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ABSTRACT

This paper presents Safurai-001, a new Large Language Model (LLM) with sig-
nificant potential in the domain of coding assistance. Driven by recent advance-
ments in coding LLMs, Safurai-001 competes in performance with the latest mod-
els like WizardCoder(1), PanguCoder(2)) and Phi-1(3) but aims to deliver a more
“conversational” interaction. By capitalizing on the progress in data engineering
(latest techniques of data transformation and prompt engineering) and instruction
tuning, this new model promises to stand toe-to-toe with recent closed and open
source developments. Recognizing the need for an efficacious evaluation metric
for coding LLMs, this paper also introduces GPT4-based MultiParameters: an
evaluation benchmark that harnesses varied parameters to present a comprehen-
sive insight into the model’s functioning and performance. Our assessment shows
that Safurai-001 can outperform GPT—3.5P_-] by 1.58% and WizardCoder by 18.78%
in Code Readability parameter and more.

1 INTRODUCTION

Code large language models are one of the most promising applications of LLMs and they have
drawn a lot of interest from both academia and industry because of their extraordinary aptitude for
tasks involving codes.

The closed-source models landscape is dominated by OpenAl models: GPT-3.5 and GPT-4(4) (ac-
tually, the best ranked model in HumanEval pass@1 chart). Before the release of Starcoder(d),
open-source world fall far behind commercial models in terms of model size, capability, and perfor-
mance.

However, this paradigm started changing with the advent of Starcoder. It have been frequently
employed as a foundational model in the development of other models with great results like
WizardCoder(1)) and PanguCoder(2)), diminishing significantly the performance gap between open
and closed-source coding LLMs. Lately, also Meta introduced a new set of 12 LLMs available for
commercial use: LLAMA?2 release (6). Teams from all over in the world could use LLAMA?2 as
new foundation model for Coding LLMs, in competition with StarCoder.

In the latest publications in Coding LLMs field, many efforts have been made regarding for data
engineering (Phi-1) and instruction tuning (WizardCoder).

We have tried to capitalize on all the latest innovations in the field of Coding LLMs to develop a
high-performance model that is in line with the latest open-source releases.

In a nutshell, we make the following contribution:

* We present Safurai-001, a model that competes with WizardCoder for performances and
tries to have a more “conversational” approach.

* We introduce a new evaluation benchmark for coding LLMs, GPT4-based MultiParameters
Evaluation Benchmark. This benchmark embraces multiple crucial parameters to offer
deeper insights into the model’s performance.

'https://openai.com/blog/introducing-chatgpt-and-whisper-apis
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2 RELATED WORK

2.1 CODING LARGE LANGUAGE MODELS

The impressive Codex model, with its 12 billion parameters, illustrates a remarkable capacity to
solve approximately 72% of Python programming challenges. This achievement has paved the way
for the development of other advanced code generation models, including AlphaCode(7), PaLM-
Coder(8), and PanGu-Coder(2). However, one notable drawback is the lack of open-source avail-
ability of these state-of-the-art models, a void that has subsequently been filled by the release of
several open-source variants such as CodeParro PolyCode PyCodeGPTE], SantaCoder(9)), and
StarCoder(5). This new wave of open-source models have reinvigorated the code generation field.

Furthermore, the sequential expansions of code generation application scopes are reflective of the
field’s ever-growing practicality. For instance, CodeGeeX(10), BLOOM(11) and ERNIE-Code(12)
have been developed to enable multilingual modeling. JuPyT5(13) was trained using an extensive
corpus of Jupyter notebooks, its primary objective being to enhance the process of interactive pro-
gramming. Models like DocCoder and APICoder(14)have also been constructed to equip language
models with the functionality to call APIs. Moreover, a number of models, including InCoder(15),
SantaCoder, and StarCoder, support code generation at arbitrary locations.

Recently, some groups have been utilizing instructional tuning techniques to tap into the vast po-
tential knowledge contained within extensive language models. This process involves carefully
refining these models with high-quality datasets. In terms of code generation, WizardCoder (15B),
PanguCoder and phi-1 (1.3B) models stand out for their exemplary performance. This was achieved
through careful fine-tuning with data generated by OpenAI’s GPT-3.5 and GPT-4.

2.2 CODE, ALGEBRA AND LOGIC DATASET LANDSCAPE

The landscape of code, logic, and algebra datasets is teeming with new possible resources that can
be used for finetuning Coding LLMs (the majority of them are open source).

The most important coding dataset in this field is CodeAlpaca-ZOkE} Many models, like PanGu-
Coder or WizardCoder, have structured their dataset also through the manipulation of Code Alpaca
with data augmentation techniques. Also Phi-1(3) coding model has been trained with filtered code-
language dataset, which is a subset of The StackE] (it contains over 6TB of permissively-licensed
source code files covering 358 programming languages).

The open source community offers a variety of resources in Q&A format that are helpful for fine-
tuning LLMs in terms of datasets for mathematics and logic. The majority of these datasets were
produced by Tiﬂ GPT-3.5, GPT-4, or a combination of these models (although OpenAl policies can
still be interpreted in this context).

2.3 LATEST TECHNIQUES FOR PROMPT ENGINEERING

In this section, we outline the primary prompt engineering methods combined with prompt engi-
neering, applied to the coding LLM:s field:

* Chain of Thoughts (CoT): Wei et al.[2023] report that large language models can enable
the emergence of reasoning abilities when prompted in this way. A chain of thought is a
series of intermediate natural language reasoning steps that lead to the final output.

* CoT and Self-Consistency: this is the natural evolution of CoT technique. It first samples
a diverse set of reasoning paths instead of only taking the greedy one, and then selects the
most consistent answer by marginalizing out the sampled reasoning paths. Self-consistency

Zhttps://huggingface.co/codeparrot/codeparrot
3https://huggingface.co/NinedayWang/PolyCoder-2.7B
*https://github.com/microsoft/PyCodeGPT
Shttps://huggingface.co/datasets/HuggingFaceH4/Code Alpaca_20K
®https://huggingface.co/datasets/bigcode/the-stack
"https://huggingface.co/docs/transformers/model_doc/t5
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leverages the intuition that a complex reasoning problem typically admits multiple different
ways of thinking leading to its unique correct answer (Wang et al.[2022]).

* Tree of Thoughts (ToT): Yao et al.[2023] report that ToT allows LMs to perform deliber-
ate decision making by considering multiple different reasoning paths and self-evaluating
choices to decide the next course of action, as well as looking ahead or backtracking when
necessary to make global choices.

» Teacher CoT: Ho et al.[2023] demonstrated that through the augmentation of the prompt
with an “educational” explanation generated by a larger model, excellent results are ob-
tained in the finetuning of smaller models. Also Mukherjee et al.[2023] used this “’teach-
ing” approach to develop Orca model.

* Evollnstruct: Luo et al.[2023] proposed a new approach for data augmentation that
achieved important results. They found that LLMs can make given instructions more com-
plex and difficult using specific prompts. Additionally, models can generate entirely new
instructions that are equally complex but completely different. Using this discovery, the
WizardCoder creators can iteratively evolve an initial instruction dataset, improving diffi-
culty level and expanding its richness and diversity

2.4 LATEST EVALUATION TECHNIQUES FOR CODING LLMSs (HUMANEVAL, MBPP,
MULTIPL-E, HUMANEVAL PACK)

This subchapter provides an overview of the benchmarks currently being used to evaluate Coding
LLMs.

1. HumanEvaﬂ This general standard benchmark holds a set of 163 problems constrained to
Python language. It assesses whether the model’s code successfully passes all the tests
and provides binary and quantitative results only. Generally, there are 3 types of Hu-
maneval evaluation: pass@ 1, pass@ 10 and pass@100. They are different in the number of
“chances” given to the tested model to generate the right answer to the problem.

2. MultiPL-Eﬂ Based on the premise of HumanEval, MultiPL-E takes this benchmark and
translates its results to numerous programming languages like C++, Rust, Go, Java and
more. With the same ranking structure as HumanEval, this tool also provides a quantitative
binary evaluation.

3. MBPHT_G} Consisting of approximately 1000 programming issues sourced from Python pro-
grammers, this benchmark is geared towards beginners. It offers a description of tasks,
corresponding code solutions, and three automatic test cases. Its focus is on programming
fundamentals and the application of standard library functions.

4. HumanEval Pack: This innovative evaluation method by BigCode’sEr] team brings a fresh
perspective to the assessment of Coding LLMs. It expands the HumanEval by engaging
three different stages: Fix, Explain, and Synthesize. The “Fix” stage evaluates the model’s
ability to rectify code functions containing subtle bugs, the “Explain” stage assesses the
model’s capacity to generate clear code explanations, while the “Synthesize” stage gauges
how effectively the model synthesizes code given a natural language instruction.

3 METHODS

3.1 DATASET OVERVIEW

Overall, for the generation of Safurai-001 (starting from StarCoder(5) 15B) we used a dataset of
200,000 Q&A examples.

As we have seen from the publications of WizardCoder(1) and Phi-1(3), data quality is essential for
the generation of a performing LLM coding. For this we have used the latest data augmentation and

8https://huggingface.co/datasets/openai_humaneval
“https://huggingface.co/datasets/nuprl/MultiPL-E
https://huggingface.co/datasets/mbpp
"https://huggingface.co/bigcode
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prompting engineering techniques to generate the datasets. Furthermore, we involved some datasets
and data related to basic logical and algebraic reasoning, in order to boost the comprehension Star-
Coder abilities.

3.2 INITIAL DATASET SOURCES

These are our proprietary datasets that we selected for Safurai-001 training:

¢ Safurai Code Dataset (163k)
* Logic Q&A Dataset (22k)
¢ Math Q&A Dataset (15k)

3.3 DATA TRANSFORMATION

We employed an additional LLM to enhance the educational potential present within the model. By
incorporating both a problem and its solution, we prompted the model to elucidate the reasoning
process leading to the solution.

Our experimentation with various techniques led to the creation of a diverse dataset. The following
are some of the methods we harnessed to augment the educational value:

Trasformation techniques used for our initial datasets:

* Chain of thoughts reasoning
* Tree of thoughts reasoning
» Show potential errors

 Focus on edge cases and explain unit tests

Highlight question requests in a more objective manner
* Coding lesson related to the topic
* Teaching the response

3.3.1 DATA TRANSFORMATION PROMPT EXPERIMENTS EXAMPLES:

ToT Code Instructor

"As_part of_an_exercise_in improving AI_code,
explanations, your_task _is_as_follows:\n"

f"Question: _\n\n{row[’instruction’]}\n\n"

f"Existing_Answer:_\n\n{row[’output’]}\n\n"

"The_given_answer, ,though_technically correct, ,doesn’t
offer_insights_into_the_underlying_thought_process.\n
"

"Your_mission: devise_a_comprehensive_step-by-step_plan,
leading,_to_the_answer._\n"
"This_,should include_plain_language_explanations_and,
corresponding_code, neatly presented_in_markdown. "
"Your_answer_will_serve_as_a more_informative_substitute
_for_the_initial _one._Strive_for simplicity_and_human
—like_communication.\n\n"

"But_there’s_a twist:_envisage_a_collaboration_ between_
three_experts, ,each adding_a_piece_to_the_puzzle. "

"After_contributing_a_step, they discuss_it_with_the_
group, before_proceeding. "

"If an_expert determines_their step is_incorrect, they,
step_away_from_the_task._ "

"The_exercise_concludes_when_a_comprehensive_correct,
answer, has, been,_achieved, ,or all experts_have,
withdrawn."
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CoT Code Instructor

"I’'m training_a_code-writing AI_and I _need_your_help._\n
"

f"Here’s_a,_sample_question: _\n\n{row[’instruction’]}\n\n
n

f"And _here’s_an_answer: _\n\n{row[’output’]}\n\n"

"The_given_answer_is_too_basic_and _doesn’t_explain_the
steps_taken_to_arrive_at_it.\n"

"Could,_you, help, create _a,  step-by-step, plan, to_reach this
_answer?_\n"

"Each_step_should _be_simple and_understandable._\n"

"Your_answer _should iinclude_this_plan_and_the_actual_
code_,in_markdown_in_one_block."

"Your_answer _will replace_the_one_ I’ve_shown_you._ It
should _sound_human!"

"Make_ssure_not_to_cut_off words_or sentences_midway."

—

Teacher Code Instructor

"Imagine_you,_are_a programming, expert tasked_with_
providing, clear _and  formal_programming assistance. "

f"You_are_presented _with_this _problem: \n\n{rowl[’
instruction’ ] }\n\n"

"You_have_two_primary_goals: "

"1l) _explain_the_process_to_solve_the_problem_ step_ by,
step. Explain_the_process_to_solve_the_problem step,
by _step_in_a_conversational manner, with_a_few_bullet
_points."

"2)_include_specific_examples_of ,common_errors_that,
should _be_avoided, ,accompanied by code snippets,
illustrating_these_mistakes._Tag these_code_snippets,
as_Error_Example’._ "

"When_providing _the_correct solution, _ensure_there_ are,
comments,_in_the_ code_to _enhance_ its_comprehensibility
; .addressing crucial_points_and_possible_mistakes. "

CoT Logic Instructor

"I_have_a_dataset_with_questions_and_responses_about
logical _problems._\n"

f"This_is_one_logical _problem: \n\n{row[’instruction’]}\
n\nll

f"This_is_the_provided solution_ to the_problem: \n\n{row
[“output’]}\n\n"

"The_provided solution_is_too_simple_and_doesn’t_explain
_the_process_to_get,_it.\n"

"Can_you_please_provide_a_detailed_reasoning to_get_the_
solution?_\n"

3.4 SAFURAI-001 DATASETS USED FOR FINETUNING:

 Safurai Code Instructor (16k) (filtered examples from initial Safurai Code Dataset, not
transformed)

* Logic Q&A Dataset (22k)
¢ Teacher Code Instructor (70k)
¢ Math Q&A Dataset (15k)
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¢ Teacher Code Instructor with Potential Errors (21k)
¢ ToT Code Instructor (30k)
¢ CoT Code Instructor (26k)

M Teacher Code Instructor (70k)
ToT Code Instructor (30k)
M CoT Code Instructor (26k)

W Logic Instructor (22k)

M Safurai Code Instructor (16k)

W Math Instructor (15k)

Figure 1: Safurai-001 Datasets Compartition

3.5 FINE-TUNING METHODS

The training process for the StarCoder model was carried out on eight 100 A100 80GB graphics
cards, with the full network trained for 10 hours. This process was implemented using the Deep-
Speed ZeRO-3 framework. In order to fine-tune the StarCoder models, we leveraged the GitHub

repository of Big Code: https://github.com/bigcode-project/starcoder/tree/main/chat

Given that the focus was on instruction tuning, the data was wrapped in a dialogue format. An

example of this is illustrated below:

{

"messages": [

{

"content": "Is it _possible_to_,imagine_a_society
_without_law?",
"role": "user"},

"content": "It _is_difficult_to_imagine_a,
society that is_able_to_be maintained
without_any_semblance_of_Law.",

"role": "assistant",

"content": "It _seems_like_you _consider_the_
absence_of law_equal to_the_absence_ of
anything_that could_guide_the behaviour_of
the_individual.",

"role": "user",

—

"content": "You_are correct that_there_ are_
other factors that_can_guide behavior_in_a
society _,and _play_a_role_in_shaping,

—

M Teacher Code Instructor with Potential Errors (21k)
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individuals’ _behavior_and_interactions_with_
each_other._However, _even_in_societies_where
_these_factors are present, ,laws_still_serve
_an_important_role_in _maintaining_social_,
order_and _resolving_conflicts.",

"role": "assistant",

We also wrapped the dialogue with special tokens. Here’s an example of how it looks:

<|system]|>

Below is a dialogue between a human and AI assistant
called StarChat.

<|lend|>

<|luser|>

Is it possible to imagine a society without law?<]|end]|>

<lassistant|>

It is difficult to imagine ...<|end|>
<|luser|>

It seems like you ...<|end|>
<|assistant|>

You are correct ...<|end|>

<|user|>

Yeah, but laws are complicated ...<|end]|>

The training process involved setting up several hyperparameters. The hyperparameters settings for
the training are detailed as follows:

* Batch size: 512

* Learning rate: 2e-5
* Epochs: 3

* Max length: 2048
e Warmup step: 30

* Learning rate (LR) scheduler: cosine

3.6 EVALUATION

Deepening our grasp of the capabilities and scope of LLM models is substantial to refining their
application in the real world. However, we found the currently available evaluation methods such
as HumanEva to be limited in their ability to provide a comprehensive analysis of these models’
abilities. This led to the invention of the GPT4-based MultiParameters Evaluation method, a qual-
itative alternative designed to provide a more nuanced understanding of the performance of coding
LLMs.

These new qualitative criteria enable us to explore more use-cases outside the conventional binary
pass-fail result of the existing quantitative methods, thus providing a more detailed narrative that
identifies the unique strengths (or weaknesses) of each model. HumanEval, MBP and MultiPL-

Most of them lean towards a quantitative rather than a qualitative evaluation, leaving out crucial
aspects of the models’ capabilities. As such, we justify the innovation and necessity of our GPT4-
based MultiParameters Evaluation method in addressing this gap.

Phttps://huggingface.co/datasets/openai_humaneval
Bhttps://huggingface.co/datasets/mbpp
“https://huggingface.co/datasets/nuprl/MultiPL-E
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3.7 NEW EXPERIMENTS ON THE EVALUATION (GPT4-BASED MULTIPARAMETERS
EVALUATION)

Seeking to explore the qualitative aspects of our LLM model Safurai, we experimented with a new
evaluation approach based on GPT-4(4).

3.7.1 GPT4-BASED ANALYSIS

This method involved assessing 20 (GPT-4 HE-20) and 40 (GPT-4 HE-40) answers derived from
each of the models being compared, obtained through the HumanEval dataset. GPT-4 was used to
determine the performance of models: Safurai, ClaudeE], WizardCoder(1)), ChatGPTEl, and Starchat
Alpha Prompteﬂ We combined both the problem and the five responses into a single GPT-4
prompt plus the specific tests of the problem, which was asked to rate each response on a scale
of 0 to 100 — the best possible score. Moreover, to deepen our understanding, we asked GPT-4 to
provide a concise description detailing the reasoning behind its ratings. This is the GPT-4 prompt:
I asked this to 4 different AI models: [problem] This is the first model answer: [answer] This is
the second model answer: [answer] This is the third model answer: [answer] This is the fourth
model answer: [answer] These are the tests for the code solution of the problem: [tests] Please
rate each answer from 0 to 100 (best answer possible). Consider whether the code fully solves the
problem, if it handles all edge cases, and if it contains all necessary functionalities. Also, provide a
short explanation for each rating. This way, in addition to quantifying performance, our evaluation
strategy reveals valuable insights into each model’s strengths and weaknesses. (Table 2)

Table 2: Results of GPT-4 HumanEval-20 and GPT-4 HumanEval-40

Date Model GPT-4 GPT-4
HumanEval-20 HumanEval-40

Closed source models

2022 Nov GPT3.5-turbo 81,5% 80,875%
2023 March Claude T5% 78,7%

Open source models

2023 May Starchat-Alpha 64.,3% 62,4%
prompted

2023 June WizardCoder 74,4% 74,7%

2023 June Safurai-001 85% (+3.5%) 84,875% (+4%)

The experiments detailed above provided a holistic process for comparative model evaluation. By
evaluating 20 (GPT-4 HE-20) and 40 (GPT-4 HE-40) responses from each compared model using
the HumanEval dataset, we generated valuable quantitative data and underlying qualitative insights
on model performance.

However, we recognized that the comprehensive ratings provided by GPT-4, while integral to the
evaluation process, cannot fully capture the nuanced specificities inherent in each model. Compre-
hensive ratings bootstrap a model’s ability to resolve a problem and generate correct code, but they
fall short in illuminating aspects such as efficiency, readability, best coding practices, and relevance
to problem. These key dimensions, though less evident, are equally vital to a model’s utility and
impact in real-world software development scenarios.

To alleviate these shortcomings and provide a more detailed, multidimensional, and nuanced ap-
praisal of the models’ functionalities, we introduced a four-parameter rating system.

Shttps://www.anthropic.com/index/introducing-claude
https://openai.com/blog/chatgpt
"https://huggingface.co/HuggingFaceH4/starchat-alpha
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3.7.2 GPT4-BASED MULTIPARAMETERS EVALUATION BENCHMARK

To understand even more about the model responses, we created a Multi-Parametric GPT4-based
Evaluation system. The singular GPT-4 prompt, containing both the problem and the four respective
solutions, was not only rated generally but was also dissected based on four distinct parameters.
These were:

1.

2.

Code Correctness and Completeness: This involved gauging whether the code runs without
errors and if it fully solves the problem, considering all potential edge cases.

Efficiency: This measurement determined the optimization level of the code. It scrutinized
whether the code utilizes resources capably, and whether it scales efficiently as input size
increases.

. Readability and Best Practices: This criterion evaluated the clarity of the written code,

whether it’s easily comprehensible, and if it conforms to established coding conventions
and best practices.

. Relevance to Problem (On-point Answer): This parameter evaluated how directly the code

solves the given problem, assessing whether the solution implemented is efficacious and
appropriate.

These are the GPT-4 prompts used for each parameter:

1.

[ asked this to 4 different AI models: [problem] This is the first model answer: [answer]
This is the second model answer: [answer] This is the third model answer: [answer]
This is the fourth model answer: [answer] These are the tests for the code solution of the
problem: [tests] Please rate each answer from 0 to 100 (best answer possible) based on
Code Completeness. Consider whether the code fully solves the problem, if it handles all
edge cases, and if it contains all necessary functionalities. Also, provide a short explanation
for each rating.

. I asked this to 4 different AI models: [problem] This is the first model answer: [answer]

This is the second model answer: [answer] This is the third model answer: [answer] This is
the fourth model answer: [answer] These are the tests for the code solution of the problem:
[tests] Please rate each answer from 0 to 100 (best answer possible) on Efficiency. This
entails considering how well-optimized the code is, how frugally it uses system resources,
and its scalability or robustness for larger inputs. Consider both its time complexity (ability
to perform tasks quickly) and space complexity (how much memory the program uses).
Also, provide a short explanation for each rating.

. 1 asked this to 4 different AI models: [problem] This is the first model answer: [answer]

This is the second model answer: [answer] This is the third model answer: [answer]
This is the fourth model answer: [answer] These are the tests for the code solution of
the problem: [tests] Please rate each answer from 0 to 100 (best answer possible) based
on its Helpfulness and Educational Value. Consider whether the answer provides clear
explanations, whether it’s easy to follow and understand, whether it teaches you something
valuable about the problem or the coding concepts involved, and whether it gives you new
insights that could help you in future similar problems. Also, provide a short explanation
for each rating.

. 1 asked this to 4 different AI models: [problem] This is the first model answer: [answer]

This is the second model answer: [answer] This is the third model answer: [answer]
This is the fourth model answer: [answer] These are the tests for the code solution of the
problem: [tests] Please rate each answer from 0 to 100 (best answer possible) based on
its Relevance to Problem (On-point answer). Consider how directly the code answers the
problem, if it provides an adequate and appropriate solution, and whether it implements
the requirements stated in the problem. Also, provide a short explanation for each rating.

3.7.3 WHy GPT-4?

Choosing GPT-4 as the foundation for our novel evaluation method was a clear and strategic deci-
sion. At the current state-of-the-art, GPT-4 showcases the most superior performance amongst all
existing coding models.
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In addition to its exemplary robustness and efficiency, GPT-4 boasts an extensive range of applica-
tions, making it an ideal model for evaluating less potent ones in diverse facets. This ability allows
the evaluation process to be as comprehensive as possible, scrutinizing every model under multiple
parameters and therefore obtaining an all-encompassing performance profile.

However, it’s worth noting that there are inherent limitations associated with GPT-4. These limi-
tations, reflected as weaknesses in our newly proposed evaluation system, include potential biases
carried over from GPT-4 behaviours. Nevertheless, as long as no other model matches or surpasses
GPT-4’s aptitude, these weaknesses remain relatively negligible. We reckon that at this stage, GPT-
4 presents the most accurate measure for performance indicators considered in our GPT4-based
MultiParameters Evaluation methodology.

Thus, until a more advanced model than GPT-4 enters the arena, our focus remains on deriving
maximum benefit from this superior model, optimizing its use in revealing the strengths and areas
of improvement of each evaluated coding model.

4 EXPERIMENTAL RESULT

4.1 MODEL PERFORMANCES

Example of Multi-Turn conversation with Safurai-001

[ USER: Hello Safu! ]

Safurai-001: Hello! How can I assist you today?

USER: What’s your level of coding in Python?

Safurai-001: As an Al language model, I have been created and trained to have a strong
understanding of Python programming language. I can help with a wide range of topics and
tasks in Python, from basic syntax and concepts to more advanced algorithms or frameworks.
Feel free to ask me anything related to Python coding, and I'll do my best to assist you!

USER: How can I write a function in Python to find the median of a list? Please include the
time and space complexity of the solution.

10
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Safurai-001: The median of a list is the middle value when the list is sorted in ascending
order. If the list has an odd number of elements, the median is the middle element. If the list
has an even number of elements, the median is the average of the two middle elements.

To solve this problem, we can follow these steps:

1. Sort the list in ascending order.

2. Check if the length of the list is odd or even.

3. If the length is odd, return the middle element.

4. If the length is even, calculate the average of the two middle elements and return it.
Here is the implementation of the median function:

def median(l: list):
l.sort () # Sort the list in ascending
order
length = len(l)
if length % 2 == 1: # Check if the
length is odd
return 1l[length // 2] # Return the
middle element
else:
midl = 1[length // 2] # First middle
element
mid2 = 1[length // 2 - 1] # Second
middle element
return (midl + mid2) / 2 # Return
the average of the two middle
elements

Test cases:

print (median([3, 1, 2, 4, 5])) # Output: 3
print (median([-10, 4, 6, 1000, 10, 20])) #
Output: 15.0

The time complexity of this solution is O(n log n), where n is the length of the input list.
This is because the sorting operation takes O(n log n) time. The space complexity is O(1) as
we are not using any additional data structures.

4.2 TRANSFORMED DATASET EXAMPLES

Original Input

Write a JavaScript code to loop over all elements in the given array. Input: numbersArray =
[45, 6,23, 12, 35]

Original Output

for(let i = 0; i j numbersArray.length; i++) console.log(numbersArrayl[i]);

Augmented Output

11
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Sure, I’d be happy to help! 1. Start by declaring the array variable:

const numbersArray = [45, 6, 23, 12, 35]

2. We want to loop over all elements in the array, so we need to use a for loop. 3. Declare
our index variable i and set it to 0 4. Define the loop condition; we want to continue looping
as long as the index variable is less than the length of the array. 5. Use the console.log()
method to print out the value of the current element in the array. 6. Finally, increment the
index variable by 1 to move onto the next element in the array. Here’s the final code:

const numbersArray = [45, 6, 23, 12, 35];
for (let i = 0; i < numbersArray.
length; i++) { console.log(
numbersArray([i]); }

This code will loop over all elements in the array and print out their values to the console.

4.3 EVALUATION RESULTS
4.3.1 HUMANEvVAL

HumanEvaﬂ established by OpenAl, has been the go-to benchmark in evaluating coding AI mod-
els. It focuses on the model’s code-generation capacity based on precise requests and provides
standard solutions and tests. MultiPL— extends the boundaries of the current benchmarks by
translating them to new languages and thereby becoming a massive multi-language benchmarking
platform. It is continuously expanding in terms of number of programming languages, providing a
useful comparison point for models like Safurai.

Our model, Safurai001, achieved a pass@1 score of 50.61% on the HumanEval benchmark with
n=20. (Table 1)

Table 1: Results of pass@1(%) on HumanEval
Model Size HumanEval

Closed source models

Alphacode Li et al. [2022] 540B 26.2
Codex Chen et al. [2021] 12B 28.8
Code-Cushman-001 OpenAlI [2022] - 33.5
Code-Davinci-002 OpenAl [2022] - 47.0
GPT-3.5 OpenAl [2023] - 48.1
GPT-3.5 Luo et al. [2023] - 68.9
GPT-4 OpenAl [2023] - 67.0
GPT-4 Bubeck et al. [2023] - 82.0
Open source models
LLaMa Touvron et al. [2023] 65B 23.7
CodeT5+ Wang et al. [2023] 16B 30.9
StarCoder Li et al. [2023] 15B 33.6
WizardCoder Luo et al. [2023] 15B 57.3
Safurai001 [2023] 15B 50.61

However, the adoption of only these standards limits our analysis to quantitative metrics, thereby
losing some critical flavors of the models.

Bhttps://github.com/openai/human-eval
Phttps://huggingface.co/datasets/nuprl/MultiPL-E/viewer/humaneval-rs/test7row=0
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4.3.2 NEW QUALITATIVE EVALUATION BENCHMARK

We tested the models with the 40 selected problems of HumanEval, already used in GPT4-based
Analysis. The GPT4-based MultiParameters Evaluation method elucidates areas for optimization,
explains why a specific response is superior, and significantly comprehends the specific code-
generation abilities of each model; thus providing a detailed qualitative metric.

We found that this method reveals a plethora of valuable insights into each model’s strengths and
weaknesses, enabling the development of targeted strategies for enhancement. (Table 3)

Table 2: Results of GPT4-based MultiParameters HumanEval

Date Model Code Code Code Question
Correctness Efficiency Readability Relevance
2022 Nov GPT-3.5- 81.53% 80.33% 84.30% 82.25%
turbo
2023 March GPT-4 89.50% 89.38% 84.10% 90.93%
2023 June WizardCoder 60.7% 68.25% 67.1% 67.88%
2023 July Safurai-001 74.25% 75.45% 85.88% (+1.58%) 82.00%

We put our proposed GPT4-based MultiParameters Evaluation method to the test, using the same 40
selected problems from HumanEval which had been previously used in our GPT4-based Analysis.
The results obtained were intriguing, enlightening and informative, revealing areas of optimization
and superiority in specific responses and highlighting the need to explore code-generation abilities at
a profound level. The qualitative data provided by this method was a treasure trove of information,
reaching depths previous evaluation methods did not venture.

Interestingly, this assessment unveiled nuances in model performance that were not entirely pre-
dictive of functionality during actual deployment. For instance, despite WizardCoder(l)) achieving
higher scores in the HumanEval evaluation, it was observed that real-world day-to-day usage, espe-
cially for developers, was not as smooth. The model’s conversational abilities seemed to be some-
what lacking, making it hard to interact effectively with it. This was reflected in its score of 67.1 in
the Code Readability category, a stark contrast with SafuraiO01’s impressive score of 85.88.

In shadowing the performance of conventional quantitative benchmarks like HumanEval and
MultiPL-E, we developed a new qualitative evaluation method: the GPT4-based MultiParameters
Evaluation. This unprecedented approach provided a broader perspective of the nuances and intri-
cacies of LLM models, broadening the spectrum of their functionality and applications.

Models like Phil(3), developed by Microsoft Researchers, StarCoder(3), and WizardCoder(l)), are
mainly evaluated using conventional methods. While efficient, these methods lack the ability to
provide an exhaustive understanding of the model’s capabilities, thus justifying the necessity for the
development of our new evaluation method.

The GPT4-based MultiParameters Evaluation method breaks new ground in the LLM models eval-
uation field, enabling researchers to delve deeper into the functionality of these models and dramat-
ically enhancing their potential for improvement.

4.3.3 LIMITS OF GPT4-BASED MULTIPARAMETER EVALUATION BENCHMARK

* The GPT4-based MultiParameters Evaluation method can only evaluate up to a cer-
tain limit: It is benchmarked at the GPT4 level of performance. This implies that any
model exceeding the performance of GPT4 may not be reliably evaluated or accurately
assessed. This method, therefore, does not cater to the fast-paced advancements and con-
tinuous improvements in the Al development landscape.

e Variance in responses: Another constraint associated with the GPT4-based MultiParam-
eters Evaluation method is the variation in GPT4’s response. It does not always provide
consistent responses due to various reasons such as the difference in nature and complexity
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of the problem. This inconsistency presents challenges in providing a robust evaluation of
the Coding Al models.

* Time-intensive: The GPT4-based MultiParameters Evaluation is a relatively time-
consuming process. Due to the complex and multifaceted nature of this evaluation method,
it requires substantial time and resource compared to conventional methods. This could
limit its scalability and practical application in rapidly iterating development cycles.

* Qualitative nature: The GPT4-based MultiParameters Evaluation method mainly pro-
vides a qualitative evaluation. It may not effectively handle quantitative data or metrics,
and comparing those could be challenging. This could present limitations when models’
evaluation requires numerical comparisons or precise quantifiable results.

4.3.4 EXAMPLE OF GPT4-BASED MULTIPARAMETER EVALUATION RESPONSE

This is an example of GPT4-based MultiParameter Evaluation response. The problem is the Num-
ber 0 of HumanEval Benchmark. About the answers, the first model is Safurai-001, the second
ChatGPT, the third WizardCoder, and the fourth GPT4.

First Parameter: Code Correctness

First Model Answer: Rating: 90 Explanation: The code provided by the first model is
thorough, complete and well-explained. It correctly implements the function to solve the
problem. It handles the basic functionality of checking if any two numbers in the list are
closer than the threshold. However, it does not explicitly handle the edge case where the list
of numbers is empty.

Second Model Answer: Rating: 90 Explanation: The second model provides a complete
solution that is functional and concise. However, it does not handle edge case where the list
could be empty or include only one element.

Third Model Answer: Rating: 80 Explanation: The third model provides a functional solu-
tion to the problem, but it lacks in explanation and handling edge case when the list is empty
or includes only one element.

Fourth Model Answer: Rating: 100 Explanation: The fourth answer provides two complete
solutions, one with a time complexity of O(n?) and another efficient one with O(nlogn). It
correctly handles all scenarios and edge cases and provides a good balance between expla-
nation, completeness and efficiency.

Second Parameter: Code Efficiency

Answer 1: 75/100 This answer provides a brute-force solution by comparing each element
with every other element in the list. Although clear and correct, this solution has a time
complexity of O(n?), which means it may not be efficient for large lists of numbers, as it
doesn’t scale well with increasing input size.

Answer 2: 75/100 The solution given in Answer 2 is almost identical to the one in Answer
1, having a time complexity of O(n?) with a pairwise comparison. This lacks efficiency for
large inputs, and could benefit from using more optimized approaches, such as sorting the
list first.

Answer 3: 75/100 Much like the first two answers, answer 3 also uses a brute-force approach
in the solution. As it compares all pairs of numbers, it has a time complexity of O(n?),
meaning it won’t be efficient for larger lists.

Answer 4: 90/100 Answer 4 is the best of the lot in terms of efficiency. The answer actually
lists two different approaches: a brute-force approach mentioned in the first three answers,
and a more efficient approach that first sorts the list before comparing adjacent numbers.
The sorted approach has a time complexity of O(nlogn), which scales better with a growing
list of numbers than the O(n?) complexity of the brute-force methods. The only point
deduction is due to not explicitly explaining this crucial difference in complexity between
the two methods.
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Third Parameter: Code Readability

First model’s answer: Rating: 90 Explanation: The first model provides a detailed expla-
nation of the problem, the method used to solve it, and even breaks down the entire code,
making it easy to understand for beginners too. The example provided at the end adds an
extra value to the answer as well. Yet, it still fails to explain or consider any efficiency
measures or alternate ways to solve the problem.

Second model’s answer: Rating: 70 Explanation: The second model also correctly interprets
the problem and comes up with a valid approach. However, it’s less detailed than the first
model, doesn’t provide a clear breakdown of the code, and offers no example of how to use
the function.

Third model’s answer: Rating: 35 Explanation: The third model just provides the code
needed to solve the problem without any explanations or breakdown of the code. Its answer
is correct but not very helpful or educational, especially for someone trying to learn.

Fourth model’s answer: Rating: 95 Explanation: The fourth model does a great job of
explaining the problem and also introduces two different approaches to solve it, one being
more efficient than the other. It not only offers insight into a more effective solution but also
explains why it’s more efficient. But despite these advantages, the model did not break down
the code or provide examples of usage.

Fourth Parameter: Question Relevance

Rating for the first model: 90. The answer from the first model is quite thorough and directly
addresses the problem. The explained code solves the problem as required and it perfectly
implements the requirement. However, it does not consider the efficiency of the solution.
Rating for the second model: 85. The second model also provides an adequate answer,
explaining the solution fairly well and implementing the described function correctly. How-
ever, much like the first model, this model does not consider any performance or efficiency
aspects in its solution.

Rating for the third model: 80. This Al model provided a correct and direct solution, but
with less explanation about the approach or notes on performance or usage. Therefore, the
rating is lower compared to the first and second models.

Rating for the fourth model: 100. The fourth model provided two solutions: the first one
similar to the previous models and the second one that considers performance improvements
by sorting the list first. This model shows a greater understanding of real-world requirements
by considering efficiency, thus making it the best answer.

4.3.5 COMPARISON OF GPT4-BASED MULTIPARAMETERS AND HUMANEVAL BENCHMARKS

Problem

from typing import List

def has_close_elements (numbers: List[float],
threshold: float) -> bool:
mmwn
Check if in given list of numbers, are any
two numbers closer to each
other than given threshold.

>>> has _close _elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close _elements([1.0, 2.8, 3.0, 4.0,
5.0, 2.0], 0.3)

True

mmn
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Safurai-001 Response

First, we need to understand what the problem is asking us to do. We have a list of numbers and we
need to check if any two of those numbers are closer than a certain threshold.

To solve this problem, we can use a loop to compare each number in the list to every other number
in the list. If the difference between the two numbers is less than or equal to the threshold, we know
that they are closer than the threshold.

Here is the code to solve this problem:

# Define a function that takes in a 1list of
numbers and a threshold
def has_close_elements (numbers: List[float],
threshold: float) -> bool:
# Loop through each number in the 1list
for i in range(len (numbers)) :
# Loop through every other number in the
list
for j in range(i+l, len (numbers)):

# Check if the difference between the
two numbers is less than or equal
to the threshold

if abs (numbers[i] - numbers[]j]) <=
threshold:

# If it is, return True
return True
# If we have checked every pair of numbers
and none of them are closer than the
threshold, return False
return False

Let’s break down the code:

¢ ‘def has_close_elements(numbers: List[float], threshold: float) -> bool:‘: This line defines
a function called ‘has_close_elements‘ that takes in a list of numbers (‘numbers‘) and a
threshold (‘threshold‘) and returns a boolean value (either ‘“True‘ or ‘False®).

 ‘foriin range(len(numbers)): : This line starts a loop that goes through each number in the
list.

 ‘for j in range(i+1, len(numbers)):‘: This line starts a nested loop that goes through every
other number in the list (starting from the next number after ‘i°).

* ‘if abs(numbers[i] - numbers[j]) <= threshold:*: This line checks if the difference between
the two numbers is less than or equal to the threshold.

e ‘return True‘: If the two numbers are closer than the threshold, we return ‘True®.

* ‘return False‘: If we have checked every pair of numbers and none of them are closer than
the threshold, we return ‘False®.

To use this function, we can call it with a list of numbers and a threshold:

# Call the function with a list of numbers and
a threshold

result = has_close_elements([1.0, 2.8, 3.0,
4.0, 5.0, 2.01, 0.3)

# Print the result
print (result) # Output: True

In this example, the list of numbers ‘[1.0, 2.8, 3.0, 4.0, 5.0, 2.0]‘ has two numbers that are closer
than the threshold of ‘0.3°. The function returns ‘True‘ because at least one pair of numbers is closer
than the threshold.
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ChatGPT Response

The code you provided defines a function called hasl_close_elements that takes two arguments:
numbers, which is a list of float numbers, and threshold, which is a float representing the maximum
allowed difference between two numbers. The function checks if there are any two numbers in the
numbers list that are closer to each other than the given threshold. It returns True if such a pair
exists, and False otherwise. Here’s an implementation of the has_close_elements function based on
the code you provided:

from typing import List

def has_close_elements (numbers: List[float],
threshold: float) -> bool:
for i in range (len (numbers)):
for j in range(i + 1, len (numbers)):
if abs (numbers[i] - numbers[]j]) <
threshold:
return True
return False

This implementation uses nested loops to compare each pair of numbers in the numbers list. The
abs() function is used to calculate the absolute difference between the two numbers, and if this dif-
ference is less than the threshold, the function returns True. If no such pair is found after examining
all combinations, the function returns False. You can use this function to check if there are any close
elements in a list of numbers as demonstrated in the examples you provided.

HumanEval Benchmark for this responses
For HumanEval tests, both of Safurai-001 and ChatGPT answers are correct in the same way.
GPT4-Based MultiParameters Evaluation Benchmark for this responses

The first model is Safurai-001, the second one is ChatGPT.
Code Correctness

First model answer rating: 95 The code given here is complete and handles the problem well by
checking every pair of numbers for a difference less than or equal to the given threshold. It gives a
full explanation of the logic and running of the code, and creates a clear distinction of cases when it
should return ‘True‘ or ‘False‘. However, the instruction could have been clearer for the function to
return ‘True* if the difference is smaller than the threshold, not equal or smaller.

Second model answer rating: 95 This answer very similarly provides complete code that solves the
problem, considering all possible pairs of numbers in the given list and checking if the difference
is lesser than the provided threshold. It also uses good explanations to clarify how the code works.
However, the second model doesn’t make the distinction in the condition checking as clearly as the
first answer. And like the first answer, it also considers equals to threshold as a valid condition.

Code Efficiency

First model’s answer rating: 90/100. The proposed algorithm takes a straightforward approach to
solve the problem with a time complexity of O(n?), given n is the length of the input list. For each
element i in the list, it compares it with every other element j in the list to see if the absolute value
of their difference is less or equal to the threshold. Because this model only focuses on the pairwise
comparison without any optimization (like sorting or reducing the search space), it might not be the
most efficient solution when the input size increases, hence a minor deduction in the rating.

Second model’s answer rating: 90/100. By comparison, the second model also produces a correct
O(n?) solution, which uses two nested loops to compare every unique pair of values in the provided
list. However, similar to the first model, it presents an algorithm that might not perform well for
very long lists, and it does not provide ways to optimize or scale the operation. Therefore, it also
does not get the full rating. Both performed similarly in terms of code efficiency.
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Code Readability

First model answer: Rating: 95 The answer elaboratively explains the problem and its solution. It
clearly describes how the function works, and the step-by-step breakdown of the code is beneficial in
understanding the algorithm. The example at the end, which demonstrates how to use the function,
is also very helpful.

Second model answer: Rating: 80 This answer also gives a clear explanation of the solution and
function. However, it lacks an in-depth breakdown of the code and doesn’t provide an example of
how to use the function, which would have been useful for demonstrating its functionality.

Question Relevance

First model answer rating: 95/100 This response not only provides the correct implementation of the
function, but also explains the solution in a detailed manner. It thoroughly covers how the function
works, including explaining its various parts like two nested loops, use of abs() function and the if
conditions. The example usage was an added bonus. I've docked a few points because the model
does not talk about the time complexity of this solution and also does not provide the full code
snippet which is importing necessary modules from the typing module.

Second model answer rating: 85/100 This response also delivers a correct code implementation
with a succinct explanation. Though it explains the working of the function effectively, it’s not as
detailed as the first model’s answer. This response is also short on providing information on usage
of the function and discussing the time complexity of the solution. Importantly, it doesn’t restate
the question’s example into code for demonstrating purposes, which could be highly informative for
users who are learning or new to Python. Therefore, I've rated it slightly lower.

Table 3: Results of GPT4-based MultiParameters HumanEval for HumanEval Problem 0

Code Code Efficiency Code Question

Correctness Readability Relevance
Safurai-001 95 90 95 95
ChatGPT 85 90 80 85

Although the two responses are quite similar, as previously shown, GPT4-based MultiParameters
Evaluation is able to identify small details and differences that HumanEval would not be able to
identify given its quantitative nature.

5 CONCLUSION

This research reveals deep insights into how the utilization of data transformation can lead to the
creation of complex, high-quality datasets. Following the stance of the Orca team (Gunesekar er al.
[2023]), we stress the profound significance of the datasets chosen for fine-tuning. Through the use
of innovative data transformation and prompt engineering techniques, these datasets can critically
enhance the efficiency of foundation models. This, in turn, can lead to sizeable augmentations in
classic benchmarks.

Our study presented Safurai-001 as a potent alternative to WizardCoder(1l)) for multi-turn conversa-
tions, adeptly managing user interactions and providing supports where needed. We also present a
distinct advance in the area of Coding LLMs evaluation tools, GPT4-based MultiParameter Evalu-
ation Benchmark, moving beyond purely quantitative measures to offer more qualitative indicators.
This new method provides a richer, more nuanced means of evaluation that can expose insights be-
yond the reach of traditional standards such as HumanEva and MultiPL- Drawing on these

Dhttps://github.com/openai/human-eval
' https://huggingface.co/datasets/nuprl/MultiPL-E
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findings, we aim to shape future discourse and innovation in this field, accentuating the paramount
importance of robust evaluation tools and the fullest utilization of datasets in optimizing language
model performance.

5.1 SAFURAI-001 AND WIZARDCODER OUTCOME COMPARISON

Question

How can I write a Python function that takes a list of integers as an input and returns a tuple
representing the sum and product of all integers in that list?

WizardCoder Response

We can use the built-in ‘sum()‘ function in Python to get a sum of all integers in the list. We
can also use a variable initialized as 1 for product and then multiply it with each integer in
the list. Here’s the solution:

from typing import List, Tuple
def sum_product (numbers) :
total_sum = sum(numbers) or 0 # if numbers 1is
empty, set total_sum to 0
total_product = 1
for num in numbers:
total_product *= num
return (total_sum, total_product)

Here’s how the function works step by step:

1. We initialize ‘total_sum* as sum of all integers in the list using built-in ‘sum()* or
set it to O if the list is empty using short circuit evaluation (‘or®).

2. We also initialize ‘total_product* variable as 1 and then multiply each integer in the
list with this variable.

3. Finally, we return a tuple of ‘(total_sum, total_product)*.
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Safurai-001 Response

First, we need to understand what a list is. A list is a collection of items, like a grocery list.
In this case, our list is made up of numbers.

Next, we need to understand what a tuple is. A tuple is like a list, but once it’s made, we
can’t change it. It’s like a locked box that we can’t open.

Now, let’s look at the problem. We need to write a function that takes a list of numbers and
returns a tuple with the sum and product of those numbers. Here’s the code:

from typing import List, Tuple

def sum_product (numbers: List[int]) -> Tuplelint,

int]:

mmn

For a given 1list of integers, return a tuple
consisting of a sum and a product of all the
integers in a list.

Empty sum should be equal to 0 and empty product

should be equal to 1.

mmwn

# If the list is empty, return a tuple with a
sum of 0 and a product of 1

if not numbers:
return 0, 1

# Otherwise, calculate the sum and product
sum = 0
product = 1
for num in numbers:
sum += num
product %= num

# Return the tuple with the sum and product
return sum, product

Let’s break it down:

e ‘def sum_product(numbers: List[int]) -> Tuple[int, int]:* - This line defines our
function and tells Python that it takes a list of integers as input and returns a tuple
with two integers (the sum and product).

* ‘if not numbers:* - This line checks if the list is empty. If it is, we return a tuple
with a sum of 0 and a product of 1.

* ‘sum = 0° and ‘product = 1° - These lines initialize variables for the sum and prod-
uct.

 ‘for num in numbers: - This line loops through each number in the list.
* ‘sum += num‘ and ‘product *= num* - These lines add the current number to the
sum and multiply it by the current product.
* ‘return sum, product® - This line returns the tuple with the sum and product.
So, if we call our function with the list ‘[1, 2, 3, 4]°, it will return the tuple ‘(10, 24)‘. The

sumis 10 (1 + 2 + 3 + 4) and the product is 24 (1 x 2 x 3 x 4).
I hope that makes sense! Let me know if you have any questions.
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