
Historical Data-Based Prescribed Performance
Optimal Control for PMSM Systems with

Disturbance
1st Bowen Zhang

College of Control Science and Engineering
Bohai University
Jinzhou, China

2022008014@qymail.bhu.edu.cn

Abstract—This paper proposed a prescribed performance
optimal control method for permanent magnet synchronous
motor (PMSM) systems with nonlinear disturbance. Firstly, a
novel prescribed performance approach is proposed to constrain
both the state and error of PMSM systems in order to obtain
high precision control performance. Then, an adaptive dynamic
programming method based on historical data is designed to
solve the optimal controller. Furthermore, an identifier based
on neural network is constructed to approximate the system
disturbances. Finally, a simulation example is implemented to
validate the efficacy of the proposed control method.

Index Terms—Permanent Magnet Synchronous Motor, Pre-
scribed Performance Control, Adaptive Dynamic Programming.

I. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSM) are wide-
ly applied in robotics and industrial fields due to their ad-
vantages such as higher power density, higher torque-inertia
ratio, and higher efficiency [1]. In the current context of
energy shortages, how to effectively enhance the working
efficiency of PMSM and thereby conserve more energy has
emerged as a primary concern. Optimal control theory is
often utilized to conserve control resources by minimizing
performance index functions. [2] et al. propose a nonlin-
ear optimal controller and observer schemes based on a θ-
D approximation approach for PMSM systems, which can
effectively elevate the operational efficiency of PMSM control
systems. However, existing methods need repeated checks of
the adaptive updating law to ensure the satisfaction of the
persistent excitation (PE) condition. [3] et al. introduced an
adaptive dynamic programming approach based on historical
data to obtain the optimal solution for the system, effectively
eliminating the need for PE signals. Currently, designing an
optimal control method for PMSM systems that can dispense
with the PE condition poses a challenging task.

Existing optimal control strategies for PMSM systems often
struggle to meet high-precision control requirements. Pre-
scribed performance control represents an effective approach
to achieving high-performance control demands by constrain-
ing system performance. [4] et al. proposed a prescribed

performance optimal control method to enhance control per-
formance. Existing prescribed performance methods typically
impose constraints only on system errors. [5] et al. introduced
a low-complexity prescribed performance approach that can
simultaneously constrain both system states and errors. This
method is equally applicable to PMSM systems. However,
this method lacks discussion of system disturbance issues.
Therefore, our current primary research motivation is to de-
velop an anti-disturbance prescribed performance method for
implementing optimal control of PMSM systems.

Taking inspiration from the above, this paper proposed a
prescribed performance optimal control method for permanent
magnet synchronous motor (PMSM) systems with nolinear
disturbance. The main contributions are listed below:

1) A novel prescribed performance approach is proposed
to constrain both the state and error of PMSM systems
in order to obtain high precision control performance.
System state and system error can be constrained simul-
taneously.

2) An adaptive dynamic programming method based on
historical data is designed to solve the optimal controller.
The PE conditions required by most adaptive dynamic
programming methods can be eliminated.

3) An identifier based on neural network is constructed to
approximate the system disturbances.

II. PRELIMINARIES

A. System Description

In the field-oriented control, the PMSM has the following
physical model in the d-q frame:
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where ω, np, TL and J are the angular velocity, the number
of pole pairs, load torque, and rotor inertia. iq , id, uq and
ud denote the stator current and voltage of q-axis and d-
axis, respectively. Ld is the stator inductance and RS is the



stator resistance. B and ψF stand for the viscous frictional
coefficient and the rotor flux linkage. The model (1) can be
rewritten as

Ẋ(t) = f(X(t)) + gu(t) + d(t), (2)

where X = [ω, id, iq]
T is the system state,
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,

u(t) = [ud, uq]
T represents the voltage of q-axis and d-axis,

d(t) = [DτJ , Dd, Dq]
T is the system disturbance.

B. NN identifier
A NN identifier is introduced to estimate the PMSM system

with disturbance, with the aim of mitigating the negative
impacts of disturbances on the system.

The function d(t) can be approximated by the NN in the
following:

d(t) = W∗Ti σi + εi, (3)

where W∗i ∈ Rnef∗3 is ideal weight matrix, σi ∈ Rnef is the
NNs activation function, εi is bounded approximation error,
nef represents the number of neurons in the NNs.

Let Ŵi denote the estimation, the adaptive identifier is built
as

˙̂
X(t) = −kaX̃(t) + f(X(t)) + gu(t) + ŴT

i σi, (4)

where X̂(t) is the identifier state, X̃(t) = X̂(t)−X(t) is the
identification error, ka is a positive parameter, and W̃i is the
estimation error of Ŵi.

The updating law of Ŵi is designed as
˙̂

Wi = −TσiX̃(t)T − kbTŴi (5)

where T ∈ Rnef∗nef is the positive definite gain matrix and
kb is the positive design parameter.

C. System Constraint
This section considers the situation where both the tracking

error and all system states are constrained simultaneously.
Before a discussion, the tracking error of PMSM is defined
as

et(t) = X(t)−Xd(t), (6)

where Xd(t) is the reference signal.
The proposed control scheme needs to satisfy simultaneous

constraints on both the tracking error and all system states of
the PMSM system, namely, meeting the following conditions:
• Prescribed performance constraints:

−Pi(t) < eti(t) < Pi(t), i = 1, 2, 3. (7)

• Full-state constraints:

−αci < Xi(t) < αci, i = 1, 2, 3. (8)

where X1(t), X2(t) and X3(t) represent the states ω,
id, and iq of the PMSM system, respectively, and αci
indicates the maximum value that the system states can
withstand.

D. Error Transformation

To implement the performance constraints in the previous
section, the prescribed performance function is defined as

Pi(t) = ln(
1 +$i(t)

$i(t)− 1
), (9)

where $i(t) is the shifting function, is chosen as
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{
(1− ıi)(Tci−tTci
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where αci and αbi is a positive

design constant.
To achieve the prescribed performance (7), a mapping error

transformation is introduced as

ξi(t) =
exp( eci2 )− exp(− eci2 )

exp( eci2 ) + exp(− eci2 )
, eci =
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αci

. (10)

Then, we introduce an error transformation related to ξi

ηi(t) = $i(t)ξi(t), ηi(0) = 0. (11)

where ηi(t) is another transformation error.
In order to guarantee ηi(t) ∈ (−1, 1) for all t ≥ 0. An error

transformation is given as

εi(t) =
ηi(t)

1− ηi(t)2
, εi(0) = 0. (12)

Through a series of error transformations (9)-(12), the
tracking problem of the original constrained PMSM system
is transformed into a stabilization one of the following uncon-
strained system:

ε̇(t) = Aa(Ẋ(t)− Ẋd(t))−Ab (13)

where
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ξi, νi and ωi are all readily computable variables as

µi = (1 + η2i ), (14)

ωi = ξi(1 + η2i )(1− η2i ), (15)

νi =
2ξi

(exp( eci2 ) + exp(− eci2 ))2
. (16)

III. MAIN RESULTS

A. Optimal Controller Design

The performance index function is defined as follows:

V(ε(t), u(t), t) =

∫ ∞
t

e−ρ(τ−t)(R(ε(t), u(t))dτ. (17)

where R(ε(t), u(t)) = ε(t)TΩε(t) + u(t)Tu(t), ρ > 0
represents the discount factor, and Ω is a positive defined
matrix.

Then, the optimal value function is given by

V∗(ε(t), u∗(t), t) = min
u(t)
V(ε(t), u(t), t) (18)



where u∗(t) is the optimal controller. For simplicity,
V∗(ε(t), u∗(t), t) is written as V∗.

Based on Bellman’s optimality principle, the following HJB
equation is derived:

H(ε(t), u∗(t),V∗ε , t) =V∗ε
(
Aa(Ẋ(t)− Ẋd(t))−Ab

)
− ρV∗

+ ε(t)TΩε(t) + u(t)Tu(t)

=0. (19)

where V∗ε = ∂V∗/∂ε.
By using the stationarity condition

∂H(ε(t), u∗(t),V∗ε , t)/∂u(t) = 0, we have the optimal
controller, formulated as

u∗i = −1

2
gTATa V∗ε . (20)

By inserting (20) into (19), we find that the HJB equation
is able to be rewritten as

V∗ε
(
Aa(f(X(t)) + d(t)− Ẋd(t))−Ab

)
− ρV∗

+ ε(t)TΩε(t)− 1

4
V∗Tε gAaATa gTV∗ε

=0. (21)

In order to obtain the optimal controller of PMSM system,
it is necessary to obtain the gradient term a of the optimal
performance index, which is expected to be obtained by
solving the HJB equation (21). However, due to unknown
disturbances and inherent nonlinearity, it is impossible to solve
the HJB equation by analytical method. Therefore, an ADP
method combining historical data is proposed to solve the HJB
equation (21) in the next section.

B. Solutions of the HJB Equation

An NN is introduced to approximate

V∗ = W∗Tci σci + εci, (22)

where Wci ∈ Rñc denotes the weight vector, σci ∈ Rñc is
the basic function vector, ñc represents the number of neurons,
and εci is a constant that denotes the approximation error.

Then, the estimated ûi of optimal controller is obtained as

ûi = −1

2
gTATa ŴT

ciσci. (23)

Substituting (22) and (23) into the Bellman residual error
eBi yields

eBi =Ĥi(εi, Ĵεi , ûi, ω̂i)−H ∗i (εi,J ∗i ,u∗i , ω∗i ).

Then we define the term φi = 5σci
(
Aa(f(X(t)) + d(t)−

Ẋd(t))−Ab
)
.

To mark sure that the Bellman residual error eBi decays
to 0, the gradient descent method is generally applied to
the function 1

2e
T
BieBi by adjusting the updating law of the

weight matrix Ŵci. Historical state data is introduced into the
following objective function in order to avoid PE conditions

E =
1
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T
BieBi

(1 + φTi φi)
2
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1
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T
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2
, (24)

where φpi and eBpi for p = 1, 2, . . .No (note: No ≤ ñc, ñc
stands for the number of neurons used in the NN) are defined
as below:

φpi =5 σci
(
Aa(f(X(tp)) + d(tp)− Ẋd(tp))−Ab

)
eBpi =ŴT

ciφpi + ε(tp)
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The gradient descent method is applied to the objective
function E. The updating law of Ŵci is obtained as follow
with tp ∈ [tj , tj+1] denoting the index to mark the historical
state time

˙̂Wci =− lci
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where (1+φTi φi)
−2 and (1+φTpiφpi)

−2 are the normalization
terms and lci > 0 is the design parameter.

Define the weight estimation error as W̃ci = W∗ci − Ŵci,
then based on (26), one has

˙̃Wci =− lci(ϕiϕTi +
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where ϕi =
φi

(1 + φTi φi)
2
, ϕpi =

φpi
(1 + φTpiφpi)

2
,

εHi =5 εci
(
Aa(f(X(tp)) + d(tp)− Ẋd(tp))−Ab

)
,

εHpi =5 εci
(
Aa(f(X(t)) + d(t)− Ẋd(t))−Ab

)
.

IV. SIMULATION VERIFICATION

In order to verify the proposed control method, a simulation
example based on PMSM is implemented. Figure .1 shows the
PMSM system status tracking diagram. It can be seen that the
control method proposed in this paper can effectively make
the PMSM system state track the reference trajectory. Figure
.2 shows the tracking error diagram. Figure .2 shows that all
errors are limited to a given prescribed performance boundary
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Fig. 1. State trajectories of the PMSM system
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Fig. 2. State trajectories of the PMSM system
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Fig. 3. State trajectories of the PMSM system

V. CONCLUSION

This paper have proposed a prescribed performance optimal
control method for permanent magnet synchronous motor

(PMSM) systems with nolinear disturbance. Firstly, a novel
prescribed performance approach has been proposed to con-
strain both the state and error of PMSM systems in order to
obtain high precision control performance. Then, an adaptive
dynamic programming method based on historical data has
been designed to solve the optimal controller. Furthermore,
an identifier based on neural network has been constructed
to approximate the system disturbances. Finally, a simulation
example has been implemented to validate the efficacy of the
proposed control method.
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