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ABSTRACT

Generation with Large Language Models (LLMs) is often augmented by incorpo-
rating additional information “in-context” through the concatenation of multiple
prepended documents. However, this process leads to significant computational
costs that scale with the number and size of each document chunk. State Space
Models (SSMs) offer a promising solution by allowing a database of documents
to be pre-processed as states from which to start the generation. However, it is
infeasible to store the state corresponding to all possible combinations of multi-
ple relevant documents. To address this challenge, we present a method called
Permutation-Invariant Composition with State Space Models, or PICASO, which
can compose states to efficiently approximate the effect of document concatena-
tion. Our method can also enforce invariance to the order in which documents are
presented, a desirable property when the temporal ordering of the documents is
uninformative. We evaluate PICASO on WikiText and MSMARCO in both zero-
shot and fine-tuned settings, and show that PICASO can match the performance
of concatenation while enjoying on average 5.4× speedup.

1 INTRODUCTION

Equipping large language models (LLM) with a retrieval mechanism improves their performance on
generation and question answering tasks by incorporating information from large external knowl-
edge bases. In this context, prepending retrieved sequences to the user prompt is a strong and
frequently used approach for incorporating the retrieved information. This allows the generation to
be conditioned on the retrieved knowledge, along with the user prompt.

However, this approach incurs a significant computational cost. Not only must the system process
the user query and generate an answer, but it must also process the retrieved context, which in real-
world settings can amount to many thousands of tokens. This problem is exacerbated in transformer-
based models, as the inference cost of generating output tokens scales quadratically with the length
of the extended context (see Figure 1).

In contrast, State Space Models (SSMs) offer a significantly faster approach. By design, SSMs
encode information from arbitrary-length input sequences into a fixed-size state vector, which can
then be used to condition the generation of new tokens without having to revisit the original input
tokens. This suggests a very practical solution: Instead of retrieving from a database containing raw
document tokens, we can create a “database of states” by pre-processing the state of each document.
At inference time, generation can start directly from the retrieved state, in constant and negligible
time with respect to the length of the retrieved document. This effectively eliminates the latency
from having to process documents online while greatly reducing the inference time compared to
transformer models. We show this in Figure 1.

However, this introduces an additional challenge. While it is possible to condition generated outputs
on a single retrieved document state, in practice we often wish to condition on multiple documents
at the same time. Concatenating the states of multiple documents is not straightforward, as states
cannot be combined trivially. Storing states corresponding to all possible relevant combinations of
documents is also not feasible.

To address this, we introduce PICASO, a method that can efficiently retrieve and combine multiple
pre-computed states at inference time to condition the generation of high-quality outputs. PICASO
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Figure 1: (Left:) We propose a “Database of States,” where document are stored as pre-processed
state vectors. Given a query, relevant states are then retrieved and composed into a single state vec-
tor which is used to condition the model’s generation. (Right:) We plot the increase in total time
required to generate an additional 64 tokens, when concatenating a 64-token prompt with retrieved
documents. We model the time taken for PICASO-R as the time taken to combine 5 pre-processed
document states, which involves only arithmetic operations and notably zero model processing time.
As a result, the processing and inference costs for PICASO-R remain constant regardless of the
length of retrieved documents. In contrast, the timings for a Transformer model scale quadratically,
and for an SSM linearly, with total length when generating from concatenated document tokens.
These timings are measured using the official Mamba benchmarking code, which includes opti-
mizations such as quantization and CUDA graphs for SSMs, and flash attention for Transformers.

achieves 91% of the performance gain from combining the raw tokens of multiple documents, while
offering a 5.4× speed-up over concatenation.

Our approach is based on two key insights. First, we derive a simple mathematical relation from
SSM dynamics that composes states in a manner that exactly equates to the result of concatenation in
a single-layer model. We show that this can also be effectively applied to multi-layer SSMs to yield
stronger results. Second, the order in which documents significantly impacts the resulting state,
which is undesirable as the relative ordering is often uninformative. We introduce a permutation-
invariant expression for composing states that eliminates these biases and significantly regularizes
the composed state, improving over gains from the single best ordering by 10%.

PICASO can be applied to an off-the-shelf model without any changes. To further improve perfor-
mance, we introduce a method for fine-tuning the model to better leverage the composed states for
generation. Using a pre-trained Mamba-2 2.7B model, less than a day of fine-tuning on a single
A100 GPU leads to the same performance as concatenation while maintaining much faster compo-
sition time on the WikiText-V2 dataset.

2 RELATED WORK

State space models. State Space Models (SSMs) are a class of first-order differential equations
specified by a set of input, output, and state variables. This ranges from Linear Time Invariant (LTI)
systems, to more expressive non-linear Time Varying (Jazwinski, 2007) and Input Varying (Krener,
1975) systems, to hybrid variants such as Jump Linear and Jump-Markov Linear systems (Vidal
et al., 2003a;b) which model continuous phenomena that exhibit discontinuous behavior. Among
other algorithms, the Kalman Filter and Extended Kalman Filter (Kalman, 1960) are commonly
used to estimate unknown state variables of linear and non-linear systems respectively from real-
world measurements.

Most recently, SSMs have been used as building blocks of the architectures behind modern Founda-
tion Models. Gu & Dao (2023) proposed Mamba, based on LIV systems, demonstrating comparable
performance to Transformers (Vaswani, 2017) on language modeling while enjoying faster inference
that scales linearly with input sequence length. Mamba-2 (Dao & Gu, 2024) improved computa-
tional time by implementing SSM layers with structured matrix multiplications to better leverage
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specialized hardware. Lieber et al. (2024) combined SSM blocks along with global-attention blocks
to create a hybrid architecture with Mixture-of-Expert layers for training larger models. To extend
the ability of hybrid architectures to arbitrary long contexts, Ren et al. (2024) replaced the global
attention with sliding window attention which empowered their model with long context process-
ing ability. Zancato et al. (2024) proposed a general framework for hybrid architectures, leverag-
ing ideas from Stochastic Realization Theory to enable model access to short-term eidetic memory
“in-context”, permanent structural memory “in-weights,” fading memory “in-state,” and long-term
eidetic memory “in-storage”.

Retrieval-Augmented Generation and In-Context Learning. Our work falls within the scope
of In-Context Retrieval-Augmented Language Models (Ram et al., 2023), where language models
are conditioned on retrieved documents via concatenation. Retrieval Augmented Generation (RAG)
allows language models to leverage knowledge stored in external databases, which greatly improves
performance on knowledge-intensive and domain-specific tasks (Lewis et al., 2020). In our work, we
simply use a pre-trained sentence embedding model for retrieval, and we refer to Gao et al. (2023) for
a detailed survey on other mechanisms. Apart from retrieval, processing (multiple) retrieved chunks
can also greatly increase generation latency. Izacard et al. (2023) mitigates this by independently
processes each retrieved chunk with a LLM encoder, using cross attention over the concatenated
encoder outputs. Zhu et al. (2024) similarly encodes retrieved chunks in parallel, and performs
decoding in a selective manner by attending only to highly relevant encoder outputs.

In-Context Learning (ICL) (Brown et al., 2020) has also emerged as an effective method to “learn”
from structured contexts, or demonstrations, often modeled as a set of (query, answer) labelled pairs
(Dong et al., 2022). Similar to RAG, the quality of selected demonstrations have been shown to
greatly affect downstream performance (Xu et al., 2024). Several methods have been developed
for selecting effective demonstrations, based on sentence embeddings (Liu et al., 2021), mutual
information (Sorensen et al., 2022), perplexity (Gonen et al., 2022), and even BM25 (Robertson
et al., 2009). Similar to the motivation of our work, several studies have shown that the performance
of ICL is heavily dependent on demonstration ordering. Zhao et al. (2021) shows that answers
positioned towards the end of the prompt are more likely to be predicted, while Lu et al. (2021) shows
that results can vary wildly between random guess and state-of-the-art depending on the order that
demonstrations are presented. Outside of ICL, Liu et al. (2024) further shows that language models
do not robustly utilize information in long input contexts due to sensitivity to positioning.

Model and State Composition. Our work falls into the category of composing of deep models,
representations, and states. Wortsman et al. (2022) proposes Model Soup, which composes multiple
non-linearly fine-tuned models via averaging model weights. Liu & Soatto (2023); Liu et al. (2023)
leverages model linearization to enforce an equivalence between weight averaging and output en-
sembling. Perera et al. (2023) independently learns task-specific prompts which can be linearly
averaged to yield new prompts for composite tasks. For SSMs, Pióro et al. (2024) investigates av-
eraging of states, along with decay-weighted mixing which is closely related to a baseline version
of our method, CASO. However, the equations described in their work differ from CASO, and their
evaluations are limited to composition of two equal-length documents. In contrast, our method
greatly improves upon CASO by incorporating permutation invariance, which we show is important
to achieve performances comparable to that of concatenation.

3 METHOD

3.1 PRELIMINARIES:

A linear input-dependent discrete-time model has the form{
xt = A(ut)xt−1 +B(ut)ut

yt = C(ut)xt +Dut.
(1)

Here xt ∈ Rm is the state at time t, while ut, yt ∈ Rd are the input and the output respectively.
The matrices A(ut) ∈ Rm×m, B(ut) ∈ Rm×d, C(ut) ∈ Rd×m (which are input-dependent) and
D ∈ Rd×d are learnable parameters.

3
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Unrolling the first equation, we obtain

xt = A(ut) · · ·A(u1)x0 +

t−1∑
τ=0

A(ut) · · ·A(ut−τ+1)B(ut−τ )ut−τ

= A(u)x0 + x(u),

(2)

where u = (u1, . . . , ut) denotes the sequence of inputs, A(u) = A(ut) · · ·A(u1) is the accumu-
lated decay matrix and x(u) =

∑t−1
τ=0 A(ut) · · ·A(ut−τ+1)B(ut−τ )ut−τ is the accumulated input

signal. Since this coincides with xt when x0 = 0, we refer to it as the state for input sequence u.

In the following, we write V ⊂ Rd for a finite set of token embeddings and V∗ =
⋃

n≥0 Vn for
the set of variable-length sequences of token embeddings. We view a State Space Language Model
(SSM) as a map fθ : V∗ × Rm 7→ P(V) with parameters θ which takes in as input an initial state
x ∈ Rm and token embedding sequence u ∈ V∗, and returns a distribution over V . Modern SSMs
(Gu & Dao, 2023; Zancato et al., 2024) usually contain multiple Selective State Space stacked layers
as in equation 1. In a multi-layer setting, we write x(u) and A(u) for the sequence of states and
decay matrices corresponding to all layers.

3.2 DATABASE OF STATES

By the Markov property, the state of an SSM makes the past independent of the future. In other
words, fθ(u · u′, 0) = fθ(u, x(u

′)) for all u,u′ ∈ V∗, where · denotes concatenation. In prac-
tice, this means that a SSM model can equivalently be initialized with the state arising from an
(variable-length) input sequence, instead of the input sequence itself. This is akin to the KV-cache
of Transformer architectures, except that the dimension of the state is fixed regardless of sequence
length.

In several real-world use cases such as Retrieval Augmented Generation, document chunks are com-
monly obtained or retrieved from a database (Borgeaud et al., 2022). Instead of storing them in the
database as raw text or tokens, we propose to use a “database of states,” where we pre-process each
document chunk and store their states. The advantage here is self-evident when conditioning on a
single chunk, since we can initialize the SSM with the retrieved pre-processed state instead of hav-
ing to process the entire chunk online. However this poses a problem when attempting to compose
multiple document chunks, since we do not know how to compose their states. We will show how
this is tackled with our proposed method.

3.3 PICASO: PERMUTATION-INVARIANT COMPOSITION WITH STATE SPACE MODELS

Given a query and a collection of relevant document chunks, an easy method to compose them is to
simply concatenate all chunks with the query into a single sequence to feed into the SSM. Recall that
this, however, presents two key limitations. Before even a single token continuation can be generated
from the query, the entire sequence of concatenated chunks has to be processed sequentially, which
can be computationally intensive when document chunks are long or numerous (Figure 1). Another
limitation is having to select the order of document concatenation when prompting the model, for
which there might be no natural way of doing so without a powerful scoring mechanism.

To address the first limitation, we propose a first version of our method, Composition with State
Space Models (CASO), which works by modeling sequence concatenation with state composition
based on the dynamics of a single-layer SSM.
Proposition 1 (CASO). Let u1, . . . ,un be a collection of input sequences and let u = u1 · · ·un

be their concatenation. Then, for a SSM layer that evolves based on equation 1, we have

x(u) = x(un) +

n−1∑
i=1

A(un) · · ·A(ui+1) · x(ui) (3)

We can see this by recursively applying equation 2 on x(u) = A(un)x(u1 · · ·un−1) + x(un).

Given a collection of document chunks u1, . . . ,un, CASO simply approximates the dynamics
of multi-layer SSMs, for which Proposition 1 does not hold exactly, via xCASO

θ (u1, . . . ,un) =

4
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x(un) +
∑n−1

i=1 A(un) · · ·A(ui+1) · x(ui). We then load xCASO
θ (u1, . . . ,un) as the initial state of

the model to infer continuations from the given query. We note that in Mamba-style models, the ma-
trices A(·) are diagonal. As such, computing CASO requires only simple element-wise arithmetic
operations and importantly zero model computation time (i.e. zero forward passes required).

However, since each state is weighted by the decay factors of future document chunks, this composi-
tion operation is still very much order-dependent. We propose to introduce permutation-variance by
considering a group of permutations G ⊆ Sn, where Sn denotes the symmetric group of n elements,
using which we define our method, PICASO (Permutation-Invariant CASO):

xPICASO(u1, . . . ,un) :=
1

|G|
∑
π∈G

xCASO(uπ(1), . . . ,uπ(n)) (4)

For any group G, by expansion of the CASO terms and collecting common factors, this can be
written as a linear combination of individual document chunk states x(ui):

xPICASO(u1, . . . ,un) =

n∑
i=1

Wi(u1, . . . ,un)x(ui)

with weights Wi depending on A(u1), . . . , A(un). In this work we are particularly concerned
with two cases: the full symmetric group G = Sn, which includes all possible permutations, and
the cyclic group G = Cn, which consists of rotations of the sequence. We will refer to them as
PICASO-S and PICASO-R respectively.

While they appear computationally infeasible at first glance, since PICASO-S and PICASO-R av-
erage over n! and n CASO states respectively, each of which is itself a composition of n document
states, the following propositions show that they can actually be computed in polynomial and linear
time respectively for modern SSM models with diagonal A matrices.
Proposition 2. Assume G = Sn and that the matrices A(ui) commute with each other (e.g., are
diagonal). Using shorthand notations Ai := A(ui) and Wk := Wk(u1, . . . ,un) we have

Wk =
1

n!

[
(n− 1)! + (n− 2)! · 1! ·

∑
1≤i1≤n
i1 ̸=k

Ai1 + (n− 3)! · 2! ·
∑

1≤i1<i2≤n
i1,i2 ̸=k

Ai1Ai2 + . . .

]

=
1

n

n−1∑
m=0

1(
n−1
m

) · em(A1, . . . , Ak−1, Ak+1, . . . , An),

where

em(A1, · · ·An−1) :=
∑

1≤i1<i2<···<im≤n−1

Ai1 · · ·Aim

is the m-th elementary symmetric polynomial (Macdonald, 1998) (in the matrices Ai).

Elementary symmetric polynomials satisfy the recursive relation

em(A1, . . . , An−1) = An−1em−1(A1, . . . , An−2) + em(A1, . . . , An−2).

Using this relation, we can compute all values of em, and hence the coefficients Wk, using O(n2) op-
erations via dynamic programming. We detail the implementation in Algorithm 1 of the Appendix.
Consequently, the full state from PICASO-S can be efficiently computed in polynomialO(n3) time,
which we show in the experiments to still be faster than processing document concatenations even
for n as large as 10.

Next, we similarly show that the coefficients for PICASO-R can be efficiently computed by exploit-
ing invertibility of the matrices A(ui).
Proposition 3. Assume G = Cn (cyclic permutations). Then writing Ai := A(ui) and Wk :=
Wk(u1, . . . ,un) we have

Wk =
1

n

[
Id +

n−1∑
m=1

A[k+m]n · · ·A[k+1]n

]
.
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where Id is the identity matrix, and [i]n denotes imodn. Assuming that the matrices Ai are invert-
ible, these can be computed efficiently by setting

Āi =

{
A[i]n · · ·A1 ·An · · ·A1 i > n

Ai · · ·A1 i ≤ n
, B̄i = Ā1+ . . .+ Āi−1, Wk =

1

n
[Ā−1

k (B̄k+n− B̄k)],

for i = 1, . . . , 2n, and k = 1, . . . , n.

We detail in Algorithm 3 in the Appendix our efficient implementation for computing PICASO-R
in O(n) time complexity via cumulative sums and products. Evidently, PICASO-R is significantly
faster than PICASO-S while trading off exact permutation invariance for invariance only to cyclic
permutations of the original order. We will show that the difference in empirical performance be-
tween PICASO-S to PICASO-R is negligible, as such PICASO-S can almost always be replaced
with its much faster variant PICASO-R.

We remark that the property of permutation-invariance can also be applied to naive concatenation (as
opposed to CASO). This is achieved simply by concatenating documents in various different orders,
followed by taking an average of their resulting states. While performing this for the symmetric
group Sn is computationally infeasible, we can similarly restrict our permutation set to Cn. We
term this variant Permutation-Invariant Concatenation (PIConcat-R), where −R denotes invariance
to the set of cyclic permutations. We note that the model computational costs (forward passes) of this
method still scales quadratically with number of documents (compared to linear scaling of regular
concatenation), as such we include it only for completeness.

As a final technicality, we note that for Mamba-style SSM models, we additionally require storing
the last mconv (usually mconv = 4) input tokens of each SSM layer to ensure that the state is
sufficient for generating the same distributions over continuations as the input sequence. We perform
simple averaging to combine these tokens from different documents which we show to work well
empirically; more sophisticated methods could be explored in future work.

4 WHY PICASO’S AVERAGE WORKS

While the combination of state expression for CASO is directly motivated by the dynamics of the
system, there is no a priori reason why averaging permuted CASO states should perform well. In
Figure 3 we show that averaging both independent states and CASO states can perform better than
using any individual state. This suggests a emergent/learned algebraic structure on the space of
states such that linear combination of states combine their information to some degree.

In our empirical results below, we show that averaging all individual states (which would also be
a permtuation invariant solution) performs significantly weaker than avearging CASO states (as
PICASO does) We believe that this is because the approximate linear structure of the state space
is only valid locally. The combined states are naturally closer together than the independent states,
hence able to better exploit the local linearity. We show this in the following proposition:

Proposition 4. Consider a single-layer SSM parametrized by θ, and two input sequences u and u′.
Then, the Euclidean distance between the states can be bounded via

∥xCASO(u,u′)− xCASO(u′,u)∥22 ≤ ∥(I −A(u′))x(u)∥22 + ∥(I −A(u))x(u′)∥22

To see this, simply apply the triangle inequality on the following obtained via substituting the equa-
tions for CASO:

∥xCASO(u,u′)− xCASO(u′,u)∥22 = ∥A(u′)x(u) + x(u′)− (A(u)x(u′) + x(u))∥22
= ∥(A(u′)− I)x(u) + (I −A(u))x(u′)∥22

As a special case, we observe that as the decay factor approaches identity, the distance between two
CASO states approaches zero. In Figure 2, we visualize naive averaging of the states arising from
3 retrieved document chunks, and averaging of CASO states resulting from each cyclic permutation
of these chunks. We use WikiText-v2 as described in the Experiments for these plots. Indeed, we
observe that CASO states are much closer to one another in the resulting loss landscape.
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Figure 2: Left: Naive averaging (“Soup”) of chunk states. Right: Averaging CASO states. CASO
states are “closer” to one another (see Proposition) and hence can be more meaningfully interpolated.
On the other hand, naively averaging states of independent chunks do not possess this property. Both
plots are computed over 10 samples of (query, continuation, retrieved chunks).

5 LEARNING TO USE COMPOSED STATES

As previously noted, in practice, for SSM models consisting of multiple state-space blocks stacked
with temporal convolutions, x(u) in equation 3 will not be exactly the state arising from a concate-
nated list of inputs. In this section, we introduce a fine-tuning objective to enable SSMs to better
leverage composed states. Let D = {(ui, ui, Si)}Ni=1 be a dataset of sequences ui, their next-token
continuation ui, and a collection (in some particular order) of document chunks Si retrieved from
a database using ui. We minimize the prediction loss over the continuation, given a (composed)
initial state and the query sequence:

LBPTC(θ) =
∑

(ui,ui,Si)∈D

LCE(fθ(ui, x
PICASO(Si)), ui),

where LCE(·, ·) is the cross-entropy loss.

We denote this learning objective Backpropagation Through Composition (BPTC), where gradients
are propagated through the state composition process xPICASO. To reduce training time, we also
consider an alternative version where we do not backpropagate through the composition step, which
we denote Backpropagation To Composition (BP2C):

LBP2C(θ) =
∑

(ui,ui,Si)∈D

LCE(fθ(ui, sg
[
xPICASO(Si)

]
), ui),

where sg denotes the stop-gradient operator. We will show that when used for fine-tuning, this
learning objective greatly improves the model’s ability to leverage composed states for generation
to the level of the concatenation albeit with much faster speeds, while maintaining performance on
standard LLM evaluation tasks.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

We run our main experiments on the largest available SSM on Huggingface - Mamba-2 2.7B (Dao
& Gu, 2024). We evaluate our method on two large-scale datasets - WikiText-V2 (Merity et al.,
2016) and MSMARCO (Nguyen et al., 2016). We use the training splits as our fine-tuning data,
and the testing/validation splits respectively for evaluation. To pre-process WikiText-V2 for our
use case, we split each passage in the dataset into two equal chunks, with the goal of predicting
the second (continuation) from the first (query). The retrieval database comprises all remaining
chunks, from which we retrieve via an external sentence embedding model, All-MiniLM-L6-v21.
In most experiments, we retrieve up to 10 chunks, since improvements appears to saturate beyond

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Figure 3: Zero-shot evaluation of PICASO using Mamba-2 compared to other composition methods
on WikiText. While the performance of PICASO lags slightly behind that of concatenation (left),
PICASO-R is on average 5.4× faster (right). PICASO-S and PICASO-R perform similarly and
yield overlapping curves (hence not visible in the left plot). Incorporating permutation invariance
for concatenation via PIConcat-R gives the best results. However, it incurs magnitudes higher com-
putational costs despite being performed within a single batched forward pass, hence we omit from
the right plot to prevent it from disrupting the scale of the x-axis and focus comparisons on PICASO.

that, and loss from concatenation blows up as a result of exceeding training context length (Figure 6,
Appendix). We pre-process MSMARCO by filtering only entries with well-formed answers and
discarding those without relevant passages.

We used the official benchmark2 with an A100 GPU for our timing experiments in Figure 1 to ensure
fairest comparisons. For the rest of the experiments, we run the model in full-precision, and evaluate
performance of the model starting from a custom initial state, a feature not supported by the official
benchmark at the time of writing, as such timings differ.

For fine-tuning experiments using BPTC and BP2C, we base our implementation on the official
HuggingFace 3 trainer with default hyperparameters, and retrieve the k most relevant chunks for
each query sample for composition. For WikiText, we select k ∈ {0, . . . , 10} uniformly at random
for each batch. For MSMARCO, we use all the available passages (both relevant and irrelevant)
associated with each training example. For both datasets, we fine-tune for only 1 epoch. In all
fine-tuning experiments, we ensure the training set (both the examples and the chunk database) are
disjoint from the validation set to ensure fair evaluation.

6.2 COMPARISON MODELS

We compare inference accuracy (measured by log-perplexity) and processing latency of PICASO
with its order-dependent version, CASO, in addition to the following methods:

Baseline: Loss of the model on the test sample without using any contextual information.

Concatenation (Ram et al., 2023): We concatenate individual chunks based on a specific ordering.
For WikiText-V2 experiments, we consider the “best-case ordering” as determined by the sentence
embedding model where more relevant documents are closer to the query (at the end). We initialize
the model with the state of the earliest document in the concatenation, which we assume to be
available via pre-processing, and recompute the composed state from only the remaining ones.

Soup (Pióro et al., 2024): Simple averaging of states obtained from each document.

6.3 MAIN RESULTS

In this section, we evaluate both the zero-shot and fine-tuned performance of PICASO in Sec-
tion 6.3.1 and Section 6.3.2 respectively, and show in Section 6.3.3 that the fine-tuned model does

2https://github.com/state-spaces/mamba
3https://github.com/huggingface/transformers
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not overfit to the composition task. We also include additional experiments showing that LLM ca-
pabilities are not impacted by fine-tuning in Appendix B.4, and show that PICASO can also be used
for data attribution in Appendix C

6.3.1 ZERO-SHOT PERFORMANCE

We demonstrate in Figure 3 that applying PICASO-R in a zero-shot manner on WikiText-V2 greatly
improves performance over the baseline by an average of 10.1% across 1-10 retrieved document
chunks. This greatly improves over Soup (8.5%) and CASO (9.2%). Compared to concatenation
(11.1%), PICASO-R performs slightly worse but benefits from magnitudes improvement in pro-
cessing time on an average of 5.4×. In this task, PICASO-R achieves almost exactly the same
performance as PICASO-S, but with a much faster composition time. As a sanity check for motiva-
tion for our method, we show that PIConcat achieves the best performance (12.0%) overall, but at
the cost of significantly greater computational time despite our batched-inference implementation.

In Row 1 of Table 1, we show that applying PICASO-R and PICASO-S in a zero-shot manner on
MSMARCO similarly yields considerable improvements (37.2%) over the naive baseline, while
achieving performance close to that of concatenation (41.3%).

0 2 4 6 8 10
Number of Composed Chunks

2.04

2.06

2.08

2.10

2.12

2.14

2.16

Lo
ss

Baseline
Concat
Soup
CASO
PICASO-R
PICASO-S
PIConcat-R

0 50 100 150 200 250
Composition Time (ms)

2.06

2.08

2.10

2.12

2.14

2.16

Lo
ss

Chunks Retrieved
0
2
4
6
8
10
Algorithm
Baseline
Concat
Soup
CASO
PICASO-R
PICASO-S

0 2 4 6 8 10
Number of Composed Chunks

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2.20

Lo
ss

Baseline
Concat
Soup
CASO
PICASO-R
PICASO-S
PIConcat-R

Figure 4: (Left + Middle:) Fine-tuning with BPTC on WikiText brings the performance of PICASO
to that of concatenation, while retaining its significant speed advantages. (Right:) Fine-tuning with
BP2C on WikiText improves the effectiveness of PICASO as well, but is much faster in terms of
training time since it does not require backpropagating through the composed state. Note that fine-
tuning has no impact on the actual composition time when used for inference.

6.3.2 BACKPROPAGATION THROUGH AND TO COMPOSITION

While PICASO demonstrates strong performance in the zero-shot setting, PICASO still lags behind
concatenation in terms of prediction accuracy. We attribute this to composed states being “out-of-
distribution” for the model, since these states do not arise from any sequence of input tokens. In
this section, we test if this can be resolved via fine-tuning with PICASO-R composed states via
BPTC and BP2C. Indeed, as we show in Figure 4, BPTC and BP2C greatly improves the perfor-
mance of PICASO-R and PICASO-S to that similar to concatenation, while maintaining much faster
processing timings on WikiText. Similarly, we show in Rows 4-5 of Table 1 that fine-tuning on the
MSMARCO training set also levels the performance of PICASO with that of concatenation. We also
note that while BP2C is significantly faster in terms of training time, it incurs a small performance
trade-off compared to BPTC for both datasets, keeping number of training iterations constant.

6.3.3 EVALUATION OF FINE-TUNED MODEL ON OTHER DIFFERENT TASKS

We showed that models fine-tuned on a specific downstream task (training set) using BPTC/BP2C
can perform strongly when composing samples drawn from a similar distribution (test set). We
further show in Table 1 that models fine-tuned on one domain (WikiText) can demonstrate small
performance gains (or at the very least, no performance loss) when composing samples via PICASO
on another domain (MSMARCO). Finally, we show in Appendix B.4 that fine-tuning models with
BP2C/BPTC maintain (and occasionally even improve) performance on general LLM evaluation
tasks compared against the original model.
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Table 1: All models in this table are evaluated on the MSMARCO validation set. We evaluate per-
formance of models fine-tuned via BPTC/BP2C on both the WikiText and MSMARCO training sets.
Rows 2-3 show that fine-tuning models to compose WikiText chunks does not harm performance
when evaluated on composing document chunks from MSMARCO. When composing chunks from
distributions similar to those encountered during training (Rows 4-5), PICASO matches the perfor-
mance of concatenation while being magnitudes faster.

Naive Concat Soup CASO PICASO-R PICASO-S

Mamba2-2.7B Base 2.42 1.42 2.04 1.56 1.52 1.52
Mamba2-2.7B BP2C-WikiText 2.44 1.44 2.07 1.53 1.50 1.50
Mamba2-2.7B BPTC-WikiText 2.43 1.46 2.08 1.53 1.49 1.49
Mamba2-2.7B BP2C-MSMARCO 1.85 0.68 1.27 0.72 0.69 0.69
Mamba2-2.7B BPTC-MSMARCO 1.79 0.65 1.20 0.68 0.65 0.65

7 LIMITATIONS AND DISCUSSION

We have proposed a method, PICASO, that enables efficient retrieval and composition of document
chunks by pre-processing their individual states. Without any training, ur approach can handle the
composition of information contained in up to 10 documents in a manner that is order-invariant.
PICASO notably requires zero online model processing time, since generation can begin directly
from the composed states. When models are further fine-tuned with our proposed learning objective,
states composed using PICASO perform comparably to those produced from the concatenation of
document tokens, while offering on average a 5.4× faster composition time.

Nevertheless, our method does have some limitations. When applied in a zero-shot manner, PICASO
still lags slightly behind concatenation in terms of prediction accuracy. PICASO is also currently
limited to architectures based on SSM layers. We leave as future work extension of PICASO towards
recently popularized attention-based hybrid models, which require more sophisticated methods of
composing key-value caches. Lastly, we also leave as future work the exploration of parameter-
efficient fine-tuning methods such as adapters, which can be used to augment the model at inference
time to enable state composition while preserving the original model’s behavior.
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René Vidal, Alessandro Chiuso, Stefano Soatto, and Shankar Sastry. Observability of linear hybrid
systems. In International Workshop on Hybrid Systems: Computation and Control, pp. 526–539.
Springer, 2003a.
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A ALGORITHMS: PICASO-S AND PICASO-R

We show in Algorithm 1 how PICASO-S is computed in polynomial time via a dynamic program-
ming approach based on Algorithm 2. In Algorithm 3, we also show how PICASO-R can be com-
puted with linear time complexity. Time complexity is measured as the number of arithmetic oper-
ations required as a function of number of document states.

Algorithm 1 PICASO-S- O(n3)

Require: States x = {xi}n−1
i=0 , Decays A = {Ai}n−1

i=0

return
∑n−1

i=0 PICASO-S-DP(A−i) · xi

▷ A−i denotes all elements of A except Ai

Algorithm 2 PICASO-S-DP - O(n2)

Require: Decays A = {Ai}n−1
i=0

DP[:,:] ← zeros(n, n)
DP[0,:] ← 1
w ← 0
for i = 1, . . . , n− 1 do

for j = i, . . . , n− 1 do
DP[i][j]← DP[i][j − 1] +Aj−1· DP[i− 1][j − 1]

end for
end for
for i = 0, . . . , n− 1 do

w ← w + 1

n·(n−1
i )
· DP[i][n− 1]

end for
return w

Algorithm 3 PICASO-R - O(n)
Require: States x = {xi}n−1

i=0 , Decays A = {Ai}n−1
i=0

x̂← 0, Â← [A1, . . . , An, A1, . . . , An]

ÂΠ = cumprod(Â)

ÂΣΠ = cumsum(ÂΠ)
for i = 1, . . . , n− 1 do

wi ← 1
n ·

((
ÂΣΠ[n+ i− 1]− ÂΣΠ[i]

)
ÂΠ[i]

−1
+ 1

)
x̂← x̂+ wi · xi

end for
return x̂

B FURTHER ANALYSIS

B.1 COMPUTATIONAL COSTS OF PICONCAT

In Figure 5, we visualize the computational costs incurred by PIConcat, which we show to dominate
that of other methods despite resulting in the best performance on the WikiText dataset.

B.2 SCALING BEYOND EFFECTIVE CONTEXT LENGTH

In Figure 6, we show that as the total length of retrieved documents scale beyond a certain threshold
(effective context size of the model), the loss from concatenation blows up and rapidly increases
beyond the no-retrieval baseline. On the other hand, performance of PICASO remains stronger than
that of the baseline when composing 50 document chunks.
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Figure 5: Timings for different composition algorithms evaluated on WikiText using Mamba-2 2.7B
(zero-shot), including that of PIConcat-R. While PIConcat results in the best performance (y-axis),
its computational cost (x-axis) is significantly higher than that of other methods. We refer to Figure 3
for a more condensed plot to compare the remaining methods.
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Figure 6: Concatenation scales poorly with total size of retrieved documents beyond training context
length. PICASO yields greater stability even composing up to 50 document chunks retrieved from
WikiText.

B.3 INFERENCE VS PROCESSING TIME

In Figure 7, we show that the context processing time for Mamba-2 comprises a significant propor-
tion of the total generation time. For large sequence lengths beyond 6K tokens, the processing time
even dominates the inference time for generating 32 tokens.

B.4 PERFORMANCE ON LLM EVALUATION TASKS

In Table 2, we show that fine-tuning Mamba2-2.7B with BTPC/BP2C objectives do not degrade
existing LLM capabilities when evaluated on several LLM evaluation benchmarks - HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-E, ARC-C (Clark et al., 2018), WinoGrande
(Sakaguchi et al., 2021), and OpenbookQA (Mihaylov et al., 2018).
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Figure 7: Mamba-2 Processing vs Inference Time of 32 tokens. Processing time (orange) occupies
a significant proportion of the total time taken to generate from an input sequence, even dominating
the constant inference time from the processed state (blue) as number of tokens in the input grows.

Table 2: Evaluation of Mamba2-2.7B trained with BPTC and BP2C on LLM evaluation tasks. Here,
we show that fine-tuning for composition does not degrade existing LLM capabilities. In this table,
we report the length-normalized accuracy for each task.

HellaSwag PIQA ARC-E ARC-C WinoGrande OpenbookQA

Mamba2-2.7B Base 66.6± 0.5 76.3± 1.0 64.8± 1.0 36.3± 1.4 63.9± 1.4 38.8± 2.2
BP2C-WikiText 66.7± 0.5 76.3± 1.0 64.9± 1.0 37.5± 1.4 63.6± 1.4 39.8± 2.2
BPTC-WikiText 66.7± 0.5 75.6± 1.0 64.9± 1.0 37.2± 1.4 63.2± 1.4 40.2± 2.2

B.5 ABLATION ON CHOICE OF RETRIEVER

In Figure 8, we ablate the impact of difference retriever choices on PICASO-R. In par-
ticular, we evaluate the performance of PICASO-R on WikiText when using the follow-
ing embedding models from Sentence-Transformers (Reimers & Gurevych, 2019): aver-
age word embeddings glove.6B.300d, all-MiniLM-L6-v2, and all-mpnet-base-v2, arranged in in-
creasing order of performance on 14 different sentence embedding tasks (Reimers & Gurevych,
2019). As expected, Figure 8 shows that the performance of PICASO-R highly correlates with the
strength of the retriever, where stronger retrievers yields better results on WikiText.
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Figure 8: Ablation study on how choice of retriever model impacts performance of PICASO-R on
WikiText. As expected, stronger retriever models result in better downstream performance.
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B.6 EVALUATION ON MULTIPLE CHOICE TASKS

In this section, we evaluate PICASO-R on the OpenbookQA (Mihaylov et al., 2018) multiple-choice
task, where we retrieve from a document database of full passages from WikiText-V2. While Open-
bookQA provides the ground truth fact for each evaluation sample, we discard this in our evaluations
following standard practice in Gao et al. (2024). We leverage the same retrieval model used for the
main WikiText experiments. Table 3 shows that PICASO-R achieves performance close to concate-
nation, with a 8× speed-up in composition time.

Naive Concat PICASO-R
Acc (↑) Time (↓) Acc (↑) Time (↓) Acc (↑) Time (↓)
38.8% NA 40.0% 233 ms 39.9% 29 ms

Table 3: Evaluation on OpenbookQA dataset, augmented with retrieved passages from WikiText.
We use normalized accuracy as our evaluation metric, and report the time taken to compose retrieved
passages. Numbers shown in the table are averaged across retrieving between 1 to 10 full documents
from WikiText (as opposed to half documents in our main paper experiments).

B.7 DOCUMENT CHUNK STATISTICS

In Figure 9, we plot the distribution over the lengths (tokens and characters) of retrieved document
chunks used in the main paper WikiText retrieval dataset.

0 200 400 600 800 1000 1200
Num documents

0

50

100

150

200

250

300

Nu
m

 c
ha

ra
ct

er
s

0 50 100 150 200 250 300
Num documents

0

50

100

150

200

250

300

Nu
m

 to
ke

ns

Figure 9: Histogram of the lengths, in terms of (Left) characters and (Right) tokens, of database
document chunks used in the main paper WikiText experiments.

C DATA ATTRIBUTION

Table 4: Zero-shot Data Attribution on MSMARCO with Mamba2-2.7B, measured by precision. We
compare Leave-One-In (LOI) and Leave-One-Out (LOO), where we implement LOO with varying
methods for state composition.

LOI Concat Soup CASO PICASO-R PICASO-S

0.699 0.690 0.629 0.725 0.732 0.731

Consider a question-answer pair (uq,ua), and a sequence of potentially relevant documents S =
(u1, . . . ,un). We would like to select the most relevant document for inferring the answer. There
are at least two ways to do so with model fθ:
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The first method, which we term ”Leave-one-in”, is to prepend each candidate document to the ques-
tion, and evaluate the loss on the answer. Equivalently, argmini LCE(fθ(uq, x(ui)),ua), where
we abuse notation to denote loss on the sequence (instead of token) ua.

The second method, which we term ”Leave-one-out”, is to compare the marginal increase in loss
of the answer when removing each candidate from the composition of all of them. Equivalently,
argmaxi{LCE(fθ(uq, x̂(S−i)),ua) − LCE(fθ(uq, x̂(S)),ua)}, where x̂(S−i) denotes a state
composed from all documents in S other than ui.

Intuitvely, the former measures “absolute” influence of a document, while the latter measures “rela-
tive” influence computed as the marginal improvement from adding it to the set of other documents.

There are several different ways to implement the latter by varying the composition method used.
We show in Table 4 that not only does Leave-One-Out perform best on the MSMARCO dataset,
but implementing Leave-One-Out with PICASO-S and PICASO-R not only accelerates processing,
but also surpasses the performance of conatenation. We attribute this to the permutation-invariance
property of PICASO, which unlike concatenation, does not introduce irrelevant biases arising from
arbitrary document orders.

D CONCATENATION FOR SSMS: CONNECTION TO JUMP-LINEAR SYSTEMS

Consider a collection of document segments retrieved based on relevance to a query, and sorted
randomly as context to the query. While these segments, or ‘chunks’ share information, they are
independent given the query, and their order is accidental and uninformative.

We are interested in a model that can efficiently process inputs in this format and extract all shared
information from the input. Attention-based models are a natural choice because of the permutation-
invariance of attention mechanisms (ignoring positional encoding), but they would have to process
the entire input (all chunks) with quadratic inference cost. On the other hand, SSMs have linear
cost, but they are ill-fit to process this kind of input because of the context switches, which make the
Markov assumption implicit in the state representation invalid.

We consider a broader class of models, namely switching dynamical systems (or jump-Markov,
jump-diffusion, or linear hybrid, or jump-linear systems) as the class of interest. A jump-linear
system is one that has a continuous state, say xt that evolves synchronously, and a dicrete state that
changes the value of xt, for instance

xt+1 =

{
Axt +But if t ∈ Z\Ω
xt+1 ∼ P if t ∈ Ω

Learning and inference for this model class corresponds to indentifcation and filtering for this class
of Jump-Markov models. In addition to a random swtiching, the switch can be triggered by a
particular ‘flag’ (value) of the input:

xt+1 =

{
Axt +But if ut ̸= utrigger

xt+1 ∼ P if ut = utrigger

If the value of utrigger is known, then a given identification and filtering scheme can be applied by
switching the estimated state according to the trigger.

Since modern state-space models are input-dependent, they automatically fit the latter class of mod-
els and can handle switches without modifications. However, what they cannot handle is the fact that
the order of the chunks is uninformative. As a result, presenting the same chunks in different order
would yield different states. Accordingly, our goal is to enable SSMs to learn from segments up to
permutations, so we can accommodate sequences where the ordering within chunks is informative
and respected, while the ordering of chunks is uninformative and factored out.

E GENERAL RECURRENCE STRUCTURE

In the main paper, we introduced a specific recursive relation satisfied by Elementary Symmetric
Polynomials. Here, we introduce a more general form which can potentially be used for more
efficient implementations:
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Proposition 5. For any choice of 1 ≤ q ≤ n− 1

em(A1, · · · , An−1) =

min(m,q)∑
j=max(q+m−n+1,0)

em−j(A1, · · · , An−1−q)ej(An−q, · · ·An−1)

Proof. We compute em(A1, · · · , An−1) using a Dynamic Programming (DP) approach, where
we break the problem into smaller problems, and merge the solutions. First we split the
n − 1 variables at some random index q to create two partitions, (A1 · · · , An−1−q) and
(An−q, · · ·An−1), and then compute em−j and ej on each partition respectively. For a given
value of j, em−j(A1, · · · , An−1−q)ej(An−q, · · ·An−1) will only compute a subset of values from
em(A1, · · · , An−1), and hence we sum over all possible values for j.

In particular, taking q = 1, we obtain the following:

em(A1, . . . , An−1) = An−1em−1(A1, . . . , An−2) + em(A1, . . . , An−2)

which we use for our implementation of PICASO-S.
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