃝ show the performance of SAC. The top row (a⃝– c⃝) corresponds to the
hungry-bot mini-game, while the bottom row (d⃝– f⃝) corresponds to the aggressive-bot mini-game.
Each experiment features a fixed-policy bot—aggressive or hungry—in a limited arena (200× 200)
with 250 pellets. The agent and the fixed-policy bot start with an initial mass of 25. Shaded regions
represent the 95% confidence intervals over 10 independent runs, computed using the t-distribution.

I.4 INTERACTING WITH VIRUSES

A final skill we probe for is whether agents can learn how to leverage viruses in the environment, in
the most benign setting possible. The mini-game is configured to be fully observable. As illustrated
in Figure 13, the opposing bot remains stationary, and a clear, linear arrangement of viruses is
positioned between the agent and the bot. Notably, there are no pellets in this mini-game. The agent
begins with a mass of 3000 and must engage with a larger, stationary bot that has a mass of 5000. To
simplify dynamics further, mass decay is disabled. Training in this mini-game follows an episodic
setup: an episode ends when one agent is eaten or after 1000 time steps.

The agent should learn to eject pellets toward the viruses, triggering them to split the stationary bot.
The agent can then pass through the virus field and consume the smaller bot fragments. As shown
in Figure 14, all learning agents failed to discover this strategy. Instead, they converged to a passive
behaviour, remaining stationary for the entire episode. This highlights the difficulty these agents
face in learning to leverage environmental elements, such as viruses, for strategic interaction, even
in a simplified and fully observable setting.

Figure 13: The learning agent (mass 3,000)
is separated from a standstill bot (mass
5,000) by a line of static viruses (mass 100).
The arena is fully observable with no pellets,
mass decay, or virus respawning.

1 4 8 12 16 20
Frames

-3000

-2000

-1000

0

1000

Re
tu
rn

×106

DQN
PPOSACHuman Performance

Random

Figure 14: Performance of DQN, PPO, and SAC on
the virus-based mini-game. Shaded regions show the
95% CI across 10 runs using the t-distribution.

24

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Under review as a conference paper at ICLR 2026

J NUMERICAL RESULTS ON MINI-GAMES AND THE FULL GAME

Table 10 summarizes the results of the experiments conducted in this paper. Each reported value rep-
resents the final performance, calculated as the average reward over the last 100 evaluation episodes.

Table 10: Performance across AgarCL minigames averaged over 10 independent runs (std. dev. is reported between
parentheses). Results are averaged over the last 100 data points: episodes in episodic tasks and 100 steps in continual
tasks.

Category Mini-game Scenarios DQN PPO SAC Human Random

Pellet Collection
(Episodic)

1 — 642 (14.2) 605 (25.3) 546 (6.0) 700 (0) 4.81 (1.3)

2 — 382 (9.1) 398 (12.9) 285 (9.8) 682 (0) 0.81 (0.7)

3 — 271 (23.1) 298 (28.8) −16 (30.3) 612 (0) −356 (22.7)

4 — 1189 (44.2) 391 (36.3) 790 (98.6) 2876 (0) 4 (1.3)

5 — 214 (13.2) 650 (58.9) 16 (8.4) 1600 (0) 0.17 (0.16)

6 — −426 (20.0) 812 (118.3) −681 (12.8) 1452 (0) −657 (6.9)

Pellet Collection
(Continual)

1 — 619 (7.9) 335 (3.0) 419 (0.2) 700 (0) 0.01 (0.1)

2 — 0 (0) 0 (0) 2 (1.7) 682 (0) 0 (0)

3 — −975 (0) −975 (0) −975 (0) −480 (0) −975 (0)

4 Sparse1 — 22463 (48.9) — — —

Dense1 21402 (762.8) 21970 (277) 21997 (595.6) 23000 (0) 112.2 (12.5)

5 Sparse — 144 (10.8) — — —

Dense 132 (9.3) 4018 (126.8) 0.012 (0.9) 7215 (0) 0.05 (0.09)

6 Sparse — −618.3 (1.4) — — —

Dense −828 (10.5) 5064.4 (113.6) −968 (0.01) 7215 (0) −973 (1.1)

Other Agent

(Episodic)

7—Small, Sparse2 — 157 (0.7) 253 (35.6) 31 (0.2) 1980 (0) 0.015 (0.04)

7—Large, Dense2 — 146 (48.4) 429.3 (136.4) 25 (14.2) 2385 (0) 0.1 (0.16)

8—Small, Sparse — 189 (6.03) 267 (26) 114 (18.8) 1800 (0.015) 0.04 (0.04)

8—Large, Dense — 191 (14.56) 1037 (55.2) 69 (8.9) 2035 (0.015) 0.04 (0.04)

Virus (Episodic) 9 — -36 (4.23) -46 (6.45) -5 (0.1) 870 (20.5) -2319 (8.94)

Full Game (Grand Arena) — — 4 (3.1) 8 (8.3) 22 (11.1) — 0.06 (0.18)

1 In continuing pellet-collection tasks, “Sparse” refers to an arena with 250 pellets. “Dense” uses 500 pellets.
2 “Small” arena: 200× 200 with 200 pellets. “Large” arena: 350× 350 with 500 pellets.

K HOW THE NUMBER OF PELLETS IMPACTS THE AGENT’S PERFORMANCE

1 4 8 12 16 20
Frames

0

12500

23000

Re
tu

rn

x106

RD_25RD_1000

RnD
_25

PPO Performance with 250 pellets

Figure 15: PPO performance on continuing
randomly regenerated pellet-collection in MINI-
GAMES 4, 5, and 6. RD-1000 denotes a
Randomly regenerated pellet setting with mass
Decay and an initial mass of 1000; SnD-25

indicates no Decay and an initial mass of 25. The
plateau in the RnD-25 curve after approx. 1M
steps is due to the agent reaching the maximum
cumulative reward in MINI-GAME 4⃝. Shaded
regions indicate the 95% CI over 10 independent
runs, using reference values from the t-table.

In this section, we further evaluate how PPO
behaves in more challenging pellet-collection
mini-games, where the number of available pel-
lets is significantly reduced.

In Figure 8, PPO demonstrates strong perfor-
mance in collecting pellets, even in the con-
tinual setting. However, the task remains rel-
atively easy due to the high number of pellets
(500), which allows the agent to find and con-
sume pellets with minimal effort, even in the
presence of mass decay. The situation changes
when the number of pellets is reduced to 250.
Interestingly, PPO failed to learn effectively in
MINI-GAMES 5⃝ and 6⃝, suggesting increased
difficulty with exploration.

More generally, following the discussion on
Section 4, in the context of designing easier set-
tings in the full game such that we can see pos-
itive learning, we designed a variant of the en-
vironment in which the number of bots was de-

25

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Under review as a conference paper at ICLR 2026

creased from 8 to 4, and we evaluated the impact of having fewer (400) or more (600, 1024) pellets
than in the default setup. We maintained 10 viruses in the environment. We evaluated each agent for
86 million training steps.

0 32 64 84
Frames

0

2000

4000

Re
tu
rn

x106
P1
02
4

P600

P400
P500

Figure 16: PPO performance across varying pel-
let densities within a simplified version of the de-
fault setup. All experiments use 10 viruses and 4
bots; with a varying number of pellets, which is
labeled in each curve. For example, P1024 de-
notes 1024 pellets. Results are averaged over 10
random seeds, and each curve is smoothed using
a moving average with a window of 1000 steps.

As illustrated in Figure 16, increasing the
number of pellets and reducing the number of
bots does indeed make the task easier. Some
of the curves depict a drop in performance
later in training. While this is not surprising
in continual RL due to issues such as loss of
plasticity (Abbas et al., 2023; Lewandowski
et al., 2023; Dohare et al., 2024), we did not
investigate this phenomenon further, nor did
we evaluate any mitigation strategies. The im-
portant observation, despite the high variance
across runs, is that this setting makes the prob-
lem more tractable, so we can then consider
the impact of freezing the agent’s policy.

These results were the motivation for us to use
1, 024 pellets in the experiment in which we
froze the agent’s policy (in an easier environ-
ment, so we could first see learning).

L CONTINUAL LEARNING IN AGARCL

In this section, we examine AgarCL from the perspective of continual RL. We first test the impact of
freezing the agent’s policy in a different setting; then, we evaluate the performance of PPO with con-
tinual backpropagation (Dohare et al., 2024), an approach explicitly designed for continual learning.

L.1 FIXED POLICIES VS LEARNING AGENT IN AGARCL

0 20 40 60 80 100 120 140
Frames

0

1000

2000

Re
tu
rn

x106

Le
ar

ni
ng

 A
ge

nt

(32M,Frozen)

(48M,Frozen)

Figure 17: Performance of fixed-policy agents
initialized from checkpoints at 32M and 48M
steps. We report the moving average over 10
random seeds with a window size of 1000 steps.

In our earlier analysis, we identified performance
degradation when training was interrupted at 32
million and 48 million steps in the setting with
8 bots and 1, 024 pellets. We also evaluated the
impact of freezing the agent’s policy in other sce-
narios. Specifically, we performed an additional
experiment under the same conditions but with 4
bots and 500 pellets. We can also observe pol-
icy collapse for the agents frozen after 32M steps.
We conjecture we would also observe policy col-
lapse for the agent frozen after 48M steps if we
waited long enough, but if not, this would be evi-
dence that simpler settings (e.g., four bots) might
make it easier for the agent to learn some non-
trivial policy and maintain it, even though it is
quite suboptimal.

L.2 EXISTING CONTINUAL RL ALGORITHMS IN AGARCL

Although the primary purpose of this paper is not to test, let alone benchmark, continual RL
methods in AgarCL, one might wonder if existing solutions would naturally be effective here.

There are not that many methods that would work out-of-the-box in AgarCL because so many
of them are too tied to the notion of tasks. Specifically, any existing approaches to continual
learning, such as Elastic Weight Consolidation (EWC; Kirkpatrick et al., 2017), Memory Aware
Synapses (MAS; Aljundi et al., 2018), and Learning without Forgetting (LwF; Li & Hoiem, 2016),
rely on the notion of explicit task boundaries. EWC and MAS use this information to apply regu-

26

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Under review as a conference paper at ICLR 2026

larization constraints on parameter updates, while LwF incorporates it into distillation losses to pre-
serve performance on previously learned tasks. Thus, in order to apply these algorithms to AgarCL,
we would need to first change them. Similarly, replay-based methods specifically designed for con-
tinual learning, such as Continual Learning with Experience and Replay (CLEAR Rolnick et al.,
2019), typically assume access to task boundaries to manage memory buffers and optimize training
schedules effectively. AgarCL, by design, avoids task switches entirely.

Figure 18: Performance of PPO agents with and
without the Continual Backpropagation. Re-
sults are reported as moving averages over 10
random seeds, using a window size of 100 steps.

Thus, as a preliminary result, we tested Con-
tinual Backpropagation (Dohare et al., 2024) on
top of PPO in the original full-game setting to
see if it would make any difference. As shown
in Figure 18, Continual Backpropagation did not
lead to meaningful performance gains in the full-
game scenario. This suggests that while exist-
ing continual learning methods can be applied in
principle, they are not yet sufficient to address
the unique challenges posed by continual RL in
AgarCL. Issues such as exploration and delayed
credit assignment seem to be at the centre of
AgarCL, and most continual learning methods
were not designed to tackle these specific chal-
lenges.

27

	Introduction
	Background
	AgarCL: Agar.io for Continual Reinforcement Learning
	The Game: Agar.io
	Agent-Environment Interface

	Experiments and Results
	Benchmark Results for Continual RL in AgarCL
	AgarCL as a Continual Reinforcement Learning Testbed
	Validating AgarCL through Mini-Games

	Related Work
	Conclusion
	Broader Implications
	Use of Large Language Models
	Software Release and Technical Details
	Implementation Details in AgarCL
	AgarCL Experiment Details
	Fixed-Policy Bots

	Computational Resources
	Additional Related Work
	Algorithm Details
	Tuning Details
	DQN Tuning
	PPO Tuning
	SAC Tuning

	Mini-Game Results
	Illustrative Figures of the Pellet-Collection Mini-Games
	Continual Problems
	Hyperparameter Sensitivity Across Mini-games
	PPO augmented with a GRU

	Interacting with Other Agents
	Large-Dense Setup
	Small-Sparse Setup

	Interacting with Viruses

	Numerical Results on Mini-Games and the Full Game
	How the Number of Pellets Impacts the Agent's Performance
	Continual Learning in AgarCL
	Fixed Policies vs Learning agent in AgarCL
	Existing Continual RL algorithms in AgarCL

