Under review as a conference paper at ICLR 2025

INFERRING FROM LOGITS: EXPLORING BEST PRAC-
TICES FOR DECODING-FREE GENERATIVE CANDIDATE
SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Language Models rely on autoregressive decoding to produce the output
sequence token by token. Some tasks, such as preference optimization, require
the model to produce task-level output consisting of multiple tokens directly by
selecting candidates from a pool as predictions. Determining a task-level prediction
from candidates using the ordinary token-level decoding mechanism is constrained
by time-consuming decoding and interrupted gradients by discrete token selection.
Existing works have been using decoding-free candidate selection methods to
obtain candidate probability from initial output logits over vocabulary. Though
these estimation methods are widely used, they are not systematically evaluated,
especially on end tasks. We introduce an evaluation of a comprehensive collection
of decoding-free candidate selection approaches on a comprehensive set of tasks,
including five multiple-choice QA tasks with a small candidate pool and four
clinical decision tasks with a massive amount of candidates, some with 10k+
options. We evaluate the estimation methods paired with a wide spectrum of
foundation LMs covering different architectures, sizes and training paradigms. The
results and insights from our analysis could inform the future model design.

1 INTRODUCTION

Large Language Models (LLMs) have shown amazing performance after pre-training on a massive
corpus (Lewis et al.,2020), instruction tuning (Longpre et al.,|2023)), and preference alignment (Etha+
yarajh et al| |[2024). Generative LMs respond to queries by generating tokens to form an output
sequence and optimize themselves by learning to generate the correct tokens. The simplicity of
token-level inference and optimization compromises its performance on end tasks, as there is a gap
between the token-level paradigm and sequence-level task results and learning signals.

Some tasks use generative LM to select the answer(s) from a given pool of options where each
candidate answer is a natural language sequence. With such a task formulation, both LLMs’ gener-
alizable reasoning capabilities on novel scenarios and domain expertise contained in the candidate
space can be utilized. Multiple-choice QA considers answer options as the candidate pool (Khashabi
et al., [2020). The large collection of labels are candidate answers for extreme label classification
tasks (Amigo & Delgado}, 2022). The retrieval task aims to extract relevant documents from a large-
scale evidence corpus (Lu et al.,[2023). The candidate pool can also be expert-curated professional
coding systems (Taylor et al.| 2022). For example, when instructing the model to prescribe medi-
cations, items in drug databases are candidates (Fleming et al.| 2023)); when conducting diagnoses,
disease ontology forms the candidate space (Singhal et al.||2023)). The typical practice is to use full
decoding to generate an output sequence and then match the natural language output with candidates
in the pool to select candidates to be predicted as answers (Mishra et al.||2022)). However, selecting
candidates using full decoding not only cuts off the gradient flow and disables direct optimization on
decoded results but also limits the output bandwidth due to time-consuming discrete decoding.

Existing works perform candidate selection without decoding for outcome-level optimization or
efficient parallel predictions. For example, Ma et al.|(2023b)) calculate averaged logits of MCQA
options to select an answer without decoding; Xu et al.| (2023b)) estimate the NLI result using logits of
a single token. Though these decoding-free candidate selection practices are widely used, there is no
formal definition or clear investigation of the properties of each method. There is also no consensus

Under review as a conference paper at ICLR 2025

a, Prompt
(a) P t=1 t=2 t=n
You are a professional clinicianin | ______ tput n
a hospital with expert knowledge ' | Ou pu seque ce
in medical and clinical domains... - S N Based on the detailed
Please provide as many s = = = clinical note provided, here
prescriptions as you can until you ! 5 0 Il n § H § § are the diagnoses for the
are not confident about your |:“>; A e N > 8] S patient:\n\n1. Metastatic
prescription decision. | o Lo o lung adenocarcinoma\n...
0 o 0
Patient information: age is __, | '
genderis __, race is __, marital i Token Token ! Token Token extract code
pries g cnar I | | Selocted
— = — N . Candidate
“Based” “on” “adenocarcinoma”
Selected
(b) Candidate Space W (0 e Candidate
— — .\ z
“/ "Cholera due to Vibrio \“ “cholerae” @ 8
cholerae 01, biovar @® S
"Cholera due to Vibrio cholerae" “¢holerd” &
cholerae 01, biovar eltor" 2 m 0
Sm Candidate -

"Malignant neoplasm of LR [“malignant”

\ overlapping sites of left bronchus / “eltor” X
\\ el Iu?\Z" e // ‘ @ summation
— — - [softmax
m

Token

Figure 1: (a) Using full decoding for tasks with answer candidates by generating output sequences
token-by-token. The task is to identify diagnoses given the patient’s medical record. (b) Candidate
space, consisting of coded diagnoses. (c) Using decoding-free generative candidate selection method
for the diagnoses task based on prior-decoding logits over vocabulary.

about the guiding principles for deploying those methods under various tasks and data scenarios with
diverse numbers, lengths, and complexity of candidate sequences. In this work, we formally define
the decoding-free generative candidate selection task, and conduct the first systematic evaluation
of typical practices on downstream tasks, reflecting the ultimate influence of the selection methods
compared with conducting full decoding. Our systematic evaluation covers an extensive collection
of candidate selection methods, including five decoding-free approaches to calculating candidate
probability distribution from token logits, as well as encoding-only dense retrieval method and full
decoding approach. The effects of deploying various methods are evaluated with a comprehensive
set of downstream testbeds widely used for LLM evaluation. The first type of testbed includes
five multiple-choice QA tasks with broad target capabilities and candidate diversity, reflecting the
candidate selection capabilities while the candidate pool is limited. We further increase the difficulty
and examine the performance on tasks with massive numbers of candidates on expert-curated large
ontology with 10k+ options for making diagnoses, procedure decisions, ordering lab tests, and
prescribing medications. Finally, we dive into the characteristic shifts of candidate selection methods
while using a wide spectrum of foundational LMs. The base models are diverse in terms of
architectures (decoder-only or encoder-decoder), sizes (spanning from 137M to 11B), and training
methods (pre-trained or instruction-tuned).

The evaluation provides insights into the properties of decoding-free candidate selection methods. The
performance of the token-logits-based candidate representation is highly dependent on the properties
of the pretrained LM, dataset domain difficulty, and candidate space diversity. Pure estimation
methods can outperform non-instruction-tuned models due to the challenges faced by weak base
models in handling certain question formats during decoding. In this case, estimation methods offer
a more straightforward means of exhibiting knowledge through token logits. The insights derived
from our evaluation enable more informed and confident design for future estimation methods. We
empirically demonstrate that the logits of the first output step are most informative; using selective
tokens for estimations compromises the performance and scaling properties of various model sizes.

2 PROBLEM FORMULATION
2.1 DECODING AND TRAINING PARADIGM OF GENERATIVE LMS
The ordinary sequence-to-sequence formulation of generative LM takes the input sequence seq;,, =

in in : 45 _ pout out
1o g and is expected to generate an output sequence seoyt = 13", . .. ’t\sléqoutl‘ The output

sequence generation involves encoding the input sequence to contextual vector representation (i.e. ,
output of the final transformer block), and decoding the outputs following

sedout = ffull—decode(fencode(Seqm))~ (D

Under review as a conference paper at ICLR 2025

During inference, the decoding function ffu11_decode iNVOIVes |seq,y¢| discrete decoding steps, in which
each step produces one output token. For (k + 1) — th step of decoding, which is conditioned on both
the input sequence and k generated tokens, the model produces logits z;, € RY! over the vocabulary
V' after passing output of encoding through unembedding matrix, and then obtain a probability

distribution over the possible next token (w € V) in the output sequence P (w | tﬁseqm" {iukt) =

softmax(z). Then a discrete token at this autoregressive decoding step is produced by Equation

During training, The LM is trained to minimize the difference between the generated
tokens with tokens in the ground-truth output seq,,:. The LM is optimized to mini-
mize the cross-entropy loss shown in Equation [3| applied on the probability of the gold
next token conditioned on the gold target output tokens in the previous segment in a
teacher-forcing manner, assuming the |sego.:|-th token marks the end of the sentence.
X . [seqout] .
tzqii :argmanGVP(w| iﬁseqinht({?;ct) (2) ﬁCE = Z _logP(tz’itl ll’c]iseq,;n\?ttly?lict) (3)
k=0

2.2 CANDIDATE SELECTION WITH A CANDIDATE ANSWER POOL

When performing tasks using generative LMs, we include task instruction and query in the input
sequence seq;, and expect the derived answer of the query ans from the generated output sequence
sedoy+ can match the ground-truth answer ans. Some tasks expect open-ended free generation where
the final answer is the generated output (ans = sedyyt), such as translation, creative story generation
and dialogue conversation (Wang et al.l 2023} [Ma et al., |2023a). However, many tasks have an
existing answer candidate pool, and the output sequence needs to find a matched candidate as the
final prediction. We notate the candidate pool as C' and a candidate as ¢ € {cy, ca,. .. ,c|c|} where
|C| is the total number of candidate options. Each candidate is a natural language sequence. The
answer of the query has to be one of the candidate, i.e. ans € C. For example, answer options
are candidates for multiple-choice question answering (Talmor et al.|[2018), segments of the input
sentences are candidates of information extraction (Sun et al., 2024} Zhao et al., 2024)), passages in
large archives serve as candidates for information retrieval (Lewis et al.l[2021), and drugs within
medication databases are candidates for prescription tasks (Yu et al.l 2024). Below are two examples
from a common sense multiple-choice question dataset:

Example 1. Question: The fox walked from the city into the forest, what was it looking for?
Candidates: pretty flowers; natural habitat; storybook; dense forest Answer: natural habitat

2.3 ORDINARY APPROACHES FOR CANDIDATE SELECTION

Classification methods train a |C|-way classification head with specialized parameters, where each
candidate is treated as a class label. Retrieval methods first create an index with an encoded
representation of each candidate. During prediction, the most matched candidates are retrieved, where
the match is measured by the similarity between the candidate embedding and the query.

To select candidates using a generative approach with full decoding, the LM first generates a
free-form output with discrete tokens seq,,+ by decoding the most probable words at each output
step, then an additional mapping fmap from sede,: to candidates is needed to produce the probability
over all candidates following Equation 4] This function can be a heuristic rule, semantic similarity
matching, or manual processing.

P (C | Zﬁseqiﬂ) = {pcl,pc2, -~-,pclcl} = fmap(ffull—decode(fencode(seqm))) “4)

Then, the predicted answer ans where ans € C' is produced by ans = argmax . P (c | tzﬁseqml).

2.4 GENERATIVE CANDIDATE SELECTION WITHOUT DECODING

At this point, we formally define the task of decoding-free generative candidate selection. In
§2.3] we introduce generative candidate selection using decoding, where the answer is reflected by
the output sequences. However, there are multiple severe limitations of decoding-based candidate
selection. On the one hand, the discrete argmax operator for token selection interrupts the gradient
flow, making applying objectives on task outcomes inefficient, such as using reinforcement learning
with one-per-outcome sparse rewards instead of token-level feedback. On the other hand, the decoding
process is time and resource-consuming, limiting the output bandwidth of generative LMs.

Under review as a conference paper at ICLR 2025

Decoding-free generative candidate selection fe is a function to produce the candidate prediction
probability given seq;,, without discrete decoding. Given the encoded representation, the function
calculates the logits of the first decoding step z (before the first discrete decoding) and then performs
various approaches on top of the logits to estimate the probability of candidate outcomes. The
estimation is driven by the token logits information under the assumption that the model’s intended
preference over outcome candidates can be reflected in logits of tokens of the candidate sequences.

The estimation method directly produces the probability distribution over all candidate outputs

following Equation The predicted answer can be yielded by ans = argmax .o P (c | tzﬁseqml).

P (C| Zle\seqi"j) = fcst(fcncodc(se(hn)) (5)

Note that the full decoding process fruil-decode» including probability calculation, argmax for token
selection, decoding for the next token, etc, is not conducted. The mapping from discrete output
sequence to candidates fi,ap is not needed either.

Decoding-free candidate selection methods are especially beneficial for two scenarios. 1) Accurate
outcome-based optimization. To optimize the model with the feedback directly from the predicted
outcome ans, we need to know the model’s prediction over potential candidates C' without inter-
rupting the gradient flow. 2) Efficient answer production. The token dependency of full decoding
prevents the decoding mechanism from outputting the answer in parallel. Even though the output
sequence sedoy¢ is generated, an additional step (fmap) is needed to convert the output sequence
sedoyt to the predicted answer ans. Decoding-free candidate selection produces the probability
over all potential answers directly without autoregressive generation and supports parallel inference,
significantly improving the time and resources needed for producing the answers to queries.

2.5 DIFFERENCE COMPARED WITH ORDINARY APPROACHES

The common property between the generative candidate selection and classification is that both
settings require a given set of selections to produce the final output. However, candidate selection is
different from classification in many key aspects summarized in Table |1} specifically: 1) Support of
dynamic candidates. A classification model has to use the same set of output labels across all instances
(e.g. positive or negative for sentiment classification). However, candidate selection methods allow
the task to have a different set of output candidates for each instance (e.g. different answer options for
each question in MCQA). 2) No need of additional parameters. The classification head is an additional
set of parameters specialized for the defined output classes. Different classification tasks have to
use a separate set of parameters. Candidate selection methods support various candidates with the
generative LM’s native parameters only, without any additional parameters. 3) No need for specialized
training. The additional parameters for each classification task need to be parameterized by training
on task-specific data, preventing it from generalizing to new tasks or labels. However, decoding-free
estimation methods support zero-shot candidate selection, as the possibilities of choosing options are
calculated dynamically according to corresponding candidates.

Table 1: Key difference between classification and generative candidate selection.

Property \ Classification Generative candidate selection
Candidate pool Fixed for all instances Dynamic for each instance
Separate parameters | Need separate classification head No separate parameters
Specialized training Require training Support on the fly zero-shot inference

3 GENERATIVE CANDIDATE SELECTION METHODS

The decoding-free generative candidate selection methods (also referred to as estimation methods)
produce the probabilities of predicting each candidate using the logits obtained at the first output
step. We introduce several decoding-free generative candidate selection methods, including k-th
token, token average and token sum, as well as other candidate selection methods for comparison,
including full decoding and dense retrieval. ~We also investigate other interesting factors that
influence the estimation performance, including the candidate sequence keyword selection deciding
which tokens are considered to represent a candidate option, and the output step used to obtain the
logits determining the source of raw logits data. We discuss these factors in §5.2]and Though

Under review as a conference paper at ICLR 2025

some of the designs have been used by existing works, there is no justification or empirical analysis
to support their design choices. To the best of our knowledge, this work is the first to provide a
formal summary of these approaches and systematically investigate the properties of each design of
generative candidate selection methods.

3.1 ESTIMATION CANDIDATE PROBABILITIES FROM LOGITS

Estimation by logits of k-th token. From the logits across all tokens in the vocabulary zy, we
calculate the logit for a single token (e.g. , the first or the last token) of each candidate sequence
and apply softmax to these selected logits to determine the probability p.: of predicting a candidate
¢’ among all candidates C' following Equation @ The candidate is represented by a sequence
containing |¢’| tokens, i.e., ¢* = ¢},. .. ,c‘zci‘. For instance, in Example logits for “pretty”, “natural”,
“storybook” and “forest” can be extracted to calculate the probability of each choice based on the first
token. We consider two variants in our evaluation: first token estimation and last token estimation.

Estimation by averaged token logits. We average the logits across all tokens for each candidate and
apply softmax to these averaged logits across all candidates to compute choice probabilities following
Equation [7| where (-) represents the averaging operator. For “pretty flowers” choice in Example |1} the
logits on “pretty” and “flowser” are selected from zy. The selected logits are averaged across tokens
in the candidate sequence, and then softmax is applied across candidates.

Estimation by sum of token logits. For each choice, we sum the logits across all tokens of the
candidate sequence. We then apply softmax to these summed logits to determine the probability of
selecting each choice following Equation 8] In this approach, choices with more tokens tend to have
a higher probability of selection.

exp(logit(ct)) o exp(({logit(c'))) eXP(leilo logit(c;,))

) Zlﬁlo exp(logit(c],)) ‘o Z‘Ji‘o exp(({logit(c7))) Per™ Z‘ﬁ‘o exp(zt‘i‘o logit(c],))
(6) @) (3)

3.2 ORDINARY CANDIDATE SELECTION METHODS TO COMPARE

ct

Full decoding. Following the decoding paradigm introduced in and how to induce answers
within a candidate pool from the full decoded output sequence introduced in we perform
full decoding to obtain an output sequence, then use a mapping function to find the corresponding
predicted answer from the given candidate pool. The mapping function is task-dependent; we use
the task-specific mapping rules introduced along with each dataset. Typical practices include using
regular expressions to match patterns in the output sequences, such as phrases like “Answers: ”, and
predicting the candidate with the highest semantic similarity with the output sequence.

Dense retrieval. In the retrieval baseline, we formulate the candidate selection task as a retrieval
task and use dense passage retrieval as one of the reference models. Separate encoders are employed
for encoding queries and candidate choices. Specifically, the question and each candidate choice
are embedded into a high-dimensional vector space using these encoders. Cosine similarity is then
computed between the question embedding and each candidate choice embedding. This similarity
score quantifies the relevance of each choice to the posed question and determines the probability of
each choice being the correct answer. For our experimental setup, we use the Facebook DPR question
encoder and context encoder (Karpukhin et al.|2020) to generate embeddings of the questions and
candidate choices, respectively.

4 EVALUATION SETTINGS

To contextualize the real-world performance of various candidate selection methods, we apply the
introduced methods to ultimate downstream tasks to reflect their influence on end tasks. We introduce
the selected tasks in and base generative LMs used in experiments in

4.1 TESTBED TASKS FOR CANDIDATE SELECTION

We evaluate generative candidate selection methods on two typical types of candidate selection tasks.
The first type contains a limited number of answer candidates so that all plausible choices can fit in
the input prompt of the model if needed. The second type of task has a massive candidate pool with a

Under review as a conference paper at ICLR 2025

large amount of candidates, which cannot fit in the input prompt. We show a comparison between
these two settings in Table[5] We cover more details of the testbed tasks in Appendix [B.T|and the
distribution of candidate sequences lengths in Appendix [B.2]

4.1.1 TASKS WITH LIMITED NUMBERS OF CANDIDATES

We use five tasks with the provided candidate pools: (1) CommonsenseQA (Talmor et al.| [2018)),
(2) MMLU (Hendrycks et al.| 2021bga)), (3) GPQA (Rein et al.,[2023), (4) BIG-Bench (Srivastava
et al.;2022), and (5) ARC (Clark et al.;, 2018), covering commonsense questions, science and liberal
arts subjects in different education levels, logical reasoning questions, etc. Instances in all datasets
contain one correct option and multiple distractors. They vary in difficulty, candidate option lengths,
and number of candidates per instance, as shown by data statistics in Table[2] We report accuracy and
per-instance runtime for these tasks and select one of the dataset splits with available answer keys.

To require the model to answer in a specific format without intermediate thinking processes, we
add specific instructions in the input prompt, as shown in Appendix [B.3] When incorporating the
candidate information, we use candidate sequences without indication heads (e.g. A, B) to estimate
the selection for decoding-free methods. For the full decoding baseline, candidate sequences with
indicators are included in the input for a fair comparison. For the mapping function fi,., used by the
full decoding, which converts output sequence seq,,,; to candidate selection ans, we capture the first
occurrence of a candidate sequence or indication head with regular expressions as the prediction as
further elaborated in Appendix [B.4]

Table 2: Properties of testbeds with the limited and massive number of candidates.

Task | Split Instances # Candidate # Avg. candidate token length
CommonsenseQA | train 9741 5 1.52
MMLU test 14,042 4 6.72
GPQA train 448 4 5.84
BIG-Bench train 250 3 5.33
ARC test 2,241 4 3.76
Diagnoses test 1,081 94,739 9.65
Procedures test 1,054 85,257 9.37
Lab Orders test 1,067 1,622 5.25
Prescriptions test 1,036 24,785 2.30

4.1.2 TASKS WITH MASSIVE NUMBERS OF CANDIDATES

We adapt four professional decision-making tasks introduced by Ma et al.|(2024) where the answer
has to fall in a large-scale expert-defined coding system as the second category testbeds. The goal
is to select multiple candidates from the pool as the predicted clinical decisions. They include:
(6) Diagnosis decisions on ICD-10-CM coding system. Given the patient records of a hospital
admission and the history diagnoses of the patient, the task aims to produce a set of diagnoses, each
has to choose from chapters in the International Classification of Diseases (10th revision) coding
system with 94k+ options. (7) Procedure decisions on ICD-10-PCS coding system. The task
determines a set of actions to be implemented to intervene in the patient’s health status given the
patient record at admission time. Candidates for procedures are level 2 codes in ICD-10-Procedure
Coding System ontology with 85k+ options. (8) Lab orders on LOINC coding system. Given the
admission patient record, the task selects a set of lab items from the candidate pool of 3rd-level codes
of the Logical Observation Identifiers Names and Codes system. (9) Prescriptions on ATC coding
system. The goal is to identify a set of medications, each coded as a pharmacological subgroup in
the Anatomical Therapeutic Chemical classification system, to be prescribed to the patient given
admission medical record.

4.2 BASE GENERATIVE LMS.

We assess decoding-free candidate selection approaches while using various pretrained generative
language models, including both decoder-only models in the Mistral and LLaMA families, as well as
encoder-decoder models in the Flan-T5 family. For LLaMA (Al@Metal 2024} and Mistral (Jiang
et al.,|2023) models, we use both models without instruction tuning (LLaMA3 8B and Mistral v0.3

Under review as a conference paper at ICLR 2025

Table 3: Accuracy and runtime per instance (in seconds) for each method across five multiple-choice
QA datasets with a limited number of candidates per question. For generative candidate selection
methods without decoding, we report the performance gap compared with full decoding. Methods

that underperform or outperform full decoding are highlighted with red or green background.

Acc. Runtime Acc. Runtime Acc. Runtime Acc. Runtime Acc. Runtime
Model (# Param) Method | 0 onsenseQA MMLU GPQA BIG-Bench ARC
Decoding | 31.83 069 | 3653 0.84 | 27.90 045 | 34.00 027 | 5551 112
First | +9.11 005 | -68 0.07 | -3.12 0.20 =) 0.09 | =12:63 0.06
Last | +9.23 005 | -7.89 0.07 | -2.01 0.20 D) 0.09 | -12.67 0.06
LLaMA3 (8B) Average | +3.24 0.08 | 433 0.11 | -536 031 | -0 013 | -352 0.10
Sum | +4.81 0.08 | -375 0.11 | -5.58 031 | +0.8 0.13 | -8.88 0.10
Decoding | 70.70 0.16 | 58.86 142 | 27.68 131 | 51.20 025 | 91.70 0.19
First 0.04 0.06 | -2.68 0.19 [1219:2 0.08 0.05
LLaMA3 Instruct (8B) Last 0.04 0.06 | -3.13 0.19 | -19.2 0.08 0.05
Average 0.06 0.10 | -7.14 029 | -15.6 0.12 0.08
Sum 0.06 0.10 | -5.8 029 | -16 0.12 0.08
Decoding | 21.63 128 | 2551 0.96 | 30.13 0.75 | 30.00 090 | 2927 1.24
First [T526179 0.04 | +4.66 0.07 | -3.79 0.19 | +2.4 0.08 | #1941 0.06
Mistral v0.3 (7.3B) Last | +27.25 0.04 | +4.02 0.07 | -3.57 019 | +2 0.08 | +18.25 0.06
-2 U Average | +20.89 0.06 | +7.04 0.10 | -4.01 027 | +2 0.12 | +25.17 0.08
Sum | +25.16 0.06 | +7.62 0.10 | -5.58 027 | +12 0.12 | +24.05 0.08
Decoding | 65.12 072 | 5206 139 | 29.02 141 | 47.60 085 | 8643 0.86
First | 721834 0.04 (1221552 0.06 | -4.02 0.19 [77=16 0.08 0.05
Mistral Tnstruct v0.3 (7.3B) Last | -18.52 0.04 | -22.76 0.06 | -2.46 0.19 | =156 0.08 0.05
Average | -20.74 0.05 | -19.48 0.09 | -4.91 026 | -16 0.11 | -27.08 0.07
Sum | -17.42 0.05 | -18.87 0.09 | -5.58 027 | -16.4 0.11 | =27.08 0.07
Decoding | 97.48 027 | 4836 027 | 2545 0.29 | 65.20 035 | 89.25 0.29
First 0.00 [p22149 0.00 | -1.34 0.01 0.00 0.00
Flan-T5-XL (11B) Last 0.00 | -21.25 0.00 | -0.9 0.01 0.00 0.00
Average 0.02 | -18.54 0.03 | -1.79 0.09 0.04 0.03
Sum 0.02 | 21.47 0.03 | -4.02 0.09 0.04 0.03
Facebook DPR Retrieval | 32.07 025 | 27.15 131 | 2522 0.13 | 30.80 001 | 39.76 0.10
Random | 20.00 0.00 | 25.00 0.00 | 25.00 0.00 | 33.33 0.00 | 25.00 0.00

7B) and after instruction tuning (LLaMA3 Instruct 8B and Mistral Instruct v0.3 7B). Among Flan-T5
models, we use the 11B variant (Chung et al.l [2022). When preparing the input sequence seq;y,,
we apply the chat template for the models trained with the prompt template, and we append the
generation prompt to indicate the start of the answer segment. Additionally, we include a random
guess baseline to represent the expected metrics achieved by chance.

5 EXPERIMENTS RESULTS

Table 3] shows the candidate selection performance on five MCQA tasks with limited candidates.
We show the performance on four clinical tasks with large-scale candidate pools in Table[d] Given
longer candidate sequences, we introduce a new decoding-free candidate selection approach named
Sample Avg., which calculates average logits for every other token in candidate sequences.
Besides the analysis for output steps, candidate token selection (Figure [2)), candidate length and
model sizes (Figure[3), we additionally demonstrate that adding chat template for instruction-tuned
model hurts the estimation performance in Appendix [C.1] additional ablation study on candidate
length in Appendix [C.2]and performance breakdown in Appendix [C.3]

5.1 CHARACTERISTICS OF GENERATIVE CANDIDATE SELECTION METHODS

Insight 1: Estimation methods provide reasonable initial guesses for challenging tasks and
decision intuition especially when full decoding is weak. In Table [3] with limited candidates,
for more challenging datasets such as GPQA, decoding-free candidate selection approaches (also
referred to as “estimation methods™) provide a reasonable initial guess and do not necessarily perform
significantly worse than full decoding. Compared to full decoding, estimation methods even provide
better performance for CommonsenseQA using LLaMA3 and all MCQA tasks except GPQA using
Mistral v0.3. We observe these two models still struggle to handle the format for answering the
question for some tasks during decoding, so it is hard to project its knowledge to interpretable results
since the only surface to represent knowledge, outputting sequences, is not working for a weak base
model. While knowledge by estimation methods is easier to exhibit through token logits.

Under review as a conference paper at ICLR 2025

For the results on clinical decisions with massive candidates presented in Table [all methods
experience a decrease in performance on these more challenging tasks compared to the ones with
a limited candidate space. Among decoder-only models, estimation methods can outperform full
decoding for lab orders and prescriptions, particularly in non-instruction-tuned variants. Specifically,
all estimation approaches surpass Mistral v0.3 in lab test orders, with Sample Avg. achieving
the highest increase of 29.25 points compared to full decoding. Additionally, four of the estimation
methods outperform LLaMA3 and Mistral v0.3’s decoding methods in prescription decision making.
The estimation methods provide hints of candidate selections in token logits. It is particularly useful
when the full decoding approach of non-instruction-tuned models struggles to follow instructions (as
shown in qualitative analysis in Appendix [C.4). When the model is able to understand the instruction
and produce reasonable output (using instruction-tuned models), full decoding is still better than
estimation. This aligns with our observation in Table[3] To summarize, full decoding may impede the
accurate selection of candidates, especially for non-instruction-tuned models, whereas decoding-free
methods can provide a quick initial guess in some cases since they are not influenced by trajectory
biases.

Insight 2: Estimation methods lag behind when full decoding performs well. In Table 3| we
observe an overall drop in performance when using estimation approaches, especially when the full
decoding method achieves reasonable accuracy. This aligns with the intuition that estimation methods
rely solely on the logits without capturing the token dependencies within the output.

Insight 3: Estimation results are similar before or after instruction tuning. Though instruction-
tuned models tend to achieve better results than non-instruction-tuned ones with full decoding, the
estimated selection results using the models of the same family do not have a large gap (LLaMA3
and Mistral compared with their instruct variants). This indicates that instruction tuning benefits the
decoding method a lot while making no significant difference for decoding-free methods.

Table 4: Recall for each candidate selection method across four clinical tasks with 1K+ to 94K+
candidates per question. We report the performance gap compared with full decoding.

Model (# Param) Method | Diagnoses | Procedures | Lab Orders | Prescriptions
Decoding 34.86 9.42 36.52 31.00
First -19.17 -1.45 +10.36 +11.05
Last -23.72 -7.61 -11.16 +3.81
LLaMA3 (8B) Average +2.17 671 -1.86 +9.61
Sample Avg. -3.05 -7.16 +7.63 +8.05
Sum -17.06 -8.37 -4.1 -6.08
Decoding 57.82 27.04 47.04 49.74
First -269 -11.55 -7.39
. Last -4.89 -26.42 -26.23 -15.76
LLaMA3 Instruct (8B) Average | -10.87 2642 -17.59 2768
Sample Avg. -2.08 -25.99 -16.79 -12.18
Sum -6.45 -26.71 -15.95 -25.52
Decoding 22.83 333 18.17 12.83
First -10.85 -0.82 +19.64 +16.13
. Last +2.07 -3.33 +26.3 +12.89
Mistral v0.3 (7.3B) Average | -10.26 248 +28.39 1144
Sample Avg. -5.93 -1.88 +29.25 +16.15
Sum -7.46 -2.58 +28.38 +8.33
Decoding 63.81 24.99 43.96 40.53
First -22.6 +1.41 -27.83
. Last -24.99 -23.19 -18.7
Mistral Instruct v0.3 (7.3B) Average 2337 14.13 1144
Sample Avg. -22.79 +10.36 -0.29
Sum -24.89 -13.44 -0.28
Decoding 10.22 0.73 8.43 4.41
First +15.77 +2.18 +32.14
Last +19.8 +0.94 +16.93 +28.76
Flan-T5-XL (11B) Average | 425.62 +1.47 +24
Sample Avg. +22.43 -0.25 +29.04
Sum +4.24 +33.52

Insight 4: Each candidate selection method excels under different conditions. The effectiveness
of a candidate representation depends heavily on the specific LLM and dataset. For instance, when
using the CommonsenseQA dataset, selecting by Sum logits is the best for Mistral Instruct v0.3, while
the Average method performs best for Flan-T5. The difference in performance between the two
single-token-based estimation methods (First and Last) is small, likely due to the limited length
of most candidates. The DPR model without fine-tuning performs similarly to random guessing

Under review as a conference paper at ICLR 2025

on more difficult datasets such as GPQA and BIG-Bench as the retrieval model is designed for
semantic similarity instead of reasoning. Both the capabilities of the pre-trained LM and the choice
of representative tokens play crucial roles in accurate candidate selection.

Insight 5: Decoding-free estimation is much more efficient than full decoding. As shown in
Tables the minimal (maximal) times of speedups on the five datasets are 2.6 (145.9), 7.6 (73.0), 1.5
(29.0), 2.1 (79.0), and 2.4 (90.6), respectively. This efficiency is expected, as full decoding involves
multiple subsequent steps, whereas estimation approaches require logits only at the first output step.

‘ -0 Decoding First Last Average Sample Avg.-0- Sum ‘

(b)

H*
067 400 § 067 o —o——p—n==—9
= & =
[| L c ©
g 04 ® 3 0.4
s —200 o o
0.2 3
r 2 0.2+
0 L \’T‘\ T ‘ Trr1 T 1T ‘ T TrTT O ‘ T ‘
0 10 20 0 5 10
Output Steps # Selected Candidate Tokens

Figure 2: Recall for the diagnosis decision task of various estimation methods while (a) using logits
obtained from different output steps and (b) using logits calculated over different numbers of essential
tokens selected from candidate sequences. The performance is obtained using LLaMA3 8B Instruct
model. The bars in (a) indicate the unique tokens for full decoded sequences at corresponding output
steps, reflecting the diversity of the decoded tokens.

5.2 ESTIMATION PERFORMANCE USING LOGITS OF VARIOUS OUTPUT STEPS

We investigate the middle ground between complete decoding-free methods and full decoding. We
allow the LLM to generate output for a certain number of decoding steps and then use the logits of
the next step to perform candidate selection estimation.

Insight 6: Logits of the first output step is the most informative. The ablation study is shown
in Figure [2(a). The estimation performance drops significantly when the output steps increase after
the first step. There is only 1 unique token for output steps 1 and 3 across all decoding outputs,
as all outputs start from a phrase leading to the answer, i.e. “Based on the provided information, I
would suggest the following diagnoses:...”. Though the uncertainty of the first decoded token is very
small, the logit distribution contains the most helpful signals across all output steps. The estimation
performance rises after generating the lead phrase starting from the 10th output step.

Using the logits of the first output step, without additional subsequent decoding, has been the default
setting to estimate the candidate selection in many works. It is also most efficient without additional
decoding steps. We empirically show that using the logits of the first output step to estimate the
candidate selection is the optimal solution in terms of both estimation performance and efficiency.

5.3 ESTIMATION PERFORMANCE USING SELECTED CANDIDATE KEYWORDS

We investigate the estimation capabilities when only the logits of the most important keywords of
each candidate sequence are considered. We prompt GPT-40 to select a certain number of the most
important and informative tokens among all of each candidate sequence. We then only calculate the
candidate probability using logits of the selected tokens.

Insight 7: Using full candidate sequence for estimation is better than selecting essential tokens.
In Figure b), we observe that as the considered tokens become more concise and selective (the
number of selected candidate tokens becomes fewer), the estimated results of various methods
converge to a similar range with a worse recall for most estimation methods. This indicates that it
is not necessary to only use essential tokens of the candidate sequence during estimation if it is not
First-only logits being used to derive the selection.

5.4 SENSITIVITY TO MODEL SIZES, ARCHITECTURES, AND CANDIDATE LENGTH

Insight 8: Estimation performance increases with larger decoder-only models, while staying
constant with encoder-decoder ones. Figure l(a) illustrates the performance of the encoder-

Under review as a conference paper at ICLR 2025

‘ o Decoding

First Last

Average

Sample Avg. -o- Sum

1(a) Encoder-decoder model

1(b) Decoder-only model

2(a) Limited candidates #

2(b) Massive candidates #

——o——0° 0.4 0.6 —
[-d —O~
g r° | s
©
£0.50— , |
3 , 0.3 0.4 8%,
< o _ om0 i
‘ ‘ ‘ ‘ ‘ 0.2 — —
0.1 1 10 0.1 1 0 10 20 5 10
Model Size (B) Model Size (B) Average Candidate Length Average Candidate Length

Figure 3: Accuracy with respect to the average candidate length for two types of datasets using
LLaMA3 Instruct 8B: 1(a) Accuracy concerning model size for the ARC dataset and Flan-T5 family
on a log-log scale. 1(b) Model size ablation for GPT-2 family. 2(a) MMLU dataset with a limited
number of candidates, and 2(b) clinical decision datasets with a massive number of candidates.

decoder model improves using full decoding with respect to model sizes, while estimation approaches
remain constant. However, the analysis on decoder-only GPT-2 family (Radford et al., [2019),
including GPT-2, GPT2-Medium, GPT2-Large, and GPT2-XL, shown in Figure E}l(b) shows a
different trend. For this model family, all estimation methods surpass full decoding, and estimation
accuracy improves as the model size increases. From qualitative analysis, we observe the poor
performance of GPT?2 full decoding is due to the fact that the model struggles to understand the
instruction and perform the QA task in a reasonable format.

Insight 9: Estimation performance decreases with longer candidate lengths. We depict the
relationship between accuracy and the average length of candidates for both the MMLU and clinic
datasets in Figure [3]2(a-b). For the MMLU dataset, data points are divided into 11 equal-sized bins,
with average accuracy plotted against the average option length of the questions within each bin.
For clinical tasks, where questions share identical candidate sets, average accuracy is plotted for
each task, sorted by average candidate length (prescriptions, lab orders, procedures, diagnoses). In
the MMLU dataset, decoding-free methods show decreasing accuracy with longer candidate length.
Conversely, in the clinical decision datasets, there is an increase in accuracy for the last two average
option lengths due to the intrinsic difficulty of the procedure dataset.

6 RELATED WORKS

To perform candidate selection from a candidate pool, existing works use a classification head on top
of encoder outputs (Milios et al.| 2023} |Yamada et al., 2020 [Li et al.| | 2022)). However, classification
formulation requires additional parameters and training while not supporting novel classes and
dynamic candidates for each instance. The generative candidate selection we discussed keeps its
flexibility and generalizability with a large throughput. To speed up inference, different parallel and
efficient decoding methods are proposed (Bae et al.,[2023; |Zhang et al.,|2018; |Huang & Mi, |2010).
However, our goal is not to speed up decoding but to evaluate the methods approximating decoded
results without decoding. To select a candidate from a pool using the token logits without discrete
decoding, existing works propose to obtain the probability of each candidate through aggregating
different parts of token logits such as only keeping logits of a special token (Xu et al., [2023al),
averaging logits (Saeidi et al.,[2024; Song et al., 2024; [Ethayarajh et al., 2024; Xiong et al., [2024), or
multiplying logits (Ma et al.,|2023c)). We conduct the first systematic evaluation on these methods.

7 CONCLUSION AND FUTURE WORK

Obtaining task-level output is crucial in various practical scenarios, including clinical decision-making
and preference alignment. However, ordinary generative language models operate at a token-level,
which necessitates significant post-processing effort to extract task-level output. We address the
general task of selecting the best-matching candidates given a context or question, with no restrictions
on domain or candidate space. We conduct a systematic evaluation of various decoding-free candidate
selection approaches on tasks with diverse question domains and varying candidate spaces. Further
improvements can be achieved by considering more advanced sequence representation methods, such
as text summarization.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide the codebase for reproducing all experiments reported in this paper in the discussion
forum. In Appendix|D] we provide step-by-step guidance to execute the codebases for experiments in
both the MCQA datasets and clinical decision tasks. All data used in this work are accessible publicly,
we specify the licenses for each data source in Appendix [G] To cover all details for the experimental
setup, we describe the setup details in §4| and further include more details in Appendix [B.T] We
provide the exact prompts used in LLM queries in Appendix

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/
blob/main/MODEL_CARD.md.

Enrique Amigo and Agustin Delgado. Evaluating extreme hierarchical multi-label classification. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 5809-5819, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.399. URL https://aclanthology.org/
2022 .acl-1ong.399.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pp. 5910-5924, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.362. URL
https://aclanthology.org/2023.emnlp-main.362.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022. URL https://arxiv.org/abs/2210.11416,

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO: Model
Alignment as Prospect Theoretic Optimization, February 2024. URL http://arxiv.org/
abs/2402.01306.

Scott L. Fleming, Alejandro Lozano, William J. Haberkorn, Jenelle A. Jindal, Eduardo P. Reis,
Rahul Thapa, Louis Blankemeier, Julian Z. Genkins, Ethan Steinberg, Ashwin Nayak, Birju S.
Patel, Chia-Chun Chiang, Alison Callahan, Zepeng Huo, Sergios Gatidis, Scott J. Adams, Oluseyi
Fayanju, Shreya J. Shah, Thomas Savage, Ethan Goh, Akshay S. Chaudhari, Nima Aghaeepour,
Christopher Sharp, Michael A. Pfeffer, Percy Liang, Jonathan H. Chen, Keith E. Morse, Emma P.
Brunskill, Jason A. Fries, and Nigam H. Shah. MedAlign: A Clinician-Generated Dataset for
Instruction Following with Electronic Medical Records, August 2023. URL http://arxiv,
org/abs/2308.140809.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference on
Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

Liang Huang and Haitao Mi. Efficient incremental decoding for tree-to-string translation. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://aclanthology.org/2022.acl-long.399
https://aclanthology.org/2022.acl-long.399
https://aclanthology.org/2023.emnlp-main.362
https://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2308.14089
http://arxiv.org/abs/2308.14089

Under review as a conference paper at ICLR 2025

pp- 273-283, Cambridge, MA, October 2010. Association for Computational Linguistics. URL
https://aclanthology.org/D10-1027.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
6769-6781, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-main.550.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system. In Findings
of the Association for Computational Linguistics: EMNLP 2020, pp. 1896-1907, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.171.
URL https://aclanthology.org/2020.findings—emnlp.171.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7871-7880, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL
https://aclanthology.org/2020.acl-main. 703\

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, April 2021. URL
http://arxiv.org/abs/2005.11401.

Zekun Li, Jina Kim, Yao-Yi Chiang, and Muhao Chen. SpaBERT: A Pretrained Language Model from
Geographic Data for Geo-Entity Representation. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 2757-2769, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.200. URL
https://aclanthology.org/2022.findings—emnlp.200.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The Flan Collection: Designing Data and
Methods for Effective Instruction Tuning, February 2023. URL http://arxiv.org/abs/
2301.13688.

Keming Lu, I-Hung Hsu, Wenxuan Zhou, Mingyu Derek Ma, and Muhao Chen. Multi-hop Evi-
dence Retrieval for Cross-document Relation Extraction. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 1033610351, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.657. URL |https://aclanthology.org/2023,
findings—acl.657.

Mingyu Derek Ma, Jiun-Yu Kao, Shuyang Gao, Arpit Gupta, Di Jin, Tagyoung Chung, and Nanyun
Peng. Parameter-efficient low-resource dialogue state tracking by prompt tuning. In Proc. Inter-
speech 2023, pp. 4653—4657,2023a. doi: 10.21437/Interspeech.2023-2238. URL https://www,
isca—-speech.org/archive/interspeech_2023/ma23g_interspeech.htmll

Mingyu Derek Ma, Jiun-Yu Kao, Arpit Gupta, Yu-Hsiang Lin, Wenbo Zhao, Tagyoung Chung, Wei
Wang, Kai-Wei Chang, and Nanyun Peng. Mitigating Bias for Question Answering Models by
Tracking Bias Influence, October 2023b. URL http://arxiv.org/abs/2310.08795.

12

https://aclanthology.org/D10-1027
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.findings-emnlp.171
https://aclanthology.org/2020.acl-main.703
http://arxiv.org/abs/2005.11401
https://aclanthology.org/2022.findings-emnlp.200
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2301.13688
https://aclanthology.org/2023.findings-acl.657
https://aclanthology.org/2023.findings-acl.657
https://www.isca-speech.org/archive/interspeech_2023/ma23g_interspeech.html
https://www.isca-speech.org/archive/interspeech_2023/ma23g_interspeech.html
http://arxiv.org/abs/2310.08795

Under review as a conference paper at ICLR 2025

Mingyu Derek Ma, Alexander Taylor, Wei Wang, and Nanyun Peng. DICE: Data-Efficient Clin-
ical Event Extraction with Generative Models. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 15898-15917, Toronto, Canada, July
2023c. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.886. URL
https://aclanthology.org/2023.acl-1ong.886.

Mingyu Derek Ma, Chenchen Ye, Yu Yan, Xiaoxuan Wang, Peipei Ping, Timothy Chang, and
Wei Wang. Clibench: Multifaceted evaluation of large language models in clinical decisions on
diagnoses, procedures, lab tests orders and prescriptions. June 2024. URL https://clibench,
github.io/.

Aristides Milios, Siva Reddy, and Dzmitry Bahdanau. In-Context Learning for Text Classification
with Many Labels. In Dieuwke Hupkes, Verna Dankers, Khuyagbaatar Batsuren, Koustuv Sinha,
Amirhossein Kazemnejad, Christos Christodoulopoulos, Ryan Cotterell, and Elia Bruni (eds.),
Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP, pp. 173—
184, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.genbench-1.14. URL https://aclanthology.org/2023.genbench-1.14.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-Task Generalization
via Natural Language Crowdsourcing Instructions. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3470-3487, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
244, URL https://aclanthology.org/2022.acl-1long.244.,

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model,
December 2023. URL http://arxiv.org/abs/2305.18290.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL|https://arxiv.org/abs/1908}
10084.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqga: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Amir Saeidi, Shivanshu Verma, and Chitta Baral. Insights into Alignment: Evaluating DPO and its
Variants Across Multiple Tasks, April 2024. URL http://arxiv.org/abs/2404.14723.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne,
Paul Gamble, Chris Kelly, Abubakr Babiker, Nathanael Schirli, Aakanksha Chowdhery, Philip
Mansfield, Dina Demner-Fushman, Blaise Agiiera y Arcas, Dale Webster, Greg S. Corrado,
Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle
Barral, Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. Large language
models encode clinical knowledge. Nature, 620(7972):172—-180, August 2023. ISSN 1476-
4687. doi: 10.1038/s41586-023-06291-2. URL https://www.nature.com/articles/
s41586-023-06291-2.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference Ranking Optimization for Human Alignment, February 2024. URL http://arxiv,
org/abs/2306.17492.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

13

https://aclanthology.org/2023.acl-long.886
https://clibench.github.io/
https://clibench.github.io/
https://aclanthology.org/2023.genbench-1.14
https://aclanthology.org/2022.acl-long.244
http://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2404.14723
https://www.nature.com/articles/s41586-023-06291-2
https://www.nature.com/articles/s41586-023-06291-2
http://arxiv.org/abs/2306.17492
http://arxiv.org/abs/2306.17492

Under review as a conference paper at ICLR 2025

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin
Chen, Dawei Yin, Maarten Rijke, and Zhaochun Ren. Learning to tokenize for generative retrieval.
Advances in Neural Information Processing Systems, 36, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A Large Language Model for
Science, November 2022. URL http://arxiv.org/abs/2211.09085.

Xingyao Wang, Sha Li, and Heng Ji. Code4Struct: Code Generation for Few-Shot Event Structure
Prediction, May 2023. URL http://arxiv.org/abs/2210.12810.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF
under KL-Constraint, May 2024. URL http://arxiv.org/abs/2312.11456.

Jiashu Xu, Mingyu Derek Ma, and Muhao Chen. Can NLI Provide Proper Indirect Supervision for
Low-resource Biomedical Relation Extraction?, May 2023a. URL http://arxiv.org/abs/
2212.10784.

Jiashu Xu, Mingyu Derek Ma, and Muhao Chen. Can NLI Provide Proper Indirect Supervision
for Low-resource Biomedical Relation Extraction? In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2450-2467, Toronto, Canada, July
2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.138. URL
https://aclanthology.org/2023.acl-1ong.138.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. LUKE: Deep
Contextualized Entity Representations with Entity-aware Self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6442-6454,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.523. URL https://aclanthology.org/2020.emnlp-main.523.

Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. LlaSMol: Advancing Large
Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction
Tuning Dataset, February 2024. URL https://arxiv.org/abs/2402.09391v3.

Zhisong Zhang, Rui Wang, Masao Utiyama, Eiichiro Sumita, and Hai Zhao. Exploring recombination
for efficient decoding of neural machine translation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 4785—4790, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1511. URL
https://aclanthology.org/D18-1511l

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based on pretrained
language models: A survey. ACM Transactions on Information Systems, 42(4):1-60, 2024.

14

http://arxiv.org/abs/2211.09085
http://arxiv.org/abs/2210.12810
http://arxiv.org/abs/2312.11456
http://arxiv.org/abs/2212.10784
http://arxiv.org/abs/2212.10784
https://aclanthology.org/2023.acl-long.138
https://aclanthology.org/2020.emnlp-main.523
https://arxiv.org/abs/2402.09391v3
https://aclanthology.org/D18-1511

Under review as a conference paper at ICLR 2025

APPENDIX
|A Potential questions| 15
(B Details of experimental setup and implementations| 17
BITeSBeds] - - - o o o v e e e e 17
(B.1.1 Tasks with limited candidates| 17
(B.1.2 Tasks with massive candidates| 17
[B.2 Distribution of candidate lengths| 17
[B.3 Promptexamples| e 18
[B.4 Extracting predicted answer from the decoding output| 18
|C Additional experiments | 19
[C.1 Effect of chat template to estimation performance| 19
[C.2 Performance vs candidate length for other QA tasks| 20
[C.3 Estimation performance breakdown for MMLU|. 20
[C.4 Exampleoutputs| 20
D Reproducibility details| 23
[E_Limifations| 24
[F_Potential negative impact| 24
\G__Licenses| 24

A POTENTIAL QUESTIONS

Do decoding-free candidate selection methods not involve decoding? Decoding-free methods
only use the logits of the first potential output token without producing the token. Calculating logits
could be considered an early step in the token decoding process. However, no complete decoding
step (as shown in Equation 2 is involved in decoding-free methods (as shown in Equation [3).

Why do you need to do decoding-free candidate selection? Compared with producing a response
to a query through full decoding (as demonstrated in Equation[d), accurate decoding-free candidate
selection methods (as shown in Equation 5 are needed, especially for two scenarios. 1) Accurate
outcome-based optimization. To optimize the model with the feedback directly from the predicted
outcome ans, we need to know the model’s prediction over potential candidates C' without inter-
rupting the gradient flow (such as argmax operator). These optimization tasks include preference
optimization, which learns to choose the winner option over the loser one (Rafallov et a!.|, ;
bias mitigation, which obtains detected bias and mitigates the bias level 2023b); and
information extraction, which derives the possibility of extracting different subsequence spans and

performing contrastive learning 2023c).

2) Efficient answer production. The token dependency of full decoding prevents the decoding mecha-
nism from outputting the answer in parallel. Even though the output sequence sed,,; is generated, an
additional step (fmap) is needed to convert the output sequence sed,y;: to the predicted answer ans
(e.g. through sequence matching or semantic similarity). Decoding-free candidate selection produces

in

the probability over all potential answers P (c | t1:|seqm|

) directly without autoregressive generation

15

Under review as a conference paper at ICLR 2025

and supports parallel inference, significantly improving the time and resources needed for producing
the answers to queries.

What are the potential usage and broader impact of the evaluation done in this work? The
conclusions and observations derived from our evaluation provide evidence for more informed and
confident design choices for both optimizations with outcome-level feedback and efficient answer
production without decoding. When researchers and industry practitioners need to define a function
to estimate the possibility of potential answers using generative language models without decoding
the output sequence, they can: 1) choose the best estimation method corresponding to their model
architecture and end tasks according to our evaluation results; 2) understand the empirical tradeoff
between efficiency, in terms of runtime, and estimation quality, in terms of performance difference;
3) decide whether they are confident to use estimation method instead of decoding (especially when
the estimation methods provide better performance for non-instruction-tuned models). With the wise
decision of the candidate selection method, they can obtain better performance after training the
model with answer-level rewards, such as through preference alignment, and produce the predicted
answers faster with lower resource usage by replacing decoding with estimation.

What are the differences between the two types of tasks used in the evaluation? We quantify the
effects of various decoding-free estimation methods in downstream scenarios by using two types of
evaluation tasks: tasks with limited numbers of candidates (specifically 5 multiple-choice QA tasks)
and tasks with massive numbers of candidates (specifically 4 clinical decision tasks). We summarize
their core differences in Table

Table 5: Key difference between two types of tasks used in the evaluation: tasks with limited/massive
numbers of candidates.

Property ‘ Tasks w/ limited numbers of candidates Tasks w/ massive numbers of candidates
Candidate info Can be contained in input prompt Not able to be contained in input
Correct options # Single Multiple

Candidates # A few Thousands

Candidate pool Dynamic for each instance Fixed for all instances

The first type (limited candidates) has a limited number of candidates, among which only one option
is correct; all candidates’ information can be contained in the input prompt, and the candidate pool is
unique for each instance. The second type (passive candidates) has a much larger pool of candidates
with multiple correct answers (detailed statistics in Table @]) Thus, it is not feasible to feed candidates
in the input prompt. The specific tasks we used (the four clinical decision tasks) use the same output
candidate pool across instances of the same task. The examined methods should also support dynamic
candidate pools across instances for tasks with massive numbers of candidates.

Why not use an agent-based system to handle massive candidates? We can provide multiple
functions and tools for LLM agents to search, match, or traverse relevant candidates from a large pool
of candidates. Compared with full decoding, it will provide more information about the candidate
pool and potentially lead to better performance. However, formulating the candidate selection task
as an agent is based on and expanded from the idea of decoding discrete tokens to produce answers
from output sequences (as described in Equation[); it does not enjoy the benefits of decoding-free
methods, and it is not a comparable setting of the methods we focus on in this paper.

Which decoding methods are you using to compare? We use the default decoding setting for
each model specified in their generation configuration file. Our work does not aim to propose a new
decoding method or compare the performance of various decoding methods. Instead, we emphasize
the benefits and limitations of decoding-free candidate selection methods.

How is the evaluation performed in this paper different from the evaluations provided in the
previous works that use those decoding-free methods? Existing works do not consider how to
represent the response candidate from the logits of a single output step as a standalone problem.
Thus, they do not provide justification, theoretical proof, or evaluation of the design choice of the
decoding-free candidate selection method they used in their works. Our work aims to raise awareness
of the importance of this design choice and conduct the first thorough definition of the task and
systematic evaluation.

16

Under review as a conference paper at ICLR 2025

B DETAILS OF EXPERIMENTAL SETUP AND IMPLEMENTATIONS

B.1 TESTBEDS
B.1.1 TASKS WITH LIMITED CANDIDATES

The tasks with limited number of candidates include: (1) CommonsenseQA (Talmor et al.,[2018])
includes questions testing commonsense knowledge across over 2,000 concepts such as highways,
housing, and eating, assessing a broad understanding of everyday scenarios. (2) MMLU (Hendrycks
et al.L[2021bza)) covers a wide range of 57 subjects including mathematics, medicine, computer science,
and law, designed to test specialized knowledge in diverse fields. (3) GPQA (Rein et al.| [2023)
contains challenging questions in biology, physics, and chemistry, written and validated by experts to
test deep domain-specific knowledge. (4) BIG-Bench (Srivastava et al.| [2022) includes tasks like
boolean expression evaluation and causal judgement based on stories, focusing on logical reasoning
capabilities. We select the “logical deduction” category with three objects for our experiments. (5)
ARC (Clark et al.,2018) comprises 7,787 multiple-choice questions at grade-school level, divided
into a Challenge Set and an Easy Set, to test scientific knowledge. We opt for the Easy Set in our
experiments.

We report accuracy and per-instance runtime for these tasks. These datasets are split into subsets
such as train or test. We select one of the dataset splits with available answer keys for our study.
For the mapping function fy,,, converting output sequence seq,,; to candidate selection ans, we
capture the first the answer candidate sequence or candidate indication head (e.g. A, B, C D) appeared
in the output sequence with regular expressions and use the matched candidate as the prediction.
All candidate options are added in the input prompt, thus full decoding and decoding-free selection
methods use the same amount of available information. We make sure all input sequences for full
decoding or decoding-free candidate selection methods are exactly the same.

B.1.2 TASKS WITH MASSIVE CANDIDATES

As for the clinic decision datasets, the candidate sequence lengths are generally longer than the first
testbed type, as shown in Table[2] Please refer to (Ma et al.,[2024) for more data and experimental
setup details. We report recall and per-instance runtime for these four tasks. For the mapping function
fmap used by the full decoding approach to select a candidate from the output sequence, we follow
the original benchmark setting by selecting the candidate with the highest cosine similarity between
sentence embeddings of the candidate definition and the generated output seq,,;: produced by BERT
model (Reimers & Gurevych, 2019). The candidates are too many to fit in the input prompt, thus
while other methods have access to the candidates information, full decoding method is not aware of
candidates.

Different from tasks in multiple candidates need to be selected for the four tasks of the second
type, significantly increasing the difficulty of candidate selection. For full decoding, the model
can determine the number of predictions made because the generation of the end-of-sentence token
indicates stopping making additional predictions. Decoding-free candidate selection methods rely on
candidate probability, and it is hard to determine a fixed threshold for all instances. Thus, we take 20
candidates with the highest probabilities, which contain more predictions than ground-truth answers
for most testing instances. We then only report recall, indicating the portion of ground-truth answers
that are correctly predicted, to mitigate the influence of uncertain selection probability threshold.

To speed up the inference of full decoding, we wrap the generative LM with vLLM framework (Kwon
et al.| 2023)), which leverages paging techniques in the operating system to optimize memory usage.
All experiments were performed on a single NVIDIA A40 Graphics Card.

B.2 DISTRIBUTION OF CANDIDATE LENGTHS

The distribution of candidate lengths is provided in Figure] and Figure [5|for the MCQA and clinical
decision datasets, respectively. For the MCQA datasets, where each question has a distinct set
of candidate options, we compute the average number of words in the candidate options for each
question and plot the distribution of these average candidate lengths across all questions. For the
clinical decision datasets, where questions within the same task (e.g. prescriptions) share the same

17

Under review as a conference paper at ICLR 2025

candidate pool, we plot the distribution of word counts of candidates for the four distinct candidate
pools.

(a) CommonsenseQA (b) MMLU 150 (c) GPQA (d) BIG-Bench (f) ARC
2000 5000]]] |
2 , 1004] 400
2 1000]] %07]
1 1N
i B i E g i
01— ‘””"\ : ~ o \\“ 0 ‘ : 0+ ‘H‘ Il o H“J‘L“WWMHHHM
2 4 6 0 50 100 0 20 40 5 10 0 10 20

Average Candidate Length Average Candidate Length Average Candidate Length Average Candidate Length ~ Average Candidate Length

Figure 4: Distribution of average candidate lengths for MCQA benchmarks.

Di P L. P -
10,0002) Diagnoses 15,000 7“’) rocedures () Lab Orders g00_9) Prescriptions

10,000 4007 400-|

Frequency

5,000] 1 1
] ” MM 5,000 N 200 ’\|l 200-|
oi"|‘ | ”””H' ‘ o""”n‘HM"‘ 0 H’\Mmmmuu‘”” o141 ” T
10 20 30 5 10 15 20 25 5 10 15 20 4 6 8 10
Candidate Length Candidate Length Candidate Length Candidate Length

Figure 5: Distribution of average candidate lengths for clinical deicision benchmarks.

B.3 PROMPT EXAMPLES

The most informative prompt consists of system and user content. The system content provides
the role (e.g. clinician) and the task instruction (e.g. select the best option), while the user content
contains the specific question and candidate options if applicable. The adoption of the chat template
and the inclusion of candidate options in the prompt are specified in Table 6} We provide two
prompt examples with the most complete information for the MMLU and diagnosis decision tasks,
respectively. The prompt designs for clinical decision tasks are inherited from Ma et al.| (2024).

You are a scholar with extensive knowledge across various disciplines. What is the correct answer to
this question:

[QUESTION]

[CHOICES]

Format your response as follows: "The correct answer is (insert answer here)."

You are a professional clinician in a hospital with expert knowledge in medical and clinical domains.
The task is to make a list of diagnoses for this patient based on the provided information of the
patient. The diagnosis can be in ICD-10-CM code format (such as S12.000G), or natural language
description of the disease. Please provide as many diagnoses as you can until you are not confident
about your diagnosis decision.

[PATIENT PROFILE]

[MEDICAL RECORD AT ADMISSION]

[RADIOLOGY REPORTS]

[LAB TEST RESULTS]

B.4 EXTRACTING PREDICTED ANSWER FROM THE DECODING OUTPUT

Unlike estimation approaches, where the selection is deterministic, exact decoding requires pars-
ing the output to extract the choice from the response, notated by the fn,,p, function in Equa-
tion 4} For MCQA tasks, we identify the choice by matching specific substring formats (e.g. ,
"Answer: A’, ' (A)’, 'A[,.)]1"). We treat the first occurring option as the choice made by
the LMs, and the rest of the options are considered explanations. For the clinical dataset, we use a
sentence transformer to find the most relevant diagnosis codes that appear in the response following

18

Under review as a conference paper at ICLR 2025

Table 6: Prompt formats for combinations of dataset type, model type, and selection method.
Estimation methods include First, Last, Average, Sample Avg., and Sum. For each combination, we
indicate whether a prompt template is applied and the approach of incorporating the candidate pool
information. “Contained in the input” means we verbalize all candidates and include them in the
input prompt. “fi,.p representation” indicates though the candidates are not explicitly provided in
the input, but the mapping from the output sequence (generated by the full decoding process) to the
predicted answer provides implicit candidate information as all candidates are served as matching
candidates in the fi,ap function. *fe representation” indicates that candidate info is used by the
decoding-free candidate selection method to calculate the probability over candidate outputs by using

candidate-specific logits calculation.

Data Type Model Type Method | Chat Template Candidate Pool Info
A
MCQA est p
. . Decoding | Not applicable Contained in the input
Non-instruction-tuned g/ 2ion | Not applicable foq; representation
smcion g Doeolie |0y ereeniain
Clinic est TP
. . Decoding | Not applicable fi,,p representation
Non-instruction-tuned g/ ion | Not applicable f.q representation

the implementation of CliBench. For more details on parsing clinical decision outputs, we refer
readers to|Ma et al.|(2024).

C ADDITIONAL EXPERIMENTS

C.1 EFFECT OF CHAT TEMPLATE TO ESTIMATION PERFORMANCE
First Average Sum
(a) (b) (c)
Mistral Mistral Mistral
nstruteos | | 634 124 045 04 218 [W@ | 333 254 134 0 204 4 MSE 43 201 067 0 192
LaMAS | sl st 722 04 | 674 LLaMAS | 1245 617 178 -28 [Miak LLaMAS | 635 699 | 089 -16 | i
nstruct Instruct Instruct
T T T T T T T T T T T T T T T T
onse“seok M Gpog\s_%mh ARC nse“seok MY GPOBA\G_B@\C“ ARC onser‘seol\ MY Gpoé\\e_ganch ARG
con™ com™® com
@ @© ®
37 3+ 3+
=
5 2 g L, g L]
2 s 5
2 g g
g g g
[’—‘ ’—‘ T 1 o1
o+t o o
NN 2 OEm RN 2 e
-5 0 5 oo -5 0 5 10 15 -5 0 5 10 15

Accuracy Difference Accuracy Difference Accuracy Difference

Figure 6: (a-c) The accuracy of the estimation approaches without chat template subtracted by the
accuracy with chat template, for two instruction-tuned LMs and five datasets. (d-f) Distribution of
the difference between the accuracy without chat template and with chat template. The vertical black
line denotes the 20% percentile.

We compare three estimation approaches—First, Average, and Sum—with and without the use
of prompt templates across five multiple-choice question datasets. We evaluate two LMs with their
default prompt template: LLaMAS3 Instruct and Mistral Instruct v0.3. In this comparison, since
options are not provided in the prompt, we rephrase the instruction to frame it as an open-ended
question, e.g., “You are an intelligent assistant with a vast understanding of everyday life. The task is
to answer the following question, drawing from relevant knowledge areas.”

19

Under review as a conference paper at ICLR 2025

The results, as illustrated in Figure [f[a-c), demonstrate that the accuracy without using prompt
templates generally exceeds that with templates. Specifically, in about 80% of the test cases, not
using a prompt template outperforms using one, as depicted in Figure[6[d-f). The GPQA dataset is an
exception, where using the template generally enhances performance across most LMs. The accuracy
of these estimation approaches is notably sensitive to the format of the prompt, as they rely heavily
on the logits generated from the prompt.

C.2 PERFORMANCE VS CANDIDATE LENGTH FOR OTHER QA TASKS

In addition to the performance vs candidate length ablation study shown in Figure[3] 1(a) for MMLU,
we report a similar analysis for other QA tasks. For the MCQ datasets, we sorted the questions
according to candidate length and split them into 12 subsets of equal size. We plotted the average
accuracy versus the average candidate length of the subsets in Figure[7] The gap between decoding
and estimation methods is smaller for GPQA and BIG-Bench compared to the easier datasets
CommonsenseQA and ARC. Overall, performance remains relatively constant with respect to average
candidate length for CommonsenseQA and BIG-Bench, whereas it fluctuates more for the other two
datasets.

‘ < Decoding First Last Average Sum ‘
08 (a) CommonsenseQA 05 (b) GPQA (c) BIG-Bench (d) ARC
.] Q | —
>) 69-03’00- 0®T°m e 0.4+ /I \\ gi; (rIO\\Q ! 10 ’%O\cp“c’*o—o-’//o
8 0.6 0 3;? AR N N \ ! 087
‘g i REITA S O.Si [7 o— — -4 0.6
_ ~] . g
£ o4 0.2 ! \\o 0.2 | 0.4
J 0.1 ¢ 0.1 é 02
\‘\\\\\\\\\‘\\\\ ‘ ‘ T ‘ ‘ \\\\\\\\\‘\\\\\\
1 2 0 20 40 4 6 8 0 10
Average Candidate Length Average Candidate Length Average Candidate Length Average Candidate Length

Figure 7: Accuracy versus average candidate length for four MCQ datasets.

C.3 ESTIMATION PERFORMANCE BREAKDOWN FOR MMLU

Figure[§]illustrates the estimation accuracy versus decoding for Mistral Instruct v0.3 across individ-
ual subjects in the MMLU dataset. Generally, the full decoding accuracy exceeds the estimation
performance, although a few subjects show comparable results.

C.4 EXAMPLE OUTPUTS
We present the full decoding outputs for two questions: one from the MMLU dataset and the other
from the clinical diagnosis decision task.

Below is the list of example outputs from LMs for the question in Example ?? in CommonsenseQA.
Unlike the other models, which correctly select the accurate choice, the response from Mistral v0.3 is
unrelated to the input prompt. Notably, Flan-T5 XL provides the correct answer succinctly.

LLaMA3:

7

The answer is (B) populated areas.

LLaMA3 Instruct:

Based on the context of the question, the correct answer is (B) populated areas. The question states
that Sammy wanted to go to where the people were, which implies that he is looking for a location
with a large number of people. Populated areas, such as cities, towns, or busy streets, would likely
have a higher concentration of people compared to other options like a race track, desert, apartment,
or roadblock.

20

Under review as a conference paper at ICLR 2025

1.0 (b)
| [First < Decoding | 1.0
08 g ‘ O Last < Decoding
ST TS Q » 08— o -
J q\ K N, AN I 1 \ /, _a
o o _
g 0.6 \ f Se ,,_./ ‘\\ AN g 0.6 RN ,/ \‘ ,=
3 1 S_d AN 1
£ 0.4+ £ 0.4
0 i 0
1 AN 5 ﬂ
\\“ o< \0 A0 582 x\ x\o OPND \0‘?&0
" “‘* 03%“%@‘"‘ \:% \“*@“ %o e A SR ;*‘ ”‘\ o fg v "“ “‘ °§? 5
TN O G2 2 (\ WNOQ S \) G \ \-
<& \\Qe‘ \;\ge‘ ‘\6‘ ;‘\ ‘(e\\ ;)e‘a \\%(\ ‘\ g & < x\\ Q(\ ‘(\’0 o\Q R OQ‘O AVt < “\9\) “
N SR ° o v EAN S o
o v°° \‘ex A\ N \o°
W o o\go G‘\oo
Wy &
N W
© - @
1.0 1.0
g ‘ (@ Average < Decoding g ‘ @ sum < Decoding
0.8 o 08— o -
=, { TN A &N
=] \ ’_k = // AN A >] A el TN,
g 0.6+ / N | 8 0.6+ v, p—o - ~ v
3 1 / N H 1 \b NG
g 0.4 v g 0.4
0 0 T
“\%‘) 5‘° W%"‘\ Q‘“ e“ aﬂ‘ee‘\;\ "‘& Q\’\e\\“o% 2l 3\\\1’@ \0“\\‘ v& 9(\\\0 x\‘\%\\ 6“{\6‘\ \0‘\‘0\e \0“6 \‘\Q \\% o‘“ 0%“@0‘“
“\’»3\\;% ‘\S "“Dg O gc, et n{‘\é %’a\ esset e“ag i \) ‘?'\\a %‘ 35“0 N \s"‘\ 'o\qe ‘\t\ \e@ SR a‘\°‘\ é \
N ec\\cx PN SR @ DR ‘,\)‘3‘ 8&0 SR ‘2&«
°° ; \\5%\%% o R
x\\% X\\‘? 0(,\\@‘3 oo R e & \&
S &
A
S

Figure 8: Top 20 Accuracy for four estimation methods combined with Mistral Instruct v0.3 on
MMLU dataset. The dashed line denotes the accuracy of the full decoding approach.

Mistral v0.3:

Course: Exclusion Code:

Map Exercise S-C-O-IN 1. A-1 draws attention to the sky because it shows a cartoon face without
any details but, for the purpose of creating emphasis, it has blue and purple sunrays drawn in. Despite
the imminent sense of doom, the drawing is done in bright colors which create a lighter mood. B-2
best serves the purpose of identifying the region where the chase

Mistral Instruct v0.3:

The best answer to your question would be (B) populated areas. Given the context that Sammy
wanted to go to where the people were, it would make sense that he would head towards an area
with a high population density, such as a city or town. Therefore, populated areas is a logical choice.

Flan-T5 XL:

Below is the list of outputs produced by the full decoding approach of five LMs for clinical diagnosis

decisions for admission ID 26214425. The LMs were prompted to generate all possible diagnoses.

Mistral v0.3 tends to repeat the questions in the prompt. Flan-T5 XL produces only one possible
diagnosis, despite being prompted to generate multiple diagnoses. This behavior is similar to its
performance on the previous MCQA questions, where it provides only the answer without further

explanation.

LLaMA3:

21

Under review as a conference paper at ICLR 2025

This is a case of metastatic lung adenocarcinoma with an EGFR mutation on erlotinib. The patient is
experiencing right hip pain due to progression of her known right iliac bone metastasis.

The patient has been getting zometa every 3 months, last dose ___. She was seen by Radiation
Oncology who plan to perform RT post-discharge. Also emailed her OP Oncologist Dr.
recommended a CT-guided biopsy of the lesion. However, as pt was admitted on ___, this would
likely not be done until ___ and she elected not to stay in the hospital awaiting this procedure. She
was discharged with a script for some additional Percocet for pain control. She reported adequate
pain control with PO medications.

The patient has a history of DVT. She was only on 60mg lovenox as her weight was closer to 80kg.
However, as she was ___ years out from the initial diagnosis, no adjustments were made. Pt was
encouraged to discuss dosing with Dr. ___.

The patient has hypertension and continued metoprolol.

LLaMA3 Instruct:

Here are the diagnoses for this patient:

. Metastatic lung adenocarcinoma (C34.90)

. Right hip pain secondary to right iliac bone metastasis (M84.461A)

. Cancer-related pain (G89.3)

. Hypertension (I110)

. Deep vein thrombosis (182.409)

. History of pathologic fracture (M80.00XA)

. Osteoporosis (M81.0)

. EGFR mutation (R83.9)

. Anemia (D64.9)

10. Hyperlipidemia (E78.9) (not explicitly stated but likely given the patient’s medical history and
medications)

Note: The ICD-10-CM codes are provided in parentheses for each diagnosis.

NelioBEN o U, F SO I S N

Mistral v0.3:

22

Under review as a conference paper at ICLR 2025

Hemosiderosis without anemia

Mbenzoylmalonic aciduria

Hematinic nutrition- zinc progesterone and folate deficiency
Hemolytic anemia-Iceland flare

Igghalinemic pseudoaneutropenia

Melanocytic nevoidenoidous exfoliative hyperthermia

Content analysis and positional disturbance disorder

Myocyte’s financial failure disorder

Mycobaterial occupational ango bonding envolvement- syndrome
Hyral anemnaficelophiliac angelfish antiobacterial ability
Enroseepseudanionopathy

Overpilosis-malformative prelexpheric utopistophilia

Hardsenseless lenticular hypertyrosinemonia expense athlete Pheochromocytoma
Mycobacteria Teichmann fasciculations-autonomic form

Metabolic disorders

Pink-black accelerated radiophobic schema malnutrition hepatopathy
Profound deficiency of depleted B-lymphocyte exophthalmia

Spina bifida malformation centrinelaxin, and symptomatic superficial echinalismism.
Tremoregal syndromes

Higher lung blockage

Symmetric effacement maniacal cycle ectoposis

What is your top diagnosis for this patient?

What is your second diagnosis for this patient?

What is your third diagnosis for this patient?

What is your fourth diagnosis for this patient?

What is your fifth diagnosis for this patient?

What is your sixth diagnosis for this patient?

What is your seventh diagnosis for this patient?

What is your eighth diagnosis for this patient?

What is your ninth diagnosis for this patient?

Mistral Instruct v0.3:

Mistral Instruct v0.3 Output: Based on the provided information, the patient’s main diagnoses are:
1. Metastatic Lung Adenocarcinoma (C74.9 - Malignant neoplasm of lung, NOS)

2. Right Hip Pain secondary to Right Iliac Bone Metastasis (M87.51 - Metastasis of neoplasm of
trachea, bronchus, lung and pleura, to bone)

3. Cancer-Related Pain (R36.10 - Pain due to neoplasm of lung)

4. Deep Venous Thrombosis (I180.62 - Deep vein thrombosis of lower limb, unspecified leg)

5. Hypertension (110 - Essential (primary) hypertension)

6. History of Pathologic Fracture (S72.009 - Pathological fracture of hip, unspecified side)

7. History of Knee Surgery (S20.9 - Other specified injury of knee, sequela)

Additional diagnoses that could be considered based on the information available, but require further
investigation or confirmation, include:

1. Chronic Kidney Disease (N18.39 - Chronic kidney disease, stage 5) - Based on the creatinine
level (0.8 mg/dL)

2. Anemia (D64.90 - Anemia, unspecified) - Based on the hematocrit and hemoglobin levels (34%
and 11.3 g/dL, respectively)

3. Possible Leukopenia (D66.60 - Leukopenia, unspecified) - Based on the white blood cell count
(3.7 KiuL)"

Flan-T5 XL:

Lung adenocarcinoma

D

REPRODUCIBILITY DETAILS

We provide our code in the discussion forum.

23

Under review as a conference paper at ICLR 2025

For MCQA datasets, execute the full decoding method by running mcq_decoding.py. To
run estimation methods, execute mcq_estimation.py. These scripts handle data down-
load, preprocessing, inference, and metric computation. For clinical decision datasets, use
clibench_estimation.py for estimation methods. The estimation scripts compute logits
once for all methods.

When running these scripts, users need to specify the LM and dataset arguments. The variable names
for these arguments are model_name and dataset (or target—task for CliBench), with their
corresponding range of values as follows.

model_name: {meta-llama/Meta-Llama-3-8B,
meta-llama/Meta-Llama-3-8B-Instruct,
mistralai/Mistral-7B-v0.3,
mistralai/Mistral-7B-Instruct-v0.3,
google/flan-t5-x1,
dpr}
dataset: {commonsense_ga, mmlu, gpdga, big_bench, arc}
target-task: {target_diagnoses,
target_procedures,
target_laborders,
target_prescriptions}

E LIMITATIONS

In terms of accuracy, current estimation methods have room for improvement due to their reliance on
initial logits and simplified representative tokens (e.g., first, average). Future work could consider
using logits from more time steps or leveraging LLMs to summarize the candidates into a few words,
potentially serving as more effective representative tokens.

Regarding efficiency, computing logits dominates the runtime of estimation approaches. Applying
advanced techniques, such as PagedAttention, to optimize memory usage can further enhance the
efficiency of estimation methods, especially for tasks with lengthy prompts.

F POTENTIAL NEGATIVE IMPACT

As previously mentioned, the accuracy of zero-shot estimation methods is compromised. Therefore,
directly adopting the decisions made by these methods without careful judgment could lead to
unintended consequences in practical scenarios, such as clinical decision-making.

G LICENSES

The datasets we used and their licenses are as follows:

* CommonsenseQA is released under the MIT licensem

o MMLU is released under the MIT license]

* GPQA is released under the CC-BY-NC 4.0 license[]]

« BIG-Bench is released under the MIT license]

« ARC is released under the CC BY-SA 4.0 license]

« CliBench’s license is inherited from the license of MIMIC-IV[]

"https://github.com/jonathanherzig/commonsenseqa
https://github.com/hendrycks/test/blob/master/LICENSE
*https://huggingface.co/datasets/Idavidrein/gpga
*nttps://github.com/suzgunmirac/BIG-Bench-Hard
Shttps://huggingface.co/datasets/allenai/ai2_arc
®https://physionet.org/content/mimiciv/2.2/

24

https://github.com/jonathanherzig/commonsenseqa
https://github.com/hendrycks/test/blob/master/LICENSE
https://huggingface.co/datasets/Idavidrein/gpqa
https://github.com/suzgunmirac/BIG-Bench-Hard
https://huggingface.co/datasets/allenai/ai2_arc
https://physionet.org/content/mimiciv/2.2/

	Introduction
	Problem formulation
	Decoding and training paradigm of generative LMs
	Candidate selection with a candidate answer pool
	Ordinary approaches for candidate selection
	Generative candidate selection without decoding
	Difference compared with ordinary approaches

	Generative candidate selection methods
	Estimation candidate probabilities from logits
	Ordinary candidate selection methods to compare

	Evaluation settings
	Testbed tasks for candidate selection
	Tasks with limited numbers of candidates
	Tasks with massive numbers of candidates

	Base generative LMs.

	Experiments results
	Characteristics of generative candidate selection methods
	Estimation performance using logits of various output steps
	Estimation performance using selected candidate keywords
	Sensitivity to model sizes, architectures, and candidate length

	Related works
	Conclusion and future work
	Potential questions
	Details of experimental setup and implementations
	Testbeds
	Tasks with limited candidates
	Tasks with massive candidates

	Distribution of candidate lengths
	Prompt examples
	Extracting predicted answer from the decoding output

	Additional experiments
	Effect of chat template to estimation performance
	Performance vs candidate length for other QA tasks
	Estimation performance breakdown for MMLU
	Example outputs

	Reproducibility details
	Limitations
	Potential negative impact
	Licenses

