
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUBTASK-AWARE VISUAL REWARD LEARNING FROM
SEGMENTED DEMONSTRATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) agents have demonstrated their potential across var-
ious robotic tasks. However, they still heavily rely on human-engineered reward
functions, requiring extensive trial-and-error and access to target behavior infor-
mation, often unavailable in real-world settings. This paper introduces REDS: RE-
ward learning from Demonstration with Segmentations, a novel reward learning
framework that leverages action-free videos with minimal supervision. Specifi-
cally, REDS employs video demonstrations segmented into subtasks from diverse
sources and treats these segments as ground-truth rewards. We train a dense re-
ward function conditioned on video segments and their corresponding subtasks to
ensure alignment with ground-truth reward signals by minimizing the Equivalent-
Policy Invariant Comparison distance. Additionally, we employ contrastive learn-
ing objectives to align video representations with subtasks, ensuring precise sub-
task inference during online interactions. Our experiments show that REDS sig-
nificantly outperforms baseline methods on complex robotic manipulation tasks in
Meta-World and more challenging real-world tasks, such as furniture assembly in
FurnitureBench, with minimal human intervention. Moreover, REDS facilitates
generalization to unseen tasks and robot embodiments, highlighting its potential
for scalable deployment in diverse environments.

1 INTRODUCTION

Reinforcement Learning (RL) has demonstrated significant potential for training autonomous agents
in various real-world robotic tasks, provided that appropriate reward functions are available (Levine
et al., 2016; Gu et al., 2017; Andrychowicz et al., 2020; Smith et al., 2023; Handa et al., 2023).
However, reward engineering typically requires substantial trial-and-error (Booth et al., 2023; Knox
et al., 2023) and extensive task knowledge, often necessitating specialized instrumentation (e.g.,
motion trackers (Peng et al., 2020) or tactile sensors (Yuan et al., 2023)) or detailed information
about target objects (James et al., 2020; Zhu et al., 2020; Yu et al., 2020; Mu et al., 2021; Gu
et al., 2023; Sferrazza et al., 2024), which are difficult to obtain in real-world settings. Learning
reward functions from action-free videos has emerged as a promising alternative, as it avoids the
need for detailed action annotations or precise target behavior information, and video data can be
easily collected from online sources (Soomro et al., 2012; Kay et al., 2017; Damen et al., 2018).
Approaches in this domain include learning discriminators between video demonstrations and policy
rollouts (Chen et al., 2021; Yang et al., 2024), training temporally aligned visual representations
from large-scale video datasets (Sermanet et al., 2018; Zakka et al., 2021; Kumar et al., 2022; Ma
et al., 2023b;a) to estimate reward based on distance to a goal image, and using video prediction
models to generate reward signals (Escontrela et al., 2023; Huang et al., 2024).

Despite this progress, existing methods often struggle with long-horizon, complex robotic tasks that
involve multiple subtasks. These approaches typically fail to provide context-aware reward signals,
relying only on a few consecutive frames or the final goal image without considering subsequent
subtasks. For example, in One Leg task (see Figure 2d) from FurnitureBench (Heo et al., 2023),
prior methods often overemphasize the reward for picking up the leg while neglecting crucial steps
such as inserting the leg into a hole and tightening it. Recent work (Mu et al., 2024) proposes a
discriminator-based approach that treats complex tasks as a sequence of subtasks. However, it as-
sumes that the environment provides explicit subtask identification, which often demands significant
human intervention in real-world scenarios. Moreover, discriminator-based methods are known to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

be prone to mode collapse (Wang et al., 2017; Zolna et al., 2021) (please refer to Figure 11 for em-
pirical evidence over prior work). Consequently, designing an effective visual reward function for
real-world, long-horizon tasks remains an open problem.

Our approach To address the aforementioned limitations, we propose a novel reward learning
framework, REDS: REward learning from Demonstration with Segmentations, which infers subtask
information from video segments and generates corresponding reward signals for each subtask. The
key idea is to employ minimal supervision to produce appropriate reward signals for intermediate
subtask completion. Specifically, REDS utilizes expert demonstrations, where subtasks are anno-
tated at each timestep by various sources (e.g., human annotators, code snippets, vision-language
models; see the left figure of Figure 1). These annotations serve as ground-truth rewards. For train-
ing, we introduce a new objective function minimizing the Equivalent-Policy Invariant Comparison
(EPIC) (Gleave et al., 2021) between the learned reward function and the ground-truth rewards,
guaranteeing a theoretical upper bound on regret relative to the ground-truth reward function. Addi-
tionally, to correctly infer the ongoing subtask in online interactions, we adopt a contrastive learning
objective to align video representations with task embeddings. In terms of architecture, our reward
model is designed to capture temporal dependencies in video segments using transformers (Vaswani
et al., 2017), leading to enhanced reward signal quality.

We find that REDS can generate appropriate reward signals to solve complex tasks by recognizing
subtask structures, enabling the agent to efficiently explore and solve tasks through online interac-
tions, using only expert demonstrations and subtask segmentations. Our experiments show that RL
agents trained with REDS achieve substantially improved sample efficiency compared to baseline
methods on various robotic manipulation tasks from Meta-World (Yu et al., 2020). Additionally,
we show that REDS can effectively train agents to perform long-horizon, complex furniture as-
sembly tasks from FurnitureBench (Heo et al., 2023) using real-world online RL. Moreover, REDS
facilitates RL training in unseen environments involving new tasks and embodiments, which would
otherwise require significant effort in prior reward-shaping methods.

Contributions We highlight the key contributions of our paper below:

• We present a novel visual reward learning framework REDS: REward learning from Demon-
stration with Segmentations, which can produce suitable reward signals aware of subtasks in
long-horizon complex robotic manipulation tasks.

• We show that REDS significantly outperforms baselines in training RL agents for robotic manip-
ulation tasks in Meta-world, and even surpasses dense reward functions in some tasks.

• We demonstrate that REDS can train real-world RL agents to perform long-horizon complex
furniture assembly tasks from FurnitureBench.

• We demonstrate that our approach shows strong generalization across various unseen tasks, em-
bodiments, and visual variations.

2 RELATED WORK

Reward learning from videos Learning from observations without expert actions has been a
promising research area because it does not require extensive instrumentation and allows for the
easy collection of vast amounts of video from online sources. Notably, several studies have pro-
posed methods for learning rewards directly from videos and using the signal to train RL agents.
Previous work has been focused on learning a reward function by aligning video representations in
temporal order (Sermanet et al., 2018; Zakka et al., 2021; Kumar et al., 2022) while others train a re-
ward function for expressing the progress of the agent towards the goal (Hartikainen et al., 2020; Lee
et al., 2021; Yang et al., 2024). Most recent work (Escontrela et al., 2023) inspired by the success
of video generative models (Yan et al., 2021; Ho et al., 2022) utilizes the likelihood of pre-trained
video prediction models as a reward. To effectively utilize video for long-horizon tasks, we propose
a new reward model conditioned both on video segments and corresponding subtasks trained with
subtask segmentations.

Inverse reinforcement learning Designing an informative reward function remains a long-
standing challenge for training RL agents. To achieve this, Inverse Reinforcement Learning (IRL)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

EPIC
Loss

1. Subtask segmentation on video

RL Agent

Replay
Buffer

Predict subtask

Label reward

3. Online RL with learned reward

REDS 2

2. Reward learning

 Segmented video

Video
Encoder

M
LP

Contrastive
Loss

1 32

Subtask Instruction
 Grab a box
 Lift the box
 Put the box on the table

1

1

Subtask
Embedder

Timestep

2
3

2 3

... ...

Figure 1: Illustration of REDS. Our main idea is to leverage expert demonstrations annotated with
the ongoing subtask as the source of implicit reward signals (left). We train a reward model con-
ditioned on video segments and corresponding subtasks with 1) contrastive loss to attract the video
segments and corresponding subtask embeddings and 2) EPIC (Gleave et al., 2021) loss to generate
reward equivalent to subtask segmentations (middle). In online RL, REDS infers the ongoing sub-
task using only video segments at each timestep and computes the reward with that (right).

(Ng & Russell, 2000; Abbeel & Ng, 2004; Ziebart et al., 2008) aims to estimate the underlying
reward function from expert demonstrations. Adversarial imitation learning (AIL) approaches (Ho
& Ermon, 2016; Fu et al., 2018; Zolna et al., 2020; 2021; Mu et al., 2024) address this by training
a discriminator network to discriminate transitions from expert data or policy rollouts and using the
output from the discriminator as a reward for training agents with RL. The most similar work to
ours is DrS (Mu et al., 2024), which also utilizes subtask information of the multi-stage task. While
DrS assumes that the information on ongoing subtasks can be obtained from the environment during
online interaction, our method has no such assumption, so it can be applied in more general cases
when the segmenting of the subtask is hard in automatic ways (e.g., Heo et al. (2023)).

3 PRELIMINARIES

Problem formulation We formulate a visual control task as a Markovian Decision Process
(MDP) (Sutton & Barto, 2018). As a single image observation is not sufficient for fully describ-
ing the underlying state of the task, we use the set of consecutive past observations to approximate
the current state following common practice (Mnih et al., 2015; Yarats et al., 2021; 2022). Taking
this into account, we define MDP as a tuple M = (S,A, p, R, ρ0, γ). S is a state space consisting
of a stack of K consecutive images, A is an action space, R is the sparse reward function which
outputs 1 when the agent makes success; otherwise, 0, p(s′|s, a) is the transition function, ρ0 is
the initial state distribution, and γ is the discount factor. The policy π : S → ∆(A) is trained to
maximize the expected sum of discounted rewards Eρ0,π,p [

∑∞
t=0 γ

tR(st, at)]. Our goal is to find
a dense reward function R̂(s′) only conditioned on visual observations, from which we can get the
optimal policy π∗ for M.

EPIC Equivalent-Policy Invariant Comparison (EPIC) (Gleave et al., 2021) is a pseudometric for
quantifying differences between different reward functions, which is designed to ensure the invari-
ance on the equivalent set of reward functions inducing the same set of optimal policies. To this end,
EPIC first canonicalizes potential shaping of the reward function R with some arbitrary distribution
DS ∈ ∆(S) over states S , which is to be invariant to potential shaping as below1:

CDS (R)(s) = R(s) + ES∼DS [γR(S)−R(S)− γR(S)] = R(s)− ES∼DS [R(S)] , (1)

where S denotes a set of batches independently sampled from the arbitrary distribution DS , and γ
is the discount factor. EPIC is then defined by the Pearson distance between canonically shaped
rewards in a scale-invariant manner:

DEPIC
DC,DS

(RA, RB) = Es∼DC [Dρ(CDS (RA)(s), CDS (RB)(s))] , (2)

1We only consider the action-independent reward functions, and omit the prime notation on s′ for the
simplicity of notation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where s is from the coverage distribution DC , Dρ(X,Y) =
√

1−ρ(X,Y)
2 is the Pearson distance

between two random variables X and Y , and ρ(X,Y) is the Pearson correlation between X and Y .
Please refer to Gleave et al. (2021) for more details.

4 METHOD

This section presents REDS: REward learning from Demonstration with Segmentations, a visual
reward learning framework designed for long-horizon tasks involving multiple subtasks. To gen-
erate proper reward signals for solving intermediate subtasks, we utilize segmentations identifying
ongoing subtasks in demonstrations. In Section 4.1, we explain our intuition and formal definitions
behind subtask segmentation. Section 4.2 outlines the reward model architecture, and Section 4.3
describes our training objective. Finally, in Section 4.3, we elaborate on the details of training and
inference of REDS. For an overview, see Figure 1.

4.1 SUBTASK SEGMENTATION

The sparse reward function R provides feedback only on the overall success or failure of a task,
which is insufficient for guiding the agent through intermediate states. To address this, drawing
inspiration from previous work on long-horizon robotic manipulation tasks (Di Palo & Johns, 2022;
Mandlekar et al., 2023; Heo et al., 2023; Mu et al., 2024), we decompose a task into m object-
centric subtasks, denoted as U = {U1, ..., Um}. Each subtask Ui represents a distinct step in the
task sequence and is based on the coordinate frame of a single target object. 2 This approach
is intuitive because humans naturally perceive tasks as sequences of discrete object interactions,
and this assumption can be generally applied to different manipulation skills (e.g., pick-and-place,
inserting) with diverse objects. Additionally, we provide text instructions X = {xi}mi=1 that describe
how to solve each subtask, which helps guide the agent more effectively.

To obtain subtask segmentations, we map each observation ot at timestep t in the trajectory τ =
(o0, ..., oT) to its corresponding subtask using a segmentation function ψ : O → U . Specifically,
ψ outputs the index of the ongoing subtask based on the observation at each timestep, with the
output value increasing as the number of completed subtasks increases (refer to the graph of ψ in the
center of Figure 1). The function ψ can be derived from various sources such as code snippets based
on domain knowledge (James & Davison, 2022; James et al., 2022; Mees et al., 2022), guidance
from human teachers (Heo et al., 2023), or vision-language models (Zhang et al., 2024; Kou et al.,
2024). In our experiments, we use the predefined codes in Meta-world and human annotators in
FurnitureBench to collect subtask segmentations.

4.2 ARCHITECTURE

As mentioned in Section 1, previous reward learning methods generate rewards only by a single
frame or consequent frames, not taking into account the order of subtasks. To resolve the issue, we
propose a new reward predictor R̂U = R̂(s;U) conditioned on each subtask. To efficiently process
visual observations, we first encode each image into low-dimensional representations using a pre-
trained visual encoder Ev . To capture temporal dependencies, these representations are processed
through a causal transformer (Vaswani et al., 2017). We add positional embeddings for each image in
the sequence st and pass them through the transformer network, producing the output representation
vt,K = {vt−K−1, ...,vt−1,vt} such that t-th output depends on input up to t. To embed subtask
Ui, we encode xi with pre-trained text encoder Et and project it to a shallow MLP to earn ei.
This design allows REDS to generate rewards for unseen tasks when U and X are provided. (see
Section 5.4 for supporting experiments). Finally, we concatenate a sequence of video representations
vt,K and subtask embedding ei to [vt−K−1, ...vt, ei] and project it to another shallow MLP f to
obtain R̂θ(st;Ui) = f(vt,K , ei).

4.3 REWARD MODELING

Reward equivariance with subtask segmentation Our key insight is that the subtask segmen-
tation function ψ can be thought of as the ground-truth reward function, providing implicit signals

2For instance, Door Open can be divided into (i) reaching the door handle (which involves motion relative
to the door handle.) and (ii) pulling the door to the goal position (which involves motion relative to the green
sphere-shaped goal).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

for solving intermediate tasks. To ensure our reward function induces the same set of optimal poli-
cies as ψ, we train to minimize EPIC (Gleave et al., 2021) distance between our reward model R̂Uθ
parameterized by θ and ψ for all subtasks:

LEPIC(θ) =
1

k

k∑
i=1

DEPIC
DC,DS

(R̂Ui

θ , ψ). (3)

Progressive reward signal However, minimizing EPIC with ψ alone can lead to overfitting and
the inability to provide progressive signals within each subtask. To mitigate this issue, we propose an
additional regularization term to enforce progressive reward signals. Inspired by previous work (Lee
et al., 2021; Hartikainen et al., 2020; Wu et al., 2021), we view the reward function as a progress
indicator for each subtask, and we regularize the reward function output to be higher in later states
of expert demonstration as follows:

Lreg(θ) = max
(
0, ϵ− (R̂θ(st+j ;ψ(ot+j))− R̂θ(st;ψ(ot)))

)
, (4)

where j is randomly chosen from a fixed set of values, and ϵ is a hyperparameter. Note that we
apply this objective only for the expert demonstrations and not suboptimal demonstrations collected
in iterative processes (please refer to Section 4.4).

Aligning video representation with subtask embeddings As the reward model lacks information
about the ongoing subtasks in online interactions, it must infer the agent’s current subtask. To
achieve this, we train the video representation to be closely aligned with the corresponding subtask
embedding by adopting a contrastive learning objective to make the model select the appropriate
subtask embedding only by the video segment.

Lcont(θ) = − log
sim(vt, eψ(ot))∑

i∈{1,...,k} sim(vt, ei)
, (5)

where sim represents a cosine similarity.

In summary, all components parameterized by θ are jointly optimized to minimize our total training
objective:

L(θ) = LEPIC(θ) + Lreg(θ) + Lcont(θ). (6)

4.4 TRAINING AND INFERENCE

Inference For each transition (st, a, st+1) at timestep t, we compute the reward using st+1. To
infer ongoing subtasks in REDS, we first encode the visual observations from executed actions and
the history of previous observations using a pre-trained visual encoder and a causal transformer.
REDS selects the subtask index ī by choosing the subtask embedding eī that has the highest cosine
similarity with the final output of the transformer, denoted as vt. The final reward is then computed
using video embedding and text embedding of the inferred subtask as R̂θ(st;Uī) = f(vt, eī). Please
refer to Appendix A for more details.

Training We outline the training procedure for REDS. First, we collect subtask segmentations
from expert demonstrations, creating a dataset D0, and use it to train the initial reward model,
M0. However, reward models trained solely on expert data are susceptible to reward misspecifica-
tion (Pan et al., 2022). To address this, we iteratively collect suboptimal demonstrations and fine-
tune the reward model using expert and suboptimal data. Unlike expert demonstrations, suboptimal
demonstrations cover a broader range of states and more diverse observations, making manual seg-
mentation labor-intensive and error-prone. To reduce the burden on human annotators, we develop
an automatic subtask inference procedure, avoiding the need for manual segmentation.

Before the iterative process, we compute similarity scores for all states in the expert demonstrations
using the initial reward model M0. For each subtask Ui, we calculate a threshold TUi

based on
the similarity scores between the expert states and the corresponding instructions, ensuring TUi

represents the minimum similarity required for successful subtask completion. In each iteration
i ∈ {1, ..., n}, we proceed as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Door Open (b) Peg Insert Side (c) Sweep Into (d) One Leg

Figure 2: Examples of visual observations used in our experiments. We consider a variety of robotic
manipulation tasks from Meta-world (Yu et al., 2020) and FurnitureBench (Heo et al., 2023).

• Step 1 (Suboptimal data collection): We train an RL agent using the reward modelM i and collect
suboptimal demonstrations Di

replay from the agent’s replay buffer.

• Step 2 (Subtask inference for suboptimal data): For each timestep in the suboptimal trajectory,
we infer the subtask index î using the same procedure as in inference and compute sim(vt, eî).
If the similarity falls below the threshold TUi

at any timestep, we mark the subtask as failed and
assign the remaining timesteps to that subtask.

• Step 3 (Fine-tuning): We fine-tune the reward model M i−1 using the combined dataset Di =
Di ∪ Di

replay to obtain M i.

We use the final reward model Mn for downstream RL training.

5 EXPERIMENTS

We design our experiment to evaluate the effectiveness of REDS on providing useful reward signals
in training various RL algorithms (Hafner et al., 2023; Kostrikov et al., 2022). We conduct extensive
experiments in robotic manipulation tasks from Meta-world (Yu et al., 2020) (see Section 5.1) in
simulation and robotic furniture assembly tasks from FurnitureBench (Heo et al., 2023) (see Sec-
tion 5.2) in the real-world. We also conduct in-depth analyses to validate the effectiveness of each
component and how our reward function aligns with subtask segmentations (see Section 5.5).

Implementation and training details We used the open-source pre-trained CLIP (Radford et al.,
2021a) with ViT-B/16 architecture to encode images and subtask instructions for all experiments. We
adopt a GPT (Radford et al., 2018) architecture with 3 layers and 8 heads for the causal transformer.
To canonicalize our reward functions, we use the same D for both coverage distribution DC and
potential shaping distribution DS , and we estimate the expectation over state distributions using a
sample-based average over 8 additional samples from D per sample. All models are trained with
AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 1 × 10−4 and a mini-batch
size of 32. To ensure to visual distractions, we apply color jittering and random shift (Yarats et al.,
2021) to visual observations in training REDS. Please refer to Appendix A for more details.

Baselines We consider the following baselines: (1) human-engineered reward functions provided
in the benchmark, (2) ORIL (Zolna et al., 2020), an adversarial imitation learning (AIL) method
trained only with offline demonstrations, (3) Rank2Reward (R2R) (Yang et al., 2024), an AIL
method which trains a discriminator weighted with temporal ranking of video frames to reflect
task progress, (4) VIPER (Escontrela et al., 2023), a reward model utilizing likelihood from a pre-
trained video prediction model as a reward signal, and (5) DrS (Mu et al., 2024), an AIL method
that assumes subtask information from the environment and trains a separate discriminator for each
subtask. We provide additional details on baselines in Appendix C.

5.1 META-WORLD EXPERIMENTS

Setup We first evaluate our method on 8 different visual robotic manipulation tasks from Meta-
world (Yu et al., 2020). As a backbone algorithm, we use DreamerV3 (Hafner et al., 2023), a
state-of-the-art visual model-based RL algorithm that learns from latent imaginary rollouts. For
collecting subtask segmentations, we utilize a scripted teacher in simulation environments for scal-
ability. Specifically, we use the predefined indicator for subtasks provided in the benchmark for all
subtask segmentations (see Appendix D for the list of subtasks and corresponding text instructions
for each task). We do not use these indicators when training/evaluating RL agents. For training

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

REDS (Ours) Human-Engineered ORIL R2R VIPER DrS

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

60

80

100
Su

cc
es

s
R

at
e

(%
)

Faucet Close

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Drawer Open

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Lever Pull

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Door Open

0 10 20 30 40 50

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Coffee Pull

0 6 12 18 24 30

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Peg Insert Side

0 10 20 30 40 50

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Push

0 6 12 18 24 30

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Sweep Into

Figure 3: Learning curves of DreamerV3 (Hafner et al., 2023) agents trained with different reward
functions for solving eight robotic manipulation tasks from Meta-world (Yu et al., 2020), measured
by success rate (%). The solid line and shaded regions represent the mean and stratified bootstrap
interval across 4 runs.

REDS, we first collect subtask segmentations from 50 expert demonstrations for initial training and
train DreamerV3 agents for 100K environment steps with the initial reward model to collect subop-
timal trajectories, which is used for fine-tuning. In evaluation, we measure the success rate averaged
over 10 episodes in every 20K steps. Please refer to Appendix A for more details.

Results Figure 3 shows that REDS consistently improves the sample-efficiency of DreamerV3
agents by outperforming all baselines. While baselines exhibit non-zero success rates in simple
tasks like Faucet Close, their performance significantly deteriorates in more complex tasks, such as
Peg Insert Side. On the other hand, our method maintains non-zero success rates across all tasks and
even surpasses human-engineered reward functions in some tasks (e.g., Drawer Open, Push, Cof-
fee Pull) without requiring task-specific reward engineering. These results show that REDS effec-
tively generates appropriate rewards for solving intermediate tasks by leveraging subtask-segmented
demonstrations. A key advantage of REDS is that it relies solely on visual observations for gener-
ating rewards during online interaction, whereas DrS and human-engineered rewards require ad-
ditional information from the environment, such as the position and reachability of target objects.
This result underscores REDS’s potential for application in environments where reward engineering
is challenging or additional sensory information is unavailable.

5.2 FURNITUREBENCH EXPERIMENTS

Table 1: Online fine-tuning results of IQL agents in
One Leg from FurnitureBench. We report the initial
performance after offline RL (left) and the perfor-
mance after 150 episodes of online RL (right).

Method # Expert Demos Completed Subtasks
(Offline → Online)

Sparse (Offline) (Heo et al., 2023) 500 1.8
VIPER 300 1.10 → 1.25
DrS 300 1.05 → 1.10
REDS (Ours) 300 1.10 → 2.45

Setup We further evaluate our method on
real-world furniture assembly tasks from Fur-
nitureBench (Heo et al., 2023), specifically
focusing on One Leg assembly. This task
involves a sequence of complex subtasks
such as picking up, inserting, and screw-
ing (see Figure 2d). For training REDS, we
use 300 expert demonstrations with subtask
segmentations provided by FurnitureBench,
along with an additional 200 rollouts from
IQL (Kostrikov et al., 2022) policy trained
with expert demonstrations in a single training iteration. To prevent misleading reward signals
stemming from visual occlusions, we utilize visual observations from the front camera and wrist
cameras in training REDS. For downstream RL, we first train offline RL agents using 300 expert
demonstrations labeled with each reward model, followed by online fine-tuning to assess improve-
ments. For baselines, we compare against VIPER and DrS. We emphasize that our method enables
fully autonomous training in online RL sessions, in contrast to DrS, which relies on a subtask indi-
cator provided by humans. In our DrS experiments, subtasks were manually identified by a human.
We measure the average number of completed subtasks over 20 rollouts for evaluation. We provide
more details in Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Door Open (b) One Leg

Figure 4: Qualitative results of REDS in Door Open in Meta-world (Yu et al., 2020) and One Leg
from FurnitureBench (Heo et al., 2023). We observe that REDS produces suitable reward signals
aligned with ground-truth reward functions by predicting ongoing subtasks effectively and providing
progressive reward signals.

Results As shown in Table 1, REDS achieves significant performance improvements through on-
line fine-tuning, whereas the improvements from baselines are marginal. These results indicate that
our method produces informative signals for solving a sequence of subtasks, while baselines either
fail to provide context-aware signals or dense rewards for better exploration (see Appendix F for
qualitative examples). Moreover, we note that our method outperforms the IQL trained with 500 ex-
pert demonstrations, achieving a score of 2.45 compared to 1.8 reported by FurnitureBench, despite
using only 300 expert demonstrations. Considering that REDS does not require additional human
interventions beyond resetting the environment, these results highlight the potential to extend our
approach to a wider range of real-world robotics tasks.

5.3 ALIGNMENT WITH GROUND-TRUTH REWARDS

Table 2: EPIC (Gleave et al., 2021) distance (lower
is better) between learned reward functions and hand-
engineered reward functions (Meta-world) / subtask
segmentations (FurnitureBench) in unseen data.

Task VIPER R2R ORIL REDS (Ours)

Meta-world Door Open 0.5934 0.5649 0.7071 0.4913
Meta-world Push 0.6144 0.6838 0.7073 0.5381
Meta-world Peg Insert Side 0.5974 0.5806 0.6989 0.4674
Meta-world Sweep Into 0.6248 0.6413 0.7001 0.4673
FurnitureBench One Leg 0.7035 0.6001 0.7014 0.0713

EPIC measurement To quantitatively
validate the alignment of our method with
ground-truth reward functions, we mea-
sure the EPIC distance with a set of unseen
demonstrations during training. Specifi-
cally, we use rollouts from the reference
policy trained with expert demonstrations
for state distribution. In Table 2, we
observe that REDS exhibits significantly
lower EPIC distance than baselines across
all tasks. Particularly, the difference be-
tween REDS and baselines is more pronounced in complex tasks like One Leg. This result consis-
tently supports the empirical findings from previous sections.

Qualitative analysis We provide the graph of computed rewards from REDS in Figure 4. We
observe that REDS can induce suitable reward signals aligned with ground-truth reward functions.
For example, REDS provides subtask-aware signals in transition states (e.g., between 2 and 3, and
between 4 and 5) and generates progressive reward signals throughout each subtask. Please refer to
Appendix F for the extensive comparison between REDS and baselines.

5.4 GENERALIZATION CAPABILITIES

Transfer to unseen tasks As mentioned in Section 4.2, our model can be applied as a reward
function in unseen tasks. To validate this, we conduct additional experiments by training REDS
with segmentation data from 3 tasks (Door Open, Drawer Open/Close) and using the reward model
to train RL agents in two unseen tasks. In Door Close, we aim to validate that REDS can provide
informative signals for a new task involving a previously seen object and behaviors. In Window
Close, we aim to determine whether REDS can provide suitable reward signals for familiar behaviors
(closing) with an unseen object (window). In evaluation, we change the text instruction following

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Drawer Open Drawer Close Door Open
Training with 3 different tasks

Door Close Window Close

Evaluation on 2 unseen tasks

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Door Close

Human-engineered (Oracle)
REDS (Unseen)
REDS

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Window Close

Human-engineered (Oracle)
REDS (Unseen)
REDS

Figure 5: We train REDS with 3 different tasks from Meta-world (Yu et al., 2020) and use this model
to train RL agents in 2 unseen tasks (left). We present learning curves on Door Close (center) and
Window Close (right), as measured by success rate (%). The solid line and shaded regions represent
the mean and stratified bootstrap interval across 4 runs.

table_pos: 0.00 0.00 0.00

light: 0.40

(a) Original

table_pos: 0.04 0.06 -0.08
light: 0.31

table_pos: 0.04 -0.09 -0.02
light: 0.71

table_pos: -0.02 -0.02 -0.08
light: 0.60

(b) Examples of visual distractions

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS
REDS (Visual distraction)

(c) Learing curve

Figure 6: We provide visual observations from (a) the original environment and (b) unseen environ-
ments with visual distractions used in our experiments in Section 5.4 .

the target object (as shown in Table D), and we do not fine-tune the reward model. Figure 5 shows
that REDS provides effective reward signals on unseen tasks and achieves comparable or even better
RL performance than REDS trained on the target task. This result demonstrates that REDS can be
applied to RL training in unseen tasks that share properties with training tasks.

Robustness to visual distractions To prove the robust performance of REDS against visual dis-
tractions, we train RL agents with our reward model in new Meta-world environments incorporating
visual distractions, such as varying light and table positions following Xie et al. (2024) (see Fig-
ure 6b). Note that the reward model was trained using demonstrations only from the original envi-
ronment. As Figure 6c shows, REDS can generate robust reward signals despite visual distractions
and train RL agents to solve the task effectively.

Figure 7: Learning curve for
DreamerV3 agents in envi-
ronments of the Sawyer Arm.

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

Su
cc

es
s

R
at

e
(%

)

Human-engineered (Oracle)
REDS (Unseen)

Transfer to unseen embodiments Since our framework lever-
ages only action-free video data, we hypothesize that transferring
to other robot embodiments with similar DoFs is feasible. To sup-
port this claim, we train REDS with demonstrations of the Franka
Panda Arm and then compute the reward of an unseen demonstra-
tion of the Sawyer Arm in Take Umbrella Out of Stand from RL-
Bench (James et al., 2020). Figure 8 shows that REDS generates
informative reward signals even with the unseen embodiment. For
instance, REDS can capture the behavior of taking the umbrella out
of the stand, as indicated by the increased reward signals between
6 and 7. Additionally, Figure 7 shows that REDS trained only with
the Panda Arm can be used to train downstream RL agents in the
environment with the Sawyer Arm.

5.5 ABLATION STUDIES

Effect of training objectives We investigate the effect of each training objective in Figure 9a.
Specifically, we compare REDS with 1) a baseline trained with regression to subtask segmentation
instead of EPIC loss LEPIC, 2) a baseline that utilizes only video representations without subtask
embeddings, and 3) a baseline trained without the regularization loss Lreg. We observe that RL
performance significantly degrades without each component, implying that our losses synergistically
improve reward quality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (Train) Panda (b) (Unseen) Sawyer

Figure 8: Qualitative results of REDS with different robot embodiments. REDS was trained using
demonstrations from the Panda Arm and evaluated on an unseen demonstration from the Sawyer
Arm in Take Umbrella Out of Stand from RLBench (James et al., 2020). We visualize several
frames above the graph and mark them with a diamond symbol.

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (EPIC: O, Cont: O, Reg: O)
REDS (EPIC: X, Cont: O, Reg: O)
REDS (EPIC: O, Cont: X, Reg: O)
REDS (EPIC: O, Cont: O, Reg: X)

(a) Training objectives

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (PVR: O, Trans: O)
REDS (PVR: O, Trans: X)
REDS (PVR: X, Trans: O)

(b) Architecture

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (Fine-tuning: O)
REDS (Fine-tuning: X)

(c) Fine-tuning

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (50 Demos)
REDS (20 Demos)
REDS (10 Demos)

(d) Expert demonstrations

Figure 9: Learning curves for two Meta-world (Yu et al., 2020) robotic manipulation tasks, measured
by success rate (%), to examine the effects of (a) training objectives, (b) architecture, (c) fine-tuning,
and (d) the number of expert demonstrations. The solid line and shaded regions show the mean and
stratified bootstrap interval across 8 runs.

Effect of architecture To verify the design choice proposed in Section 4.2, we compare REDS
with 1) a baseline using a CNN for encoding images instead of pre-trained visual representations
(PVR) and 2) a baseline simply concatenating pre-trained visual representations without a causal
transformer. Figure 9b shows that both baselines show worse performance compared to ours. No-
tably, detaching a causal transformer significantly degrades RL performance, implying that temporal
information is essential for providing suitable reward signals in robotic manipulation.

Effect of fine-tuning In Figure 9c, we compare REDS trained only with the expert demonstrations
in the initial phase to REDS fine-tuned with additional suboptimal demonstrations as described
in Section 4.4. REDS shows improved RL performance when trained with additional suboptimal
demonstrations, indicating that the coverage of state distribution impacts the reward quality. Further
investigation on how to efficiently collect suboptimal demonstrations to enhance the performance of
learned reward function is a promising future direction.

Effect of the number of expert demonstrations We investigate the effect of the number of expert
demonstrations by measuring the RL performance of DreamerV3 agents with REDS trained with
different numbers of expert demonstrations in 2 tasks (Door Open, Drawer Open) from Meta-world.
Figure 9d shows that the agents’ RL performance positively correlates with the number of expert
demonstrations trained for reward learning.

6 CONCLUSION

We proposed REDS, a visual reward learning framework considering subtasks by utilizing subtask
segmentation. Our main contribution is based on proposing a new reward model leveraging minimal
domain knowledge as a ground-truth reward function. Our approach is generally applicable and
does not require any additional instrumentations in online interactions. We believe REDS will sig-
nificantly alleviate the burden of reward engineering and facilitate the application of RL to a broader
range of real-world robotic tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

LIMITATION AND FUTURE DIRECTIONS

One limitation of our work is that we assume the knowledge of the object-centric subtasks in a
task. For automating subtask definition and segmentation in new tasks and new domains other than
robotic manipulations, investigating the planning and reasoning capabilities of pre-trained Multi-
modal Large Language Model (MLLM) (Park et al., 2023; Honerkamp et al., 2024; Zawalski et al.,
2024; Shah et al., 2024; Liu et al., 2024) would be an intriguing research direction.

Additionally, the performance of REDS relies on pre-trained representations trained with natural im-
age/text data for encoding videos and subtask instructions. Although REDS proves its effectiveness
in various robotic manipulation tasks, we observe that REDS struggles to distinguish subtle changes
(e.g., screwing the leg in One Leg) even with pre-trained representations trained on ego-centric mo-
tion videos (Ma et al., 2023a). We believe that the quality of rewards can be further improved by
utilizing 1) pre-trained representations with large-scale data with diverse robotic tasks (Padalkar
et al., 2023; Khazatsky et al., 2024) and 2) representations trained with objectives considering affor-
dances (Bahl et al., 2023) or object-centric methods (Devin et al., 2018).

Furthermore, there is room for improvement to enhance generalization and robustness. Although
our experiments are designed to evaluate generalization in unseen environments, they may face
challenges in out-of-distribution environments, such as significant changes in the background or
camera angles. Future work could address these challenges through data augmentation or domain
adaptation techniques. while our contrastive learning objective currently focuses on minimizing dis-
tances between relevant video and text embeddings, the reward model may generate inappropriate
reward signals for semantically different subtasks that share similar video content and text instruc-
tions. Incorporating a loss term to maximize distances between irrelevant embeddings could further
improve robustness in tasks with similar subtasks, and we will explore this enhancement in future
work.

Finally, the number of expert demonstrations and the number of iterations for fine-tuning REDS
are determined by empirical trials. Investigating how to collect failure demonstrations to mitigate
reward misspecification efficiently is an interesting future direction.

ETHIC STATEMENT

Video demonstrations and subtask segmentations used in the experiments were sourced from pub-
licly available benchmarks (Meta-world, RLBench, FurnitureBench), ensuring no personal or sen-
sitive information is involved. Potential risks could arise when training and deploying RL agents
directly in real-world scenarios, particularly in human-robot interactions. Ensuring the safety and
reliability of these agents before deployment is essential to prevent harm.

REPRODUCIBILITY STATEMENT

For the reproducibility of REDS, we have provided a detailed explanation of implementation details
and experimental setups in Section 4.4, Section 5, and Appendix A. In addition, to further facilitate
the reproduction, we attach the source code used in our experiments in the supplementary materials.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine Learning, 2004.

Ademi Adeniji, Amber Xie, and Pieter Abbeel. Skill-based reinforcement learning with intrinsic
reward matching. arXiv preprint arXiv:2210.07426, 2022.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. International Journal of Robotics Research, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from
human videos as a versatile representation for robotics. In IEEE Conference on Computer Vision
and Pattern Recognition, 2023.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, 2023.

Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.
The perils of trial-and-error reward design: misdesign through overfitting and invalid task speci-
fications. In AAAI Conference on Artificial Intelligence, 2023.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. In Robotics: Science and Systems, 2021.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Scal-
ing egocentric vision: The epic-kitchens dataset. In European Conference on Computer Vision,
2018.

Coline Devin, Pieter Abbeel, Trevor Darrell, and Sergey Levine. Deep object-centric representations
for generalizable robot learning. In IEEE International Conference on Robotics and Automation,
2018.

Norman Di Palo and Edward Johns. Learning multi-stage tasks with one demonstration via self-
replay. In Conference on Robot Learning, 2022.

Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay Jain, Xue Bin Peng, Ken Goldberg, Young-
woon Lee, Danijar Hafner, and Pieter Abbeel. Video prediction models as rewards for reinforce-
ment learning. In Conference on Neural Information Processing Systems, 2023.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In International Conference on Learning Representations, 2018.

Adam Gleave, Michael D Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differ-
ences in reward functions. In International Conference on Learning Representations, 2021.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. Maniskill2: A unified benchmark for generalizable manipulation skills. In International
Conference on Learning Representations, 2023.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE International Conference
on Robotics and Automation, 2017.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu,
Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In IEEE Interna-
tional Conference on Robotics and Automation, 2023.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery. In International Conference on
Learning Representations, 2020.

Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J. Lim. Furniturebench: Reproducible
real-world benchmark for long-horizon complex manipulation. In Robotics: Science and Systems,
2023.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Conference on Neural
Information Processing Systems, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In Conference on Neural Information Processing Systems, 2022.

Daniel Honerkamp, Martin Büchner, Fabien Despinoy, Tim Welschehold, and Abhinav Valada.
Language-grounded dynamic scene graphs for interactive object search with mobile manipula-
tion. IEEE Robotics and Automation Letters, 2024.

Tao Huang, Guangqi Jiang, Yanjie Ze, and Huazhe Xu. Diffusion reward: Learning rewards via
conditional video diffusion. In European Conference on Computer Vision, 2024.

Stephen James and Andrew J Davison. Q-attention: Enabling efficient learning for vision-based
robotic manipulation. IEEE Robotics and Automation Letters, 2022.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 2020.

Stephen James, Kentaro Wada, Tristan Laidlow, and Andrew J Davison. Coarse-to-fine q-attention:
Efficient learning for visual robotic manipulation via discretisation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2022.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

W Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(mis) design for autonomous driving. Artificial Intelligence, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Longxin Kou, Fei Ni, Yan Zheng, Jinyi Liu, Yifu Yuan, Zibin Dong, and HAO Jianye. Kisa: A
unified keyframe identifier and skill annotator for long-horizon robotics demonstrations. In Inter-
national Conference on Machine Learning, 2024.

Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong Wang. Graph
inverse reinforcement learning from diverse videos. In Conference on Robot Learning. PMLR,
2022.

Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J Lim. Generalizable imitation learning
from observation via inferring goal proximity. In Conference on Neural Information Processing
Systems, 2021.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 2016.

Xinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward uncertainty for exploration in
preference-based reinforcement learning. In International Conference on Learning Representa-
tions, 2022.

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. MOKA: Open-vocabulary robotic ma-
nipulation through mark-based visual prompting. In IEEE International Conference on Robotics
and Automation, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Yecheng Jason Ma, William Liang, Vaidehi Som, Vikash Kumar, Amy Zhang, Osbert Bastani, and
Dinesh Jayaraman. Liv: Language-image representations and rewards for robotic control. In
International Conference on Machine Learning, 2023a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. VIP: Towards universal visual reward and representation via value-implicit pre-training.
In International Conference on Learning Representations, 2023b.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. In Conference on Robot Learning, 2023.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 2015.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Cathera Yang, Xuanlin Li, Stone Tao, Zhiao Huang,
Zhiwei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-
scale demonstrations. In Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Tongzhou Mu, Minghua Liu, and Hao Su. Drs: Learning reusable dense rewards for multi-stage
tasks. In International Conference on Learning Representations, 2024.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. In Conference on Robot Learning, 2022.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, 2000.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. In International Conference on Learning Representations,
2022.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learn-
ing agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021a.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning.
PMLR, 2021b.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. In International Con-
ference on Learning Representations, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning. PMLR,
2022.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
IEEE International Conference on Robotics and Automation, 2018.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv
preprint arXiv:2403.10506, 2024.

Rutav Shah, Albert Yu, Yifeng Zhu, Yuke Zhu, and Roberto Martı́n-Martı́n. Bumble: Unifying
reasoning and acting with vision-language models for building-wide mobile manipulation. arXiv
preprint arXiv:2410.06237, 2024.

Lucy Xiaoyang Shi, Archit Sharma, Tony Z Zhao, and Chelsea Finn. Waypoint-based imitation
learning for robotic manipulation. In Conference on Robot Learning, 2023.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, 2022.

Joar Max Viktor Skalse, Lucy Farnik, Sumeet Ramesh Motwani, Erik Jenner, Adam Gleave, and
Alessandro Abate. STARC: A general framework for quantifying differences between reward
functions. In International Conference on Learning Representations, 2024.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20 minutes
with model-free reinforcement learning. In Robotics: Science and Systems, 2023.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Conference on Neural In-
formation Processing Systems, 2017.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. In Conference on Neural Information Processing Systems,
2017.

Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi Tomizuka, and Stefan Schaal. Learning
dense rewards for contact-rich manipulation tasks. In IEEE International Conference on Robotics
and Automation, 2021.

Blake Wulfe, Logan Michael Ellis, Jean Mercat, Rowan Thomas McAllister, and Adrien Gaidon.
Dynamics-aware comparison of learned reward functions. In International Conference on Learn-
ing Representations, 2022.

Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn. Decomposing the generalization gap in imitation
learning for visual robotic manipulation. In IEEE International Conference on Robotics and
Automation, 2024.

Danfei Xu and Misha Denil. Positive-unlabeled reward learning. In Conference on Robot Learning,
2021.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

Daniel Yang, Davin Tjia, Jacob Berg, Dima Damen, Pulkit Agrawal, and Abhishek Gupta.
Rank2reward: Learning shaped reward functions from passive video. In IEEE International Con-
ference on Robotics and Automation, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International Conference on Learning Representa-
tions, 2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. In International Conference on Machine
Learning, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2020.

Ying Yuan, Haichuan Che, Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Kang-Won Lee, Yi Wu,
Soo-Chul Lim, and Xiaolong Wang. Robot synesthesia: In-hand manipulation with visuotactile
sensing. arXiv preprint arXiv:2312.01853, 2023.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta
Dwibedi. Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot
Learning, 2021.

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. In Conference on Robot Learning, 2024.

Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason
Ma, and Luca Weihs. Universal visual decomposer: Long-horizon manipulation made easy. In
IEEE International Conference on Robotics and Automation, 2024.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot
learning. arXiv preprint arXiv:2009.12293, 2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, 2008.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf Ay-
tar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. In Conference on Neural Information Processing Systems, 2020.

Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez Colmenarejo, David Budden, Serkan
Cabi, Misha Denil, Nando de Freitas, and Ziyu Wang. Task-relevant adversarial imitation learn-
ing. In Conference on Robot Learning, 2021.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A EXPERIMENT DETAILS

Training and inference details To ensure robustness against visual changes, we apply data aug-
mentations, including random shifting (Yarats et al., 2021; 2022) and color jittering. For optimiza-
tion, we train REDS with AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of
1× 10−4, weight decay of 2× 10−2, and a cosine decay schedule for adjusting the training learning
rate. We apply a warm-up scheduling for the initial 500 gradient steps starting from a learning rate
of 0. Note that the parameters for CLIP visual/text encoders have not been updated. For training
downstream RL agents, we normalize the reward by dividing it by the maximum value observed in
the expert demonstrations. We report the hyperparameters used in our experiments in Table 3. For
both coverage distribution DC and potential shaping distribution DS , we use the same dataset with
subtask segmentations Di, unlike prior work dealing with arbitrarily random distributions because
of the absence of subtask segmentations. To canonicalize our reward functions, we estimate the
expectation over state distributions using a sample-based average over 8 additional samples from D
per sample. To prevent false positive cases in predicting subatsks in online interactions, we add mar-
gins to similarity scores inversely proportional to the subtasks in online interactions. Specifically,
we infer the subtask î as follows:

î = argmaxi∈{1,...,k}(sim(vt, ei) + η ∗ (k − i)), (7)

where η is a hyperparameter for the margin between subtasks. For each subtask Ui, we compute
similarity scores between the visual observations within the subtask from expert demonstrations and
their corresponding instructions. The threshold TUi

is set to the 75th percentile of these scores to
account for demonstration variability while capturing the most relevant matches. Please refer to
Figure 12c for supporting experiments.

Table 3: Hyperparameters of REDS used in our experiments.

Hyperparameter Value

Batch size 32 (Meta-world, RLBench), 8 (FurnitureBench)
Training steps 5000
Learning rate 0.0001
Optimizer AdamW (Loshchilov & Hutter, 2019)
Optimizer momentum β1 = 0.9, β2 = 0.999
Weight decay 0.02
Learning rate decay Linear warmup and cosine decay
Warmup steps 500
Context length 4
Causal transformer size 3 layers, 8 heads, 512 units

EPIC canonical samples 8
ϵ for progressive reward signal 0.05
η for inferring subtasks 0.01 (Meta-world, RLBench), 0.05 (FurnitureBench)
number of training iterations n 2 (Meta-world, RLBench), 1 (FurnitureBench)

Meta-world experiments We use visual observations of 64 × 64 × 3. To consistently use a
single camera viewpoint over all tasks, we use the modified version of the corner2 viewpoint
as suggested by Seo et al. (2022). Expert demonstrations for each task are collected using scripted
policies publicly released in the benchmark. We use an action repeat of 2 to accelerate training
and set the maximal episode length as 250 for all Meta-world tasks. For downstream RL, we use
the implementation of DreamerV3 from VIPER3. We report the hyperparameters of DreamerV3
agents used in our experiments in Table 4. Unless otherwise specified, we use the same set of
hyperparameters as VIPER. For all ablation experiments (Figure 6, 9, 12), we report results in Door
Open and Drawer Open.

RLBench experiments For training both reward models and downstream RL agents, we utilize
64 × 64 × 3 RGB observations from the front camera and wrist camera. For downstream RL, we
don’t use any expert demonstrations, and we use the same set of hyperparameters as VIPER.

3https://github.com/Alescontrela/viper_rl

17

https://github.com/Alescontrela/viper_rl

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameters of DreamerV3 (Es-
contrela et al., 2023) used in Meta-world exper-
iments.

Hyperparameter Value

General

Replay Capacity (FIFO) 5× 105

Start learning (prefill) 5000
MLP size 2× 512

World Model

RSSM size 512
Base CNN channels 32
Codes per latent 32

Table 5: Hyperparameters of IQL (Kostrikov
et al., 2022) used in FurnitureBench experi-
ments.

Hyperparameter Value

Learning rate 3× 10−4

Batch size 256
Policy # hidden units (512, 256, 256)
Critic/value # hidden units (512, 256, 256)
Image encoder R3M (Nair et al., 2022)
Discount factor (γ) 0.996
Expectile (τ) 0.8
Inverse Temperature (β) 10.0

FurnitureBench experiments We use the implementation of IQL from FurnitureBench 4 for our
experiments. We utilize 224 × 224 × 3 RGB observations from the front camera and wrist cam-
eras, along with proprioceptive states, to represent the current state. We encode each image with
pre-trained R3M (Nair et al., 2022) for visual observations. Following Kostrikov et al. (2022), we
first run offline RL for 1M gradient steps, then continue training while collecting environment in-
teraction data, adding it to the replay buffer, and repeating this process for 150 episodes. Before
online fine-tuning, we pre-fill the replay buffer with 10 rollouts from the pre-trained IQL policy. We
adopt techniques from RLPD (Ball et al., 2023) for efficient offline-to-online RL training. Specif-
ically, we sample 50% of the data from the replay buffer and the remaining 50% from the offline
data buffer containing 300 expert demonstrations. We also apply LayerNorm (Ba et al., 2016) in the
critic/value network of the IQL agent to prevent catastrophic overestimation. We list the hyperpa-
rameters used in our experiments in Table 5. For training REDS, we collect subtask segmentations
for suboptimal demonstrations using the automatic subtask inference procedure described in Sec-
tion 4.4, and we manually modified some subtask segmentations with false negatives to guarantee
stable performance.

Computation We use 24 Intel Xeon CPU @ 2.2GHz CPU cores and 4 NVIDIA RTX 3090 GPUs
for training our reward model, which takes about 1.5 hours in Meta-world and 3 hours in Furni-
tureBench due to high-resolution visual observations from multiple views. For training DreamerV3
agents in Meta-world, we use 24 Intel Xeon CPU @ 2.2GHz CPU cores and a single NVIDIA RTX
3090 GPU, which takes approximately 4 hours over 500K environment steps. For training IQL
agents in FurnitureBench, we use 24 Intel Xeon CPU @ 2.2GHz CPU cores and a single NVIDIA
RTX 3090 GPU, taking approximately 2 hours for 1M gradient steps in offline RL and 4.5 hours
over 150 episodes of environment interactions in online RL.

B REDS ARCHITECTURE DETAILS

We encode visual observations with a pre-trained CLIP (Radford et al., 2021b) ViT-B/16 visual en-
coder, utilizing all representations from the sequence of patches. We adopt 1D learnable parameters
with the same size for positional embedding, and we add these parameters to 2D fixed sin-cos em-
beddings and add them to features. To encode temporal dependencies in visual observations, we use
a GPT (Radford et al., 2018) architecture with 3 layers and 8 heads. In FurnitureBench, we use a
sequence of images from both the front camera and wrist camera as input. Given sfrontt /swrist

t from
the front/wrist camera, we concatenate visual observations to [ofrontt−K−1, o

wrist
t−K−1, ..., o

front
t , owrist

t],
add positional embeddings, 2D fixed sin-cos embeddings, and additional 1D learnable parameters
for each viewpoint for effectively utilizing images from multiple cameras. We then pass the features
to the transformer layer, the same as the model with a single image. The subtask embedder and final
reward predictor are implemented as 2-layer MLPs.

4https://github.com/clvrai/furniture-bench/tree/main/implicit_q_
learning

18

https://github.com/clvrai/furniture-bench/tree/main/implicit_q_learning
https://github.com/clvrai/furniture-bench/tree/main/implicit_q_learning

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C BASELINE DETAILS

ORIL (Zolna et al., 2020) For implementing ORIL with visual observations, we use the CNN
architecture from Yarats et al. (2021) to encode image observations. For training data, we use the
same set of demonstrations as for training REDS. Since our training data are divided into success
and failure demonstrations, we do not use positive-unlabeled learning (Xu & Denil, 2021) in our
experiments. For robustness against visual changes, we apply the same augmentation techniques
used for training REDS.

Rank2Reward (R2R) (Yang et al., 2024) To ensure compatibility with backbone RL algo-
rithms (Hafner et al., 2023; Kostrikov et al., 2022) implemented in JAX, we reimplement the reward
model with JAX following the official implementation of Rank2Reward 5 and use the same hyper-
parameters. We first pre-train the ranking network using the same expert demonstrations as REDS,
and we then train a discriminator for the expert demonstration and policy rollouts, weighted by the
output from the pre-trained ranking network. For training efficiency, we use the CNN architecture
from Yarats et al. (2021) for encoding visual observations instead of R3M (Nair et al., 2022), find-
ing no significant difference when we use the pre-trained visual representations like R3M, but with
much slower training in online RL. We observe that our R2R implementation with DreamerV3 in
JAX outperforms the original version implemented with DrQ-V2 (Yarats et al., 2022) agents.

DrS (Mu et al., 2024) Similar to R2R, we reimplement DrS with JAX following the official im-
plementation of DrS 6, and use the same set of hyperparameters for reward learning. As the original
DrS implementation is based on a state-based environment, we switch the backbone RL algorithm
from SAC to DrQ-V2 (Yarats et al., 2022) and apply the augmentation technique in the reward learn-
ing phase for processing visual observations efficiently. To report the RL performance, we use the
learned dense reward model to train new RL agents. In FurnitureBench experiment, we train the
reward model with the same expert/failure demonstrations as in Section 5.2, without online interac-
tion, to avoid unsafe behaviors and a significant increase in training time from online interactions.

VIPER (Escontrela et al., 2023) We use the official implementation of VIPER 7 for our exper-
iments. Given the similarities among robotic manipulation tasks, we use the same set of hyperpa-
rameters as in RLBench (James et al., 2020) experiments to train VQ-GAN and VideoGPT. We train
100K steps, choosing the checkpoint with the minimum validation loss. In FurnitureBench experi-
ment, we use images from the front camera, resized to 64×64×3, and set the exploration objective
β as 0.

D TASK DESCRIPTIONS

In this section, we list the subtasks and corresponding text instructions for each task in Table 6. For
Meta-world tasks, we provide the code snippet used to determine the success of each subtask (Please
refer to the Meta-world (Yu et al., 2020) for more details). For the FurnitureBench One Leg task, we
outline the criteria used by human experts to assess the success of each subtask based on the metric
defined in FurnitureBench (Heo et al., 2023).

E EXTENDED RELATED WORK

Quantifying differences between reward functions Previous work has explored methods for
measuring the difference between reward functions without relying on policy optimization proce-
dures (Gleave et al., 2021; Wulfe et al., 2022; Skalse et al., 2024). In particular, Gleave et al. (2021)
introduced the EPIC distance, a pseudometric invariant to equivalent classes of reward functions.
Subsequent work (Rocamonde et al., 2024; Adeniji et al., 2022; Liang et al., 2022) has employed
EPIC to assess the quality of reward functions. In this paper, we take a different approach by using
EPIC distance as an optimization objective. While Adeniji et al. (2022) also utilizes EPIC distance

5https://github.com/dxyang/rank2reward
6https://github.com/tongzhoumu/DrS
7https://github.com/Alescontrela/viper_rl

19

https://github.com/dxyang/rank2reward
https://github.com/tongzhoumu/DrS
https://github.com/Alescontrela/viper_rl

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: A list of subtasks and language description for each subtask used for REDS in our experi-
ments.

Task Subtask Success condition Language description

Meta-world Faucet Close 1 object grasped ≤ 0.9 a robot arm reaching the faucet handle.
2 target to obj ≤ 0.07 a robot arm rotating the faucet handle to the right.

Meta-world Drawer Open 1 gripper error ≤ 0.03 a robot arm grabbing the drawer handle.
2 handle error ≤ 0.03 a robot arm opening a drawer to the green target point.
3 handle error ≤ 0.03 a robot arm holding the drawer handle near the green target point after opening.

Meta-world Lever Pull 1 ready to lift > 0.9 a robot arm touching the lever.
2 lever error ≤ np.pi/24 a robot arm pulling up the lever to the red target point.

Meta-world Door Open 1 reward ready ≥ 1.0 a robot arm grabbing the door handle.
2 abs(obs[4]− self. target pos[0]) ≤ 0.08 a robot arm opening a door to the green target point.
3 abs(obs[4]− self. target pos[0]) ≤ 0.08 a robot arm holding the door handle near the green target point after opening.

Meta-world Coffee Pull 1 tcp to obj < 0.04 ∧ tcp open > 0 a robot arm grabbing the coffee cup.
2 obj to target ≤ 0.07 a robot arm moving the coffee cup to the green target point.
3 obj to target ≤ 0.07 a robot arm holding the cup near the green target point.

Meta-world Peg Insert Side 1 tcp to obj < 0.03 ∧ tcp open > 0 a robot arm grabbing the green peg.
2 obj[2]− 0.1 > self.obj init pos[2] a robot arm lifting the green peg from the floor.
3 obj to target ≤ 0.07 a robot arm inserting the green peg to the hole of the red box.
4 obj to target ≤ 0.07 a robot arm holding the green peg after inserting.

Meta-world Push 1 tcp to obj ≤ 0.03 a robot arm grabbing the red cube.
2 target to obj ≤ 0.05 a robot arm pushing the grabbed red cube to the green target point.
3 target to obj ≤ 0.05 a robot arm holding the grabbed red cube near the green target point.

Meta-world Sweep Into 1 self.touching main object > 0 ∧ tcp opened > 0 a robot arm grabbing the red cube.
2 target to obj ≤ 0.05 a robot arm sweeping the grabbed red cube to the blue target point.
3 target to obj ≤ 0.05 a robot arm holding the grabbed red cube near the blue target point.

Meta-world Door Close 1 in place == 1.0 a robot arm grabbing the door handle.
2 obj to target ≤ 0.08 a robot arm closing a door to the green target point.
3 obj to target ≤ 0.08 a robot arm holding the door handle near the green target point after closing.

Meta-world Window Close 1 tcp to obj ≤ 0.05 a robot arm grabbing the window handle.
2 target to obj ≤ 0.05 a robot arm closing a window from left to right.
3 target to obj ≤ 0.05 a robot arm holding the window handle after closing.

FurnitureBench One Leg 1 robot gripper tips make contact with one surface of the tabletop. a robot arm picking up the white tabletop.
2 nearest corner of the tabletop is placed close to the right edge of the obstacle. a robot arm pushing the white tabletop to the front right corner.
3 robot gripper securely grasps a leg of the table and lifts it. a robot arm picking up the white leg.
4 leg is inserted into one of the screw holes of the tabletop, and the robot releases the gripper. a robot arm inserting the white leg into screw hole.
5 leg is fully assembled to the tabletop. a robot arm screwing the white leg until tightly lifted.
6 leg is fully assembled to the tabletop. a robot arm holding the white leg in place.

RLBench Take Umbrella Out of Umbrella Stand 1 GraspedCondition(self.robot.gripper, self.umbrella).conditionmet()[0] a robot arm grasping the umbrella.
2 DetectedCondition(self.umbrella, self.successsensor,negated = True).conditionmet()[0] a robot arm taking the grasped umbrella ouf of the umbrella stand.
3 DetectedCondition(self.umbrella, self.successsensor,negated = True).conditionmet()[0] a robot arm holding the umbrella on the umbrella stand.

Table 7: A list of language description used for CLIP and LIV.

Task Language description

Meta-world Door Open a robot arm grabbing the drawer handle and opening the drawer.
Meta-world Drawer Open a robot arm grabbing the door handle and opening the door to the green target point.

for optimizing intrinsic reward functions in skill discovery, our method applies EPIC distance to train
dense reward functions for long-horizon tasks, serving as a direct reward signal for RL training.

Segmenting demonstrations for long-horizon manipulation tasks Several approaches have
been proposed to decompose long-horizon demonstrations into multiple subgoals to prevent error
accumulation and provide intermediate signals for agent training. These include extracting key
points from proprioceptive states (James & Davison, 2022; James et al., 2022; Shridhar et al., 2022;
Shi et al., 2023), employing greedy heuristics on off-the-shelf visual representations pre-trained
with robotic data (Zhang et al., 2024), and learning additional modules on top of pre-trained visual-
language models to align with keyframes (Kou et al., 2024). Our work builds on these efforts
by leveraging subtask segmentations but focuses on developing a reward learning framework that
explicitly incorporates subtask decomposition to generate suitable reward signals for intermediate
tasks. Additionally, we further demonstrate that our model generalizes effectively to unseen tasks
and robot embodiments.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F EXTENDED QUALITATIVE ANALYSIS

Figure 10: Qualitative results of VIPER (Escontrela et al., 2023), ORIL (Zolna et al., 2020), DrS (Mu
et al., 2024), and REDS (Ours) in Peg Insert Side (left), and Sweep Into (right) from Meta-world Yu
et al. (2020). We visualize several frames above the graph and mark them with a diamond symbol.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Qualitative results of VIPER (Escontrela et al., 2023), DrS (Mu et al., 2024), and REDS
(Ours) in One Leg from FurnitureBench (Heo et al., 2023). We visualize several frames above the
graph and mark them with a diamond symbol. VIPER, which does not utilize subtask information,
assigns lower rewards to later subtasks, making agents stagnate in earlier phases. While DrS uses
ground-truth subtask information from the environment, it produces sparse reward signals within
each subtask. In contrast, REDS provides subtask-aware signals in transition states (e.g., between 2
and 3, and 4 and 5) and generates progressive reward signals (see the bottom figure zoomed in for
each subtask) throughout each subtask.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS
CLIP
LIV
DR

(a) Additional baselines

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

= 0.5
= 0.1
= 0.0
= 1.0

(b) hyperparameter ϵ

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

75th percentile
50th percentile
25th percentile

(c) Threshold TU

Figure 12: Learning curves for two Meta-world (Yu et al., 2020) robotic manipulation tasks, mea-
sured by success rate (%). The solid line and shaded regions show the mean and stratified bootstrap
interval across 4 runs.

G ADDITIONAL EXPERIMENTS

Comparison with additional baselines We first compare REDS with additional baselines,
CLIP (Radford et al., 2021a) and LIV (Ma et al., 2023a), utilizing the distance between visual obser-
vation and text instructions for generating rewards. It’s important to note that these models cannot
infer subtasks in online interaction unlike REDS; therefore, we use other text instructions describing
how to solve the whole task. (refer to Table 7 for details). Figure 12a shows that REDS significantly
outperforms baselines, indicating that providing detailed signals aware of subtasks is crucial for bet-
ter RL performance. Additionally, we compare REDS with Diffusion Reward (DR) (Huang et al.,
2024), which utilizes conditional entropy from a video diffusion model as a reward signal. Our
findings indicate that REDS also significantly outperforms DR. This is attributed to the fact that DR
does not explicitly incorporate subtask information, which is essential for generating context-aware
rewards in long-horizon tasks. These results further emphasize the advantage of REDS in handling
tasks requiring precise subtask guidance.

Effect of scaling progressive reward signals In Figure 12b, we examine the effect of ϵ scaling
the regularization for progressive reward signals in Equation 4. We observe that ϵ = 0.5 shows
the best performance, while smaller values relatively weaken helpful progressive signals, and larger
values degrade the reward function by reducing the accuracy in inferring subtasks.

Effect of threshold TU for subtask inference We present experimental results using various
threshold TU in Figure 12c. We observe that a lower percentile threshold exhibits lower RL per-
formance. These results indicate that a lower percentile threshold allows more observations to be
classified as successful; however, this can lead to misleading subtask identification, resulting in
decreased RL performance.

Table 8: Precision in identifying sub-
tasks of REDS on 50 unseen expert
demonstrations and 50 unseen subopti-
mal demonstrations.

Fine-tuning Expert Suboptimal Total

✗ 94.49% 70.90% 82.70%
✓ 92.56% 91.49% 92.03%

Subtask identification ability of REDS To assess the
subtask identification capability of REDS, we measure
its precision before and after fine-tuning with additional
suboptimal demonstrations. This evaluation involves us-
ing 50 unseen expert demonstrations and 50 suboptimal
demonstrations sampled from the replay buffer of Dream-
erV3 agents that were trained with a human-engineered
reward. Table 8 shows that the precision is comparable
for expert demonstrations for both agents; however, there
is a significant increase in precision for suboptimal demonstrations after fine-tuning. This improve-
ment in precision results in enhanced RL performance, as illustrated in Figure 9c.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: EPIC (Gleave et al., 2021) distance
(lower is better) between learned reward functions
and subtask segmentations in unseen data.

Task VIPER R2R ORIL REDS (Ours)

Meta-world Door Open 0.6017 0.5731 0.7017 0.4870
Meta-world Push 0.6293 0.7014 0.7094 0.5129
Meta-world Peg Insert Side 0.6384 0.6021 0.7001 0.4381
Meta-world Sweep Into 0.6179 0.6584 0.7011 0.4293

Additional EPIC measurements To further
validate the efficacy of our method, we mea-
sure the EPIC distance between learned reward
functions and subtask segmentations in Meta-
world environments. Note that we report the re-
sult with the same set of unseen demonstrations
used in Section 5.3. In Table 9, we observe
that REDS exhibits significantly lower EPIC
distance than baselines across all tasks, consis-
tently supporting the claims from the experiments in the main text.

24

	Introduction
	Related Work
	Preliminaries
	Method
	Subtask Segmentation
	Architecture
	Reward Modeling
	Training and Inference

	Experiments
	Meta-world Experiments
	FurnitureBench Experiments
	Alignment with Ground-truth Rewards
	Generalization Capabilities
	Ablation Studies

	Conclusion
	Experiment Details
	REDS Architecture Details
	Baseline Details
	Task Descriptions
	Extended Related Work
	Extended Qualitative Analysis
	Additional Experiments

