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ABSTRACT

Large Language Models (LLMs) frequently produce fluent yet factually inaccu-
rate outputs, termed hallucinations, which compromise their reliability in real-
world applications. Although uncertainty estimation offers a promising approach
to detect these errors, existing metrics lack interpretability and offer limited in-
sight into the underlying causes of uncertainty. In this work, we introduce a
novel prompting-based framework for systematically analyzing the causes of un-
certainty in LLM responses. We design dedicated indicators to quantify each dis-
tinct cause and profile how existing uncertainty metrics align with them. Our
findings reveal systematic variations in uncertainty characteristics across metrics,
tasks, and models. Leveraging these insights, we propose a task-specific metric-
s/models selection method guided by the alignment of uncertainty characteristics
with task requirements. Experiments across multiple datasets and models demon-
strate that our selection strategy consistently outperforms non-adaptive baselines,
achieving 3-4% performance improvements and enabling more reliable and effi-
cient uncertainty estimation for LLM deployment. Code is available at link,

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities, often surpassing av-
erage human performance on tasks involving mathematics, reasoning, and programming. Despite
these advances, LLMs frequently produce confident yet factually incorrect responses, commonly
referred to as hallucinations.

A promising direction for mitigating hallucinations lies in uncertainty estimation. Prior work has
proposed a variety of metrics to flag unreliable outputs, including distribution-based, verbalized
confidence, and perturbation methods (Malinin & Gales, [2020; [Kadavath et al., 2022; (Gao et al.
2024)). Despite their effectiveness at detecting uncertainty, they share a common limitation: they
offer limited insight into the underlying causes of uncertainty. Most metrics return a single score
indicating “how uncertain” the model is, without revealing why the model is uncertain. This lack
of interpretability makes it difficult to understand model behavior or design targeted interventions
to improve response reliability. For example, is the model uncertain due to an ambiguous question,
insufficient knowledge, or instability under reflection? Without such distinctions, designing effective
corrective strategies is difficult.

Motivated by this gap, we address two research questions in this paper:

* Can we design interpretable indicators that quantify distinct causes of uncertainty and sug-
gest actionable interventions?

* Given such indicators, can we use them to adaptively select suitable models or uncertainty
metrics for a given task?

To tackle the first question (Section [3] l & [), we propose a prompting-based framework that links
uncertainty estimation with interventions shown to improve response correctness (Zhou et al., 2024
Shinn et al.} 2023)). We attribute LLM uncertainty to four distinct causes: syntax sensitivity, seman-
tic ambiguity, indecisiveness among outputs, unconfidence when challenged and design dedicated
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indicators for each. These causes align naturally with known prompting strategies: paraphrasing re-
duces syntax sensitivity, clarification resolves semantic ambiguity, answer aggregation/ensembling
mitigates indecisiveness among outputs, and self-reflection stabilizes challenged responses. By mak-
ing these links explicit, our framework moves uncertainty estimation beyond hallucination detection
toward interpretable diagnosis, explaining both when a response is unreliable and why.

Having established this framework, we then address the second question (Sections[5&[6). We use the
cause indicators to construct structured 4-dimensional uncertainty profiles that capture how different
tasks, models, and existing uncertainty metrics vary in their sensitivity to each cause. Our analysis
reveals that uncertainty metrics differ systematically in the causes they capture, tasks exhibit distinct
uncertainty patterns, and models display strengths and weaknesses along these axes.

Building on these insights, we propose a simple adaptive selection method that uses uncertainty
profiles to guide the choice of uncertainty metric or model for a given task (Section[6). Specifically,
we represent datasets, models, and metrics as profile vectors and select those whose uncertainty
behavior best complements the task. This approach enables fask-aware and cause-aware decision-
making, avoiding one-size-fits-all heuristics.

Experiments across diverse models, datasets, and uncertainty metrics show that our adaptive strategy
consistently outperforms non-adaptive baselines in three practical scenarios: metric selection, model
selection, and joint selection. These results highlight the value of understanding the structure of
LLM uncertainty for more reliable and efficient deployment.

The major contributions of this paper are as follows:

* We propose a novel framework that decomposes LLM uncertainty into four interpretable
causes, represented as an uncertainty profile capturing the fine-grained structure of model
uncertainty at the response level.

* We conduct a comprehensive analysis of uncertainty profiles across a range of metrics,
tasks, and model families, revealing consistent and interpretable patterns in how they ex-
hibit and respond to different causes of uncertainty.

* We introduce an adaptive model/metric selection method guided by uncertainty profiles,
achieving consistent 3—4% NDCG improvements over non-adaptive baselines across mul-
tiple real-world scenarios.

2 RELATED WORK

2.1 UNCERTAINTY ESTIMATION FOR LLMS

Uncertainty estimation for large language models (LLMs) has been studied through a range of com-
plementary approaches. Generation likelihood-based metrics quantify predictive uncertainty from
the entropy of the output distribution. Examples include Normalized Predictive Entropy (NPE)
and Length-Normalized Predictive Entropy (LNPE), which normalize entropy either across tokens
or sequence length to mitigate length bias (Malinin & Gales| [2020), and Semantic Entropy (SE),
which clusters semantically similar responses and computes entropy over these clusters (Kuhn et al.}
2023). Verbalized-based measures prompt the model to state its own confidence directly; for in-
stance, Verbalized Confidence (VC) and P(True) query the model for confidence statements or its
probability of generating the token “True” (Kadavath et al.,[2022). Beyond distributional likelihood
and self-reflection, lexical consistency-based metrics measure stability across multiple generations,
such as by computing lexical overlap scores (e.g., ROUGE) among sampled outputs (Lin et al.
2022)). Finally, some methods explicitly target the decomposition of epistemic versus aleatoric un-
certainty through input perturbations or conditional prompting, as in SPUQ (Gao et al., [2024) and
IPT-EU (Yadkori et al.| [2024).

2.2 PROMPTING TECHNIQUES FOR RELIABILITY

Prompting techniques have been widely explored as lightweight interventions to improve the accu-
racy and reliability of large language models. Paraphrasing has been shown to mitigate sensitivity
to superficial wording changes and improve robustness across tasks (Zhou et al., [2024} [Fu et al.,
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2024; [Liu et al.| |2024). Clarification prompting helps resolve semantic ambiguity by encouraging
the model to interpret underspecified inputs more precisely (Hou et al. 2023} |Gao et al., [2024).
Self-reflection and iterative refinement methods (Shinn et al.,|2023} |Renze & Guven, [2024)) prompt
models to critique and revise their outputs, reducing errors in reasoning-intensive tasks. While these
prompting-based methods were originally proposed as heuristics for boosting accuracy, they can also
be seen as interventions that align with specific causes of LLM uncertainty. Our work formalizes
this connection by decomposing uncertainty into interpretable causes and showing how prompting
strategies interact with them.

3  PROFILING CAUSES OF LLLM UNCERTAINTY: A LITERATURE-GROUNDED
TAXONOMY

LLM uncertainty stems from a variety of underlying causes. In this section, we propose a taxonomy
of four primary causes of uncertainty in LLM responses. Grounded in prior research on calibration,
uncertainty quantification, and model failure modes, this taxonomy highlights distinct, interpretable
patterns of uncertainty that frequently arise in practice. We define the four possible causes of LLM
uncertainty as follows:

Syntax Sensitivity (SS) occurs when the model struggles to interpret the linguistic surface form of
a prompt—due to rare vocabulary, complex grammar, or unfamiliar phrasing—Ileading to shallow
comprehension or misinterpretation. Prior work shows that even minor changes in syntax can signif-
icantly shift model behavior. For example, (Zhou et al.,[2024) demonstrate that slight rewordings in
math problems can lead to large variations in answer accuracy, highlighting the sensitivity of LLMs
to input wording.

Semantic Ambiguity (SA) arises from inherent vagueness or under-specification in the input. Even
with clear syntax, prompts may admit multiple plausible interpretations, often leading to diverse
or inconsistent responses. This is especially common in open-ended or instruction-following tasks.
Prior work (Hou et al., 2023; |Gao et al., [2024) explores methods to identify and mitigate such
ambiguity using prompt clarification and perturbation strategies.

Indecisiveness among Outputs (I0) arises when LLM struggles to commit to a single answer,
producing inconsistent or contradictory outputs. This indecisiveness often reflects underlying gaps
in training data, limited world knowledge, or difficulties with multi-step reasoning. Prior studies
such as (Yadkori et al., 2024), (Ling et al.l 2024), and (Ahdritz et al.l 2024) explore methods for
detecting and isolating such uncertainty, particularly focusing on the boundary between what models
confidently know and what they cannot reliably infer.

Unconfidence while being Challenged (UC) arises when a model is prompted to reflect on or revise
its previous answer. The model may either correct earlier mistakes or introduce new ones, revealing
instability in its reasoning process. This reflects a fluctuation in confidence when challenged to
justify or reconsider its output. Recent work by (Shinn et al.| [2023)) and (Renze & Guven, [2024)
demonstrates how reflective prompting can expose such inconsistencies and impact the reliability of
model responses.

Overall, the taxonomy outlines a set of interpretable and recurring causes of uncertainty in LLM
behavior. While not exhaustive, it offers a practical lens for examining how and why LLMs produce
hallucination responses. By quantifying these causes, we hope to support more targeted analyses of
uncertainty and inform the development of future metrics.

4 ESTIMATING UNCERTAINTY CAUSES

In this section, we present a novel framework for quantifying the four primary causes of LLM uncer-
tainty mentioned in Section[3] We also conduct empirical validation to demonstrate the effectiveness
of our indicators in attributing uncertainty to specific underlying causes.
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Figure 1: Estimating Causes of LLM Uncertainty. Our pipeline decomposes response uncertainty
into four interpretable causes using a multi-stage prompting framework. Beginning with a single
question, the model generates multiple response chains that proceed through paraphrasing, clari-

fication, answering, and self-checking. Divergences introduced at each stage are used to estimate
specific causes of uncertainty.

4.1 ESTIMATION PIPELINE

To put the uncertainty cause taxonomy into practice, we design a multi-stage prompting pipeline that
reveals different manifestations of uncertainty during the question-answering process. Each stage
of the pipeline is aligned with one of the four underlying causes of LLM uncertainty, allowing us
to disentangle their distinct behavioral effects. As illustrated in Figure[I] the pipeline begins with a
single input query and expands into N independent response chains. Each chain progresses through
four sequential stages—paraphrasing, clarification, answering, and self-checking. To quantify the
contribution of each cause, we construct dedicated indicators grounded in their conceptual defini-
tions. These indicators analyze model behavior across the response chains and capture uncertainty
patterns specific to each stage of the pipeline.

Estimating SS: From the original question, the model generates multiple paraphrased variants that
differ in lexical surface form but preserve meaning. We use these variants to estimate Syntax Sensi-
tivity—the extent to which superficial changes in wording influence model behavior. Indicator SS
AN
computes the average lexical distance between the original question g and its paraphrases q;(f) =1
SS(qo, {q,(f)}) =% Zf\il LexDist(qo, qg)), where LexDist(+, -) is a lexical distance measure that
is sensitive to wording differences but does not account for semantic equivalence (e.g., ROUGE).
Higher values suggest that the model is more sensitive to minor lexical variations in input phrasing.

Estimating SA: For each paraphrased question, the model is prompted to clarify the query. The
resulting semantic shift between the paraphrased and clarified versions reflects Semantic Ambigu-
ity—capturing how much the model interprets the input as unclear. Indicator SA quantifies the
degree of input ambiguity by computing the average embedding distance between each paraphrase
gt and its clarification ¢{”: SA({g}”,q"}) = Ly Dist(vec(q,(f)), vec(qu))), where Dist
is a distance metric (e.g., cosine distance, L2 distance) and vec(-) denotes embedding extracted
from the model’s hidden representations. Larger values indicate greater ambiguity in the model’s
interpretation of the input. More details in Appendix [8.2]

Estimating 10: For each clarified question, the model generates an initial response. This stage cap-
tures the model’s attempt to commit to a single answer based on its existing knowledge and reason-
ing capabilities. When the model produces inconsistent or contradictory answers across response
chains, it reveals Indecisiveness among Outputs—a sign of underlying knowledge gaps, limited
training coverage, or uncertainty in multi-step reasoning. Indicator / 0 quantifies this by computing
the entropy of the first-trial answer distribution: [ 0 = H(Prr) = — > qea Prr(a) log Per(a),
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where Prr is the empirical distribution over first-trial answers. Higher entropy indicates greater
uncertainty due to knowledge limitations or inconsistent reasoning.

Estimating UC: In the final stage, the model is asked to reflect on and potentially revise its ini-
tial response. Changes between first-trial and self-checked answers reflect Unconfidence while
being Challenged—the model’s tendency to waver or revise when prompted to reconsider its
reasoning. This instability can reveal a lack of internal consistency or fragile confidence in its
original output. Indicator vc quantifies this by computing the Jensen-Shannon divergence be-
tween the first-trial(FT) and self-checked(SC) answer distributions: UC' = Dis(Psc || Per) =
2Dk (Psc || M) + Dk (Per || M). Higher values indicate lower confidence in model’s reasoning
when prompted to verify its response.

4.2 INTERPRETIVE SCOPE

While we use the term estimate for ease of communication, our approach is better seen as gener-
ating interpretable indicators—or features—that reflect distinct behavioral tendencies linked to
response uncertainty. Unlike black-box metrics, these features offer insight into why a model may
be uncertain or incorrect, improving interpretability for downstream use. Although we strive for in-
dependence among the four features, perfect disentanglement is not possible due to interactions be-
tween uncertainty types and stage-wise propagation. Still, each feature is purposefully aligned with
a distinct behavioral signature observed during prompting. In the next subsection, we show that each
feature has independent predictability, reinforcing both their interpretability and practical utility for
uncertainty diagnosis. Detailed prompt templates of each stage can be found in Appendix [8.8]

4.3 INDICATOR PREDICTABILITY VALIDATION

To validate our four indicators, we assess their ability to predict hallucinations in model responses.
We generate 32 responses per question, labeling those that majority answer is wrong as uncertain
(positive class). This allows us to evaluate how well each indicator identifies low-confidence or
error-prone questions driven by specific uncertainty factors. Following (Kuhn et al., [2023; Jiang
et al., 2024), we use AUROC (Area Under Receiver Operating Characteristic Curve) and AUPRC
(Area Under Precision-Recall Curve) (Qi et al.,[2021) as our evaluation metrics.

Evaluations are conducted across three benchmark datasets: COMMONSENSEQA (Talmor et al.}
2018), GSM8K (Cobbe et al., [2021) and TRUTHFULQA (Lin et al., 2021)—using four language
models from two families (Grattafiori et al., 2024} [Team et al., 2024): LLAMA-3.2-3B, LLAMA -
3-8B, GEMMA-2-2B, and GEMMA-2-9B. Strong performance in AUROC and AUPRC indicates
that an indicator effectively captures uncertainty signals related to hallucination, supporting its use
in risk assessment.

As shown in Table 10 consistently achieves strong AUROC scores, demonstrating its effective-

ness in capturing knowledge-related uncertainty that correlates with correctness. UC also performs
well, particularly on MATH, where multi-step reasoning increases the likelihood of execution er-
rors, causing greater fluctuation in the model’s answers during reflection. In contrast, SS and SA
show lower performance on COMMONSENSEQA and TRUTHFULQA, likely due to the short and
unambiguous nature of the questions, which limits both surface-level variation and ambiguity. Nev-
ertheless, these indicators remain valuable for real-world scenarios involving short or ambiguous
inputs. Overall, each indicator provides complementary information about different causes of un-
certainty and failure modes of LLM.

5 PROFILING UNCERTAINTY ACROSS TASKS, MODELS, AND METRICS

Having validated our four indicators, we next analyze how the causes of uncertainty manifest across
tasks, models, and standard LLM uncertainty metrics. Using the indicator pipeline introduced in the
previous section, we apply our framework to all dataset—model pairs, thereby generating comprehen-
sive uncertainty profiles. Our goal is to answer three key questions: (1) Which types of uncertainty
do existing metrics primarily capture? (2) Do certain tasks tend to trigger specific causes of uncer-
tainty? (3) Are different language models more prone to particular types of uncertainty?
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Table 1: Predictive Performance of Uncertainty Cause Indicators. AUROC and AUPRC scores
across three benchmarks. 7O and UC consistently perform well, while S.S and SA show weaker
signals likely due to dataset clarity and brevity.

Dataset Ss SA 10 uc
AUROC / AUPRC AUROC/AUPRC AUROC/AUPRC AUROC/AUPRC
CommonsenseQA 0.528 /0.346 0.516/0.322 0.649/0.444 0.502/0.335
MATH 0.544/0.630 0.437/0.533 0.763/0.770 0.777/0.792
TruthfulQA 0.528 /0.358 0.419/0.290 0.707 /0.516 0.638/0.471

5.1 ANALYTICAL APPROACH

To analyze how the four primary causes of uncertainty manifest across different metrics, tasks,
and models, we apply our four indicators and eight benchmark uncertainty metrics to every
dataset-model combination. Specifically, we experiment on four datasets (MATH, Common-
senseQA, TriviaQA, TruthfulQA) and five open-source models (LLaMA-3.2-3B, LLaMA-3-8B,
Gemma-2-2B, Gemma-2-9B, Mistral-7B-v0.3), evaluating eight fask-agnostic uncertainty metrics
spanning token-likelihood, verbalized confidence, lexical consistency, and epistemic/aleatoric de-
composition (see Section[2). Details of the experimental setup are provided in Appendix[8.5]and[8.7]

For each question, we compute both the cause indicators and uncertainty metrics, then average them
to obtain a single score per dataset—model pair. This yields a table where each row contains four
cause-indicator values and eight metric scores. By aggregating along one axis (e.g., models, tasks,
or metrics), we can examine how uncertainty patterns vary across the others. The analysis proceeds
in three complementary steps:

Metric-Level Attribution To assess which cause of uncertainty each metric primarily reflects,
we average the mutual information (MI) between each benchmark metric and each cause indi-
cator across all dataset-model pairs. MI is a general-purpose statistical measure that quantifies
the dependency between two random variables, without assuming a linear relationship or spe-
cific distributional form. This makes it particularly well-suited for analyzing non-monotonic or
complex associations between cause indicator values and uncertainty metric scores. Formally, MI
between random variables U (indicator value) and M (metric score) is defined as: I(U; M) =

> et 2amem Plu,m) log(%) . where P(u,m) is the joint probability distribution, and

P(u) and P(m) are the marginal distributions. Higher MI values indicate stronger statistical depen-
dence, suggesting that the metric is more sensitive to variation in that specific cause of uncertainty.

Task-Level Attribution To examine how uncertainty varies by task, we average each cause indi-
cator values across all models for each dataset, yielding a task-level profile of uncertainty. This
highlights which types of uncertainty are most prominent in different task settings (eg. arithmetic
vs. commonsense vs. fact-checking).

Model-Level Attribution Third, to assess model-level tendencies, we average indicator values
across all datasets for each model. Higher values indicate greater susceptibility to specific cause
of uncertainty, potentially reflecting architectural biases or capacity limitations.

Together, these analyses reveal how different causes of uncertainty are distributed across tasks, mod-
els, and evaluation metrics.

5.2 DISCUSSION AND INSIGHTS FROM UNCERTAINTY PROFILING

What type of uncertainty does each metric generally capture? Figure [2| presents the mutual
information between each benchmarked metric and the four uncertainty cause indicators across
datasets. A dataset-wise breakdown reveals that uncertainty metrics behave differently depending
on the task. For example, EU-specific metrics such as IPT-EU show significantly higher mutual in-
formation with 7O on datasets like MATH and TRIVIAQA, where reasoning and factual knowledge
play a central role. In contrast, metrics like VC-NEG consistently exhibit low mutual information
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Figure 2: Uncertainty Profiles of Existing Metrics. The figure shows the relative magnitude of
mutual information between the 4 uncertainty cause indicators and 8 benchmarked uncertainty met-
rics, normalized within each cause. A higher peak of MI indicates that the corresponding metric is
more strongly influenced by that cause compared to other metrics.
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Figure 3: Uncertainty Profiles of Datasets and Models. (Left) SS and SA are relatively consis-
tent across datasets, while /O and UC vary more significantly, particularly elevated in MATH and
TRIVIAQA. (Right) Uncertainty profiles remain fairly stable across model sizes, with SS and 10
being the dominant contributors, while SAand UC are generally less pronounced.

across most uncertainty causes on MATH, indicating limited capacity to capture complex reasoning-
related uncertainties.

Do certain tasks consistently exhibit stronger tendencies toward specific uncertainty cause?
Figure shows the average values of each uncertainty cause indicator across datasets. Overall, Ss
and 10 emerge as the most prominent uncertainty cause across tasks. In contrast, UC is particu-
larly pronounced in MATH and TRIVIAQA, while S'A remains consistently low across all datasets.
These patterns are consistent with prior research, which has identified similar challenges related
to uncertainty in language model performance. High S'S scores suggest that models are sensitive
to input phrasing, implying that techniques like prompt optimization (Khattab et al.} 2024} [Yang]|
IE or paraphrasing could significantly impact performance. I O tends
to be higher in tasks requiring complex reasoning(MATH) or reading comprehension (TRIVIAQA).
These tasks often involve open-ended or essay-style questions rather than multiple-choice formats
(COMMONSENSEQA, TRUTHFULQA), which places greater demands on the model to generate
accurate and complete responses from scratch (]Yadkori et al.l, |2024[). UC is also elevated in these
datasets, likely because longer, multi-step generative answers are more prone to execution or format-
ting errors compared to shorter, constrained outputs (Xu et al.} 2025}, [Zeng et al.,[2025)). In contrast,
SAis relatively low across all datasets, likely because the benchmark questions are carefully curated
to reduce ambiguity.

—_

Are different language models more susceptible to specific uncertainty cause? Figure 3D
presents the average values of each uncertainty cause indicators across models. Overall, the dis-
tribution of uncertainty sources is relatively consistent across models, with SS and 10 being the
dominant contributors, while SA and UC' remain lower. This suggests that, regardless of model
size, surface-level sensitivity and knowledge-related uncertainty are the most prominent challenges.
Interestingly, there is no clear distinction between smaller and larger models in terms of their aver-
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age uncertainty cause values. This contrasts with the intuitive expectation that smaller models would
exhibit higher uncertainty, leading to lower accuracy. One explanation is that while uncertainty lev-
els may be similar, smaller models are more sensitive to changes, whereas larger models tolerate
them better due to stronger capabilities.

6 UNCERTAINTY PROFILE-GUIDED METRIC/MODEL SELECTION

In real-world applications, the performance of uncertainty metrics often exhibits significant variation
between different tasks and models, presenting challenges to select the most appropriate metric or
model. In this section, we propose an adaptive selection method that leverages uncertainty profiles
to guide informed decision-making. We demonstrate its applicability in three scenarios: (1) selecting
the most suitable uncertainty metric for a given task, (2) selecting the most appropriate model for a
given task, and (3) selecting the optimal uncertainty metric for a given task—model combination.

6.1 ADAPTIVE SELECTION PROCESS

We represent each dataset, model, and metric as a 4-dimensional vector—Dataset-Vec, Model-Vec,
and Metric-Vec—where each dimension corresponds to one of the four causes of uncertainty. The
adaptive selection process proceeds in four steps:

1. Compute the uncertainty profiles of the target dataset, candidate models and metrics.

2. Convert each profile into a normalized 4-dimensional vector (Dataset-Vec, Model-Vec,
Metric-Vec). Further details on vector construction and normalization are provided in Ap-

pendix [8.3]and

3. Measure alignment between target and candidate vectors using cosine similarity.

4. Select the model or metric according to the alignment strategies (next subsection).

6.2 ALIGNMENT STRATEGIES

Scenario 1 In this scenario, we aim to select the most appropriate uncertainty metric for a given
dataset. We compare the dataset’s Dataset-Vec with each metric’s Metric-Vec and select the metric
with the highest cosine similarity, as it best aligns with the task’s uncertainty profile and is more
likely to provide meaningful evaluation signals.

Scenario 2 In this scenario, we select the model that is likely to perform best on the given task.
Our hypothesis is that a model whose uncertainty profile is less similar to the task’s (i.e., lower
cosine similarity to the Dataset-Vec) should be a better choice, as it suggests the model is less prone
to the task’s dominant sources of uncertainty, leading to better performance.

Scenario 3 In this scenario, we jointly consider the uncertainty profiles of both the task and model.
For each metric, we compute its cosine similarity to both the Dataset-Vec and the Model-Vec. We
then take the geometric mean of these two similarities and select the metric with the highest value.
This approach favors metrics that align well with both task and model, penalizing one-sided fits.

Evaluation We conduct experiments across four datasets, five models, and eight uncertainty met-
rics, following the same configuration for metric calculation as outlined in Appendix [8.6] Each
dataset is randomly split into 30% train and 60% test sets. The adaptive process is then applied to
the train set to select candidate models or metrics, which are subsequently evaluated on the test set.

Since each scenario is treated as a ranking task over candidate models or metrics, we assess the
quality of our adaptive method using Normalized Discounted Cumulative Gain (NDCG). For model
selection, we use model accuracy as the NDCG relevance score; for metric selection, we use AU-
ROC. To ensure robustness, we repeat the train-test split with different random seeds across 5 runs
and report the average NDCG score.
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Table 2: NDCG score (NDCG @all) across three evaluation scenarios. GAIN indicates the per-
centage improvement over the random selection baseline.

Scenario 1 | Scenario 2 | Scenario 3
Dataset

Ours Worst Random  Gain \Ours Worst Random  Gain \Ours Worst Random  Gain
CommonsenseQA  0.973  0.840 0933 +4.1% | 0.878 0.673 0.846  +3.8% | 0.967 0.837 0930 +3.9%

Math 0.954 0.795 0924  +33% | 0.881 0.640 0.825 +6.8% | 0.951 0.789 0919  +3.5%
TriviaQA 0968 0826 0932 +3.8% | 0986 0919 0955 +3.2% | 0.965 0.822 0929 +3.9%
Truthful QA 0.969 0.863 0936  +3.6% | 0.811 0564  0.751 +8.0% | 0.965 0856 0933 +3.4%
Average 0.966 0.831 0.931 +3.7% | 0.899 0.699 0844  +55% | 0962 0826  0.928 +3.7%
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Figure 4: Performance at different cutoff ranks. Heatmaps show NDCG @K values for (a) Sce-
nario 1 and (b) Scenario 2 of our method and random selection. Our method performs well at lower
cutoff ranks (e.g., K = 1 or K = 2), but experiences a gradual decline at higher ranks, reflecting a
diminishing ability to maintain relevance as more items are considered.

6.3 EXPERIMENT RESULT AND ANALYSIS

To evaluate our method, we compare it against two baselines: the worst-case selection and the
the expected performance from random selection, computed as the average NDCG score across all
candidates. This second baseline represents the score one would expect to achieve on average when
selecting a metric or model at random.

As shown in Table [2] our uncertainty-guided selection consistently outperforms both baselines
across all three evaluation scenarios. While the average performance is already high in some
cases—often exceeding 90%—our method still achieves notable improvements. It yields average
gains of 3.7% in both Scenario 1 and Scenario 3, and a larger gain of 5.5% in Scenario 2. These
results demonstrate the robustness and practical benefit of using uncertainty profiles to guide metric
and model selection.

Heatmaps in Figure 4] show NDCG scores at different cutoff ranks K for our method and random
selection in Scenarios 1 and 2. Our method excels at lower K, indicating it can effectively rank the
most relevant items at the top. However, its performance declines at higher K. This is likely due to
two factors: mismatches between uncertainty indicators and actual correctness and the diminishing
impact of uncertainty at higher K due to less distinguishable items. While our method doesn’t
optimize all ranks perfectly, it consistently provides meaningful improvements without requiring
additional training or supervision. This makes it a practical alternative to the manual tuning process
commonly used for selecting metrics or models in real-world applications.

7 CONCLUSION

In this study, we introduce a framework that decomposes LLM response uncertainty into four inter-
pretable causes, each measured using specialized indicators. By profiling these uncertainty causes
across different tasks, models, and uncertainty metrics, we reveal meaningful patterns that sup-
port more informed decisions in uncertainty-aware model and metric selection. Our adaptive selec-
tion approach, driven by these uncertainty profiles, consistently outperforms non-adaptive baselines.
This work contributes to more interpretable, task-sensitive evaluations of LLM behavior and offers
practical insights for enhancing LLM performance in real-world applications.
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8 APPENDIX

8.1 USE OF LARGE LANGUAGE MODELS

As this work specifically investigates LLM uncertainty, the use of large language models is intrin-
sic to the research methodology. We employ open-source models (e.g., LLaMA-3, Gemma-2) as
subjects of study within our uncertainty profiling framework, generating responses and constructing
uncertainty indicators from their outputs. In addition, we used an LLM-based assistant (OpenAl
GPT-5) for minor writing support, including grammar checking and improving manuscript readabil-
ity. The authors paid careful attention to ensuring that Al generated content is accurate and aligned
with the author’s intentions.

8.2 DETAILS OF SS & SA

In our following experiments. For S'A, we use the hidden state of the model last layer as semantic

embedding and use cosine distance as the semantic distance metric. For S'S, we choose Rouge-L as
the lexical distance measure.

11
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8.3 NORMALIZATION AND SCALING

To ensure that all four uncertainty indicators are comparable and interpretable within a unified [0, 1]
range, we apply appropriate scaling functions to each raw metric. S'S, based on lexical distance,
is naturally bounded between 0 and 1 and requires no additional scaling. S'A, measured as cosine
distance, is divided by 2 to ensure its values fall within the desired range. 0O, derived from entropy,
is scaled using the transformation 1 — 2771 %o compress its potentially unbounded values while
preserving interpretability. ue, computed as Jensen-Shannon divergence, is normalized by dividing

by log 2, which is its theoretical maximum. This normalization facilitates cross-cause comparison
and improves the stability of downstream evaluation and visualization.

8.4 UNCERTAINTY PROFILE VECTOR CONVERSION

For each scenario, since we rank a set of model or metric vectors based on a given vector (or vectors),
the relative differences between them matter more than their absolute values. Therefore, we apply
column-wise min-max scaling to convert the original uncertainty cause values into relative values
before computing cosine similarity. This normalization allows us to focus purely on the relative
alignment between vectors.

8.5 DATASETS AND MODELS

We profile uncertainty using four diverse datasets: MATH (mathematical reasoning) (Hendrycks
et al.,|2021)), CommonsenseQA (commonsense reasoning) (Talmor et al., [2018), TRIVIAQA (read-
ing comprehension) (Joshi et al.,[2017)), and Truthful QA (safety and truthfulness) (Lin et al.,[2021]).
These datasets are evaluated using five open-source language models of varying sizes: LLaMA-3.2-
3B, LLaMA-3-8B, Gemma-2-2B, Gemma-2-9B, and Mistral-7B-v0.3. This selection enables broad
coverage of task types and architectural characteristics.

8.6 SAMPLING CONFIGURATION

For metric evaluation, we follow the original configurations from each uncertainty metric’s source
paper—including LLM prompts and temperature settings—to ensure faithful reproduction and fair
comparison. Specifically, we generate 32 samples for all Generation Likelihood-based, Lexical
Consistency-based, and Reasoning Step-based metrics, and 5 samples for Verbalized Confidence-
based metrics. For EU-AU-based metrics, we sample 5 paraphrased variants for SPUQ-COMP;
and 4 iterative chains (depth 5) for IPT-EU. For SE, we use JINAAI/JINA-EMBEDDINGS-V3 as the
embedding model for semantic clustering. For LLM output sampling, we intentionally use simple,
straightforward, and clear instructions—following prompt styles and sampling temperatures similar
to (Zhao et al., 2025)—to minimize prompt-induced variability. This controlled setup helps miti-
gate confounding effects from prompt design, allowing us to focus on evaluating the core behavior
of each uncertainty metric under standardized conditions. All experiments are conducted on two
NVIDIA GeForce RTX 3090 GPUs. We use the vLLM engine for efficient inference and Hugging
Face models to encode text into vectors.

8.7 STATISTICAL SIGNIFICANCE AND EVALUATION PROTOCOL

In our experiments, we sample 150 questions per dataset due to computational constraints. To im-
prove robustness and statistical reliability, we apply bootstrapping with 500 resamples across all
evaluations. Statistically, Hoeffding’s inequality shows that the 150-question subsample is guaran-
teed to lie within =11 percentage points of the true accuracy 95% of the time, while the data-driven
bootstrap narrows this to £8 pp (p = 0.32 versus the full set), confirming that our conclusions
remain robust despite sub-sampling.
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8.8 PROMPT TEMPLATES

Paraphrase the following question, without changing its meaning.
Make sure you only output a single question only.

Question: {q}
Paraphrased Question:

Figure 5: Paraphrased Prompt Template

Clarify the following question by rewriting it in a clearer, more complete form.
If the question is ambiguous, add missing details to make it understandable.
Make sure you only output a single question only.

Original Question: {q}

Clarified Question:

Figure 6: Clarified Prompt Template

Please answer the following question. Think carefully and in a step-by-step fashion.

At the end of your solution, indicate your final answer by writing the answer choice (A, B,
C, D, or E) inside a boxed environment, like: .

Q: {q}

Choices: {c}

Your answer:

Figure 7: Sampling Prompt Template for MC Questions

Following is your previous response to the question.

Q: {a}

Choices: {c}

Your previous response: {a}

Check your previous response carefully and solve the same question again.

At the end of your solution, indicate your final answer by writing one of the answer choice

(only letter : A, B, C, D, or E) inside a boxed environment, like: .
Output:

Figure 8: Check Prompt Template for MC Questions

Read the following passage and answer the question.

Passage : {p}
Question : {q}
At the end of your solution, indicate your final answer inside a boxed environment, like:

answer |

Figure 9: Sampling Prompt Template for RC Questions

13



Under review as a conference paper at ICLR 2026

P
Following is your previous response to the question:
Read the following passage and answer the question.
Passage : {p}
Question : {q}
Your previous response: {a}
Check your previous response carefully and respond the question again.
At the end of your solution, indicate your final answer inside a boxed environment, like:

answer |

-

Figure 10: Check Prompt Template for RC Questions

Please answer the following question.
Think carefully and in a step-by-step fashion.
At the end of your solution, put your final result in a boxed environment, e.g. [answer |

Q: {q}

Figure 11: Sampling Prompt Template for Essay Questions

Following is your previous response to the question.

Q: {q}

Your previous response: {a}

Check your previous response carefully and solve the same question again step by step.
At the end of your solution, put your final result in a boxed environment, eg. ((answer ).
Output:

Figure 12: Check Prompt Template for Essay Questions
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