
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORING NONLINEAR PATHWAY IN PARAMETER
SPACE FOR MACHINE UNLEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine Unlearning (MU) aims to remove the information of specific training
data from a trained model, ensuring compliance with privacy regulations and user
requests. While one line of existing MU methods relies on linear parameter updates
via task arithmetic, they suffer from weight entanglement. In this work, we propose
a novel MU framework called Mode Connectivity Unlearning (MCU) that lever-
ages mode connectivity to find an unlearning pathway in a nonlinear manner. To
further enhance performance and efficiency, we introduce a parameter mask strat-
egy that not only improves unlearning effectiveness but also reduces computational
overhead. Moreover, we propose an adaptive adjustment strategy for our unlearning
penalty coefficient to adaptively balance forgetting quality and predictive perfor-
mance during training, eliminating the need for empirical hyperparameter tuning.
Unlike traditional MU methods that identify only a single unlearning model, MCU
uncovers a spectrum of unlearning models along the pathway. Overall, MCU serves
as a plug-and-play framework that seamlessly integrates with any existing MU
methods, consistently improving unlearning efficacy. Extensive experiments on the
image classification task demonstrate that MCU achieves superior performance.
The code is available at https://anonymous.4open.science/r/MCU-1E36.

1 INTRODUCTION

Machine Unlearning (MU) has emerged as a critical capability to comply with privacy regulations
and user-initiated data removal requests. The most straightforward way is to remove the forgetting
data and then train the model from scratch. However, this retraining method demands substantial
computational overhead. To address this issue, various approximate MU methods Fan et al. (2023);
Graves et al. (2021); Ilharco et al. (2022); Kurmanji et al. (2024a); Thudi et al. (2022); Warnecke
et al. (2021) have emerged to provide a more efficient alternative through diverse techniques.

One mainstream MU research adopts a linear method for modifying model parameters using negation
task arithmetic Ilharco et al. (2022); Ortiz-Jimenez et al. (2024). In task arithmetic, the unlearning
model is obtained by linearly subtracting the parameters of the task vector corresponding to the
forgetting data from the original model. However, modern classifiers exhibit a high complexity of
high-dimensional representation and nonlinear characteristics, where simple linear updates may fail to
remove forgetting information exclusively without introducing unintended side effects. Specifically,
linear task arithmetic suffers from weight entanglement, as the task vectors fail to localize their
influence solely to the forgetting data without interfering with others, which is a violation of the
necessary condition for successful linear editing Ortiz-Jimenez et al. (2024). The detailed theoretical
proof is provided in the Appendix A. Thus, this raises an important question as follows:

(Q1) Can we break free from the constraints of linear updates and instead explore MU in a
nonlinear manner?

If an alternative nonlinear pathway is uncovered, it can offer a more effective unlearning without
side effects from weight entanglement. Another limitation of existing MU methods is that they
typically yield a single unlearning model. Existing work Georgiev et al. (2024) shows that the
optimal stopping point varies across different forgetting data, and therefore a single unlearning
model is inherently incapable of simultaneously achieving effective unlearning for all forgetting
points. In contrast, exploring an unlearning pathway provides a promising solution to the limitations
inherent in a single model (see Appendix B for proof). Thus, the other question arises:

1

https://anonymous.4open.science/r/MCU-1E36/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Q2) Can we identify a spectrum of effective MU models rather than just one?

A spectrum of effective unlearning models would also enable us to select the solution that best
aligns with specific priority, such as prioritizing model utility preservation or forgetting quality
without repeated training. For instance, in harmful information removal, the perceived risk of a
data sample may evolve over time. A sample once considered low-risk may later be deemed highly
risky, requiring stronger forgetting. Thus, exploring unlearning pathway provides greater flexibility
in practical applications without requiring costly recomputations of different solutions.

To address these questions, we propose to explore unlearning pathway in the parameter space in a
nonlinear manner, inspired by mode connectivity Garipov et al. (2018). Our main contributions are
summarized as follows:

• We identify the weight entanglement issue in existing linear unlearning methods and, for the
first time, investigate unlearning from a nonlinear perspective.

• We introduce the novel concept of exploring unlearning pathways, opening a new direction
for unlearning.

• As a plug-and-play framework, our approach can be seamlessly integrated with existing
unlearning methods to effectively enhance their performance, mitigating both over-forgetting
and under-forgetting issues.

• We show that masking entire parameters can achieve comparable effectiveness in unlearning
pathway while significantly reducing training time compared to existing masking approaches.

2 RELATED WORK

2.1 MACHINE UNLEARNING

Retraining for MU involves retraining from scratch after removing forgetting data, but its high cost
has led to the development of efficient approximate unlearning techniques. Some works Fan et al.
(2023); Graves et al. (2021); Kurmanji et al. (2024a); Shi & Wang (2025); Tarun et al. (2023); Thudi
et al. (2022) focus on designing loss functions to achieve forgetting. Knowledge distillation-based
methods Chundawat et al. (2023a;b); Goel et al. (2022); Kurmanji et al. (2024b); Micaelli & Storkey
(2019) have emerged as promising approaches, where a student model is trained to mimic the
behavior of the original model on the retaining dataset while excluding the knowledge of forgetting
data. Several works Foster et al. (2024); Golatkar et al. (2020); Liu et al. (2023) leverage the
Fisher Information Matrix to identify and modify the most influential parameters associated with the
forgetting data, enabling more targeted and efficient unlearning. Additionally, adversarial attacks Cha
et al. (2024); Chen et al. (2021); Wei et al. (2023) and differential privacy Guo et al. (2019); Huang &
Canonne (2023) have also been explored as promising techniques for MU.

One pivotal advance came from task arithmetic Ilharco et al. (2022), which enabled efficient data
removal by applying negation operations. Building on this, a neural tangent kernel-based linear
negation method was introduced to improve task arithmetic by constraining model updates to the
tangent space Ortiz-Jimenez et al. (2024). However, the entanglement issue still exists as they cannot
guarantee that the task vector’s influence localizes solely on forgetting data (see Appendix A for
details). Overall, oversimplified assumption of linear parameter updating fails to account for the
nonlinear characteristics of loss landscapes and suffers from a weight entanglement issue.

2.2 MODE CONNECTIVITY

Mode connectivity refers to the existence of low-loss pathways between different local minima in a
neural network’s loss landscape. It has been observed that neural networks trained on the same dataset
but initialized differently can be connected by a smooth, low-loss curve in parameter space Garipov
et al. (2018). This phenomenon has been further explored, demonstrating that such connectivity
generalizes across architectures and datasets, forming high-dimensional manifolds of functionally
equivalent models Draxler et al. (2018). Recent work Ren et al. has extended the mode connectivity
from Bézier curve to surface. Given its ability to identify meaningful pathways in parameter space,
mode connectivity provides an efficient and effective approach for unlearning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 MODE CONNECTIVITY UNLEARNING

3.1 PRELIMINARIES AND NOTATIONS

Dr

Grad

No.

𝜽𝒖∗𝜽𝒐 𝜽𝒑

A
cc

ur
ac

y

t

Effective
Region

Optimal
Model

Filter Reserve

Nonlinear
Pathway

𝜽𝒐 𝜽𝒑

𝜽𝒐

a. Parameter Mask

b. Pathway Searching

𝒍𝒐𝒔𝒔 = 𝒍𝒐𝒔𝒔𝒓 − 	𝜷 · 𝒍𝒐𝒔𝒔𝒇

Grad

Param

𝜽𝒄

Param

Grad

𝑫𝒓

𝒌𝒌𝒓

𝑫𝒓
𝑫𝒇

(𝑫𝒓) (𝑫𝒇)

selected
params

10Mask:

𝑫𝒓

𝑫𝒇
𝑫𝒕

c. Model/Region Searching

𝜽𝒖∗𝜽𝒐 𝜽𝒑

A
cc

ur
ac

y

t

Effective
Region

Optimal
Model

Filter Reserve

Nonlinear
Pathway

𝜽𝒐 𝜽𝒑

𝜽𝒐

a. Parameter Mask

b. Pathway Searching

𝒍𝒐𝒔𝒔 = 𝒍𝒐𝒔𝒔𝒓 − 	𝜷 · 𝒍𝒐𝒔𝒔𝒇

Grad

Param

𝜽𝒄

Param

Grad

𝑫𝒓

𝒌𝒌𝒓

𝑫𝒓
𝑫𝒇

(𝑫𝒓) (𝑫𝒇)

selected
params

10Mask 𝒎:

𝑫𝒓

𝑫𝒇
𝑫𝒕

c. Model/Region Searching

⨀𝒎 ⨀𝒎

⨀𝒎

Figure 1: Overview of MCU framework. a. Iden-
tify a parameter mask by first excluding the top-kr
parameters important for retaining data, then pre-
serving the top-k parameters critical for forgetting
data. b. Explore nonlinear pathways in the param-
eter space, where θc serves as the control point. c.
Locate the optimal unlearning model and effective
unlearning region along the pathway.

In the context of MU for image classification, we
consider two scenarios: random data forgetting
and class-wise forgetting. In random data forget-
ting, a subset of training data is randomly selected
to form the forgetting data. In class-wise forgetting,
the training data belonging to a specific class is des-
ignated as forgetting data. Let Dtrain be the full
training dataset and Dv be the validation dataset.
We use Df ∈ Dtrain to denote the forgetting data
and Dr = Dtrain \ Df to denote the retaining data.
The test data is denoted as Dt. In the class-wise
scenario, Dt = Dtr ∪ Dtf where Dtr and Dtf are
test-retaining data and test-forgetting data respec-
tively. The objective of our work is to identify a
pathway, where each point along the pathway cor-
responds to an unlearning model, denoted by θu.

3.2 UNLEARNING PATHWAY SEARCHING

Figure 1 shows the overview of our Mode Connec-
tivity Unlearning framework MCU. As shown in
Figure 1b, one crucial decision is the selection of
two end models on the pathway. Ideally, these two
end models should satisfy the following properties
for unlearning: ① One end model should fully pre-
serve model utility; ② The other end model can
provide essential unlearning information and trend.
Then we can find an optimal pathway between two
end models, ensuring a balance between model utility and unlearning effectiveness. Guided by these
insights, we define two specific models as two end models in our nonlinear pathway:

① Original model θo is trained on the training data Dtrain before unlearning.

② Pre-unlearning model θp is obtained by applying any existing MU method to remove the influence
of forgetting data Df .

The goal of mode connectivity unlearning is to construct a smooth pathway from θo to θp, ensuring
an unlearning model θu on the pathway can better forgets Df while preserving performance on
Dr. Inspired by Garipov et al. (2018), we leverage a quadratic Bézier curve as our defaut setting to
explore a nonlinear unlearning pathway in the parameter space. For comparison, we also present the
results on Polychain in Table 4 and Figure 8 in Appendix D. In our MU scenario, the quadratic Bézier
curve ϕθ(t) between models θo and θp in parameter space is defined as follows,

ϕθc(t) = (1− t)2θo + 2(1− t)tθc + t2θp, t ∈ [0, 1], (1)
where θc is the control model, and t represents a scalar interpolation coefficient that controls the
position along the pathway connecting two end models in the high-dimensional parameter space.
ϕθc(t) parameterized by coefficient t represents a continuous Bézier curve that smoothly transitions
between models θo and θp. As t varies within the range [0, 1], ϕθc(0) = θo corresponding to the
original model and ϕθc

(1) = θp corresponding to the pre-unlearning model. For values of t between
0 and 1, it represents a spectrum of potential unlearning models θu along the pathway.

The control model θc in Eq. 1 serves to shape the Bézier curve. By optimizing this control model,
we can influence the trajectory between θo and θp. However, simply constructing a smooth path is
insufficient for effective unlearning. It is therefore crucial to design an appropriate loss function that
guides the optimization of the control model. This loss must strike a balance between two goals,
ensuring effective forgetting and preserving the model utility. This leads to our loss design,

Lmcu = Et∼U(0,1)[L(Dr;ϕθc(t))− β · L(Df ;ϕθc(t))], (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where L(Dr;ϕθc
(t)) is the cross-entropy loss on retaining data Dr, and β is an unlearning penalty

coefficient controlling the trade-off between retaining predictive performance and forgetting quality.
U(0, 1) is the uniform distribution on [0, 1], from which we sample a value t for each training batch
following the work Garipov et al. (2018). In each batch, the loss is computed at the specific point
ϕθc

(t) along the pathway, derive gradients with respect to θc, and update only θc accordingly. Note
that the pathway searching process only requires optimizing θc, while the entire pathway is a simple
combination of θo, θc and θp as defined in Eq. 1.

Based on the issue proposed by Georgiev et al. (2024), we establish that relying on a single model
is fundamentally insufficient due to the misalignment of optimal stopping epochs across different
forgetting data:
Theorem 1. (Informal) Assume the unlearning procedure consists of T training epochs, and let
|Df | denote the number of forgetting data points. For any confidence level 1− δ ∈ (0, 1], achieving
probability at least 1 − δ that each forgetting data point is optimally unlearned requires at least
k(δ) = ⌈ ln δ

ln(1−T−|Df |+1)
⌉ distinct models. See Appendix B for proof.

For the case of T = 10, |Df | = 100, and δ = 0.05, we obtain k(0.05) ≈ 2.996 × 1099, which is
an astronomically large number. This implies that achieving a high-probability guarantee requires
training at least k(δ) distinct models, which is computationally prohibitive and practically infeasible.
In contrast, our proposed unlearning pathway generates a continuous spectrum of unlearning models
along a parameterized trajectory, providing an efficient and elegant resolution to this challenge.

3.3 PARAMETER MASK

While the pathway searching process described above is already efficient, we aim to further improve
the searching efficiency by selectively updating partial parameters. Existing parameter mask ap-
proach Fan et al. (2023); Huang et al. (2025) already show the effectiveness for preserving retaining
performance and enhancing forgetting quality in unlearning process. All these parameter masking
strategies operate at the element level within individual parameters. In the element level parame-
ter mask, gradient computations are still required for all parameters during training, which limits
practical efficiency gains. In this section, we show that masking an entire parameter can also
have comparable effectiveness as existing element level parameter masking strategy, enabling
computational speedup by completely bypassing gradient computations for the masked parameters
during training.

As illustrated in Figure 1a, our parameter mask strategy consists of two key components: filtering
based on Dr and reserving based on Df . The strategy effectively identifies parameters that are highly
influential for Df while being less critical for Dr, ensuring a more targeted update process.

Filtering based on Dr. We first utilize the gradient of the retaining loss with respect to the original
model θo on the retaining dataset Dr. A fraction kr of the parameters is selected for exclusion,
where these parameters exhibit an importance above a quantile-based threshold γkr . The formulated
equation is as follows,

mi
r = 0

{∥∇θi
o
L(Dr;θo)∥2
|θi

o|
> γkr

}
, (3)

where mi
r is the binary mask for the i-th parameter in whole mask m, and ∥ · ∥2 denotes the L2-norm

over each parameter. L2-norm reflects the Euclidean length of gradient vectors, making it more
sensitive to parameters with larger impacts. The denominator |θi

o| represents the element number
in the entire i-th parameter of θo, i.e., θi

o, ensuring fair importance calculation across parameters
with different sizes. The indicator function 0(· > γkr) assigns a zero vector to mi

r if the average
importance of this parameter exceeds the threshold γkr , and otherwise an all-ones vector.

Reserving based on Df . After filtering, which removes parameters that are highly influential for
Dr, we further refine the mask by selecting parameters based on the gradient of the forgetting loss,

mi
f = 1

{∥∇θi
o
L(Df ;θo)∥2
|θi

o|
> γk

}
. (4)

Similarly, the threshold γk is determined by selecting the top-k percentile of normalized gradient L2

norms across parameters. The indicator function 1(· > γk) assigns an all-one vector to the entire i-th

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

parameter θi
o if its importance exceeds the threshold γk. Overall, our parameter mask is applied at

the level of parameter tensors, each associated with a named parameter in the model. These typically
correspond to components within submodules, such as the weights of a convolutional kernel or an
attention projection matrix. A detailed experimental comparison between our masking strategy and
existing element-wise masking strategies is provided in Figure 11 in Appendix D.

The final mask m is represented as,
m = mr &mf , (5)

where the operator & represents the logical operation AND. The parameter mask ensures that updates
are restricted to the selected parameters, preventing unnecessary modifications to the model. Thus,
the optimization in the MCU can be formulated as follows,

min
θc⊙m

Lmcu, (6)

where training efficiency is improved by reducing unnecessary gradient updates with the mask m.

w/o w/
mask

0

10

20

Ti
m

e
(s

ec
)

0.0 0.25 0.5 0.75 1.0
t

70
76
82
88
94

100

A
cc

ur
ac

y(
%

)

Figure 2: The efficiency and effectiveness of our
parameter mask. ‘w/o’ and ‘w/’ in the left panel
represent the results without 10% mask and with
10% mask. The x-axis of the right panel represents
the parameter t along the Bézier curve, while the
y-axis corresponds to accuracy.

We preliminarily explore the efficiency and effec-
tiveness of our parameter mask on CIFAR-10 with
PreResNet-100 in the 10% random data forgetting.
We set k = 10%, kr = 10% to generate our param-
eter mask for MCU framework with NegGrad+ Kur-
manji et al. (2024a) as the pre-unlearning model.
In the left panel of Figure 2, we compare the aver-
age epoch runtime with and without our parameter
mask. Apparently, the parameter mask significantly
improves efficiency during the backward propaga-
tion process, achieving a notable 75.23% speedup.
In the right panel of Figure 2, we compare our pa-
rameter mask (solid line) with the 10% random mask (dashed line). Random mask has a significant
negative impact on the accuracy of Dr and Dt, with a 3.44% and a 2.48% drop at t = 0.5 respec-
tively. By comparison, the forgetting accuracy gap is only 1.32% at t = 0.5. This confirms that our
parameter mask both improves training efficiency and effectively preserves the model utility.

3.4 ADAPTIVE UNLEARNING PENALTY COEFFICIENT

Through numerous experiments, we find that our MCU with a fixed unlearning penalty coefficient
β is good enough and can be empirically selected with ease. However, non-expert users may
find it challenging to adjust this hyperparameter appropriately. Therefore, in the absence of prior
experience, implementing an adaptive strategy for β can avoid trial-and-error cost of hyperparameter
selection and potentially improve our performance. As shown in the optimization objective (Eq. 2),
balancing retaining (Dr) and forgetting (Df) performance requires an appropriate α. After defining
calibration targets Cal(Dr) and Cal(Df), we can monitor accuracies Accu(Dr) and Accu(Df)
during unlearning. And the gap between observed accuracies (Accu(Dr), Accu(Df)) and their
corresponding calibration targets (Cal(Dr), Cal(Df)) guides the adaptive adjustment of α.

Calibration Principles behind Adaptive β 1

① Accu(Dr): Cal(Dr) = Acco(Dtrain). The unlearning model’s retaining accuracy
(Accu(Dr)) should be preserved as the original model’s training accuracy (Acco(Dtrain)).

② Accu(Df): Cal(Df) = Acco(Dv) for random data forgetting, Cal(Df) = 0 for class-
wise forgetting. Since Df should be unlearned as if it were never trained, unlearning model’s
forgetting accuracy (Accu(Df)) should have the same level as the original model’s validation
accuracy (Acco(Dv)) in random data forgetting, and should be 0 in class-wise forgetting.

Guided by these rationales, the three calibration conditions are listed as follows:

1The Acco(Dtrain) and Acco(Dv) are constants as they are recorded during the training of θo. Since the
unlearning process is controlled by the data owner, it is reasonable to assume access to a small validation set. In
our experiments, we split the original test set into 10% for Dv and 90% for Dt.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Condition ➊. When Accu(Df) ≤ Cal(Df), it indicates that the model has successfully
forgotten Df or even over-forgotten it. In this case, we set β = 0 to prevent further
forgetting.

• Condition ➋. If Accu(Df) > Cal(Df) and the performance degradation on the Dr is more
severe than that on Df , a mild forgetting adjustment can be set to β = 0.1.

• Condition ➌. Otherwise, we apply a stronger forgetting adjustment with β = 0.5.

The adaptive adjustment of β is formulated as follows,

β =


0, Accu(Df) ≤ Cal(Df), (➊)

0.1, Accu(Df) > Cal(Df) and
Accu(Df)−Cal(Df)

Cal(Df)
< Accu(Dr)−Cal(Dr)

Cal(Dr)
, (➋)

0.5, otherwise. (➌)

(7)

Unlike fixed hyperparameter tuning, our adaptive β strategy updates dynamically at every batch
within each training epoch. This adaptive adjustment ensures that the unlearning process remains
responsive to the pathway’s evolving state, striking a balance between effective forgetting and
retaining. Furthermore, another notable benefit of the adaptive β adjustment is that the MCU becomes
less sensitive to the parameters k and kr and scarce retaining data (see Figures 9-12 in Appendix D
for experimental results).

3.5 OPTIMAL MODEL AND EFFECTIVE REGION

As illustrated in Figure 1c, an important step after the pathway searching is to identify the optimal
unlearning model and effective unlearning region along the pathway. Following the calibration
principles introduced in Section 3.4, we utilize constants Cal(Dr) and Cal(Df) as accuracy reference
values for computing calibration gaps. These gaps quantify the deviation between unlearning models
and the desired behavior, guiding both optimal model and effective region identification.

The model selection process along the Bézier curve is conducted during inference, and thus incurs
negligible computational overhead. To efficiently locate the optimal model, we first evaluate models
at t = 0.75 and t = 1, and then perform a cubic interpolation of their accuracy values to estimate the
t value with minimal gap as the optimal model point. This heuristic is motivated by our empirical
observation that the optimal model along the pathway always lies within the interval t ∈ [0.75, 1].
This strategy avoids exhaustive sampling across the entire pathway. For identifying the effective
region, we uniformly sample 20 points along t ∈ [0, 1] and fit a cubic interpolation curve. Any point
on the continuous curve whose gap is smaller than that of the pre-unlearning model (at t = 1) as part
of the effective region.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Datasets and Models. We focus on image classification tasks under random data and class-wise
forgetting scenarios, using three datasets (CIFAR-10, ImageNet-100, Tiny ImageNet) and three
architectures (PreResNet-110, ViT, VGG-16-BN). See Appendix C for forgetting scenario details.

Baselines and Metrics. We compare our framework against 8 methods: Retrain (RT), Finetune
(FT) Warnecke et al. (2021), Random Label (RL) Graves et al. (2021), Gradient Ascent (GA) Thudi
et al. (2022), NegGrad+ Kurmanji et al. (2024a), SFRon Huang et al. (2025), SalUn Fan et al.
(2023), NegTV Ilharco et al. (2022). See Appendix C for detailed introduction of these baselines.
We denote our framework with fixed β as MCU2 and with adaptive β as MCUβ. Unless otherwise
stated, the pre-unlearning model in MCUs is NegGrad+. We evaluate all methods across five metrics:
UA (Unlearning Accuracy, 1− accuracy of forgetting data Df), RA (Retaining Accuracy, accuracy
on retaining data Dr), TA (Test Accuracy, accuracy on test data Dt), MIA (Membership Inference
Attack, see Appendix C for the details), and RTE (Running Time Efficiency). Except for RTE, all
metrics are evaluated based on their proximity to the RT baseline, with smaller average gap indicating
better unlearning performance (denoted as Avg. Gap in our result tables).

2The best results achieved through hyperparameter β search.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall performance of MU methods under 10% random data forgetting scenario. The results are
presented in the format a± b, with a as the mean and b as the standard deviation from 5 independent trials. The
performance gap relative to RT method is represented in (•). The Avg. Gap is derived by averaging gaps across
accuracy metrics, UA, RA, TA and MIA. Smaller gaps reflect closer alignment with the RT model’s performance.
Note RTE is reported in minutes and UA equals 1− accuracy of Df .

Methods UA RA TA MIA Avg. Gap RTE

CIFAR-10 with PreResNet-110
RT 10.54±0.34(0.00) 99.98±0.01(0.00) 89.59±0.22(0.00) 18.41±0.52(0.00) 0.00 105.70
FT 0.42±0.12(10.12) 99.93±0.01(0.05) 90.99±0.13(1.40) 3.71±0.25(14.70) 6.57 5.31
RL 4.14±0.20(6.40) 99.69±0.02(0.29) 90.16±0.09(0.57) 21.93±0.66(3.52) 2.70 6.21
GA 0.06±0.00(10.48) 99.97±0.00(0.01) 90.89±0.01(1.30) 0.98±0.11(17.43) 7.31 0.38

NegGrad+ 7.03±0.32(3.51) 98.63±0.19(1.35) 89.26±0.23(0.33) 11.71±0.38(6.70) 2.97 2.96
SFRon 14.07±0.19(3.53) 92.86±0.16(7.12) 85.74±0.12(3.85) 14.32±0.44(4.09) 4.65 2.04
SalUn 6.67±0.26(3.87) 97.87±0.14(2.11) 90.54±0.19(0.95) 35.45±0.57(17.04) 5.99 6.38
NegTV 2.36±1.12(8.18) 99.08±0.60(0.90) 88.53±0.88(1.06) 4.14±0.29(14.27) 6.10 0.70
MCU 9.52±0.04(1.02) 98.97±0.01(1.01) 89.00±0.03(0.59) 16.33±0.93(2.08) 1.18 6.80

MCUβ 10.29±0.24(0.25) 98.69±0.04(1.29) 89.11±0.13(0.48) 16.45±0.89(1.96) 1.00 6.82

ImageNet-100 with ViT
RT 11.63±0.23(0.00) 91.93±0.01(0.00) 87.83±0.01(0.00) 13.77±0.42(0.00) 0.00 525.72
FT 8.62±0.01(3.01) 92.21±0.07(0.28) 87.74±0.18(0.09) 10.88±0.43(2.89) 1.57 82.23
RL 9.53±0.15(2.10) 92.06±0.02(0.13) 87.82±0.10(0.01) 24.32±0.35(10.55) 3.20 205.73
GA 8.96±0.89(2.67) 91.15±0.58(0.78) 87.53±0.37(0.30) 10.50±0.07(3.27) 1.76 6.71

NegGrad+ 13.15±0.10(1.52) 91.71±0.03(0.22) 87.37±0.07(0.46) 16.21±0.30(2.44) 1.16 63.93
SFRon 27.28±0.37(15.65) 78.56±1.51(13.37) 77.86±1.24(9.97) 61.29±0.62(47.52) 21.63 88.37
SalUn 9.38±0.13(2.25) 91.94±0.03(0.01) 87.73±0.13(0.10) 24.29±1.00(10.52) 3.22 170.34
NegTV 10.17±0.10(1.46) 91.33±0.09(0.60) 87.24±0.04(0.59) 12.25±0.21(1.52) 1.04 11.02
MCU 11.44±0.04(0.19) 92.02±0.02(0.09) 87.62±0.08(0.21) 16.33±0.18(2.56) 0.76 103.47

MCUβ 11.63±0.08(0.00) 91.92±0.10(0.01) 87.70±0.11(0.13) 16.21±0.31(2.44) 0.65 103.52

Table 2: Unlearning performance of MU methods for class-wise forgetting in ImageNet-100 with ViT. The
table adopts the same format as Table 1. UAtest is the unlearning accuracy on test-forgetting data Dtf .

Methods UA UAtest RA TA MIA Avg. Gap RTE

RT 100.00±0.00(0.00) 100.00±0.00(0.00) 92.01±0.08(0.00) 88.17±0.11(0.00) 100.00±0.00(0.00) 0.00 606.93
FT 80.69±2.62(19.31) 83.00±1.00(17.00) 92.33±0.04(0.32) 87.82±0.04(0.35) 83.27±3.81(16.73) 10.74 100.68
RL 96.15±0.46(3.85) 100.00±0.00(0.00) 92.21±0.07(0.20) 88.10±0.04(0.07) 100.00±0.00(0.00) 0.82 200.23
GA 100.00±0.00(0.00) 100.00±0.00(0.00) 81.42±1.99(10.59) 78.11±2.03(10.06) 100.00±0.00(0.00) 4.13 0.76

NegGrad+ 97.46±1.34(2.54) 99.00±1.00(1.00) 92.17±0.03(0.16) 87.90±0.06(0.27) 96.58±0.27(3.42) 1.48 69.14
SFRon 100.00±0.00(0.00) 100.00±0.00(0.00) 81.38±0.11(10.63) 80.97±0.18(7.20) 100.00±0.00(0.00) 3.57 87.96
SalUn 95.35±0.88(4.65) 100.00±0.00(0.00) 92.06±0.09(0.05) 88.01±0.01(0.16) 100.00±0.00(0.00) 0.97 174.67
NegTV 97.85±0.15(2.15) 100.00±0.00(0.00) 91.39±0.02(0.62) 87.60±0.02(0.57) 99.15±0.00(0.85) 0.84 1.24
MCU 100.00±0.00(0.00) 100.00±0.00(0.00) 92.32±0.03(0.21) 87.92±0.11(0.25) 100.00±0.00(0.00) 0.09 105.49

MCUβ 100.00±0.00(0.00) 100.00±0.00(0.00) 92.18±0.05(0.17) 88.00±0.09(0.17) 100.00±0.00(0.00) 0.07 98.12

4.2 EXPERIMENT RESULTS

Table 3: Unlearning performance of different pre-unlearning models in MCUβ . The results demonstrate that
applying our MCUβ framework to any unlearning method can significantly enhance unlearning performance.

Methods UA RA TA MIA Avg. Gap RTE

RT 10.54±0.34(0.00) 99.98±0.01(0.00) 89.59±0.22(0.00) 18.41±0.52(0.00) 0.00 105.70

FT 0.42±0.12(10.12) 99.93±0.01(0.05) 90.99±0.13(1.40) 3.71±0.25(14.70) 6.57 5.31
MCUβ-FT 5.62±0.07(4.92) 99.12±0.02(0.86) 89.59±0.10(0.00) 10.68±0.62(7.73) 3.37 9.76

RL 4.14±0.20(6.40) 99.69±0.02(0.29) 90.16±0.09(0.57) 21.93±0.66(3.52) 2.70 6.21
MCUβ-RL 10.54±0.02(0.00) 98.60±0.11(1.38) 89.21±0.08(0.38) 22.48±0.47(4.07) 1.46 12.24

GA 0.06±0.00(10.48) 99.97±0.00(0.01) 90.89±0.01(1.30) 0.98±0.11(17.43) 7.31 0.38
MCUβ-GA 3.84±0.01(6.70) 98.80±0.05(1.18) 88.86±0.33(0.73) 13.22±0.37(5.19) 3.45 5.03
NegGrad+ 7.03±0.32(3.51) 98.63±0.19(1.35) 89.26±0.23(0.33) 11.71±0.38(6.70) 2.97 2.96

MCUβ-NegGrad+ 10.29±0.24(0.25) 98.69±0.04(1.29) 89.11±0.13(0.48) 16.45±0.89(1.96) 1.00 6.82
SFRon 14.07±0.19(3.53) 92.86±0.16(7.12) 85.74±0.12(3.85) 14.32±0.44(4.09) 4.65 2.04

MCUβ-SFRon 8.82±1.71(1.72) 96.19±1.05(3.79) 88.11±0.61(1.48) 15.12±0.14(3.29) 2.57 6.93
SalUn 6.67±0.26(3.87) 97.87±0.14(2.11) 90.54±0.19(0.95) 35.45±0.57(17.04) 5.99 6.38

MCUβ-SalUn 10.49±0.07(0.05) 97.55±0.10(2.43) 89.21±0.23(0.38) 30.30±1.17(11.89) 3.68 11.35
NegTV 2.36±1.12(8.18) 99.08±0.60(0.90) 88.53±0.88(1.06) 4.14±0.29(14.27) 6.10 0.70

MCUβ-NegTV 8.11±0.60(2.43) 98.01±0.32(1.97) 87.74±0.33(1.85) 11.48±0.18(6.93) 3.30 5.67

Overall Performance. We evaluate the performance of MU baselines and our framework MCU and
MCUβ . Table 1 presents results for 10% random data forgetting across 2 datasets and architectures,
while Table 2 reports results for class-wise forgetting on ImageNet-100 dataset with ViT. Additional
results on other datasets, architectures, and unlearning scenarios are included in Tables 5-9 in
Appendix D. The Avg. Gap presents the mean performance gap across UA, RA, TA, and MIA.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Under comprehensive metrics, both MCU and MCUβ consistently exhibit the top two overall
performances under both random data forgetting and class-wise forgetting. Notably, in the class-
wise forgetting scenario, MCUβ performs nearly on par with the RT method. Additionally, MCUβ

outperforms MCU, validating our adaptive β strategy, which both simplifies training process and
enhances the effectiveness of MCU framework.

The results highlight the superiority of nonlinear unlearning over the linear method NegTV, especially
in the class-wise forgetting scenario in Tables 7 and 8 in the Appendix D. In our experiments of the
class-wise forgetting scenario, we attempted to optimize NegTV by extensively tuning its scaling
hyperparameter, but encountered a persistent dilemma: NegTV either resulted in under-forgetting
or over-forgetting. This stark trade-off highlights the inherent challenge of weight entanglement in
linear approaches, which struggle to achieve the balance required for effective class-wise unlearning.

0.0 0.25 0.5 0.75 1.0
t

020406080100

A
cc

ur
ac

y(
%

)

0.03

Df Dtf Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.67

(a) 10% Random Data

0.0 0.25 0.5 0.75 1.0
t

0
20
40
60
80

100

A
cc

ur
ac

y(
%

)

0.03

(b) Class-wise

Figure 3: Effective unlearning region on
MCUβ . The marker ★ highlights the posi-
tion with the minimum average gap from
RT, with the accompanying numerical value
indicating the exact average accuracy gap of
Df , Dr and Dt (and Dtf for class-wise for-
getting). The dotted line represents the RT
method’s accuracy, serving as a reference.
The shaded gray area denotes the effective
unlearning region, where models achieve
better unlearning performance than the θp.

As a strong baseline, SalUn and RL is generally second
only to MCUs and performs especially well in the class-
wise forgetting scenario. However, SalUn and RL tend to
exhibit overly strong resistance to MIA, often deviating sig-
nificantly from RT in terms of membership privacy. While
higher MIA efficacy is typically desirable for privacy, in
the context of MU, the goal is to align with the RT baseline
rather than excessively suppress MIA scores. Excessive
deviation from RT could indicate a shift in model behavior
that may introduce unintended privacy risks.

Effective Unlearning Region. Figure 3 shows visualiza-
tion results of MCUβ on CIFAR-10 with PreResNet-110
under both 10% random data forgetting and class-wise for-
getting scenarios. The results demonstrate that MCUβ not
only identifies a single effective unlearning model but also
discovers a substantial region along the Bézier pathway
where multiple models in this pathway exhibit effective
unlearning. Within this effective unlearning region, mod-
els achieve superior unlearning performance compared to
the pre-unlearning model (t = 1.0). Moreover, MCUβ

provides greater flexibility since different effective unlearning models can be selected based on
task-specific requirements. For instance, in Figure 3a, models to the right of marker ★ preserve better
predictive performance, while those to the left demonstrate stronger forgetting efficacy.

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.62

(a) Under-forgetting

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.43

(b) Over-forgetting

Figure 4: Effectiveness of MCUβ across
both under-forgetting and over-forgetting
pre-unlearning model θp.

Effectiveness in Different Pre-unlearning Models. In
this experiment, we integrate various MU methods as
pre-unlearning models into our MCUβ framework under
10% random data forgetting scenario on CIFAR-10 with
PreResNet-110. Table 3 compares the performance of these
methods before and after incorporating the MCUβ . The
results demonstrate that MCUβ consistently enhances the
performance of all MU methods. On average, the Avg.
Gap across all methods is reduced by 48.99%, with par-
ticularly notable improvements in the UA metric. These
results highlight the general applicability and robustness
of our framework across different unlearning methods.

Effectiveness across Under-forgetting and Over-forgetting Pre-unlearning Models. To further
demonstrate the versatility of MCUβ , we evaluate its ability to handle both under-forgetting and
over-forgetting scenarios of pre-unlearning models with the same data and architecture setting as
Figure 3a. While Figure 4a shows the under-forgetting case where RL is trained for 15 epochs, we
intentionally over-trained RL for 20 epochs as an over-forgetting pre-unlearning model in Figure 4b.
As shown in Figure 4, MCUβ-RL consistently enhances RL in both scenarios. Specifically, it reduces
the average gap across Df , Dr, Dt to 0.62 in the under-forgetting scenario and 0.43 in the over-
forgetting scenario. These results highlight MCUβ’s adaptability across different pre-unlearning
conditions. This is attributed to the adaptive unlearning penalty coefficient β, with the calibration
condition ➊ handling over-forgetting and conditions ➋ and ➌ handling under-forgetting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)
1.20

(a) β = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.07

(b) β = 0.15

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(c) β = 0.2

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.73

(d) β = 0.25

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.66

(e) β = 0.3

Figure 5: Ablation study for β on MCU. Overall, increasing β effectively enhances the unlearning effect but
damages retaining predictive performance, while decreasing β weakens the ability of the pathway to forget data.

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.20

(a) k = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.10

(b) k = 0.3

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(c) k = 0.5

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.77

(d) k = 0.8

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.57

(e) k = 1.0

Figure 6: Ablation study for k on MCU. As k increases, the average accuracy gap decreases, but the effective
region also shrinks.

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.66

(a) kr = 0.0

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(b) kr = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.02

(c) kr = 0.2

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.01

(d) kr = 0.3

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.00

(e) kr = 0.4

Figure 7: Ablation study for kr on MCU. When kr = 0, we preserve and update all parameters important to
retaining data, leading to a noticeable drop in Dr accuracy during the unlearning process.

Ablation Study. To better understand the role of hyperparameters, β, k, and kr within our MCU,
we conduct an ablation study on CIFAR-10 with PreResNet-110 under 10% random data forgetting
scenario. Figures 5-7 maintain the same format as Figure 3, with red-framed sub-captions indicating
our default settings, i.e., β = 0.2, k = 0.5, and kr = 0.1. For each ablation experiment, we vary one
parameter while keeping the others fixed at their default values.

A higher β value leads to a smaller average accuracy gap in Figure 5. Notably, when β = 0.3, the
average gap is only 0.66. However, increasing β also results in a reduced effective region. This
suggests that while a larger β improves forgetting, it leads to a degradation in model utility. Clearly,
β = 0.2 offers the best balance between average accuracy gap and effective region. Nonetheless,
choosing a larger β can still be a viable and wise option when minimizing the accuracy gap is the
primary objective, and the effective region is of secondary importance.

Similarly, we analyze the impact of k and kr, in our mask strategy. A larger k allows more parameters
retained for training, which significantly reduces the accuracy on Df , Dr, and Dt, especially Df

(orange lines in Figure 6). As for kr, increasing kr results in the removal of essential parameters
related to Dr, thereby effectively preserving the accuracy on Dr (blue lines in Figure 7). In our
experiments, we set k = 0.5 and kr = 0.1 as default values, as they provide a good balance between
enhancing forgetting quality and maintaining predictive performance.

5 CONCLUSION

In this work, we propose a novel framework MCU, leveraging mode connectivity to search nonlinear
pathway in parameter space for effective unlearning. Unlike traditional MU methods that identify
only a single unlearning model, MCU uncovers a spectrum of unlearning models along the pathway
and is free from empirical hyperparameter tuning. As a plug-and-play framework, MCU seamlessly
integrates with existing MU methods and consistently improves their unlearning efficacy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work contributes to the development of machine unlearning methods, which aim to respect user
privacy and regulatory requirements by enabling the removal of specific data from trained models.
This has positive societal implications for data protection and user control in machine learning
systems.

REPRODUCIBILITY STATEMENT

Our datasets and architectures, which are standard publicly available datasets and architectures, are
described in Section 4. Implementation details can be found in Appendix D. The code for reproducing
all experiments is publicly available at https://anonymous.4open.science/r/MCU-1E36.

REFERENCES

Sungmin Cha, Sungjun Cho, Dasol Hwang, Honglak Lee, Taesup Moon, and Moontae Lee. Learning
to unlearn: Instance-wise unlearning for pre-trained classifiers. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 11186–11194, 2024.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. When
machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC conference
on computer and communications security, pp. 896–911, 2021.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
induce forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 7210–7217, 2023a.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
unlearning. IEEE Transactions on Information Forensics and Security, 18:2345–2354, 2023b.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in
neural network energy landscape. In International conference on machine learning, pp. 1309–1318.
PMLR, 2018.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
through selective synaptic dampening. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 12043–12051, 2024.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Kristian Georgiev, Roy Rinberg, Sung Min Park, Shivam Garg, Andrew Ilyas, Aleksander Madry,
and Seth Neel. Attribute-to-delete: Machine unlearning via datamodel matching. arXiv preprint
arXiv:2410.23232, 2024.

Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam
Kumaraguru. Towards adversarial evaluations for inexact machine unlearning. arXiv preprint
arXiv:2201.06640, 2022.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 11516–11524, 2021.

10

https://anonymous.4open.science/r/MCU-1E36

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019.

Yiyang Huang and Clément L Canonne. Tight bounds for machine unlearning via differential privacy.
arXiv preprint arXiv:2309.00886, 2023.

Zhehao Huang, Xinwen Cheng, JingHao Zheng, Haoran Wang, Zhengbao He, Tao Li, and Xiaolin
Huang. Unified gradient-based machine unlearning with remain geometry enhancement. Advances
in Neural Information Processing Systems, 37:26377–26414, 2025.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Leonardo Iurada, Marco Ciccone, and Tatiana Tommasi. Efficient model editing with task-localized
sparse fine-tuning. In The Thirteenth International Conference on Learning Representations.

Meghdad Kurmanji, Eleni Triantafillou, and Peter Triantafillou. Machine unlearning in learned
databases: An experimental analysis. Proc. ACM Manag. Data, 2(1), March 2024a. doi: 10.1145/
3639304. URL https://doi.org/10.1145/3639304.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in neural information processing systems, 36, 2024b.

Bingheng Li, Zhikai Chen, Haoyu Han, Shenglai Zeng, Jingzhe Liu, and Jiliang Tang. Unveiling
mode connectivity in graph neural networks. arXiv preprint arXiv:2502.12608, 2025.

Yufang Liu, Changzhi Sun, Yuanbin Wu, and Aimin Zhou. Unlearning with fisher masking. arXiv
preprint arXiv:2310.05331, 2023.

Paul Micaelli and Amos J Storkey. Zero-shot knowledge transfer via adversarial belief matching.
Advances in Neural Information Processing Systems, 32, 2019.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing
Systems, 36, 2024.

Jie Ren, Pin-Yu Chen, and Ren Wang. Revisiting mode connectivity in neural networks with bezier
surface. In The Thirteenth International Conference on Learning Representations.

Yingdan Shi and Ren Wang. Redefining machine unlearning: A conformal prediction-motivated
approach. arXiv preprint arXiv:2501.19403, 2025.

Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of securing machine learning models
against adversarial examples. In Proceedings of the 2019 ACM SIGSAC conference on computer
and communications security, pp. 241–257, 2019.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
machine unlearning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Un-
derstanding factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pp. 303–319. IEEE, 2022.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels. arXiv preprint arXiv:2108.11577, 2021.

Shaokui Wei, Mingda Zhang, Hongyuan Zha, and Baoyuan Wu. Shared adversarial unlearning:
Backdoor mitigation by unlearning shared adversarial examples. Advances in Neural Information
Processing Systems, 36:25876–25909, 2023.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018.

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging mode
connectivity in loss landscapes and adversarial robustness. arXiv preprint arXiv:2005.00060, 2020.

11

https://doi.org/10.1145/3639304

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A WEIGHT ENTANGLEMENT IN LINEAR MU METHOD

In this section, we analyze the weight entanglement issue that arises in linear MU methods, i.e.,
task arithmetic Ilharco et al. (2022); Iurada et al.; Ortiz-Jimenez et al. (2024). Let f : X ×Θ→ Y
be a neural network that takes input x ∈ X and is parameterized by θ ∈ Θ. We assume X ⊆ Rd,
Θ ⊆ Rm, and Y ⊆ Rc. Given the original model parameters θo ∈ Rm, a fine-tuned model with
parameters θf

ft is trained on the forgetting dataset Df .

The unlearning task vector is defined as the difference between the fine-tuned and original model
parameters, i.e., τf = θf

ft − θo where θf
ft is fine-tuned on forgetting data Df based on θo. By task

arithmetic, it is easy to manipulate the output behavior of the model by adding or subtracting task
vectors. Thus, in our unlearning scenario, the unlearning model can be defined with the negation task
vector as:

f(x;θu) = f(x;θo − ατf) = f
(
x;θo − α(θf

ft − θo)
)
, (8)

where α is a coefficient that controls forgetting level. This formulation implicitly requires that
subtracting the task vector τf does not affect the model’s predictions on inputs outside the forgetting
data Df . In other words, τf should not encode any information about data outside Df , i.e., retaining
data Dr. Therefore, the condition for this equation to hold can be formalized as:

f (x;θo − ατf) =

{
f(x;θo), x ∈ Dr

f(x;θo − ατf), x ∈ Df .
(9)

This condition requires that the task vector τf in Eq. 8 only influences the model on the forgetting
dataset, leaving the performance on retaining data Dr unaffected. However, task vectors obtained via
simple fine-tuning on Df do not guarantee this condition, which faces a weight entanglement issue.

To address this, the model must exhibit a form of weight disentanglement. Ideally, the model should
behave as a composition of spatially localized components, each responsible for a specific data
domain. For our unlearning case, this means the function should decompose as:

f(x;θo − ατf)

= f(x;θo)1(x ∈ Dr) + f(x;θo − ατf)1(x ∈ Df)

= go(x) + gf (x;−ατf), (10)

The term go(x) := f(x;θo) · 1(x ∈ Dr) denotes spatially localized components for retaining data
domain, and go(x) = 0 for x ∈ Df . The term gf (x;−ατf) := f(x;θo − ατf) · 1(x ∈ Df)
captures the influence of the unlearning task vector, localized within the forgetting data domain, and
gf (x;ατf) = 0 for x ∈ Dr. This decomposition encapsulates the principle that only data within Df

should be influenced by τf .

To make this decomposition tractable, linearizing the network around θo via a first-order Taylor
expansion is attempted to realize it by :

f(x;θo − ατf)

≈ flin(x;θo − ατf) = f(x;θo)− ατ⊤
f ∇θf(x;θo). (11)

This linearized model expresses the output as a combination of the original prediction and a perturba-
tion determined by the gradient of f at θo.

While this form resembles the disentangled decomposition in Eq. 10, this resemblance is superficial.
The disentanglement condition requires that the influence of τf vanishes for all inputs not in Df .
However, the term τ⊤

f ∇θf(x;θo) is generally non-zero for arbitrary x ∈ Dr, since neither τf nor
the gradient are guaranteed to be localized. That is, the linearized update will affect predictions
on Dr, unless ∇θf(x;θo) itself vanishes for x ∈ Dr, or unless τf lies in the nullspace of these
gradients.

Therefore, we conclude that both the standard task vector approach Ilharco et al. (2022) and the
linearized task vector method Ortiz-Jimenez et al. (2024) fail to ensure weight disentanglement for
ideal unlearning.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B PROOF OF THEOREM 1

Georgiev et al. (2024) highlighted that the optimal stopping epoch is not universal, but instead
differs depending on the specific forgetting dataset in existing single model. Based on this claim,
we establish that relying on a single model is fundamentally insufficient due to the misalignment of
optimal stopping epochs across different forgetting data.

Assume the unlearning procedure consists of T training epochs, and let |Df | denote the number
of forgetting data points. For each forgetting data point i ∈ {1, ..., |Df |}, random variable Fi ∈
{1, . . . , T} represents the epoch where forgetting performance attains its optimum for forgetting data
point i, and F = [F1, . . . , Fi, . . . , F|Df |] ∈ R|Df |. Assume within an unlearning model, the |Df |
random variable Fi are mutually independent and uniform on {1, ..., T}, and arrange are i.i.d. across
models. We define an unlearning model to be successful if there exists a common epoch t such that

Fi = t, ∀i = 1, . . . , |Df |, (12)

The probability that all |Df | forgetting points align at the same epoch t is:

p =

T∑
t=1

Pr(F1 = . . . Fi . . . = F|Df | = t) = T ·
(
1
T

)|Df | = T 1−|Df |.

Thus, the failure probability of one model is 1− p. For k independent models, the probability that all
fail is (1− p)k. To guarantee that the success probability is at least 1− δ, we require (1− p)k ≤ δ.

Taking logarithms yields

k ≥ ln δ

ln(1− p)
=

ln δ

ln(1− T 1−|Df |)
.

Therefore, for any confidence level 1− δ ∈ (0, 1], it suffices to take at least

k(δ) = ⌈ ln δ

ln (1− T 1−|Df |)
⌉ (13)

independent models to ensure that the probability of observing at least one successful model is no
less than 1− δ.

C IMPLEMENTATION DETAILS

Forgetting Scenario. We focus on random data forgetting and class-wise forgetting in our work.
Random data forgetting refers to removing a randomly selected subset of training samples, simu-
lating user-level data deletion. In contrast, class-wise forgetting removes all samples from specific
classes, representing the requirement to erase an entire category of information.

Baselines. RT retrains the model from scratch using only the retaining dataset Dr. FT Warnecke
et al. (2021) fine-tunes the pre-trained model θo on the remaining dataset Dr. RL Graves et al. (2021)
fine-tunes the model on the forgetting datasetDf using randomly assigned labels to enforce forgetting.
GA Thudi et al. (2022) performs gradient ascent on the forgetting data Df , which often harms the
model’s utility. NegGrad+ Kurmanji et al. (2024a) addresses GA’s issue by combining fine-tuning on
Dr and gradient ascent on Df . SFRon Huang et al. (2025) incorporates the unlearning update into
the parameter manifold defined by the retained data, leveraging Hessian modulation that is efficiently
approximated through a fast–slow update strategy. SalUn Fan et al. (2023) performs unlearning by
optimizing only the salient parameters of the model identified from the random labeled forgetting
data. NegTV Ilharco et al. (2022) obtain an unlearning model by linearly subtracting the parameters
of the task vector corresponding to the forgetting data from the original model.

CIFAR-10 on PreResNet-100. We train the original model and RT model for 200 epochs using the
SGD optimizer with a cosine-scheduled learning rate initialized at 0.01. For the FT, RL, and SalUn
methods, they are performed for 10 epochs with a learning rate of 0.01. The GA and NegGrad+
methods are trained for 5 epochs with a learning rate of 0.01. The SFRon method is trained for 10

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

epochs with a learning rate of 0.01, and forget frequency and alpha is set to 3 and 80 respectively.
In the case of NegTV, the model undergoes a finetune model on Df for 10 epochs, and the scaling
coefficient α is set to 0.9 for random data forgetting and 0.2 for class-wise forgetting. For both
MCUβ and MCU, random data forgetting is performed for 10 epochs, whereas class-wise forgetting
is conducted for 5 epochs, both with a learning rate of 0.01.

ImageNet-100 on ViT. We utilize a pretrained ViT and fine-tune 30 epochs with a learning rate of
0.001 to get the original model. The RT method follows the same setting as the original model. For
FT, RL, and SalUn, training is performed for 5 epochs, while GA and NegGrad+ are trained for 2
epochs. The SFRon method is trained for 5 epochs with a learning rate of 0.001, and forget frequency
and alpha is set to 3 and 80 respectively. Similarly, the finetuning model for the NegTV method is
trained 5 epochs with a learning rate of 0.001 and a coefficient α of 0.9. For MCUs, they are trained
for 2 epochs.

Tiny-ImageNet on VGG-16-BN. We train both the original model and the RT model for 100
epochs with a learning rate of 0.1. The FT, RL, and SalUn methods undergo training for 10 epochs
with a learning rate of 0.01, while the GA and NegGrad+ methods are trained for 5 epochs. The
NegTV method finetunes the model on forgetting data Df for 10 epochs with a learning rate of 0.01.
The SFRon method is trained for 10 epochs with a learning rate of 0.01, and forget frequency and
alpha is set to 3 and 80 respectively. We observe that increasing the coefficient α of NegTV causes a
substantial degradation in both RA and TA. To preserve model performance, we set α to 0.1. For our
MCUs (both MCU and MCUβ), training is conducted over 5 epochs with a learning rate of 0.01.

CIFAR-10 on VGG-16-BN. Both the original model and the retrained (RT) model were trained for
100 epochs using the SGD optimizer with a cosine-scheduled learning rate initialized at 0.01. The FT,
RL, and SalUn methods were each trained for 10 epochs with a learning rate of 0.01, while the GA
and NegGrad+ methods were trained for 5 epochs using the same learning rate. The SFRon method
is trained for 10 epochs with a learning rate of 0.01, and forget frequency and alpha is set to 3 and 80
respectively. For NegTV, the model was fine-tuned on Df for 10 epochs, with the scaling coefficient
α set to 0.9. Both MCUβ and MCU were trained for 10 epochs using a learning rate of 0.01.

Additional MCU Implementation Details. All our experiments are conducted on a single Tesla
V100 GPU. We only use 50% of the retaining data during our MCU training process. The hyper-
parameters k and kr are set to 0.5 and 0.1, respectively. For searching the optimal model on the
curve, we obtain single models at t = 0.75 and 1 first. Then we interpolate to find the optimal model
according to the approach in section 3. For searching an effective region, we obtained 20 single
models along the pathway.

MIA Implementation Details. In line with previous studies Song et al. (2019); Yeom et al. (2018),
we assess the privacy risks of unlearning models using a confidence-driven membership inference
attack. We first train a support vector classifier on a balanced dataset, where samples from the
retaining data Dr are labeled as members and those from the test data Dtest are labeled as non-
members. After training, the attack model is deployed to probe the unlearning model θu. To evaluate
the unlearning performance, MIA-efficacy is obtained by applying the trained MIA predictor to the
unlearning model on the forgetting data. Specifically, MIA-efficacy quantifies the proportion of
forgetting data Df that the attack correctly rejects as non-members. Formally, MIA-Efficacy = TN

|Df | ,
where TN is the number of forgotten samples classified as non-members and |Df | is the size of the
forgetting data. Under this definition, a higher MIA-efficacy score reflects stronger privacy protection
and more complete removal of membership traces from θu.

D ADDITIONAL EXPERIMENTAL RESULTS

MCUβ with Polychain unlearning pathway. The Polychain unlearning pathway with one control
point in parameter space is defined as follows,

ϕθc
(t) =

{
2 (tθc + (0.5− t)θo) , 0 ≤ t ≤ 0.5,
2 ((t− 0.5)θp + (1− t)θc) , 0.5 ≤ t ≤ 1.

(14)

θc is the control model, and t represents a scalar interpolation coefficient that controls the position
along the pathway connecting two end models in the high-dimensional parameter space.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Methods UA RA TA MIA Avg. Gap RTE

RT 10.54±0.34(0.00) 99.98±0.01(0.00) 89.59±0.22(0.00) 18.41±0.52(0.00) 0.00 105.70

Polychain-1 8.90±0.89(1.64) 98.81±0.03(1.17) 89.58±0.04(0.01) 17.13±0.72(1.28) 1.03 6.76
Polychain-2 7.85±1.11(2.69) 98.92±0.05(1.06) 89.59±0.07(0.00) 16.01±0.62(2.40) 1.53 6.86
Polychain-3 8.68±1.24(1.86) 98.43±0.10(1.55) 89.58±0.09(0.01) 16.72±1.32(1.69) 1.28 6.90

Bézier 10.29±0.24(0.25) 98.69±0.04(1.29) 89.11±0.13(0.48) 16.45±0.89(1.96) 1.00 6.82

Table 4: Unlearning performance of the Polychain pathway for 10% random data forgetting in CIFAR-10
with PreResNet-110. Polychain-k corresponds to a Polychain pathway parameterized with c control points,
where c ∈ 1, 2, 3.

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.94

(a) c = 1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.25

(b) c = 2

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.14

(c) c = 3

Figure 8: Polychain pathway with different number of control points for 10% random data forgetting in
CIFAR10 with PreResNet-110. c denotes Polychain with c control points (c = 1, 2, 3).

The Polychain results on CIFAR-10 with PreResNet-110 under 10% random data forgetting scenario
are shown in Table 4 and Figures 8. Table 4 shows that the Bézier curve achieves better unlearning
performance than the Polychain, with a lower Avg. Gap. Nevertheless, the unlearning performance
of our MCUβ framework, whether using the Polychain or Bézier pathway, still surpasses all baseline
methods reported in Table 1. Moreover, as illustrated in Figure 8, the accuracy trajectory of the
Polychain is more irregular than that of the Bézier curve, exhibiting noticeable turning points.
Moreover, increasing the number of control points in the Polychain does not lead to improvements
in its unlearning pathway. The Bézier curve is generally superior because it offers smoother and
more flexible paths for connecting models. The Bézier curves can define a continuous, differentiable
trajectory, making them well-suited for efficient optimization and avoiding sharp transitions that can
lead to instability during unlearning. These advantages have led many prior works to only adopt
Bézier curves or surfaces for their studies Li et al. (2025); Ren et al.; Zhao et al. (2020). Therefore,
we adopt the Bézier curve as our default setting.

10 40 70 100
Proportion(%)

80

85

90

95

100

A
cc

ur
ac

y(
%

)

Df Dr Dt

Figure 9: The accu-
racy on Df , Dr , and Dt

across different propor-
tions of retaining data
used in our training pro-
cess. It shows that all ac-
curacy performance re-
mains stable even with
10% retaining data.

Additional Unlearning Performance for Baselines and MCUs. Table 5
shows the results in VGG-16-BN with Tiny-ImageNet under 10% random
data forgetting scenario. Table 6 presents the results under 20% random
data forgetting scenario across 3 different datasets. We also show additional
experimental results conducted in CIFAR-10 with PreResNet-110 as shown
in Table 7 and Tiny-ImageNet with VGG-16-BN as shown in Table 8 un-
der the class-wise scenario. Furthermore, the results of 10% random data
forgetting on CIFAR-10 with VGG-16-BN are presented in Table 9. These
findings consistently align with our previous analysis, further substantiating
the effectiveness of our MCUs.

Under comprehensive evaluation metrics, both MCUβ and MCU consistently
rank as the top two performers, achieving results nearly equivalent to the RT
model. Notably, MCUβ achieves 100% unlearning accuracy on forgetting
data, ensuring robust and reliable performance across diverse settings. The
results in Tables 5 - 9 further emphasize the limitation of the linear approach,
NegTV. Our experimental results of NegTV reveal a significant performance instability for NegTV
across different datasets in class-wise forgetting scenarios. While NegTV demonstrates substantial
advantages on ImageNet-100 in Table 2, its performance deteriorates considerably on both CIFAR-10
and Tiny-ImageNet datasets, underscoring its lack of robustness. Furthermore, we attempted to
optimize NegTV by extensively tuning its scaling coefficient α in our experiments, but encountered a
persistent dilemma: the method either resulted in under-forgetting (failing to adequately remove the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Methods UA RA TA MIA Avg. Gap RTE

RT 45.45±0.02(0.00) 99.52±0.02(0.00) 55.59±0.17(0.00) 55.79±0.17(0.00) 0.00 37.46
FT 5.76±0.07(39.69) 99.34±0.02(0.18) 56.25±0.10(0.66) 15.95±0.41(39.84) 20.09 3.80
RL 38.59±0.25(6.86) 99.03±0.02(0.49) 53.87±0.32(1.72) 86.53±0.29(30.74) 9.95 13.33
GA 5.17±0.07(40.28) 96.11±0.04(3.41) 53.66±0.02(1.93) 7.89±0.30(47.90) 23.38 0.32

NegGrad+ 51.06±12.91(5.61) 83.22±5.81(16.30) 46.74±3.00(8.85) 51.97±1.30(3.82) 8.65 6.58
SFRon 1.07±0.07(44.38) 99.53±0.02(0.01) 56.67±0.15(1.08) 4.80±0.04(50.99) 24.12 5.51
SalUn 36.61±0.23(8.84) 99.03±0.03(0.49) 54.04±0.35(1.55) 85.37±0.41(29.58) 10.12 13.79
NegTV 0.81±0.01(44.64) 99.35±0.02(0.17) 56.85±0.03(1.26) 4.49±0.20(51.30) 24.34 0.58
MCU-β 42.42±1.23(3.03) 93.32±0.33(6.20) 52.53±0.15(3.06) 44.43±1.41(11.36) 5.91 10.77
MCU 49.92±0.72(4.47) 92.88±0.19(6.64) 52.92±0.21(2.67) 46.90±0.07(8.89) 5.67 10.83

Table 5: Unlearning performance of MU methods for 10% random data forgetting in Tiny-ImageNet with
VGG-16-BN.

Table 6: Overall performance of MU methods for 20% random data forgetting. The results are presented in
the format a± b, with a as the mean and b as the standard deviation from 5 independent trials. The performance
gap relative to RT method is represented in (•). The Avg. Gap is derived by averaging performance gaps across
accuracy-related metrics, including UA, RA, TA and MIA. Smaller gaps reflect closer alignment with the RT
model’s performance. RTE is reported in minutes.

Methods UA RA TA MIA Avg. Gap RTE

CIFAR-10 with PreResNet-110
RT 11.17±0.08(0.00) 99.97±0.01(0.00) 88.92±0.17(0.00) 19.03±0.28(0.00) 0.00 93.75
FT 0.34±0.05(10.83) 99.94±0.01(0.03) 90.89±0.14(1.97) 3.43±0.10(15.60) 7.11 4.72
RL 3.24±0.14(7.93) 99.34±0.04(0.63) 90.24±0.17(1.32) 23.64±0.27(4.61) 3.62 7.83
GA 0.03±0.00(11.14) 99.98±0.00(0.01) 90.86±0.01(1.94) 0.80±0.05(18.23) 7.83 0.65

NegGrad+ 5.22±0.16(5.95) 98.51±0.08(1.46) 89.32±0.13(0.40) 10.03±0.32(9.00) 4.20 2.96
SFRon 14.70±0.43(3.53) 89.08±0.63(10.89) 85.65±0.41(3.27) 69.28±1.89(50.25) 16.99 13.87
SalUn 3.87±0.23(7.30) 98.76±0.04(1.21) 89.95±0.13(1.03) 24.94±0.49(5.91) 3.86 7.96
NegTV 3.33±0.35(7.84) 98.27±0.12(1.70) 86.86±0.32(2.06) 6.83±0.21(12.20) 5.95 1.28
MCU 7.21±0.03(3.96) 98.20±0.10(1.77) 88.23±0.12(0.69) 13.64±0.57(5.39) 2.95 6.88

MCUβ 8.04±0.03(2.50) 97.90±0.01(2.08) 88.68±0.14(0.91) 13.42±0.78(5.61) 2.78 6.92

ImageNet-100 with ViT
RT 11.89±0.00(0.00) 92.08±0.00(0.00) 88.04±0.04(0.00) 14.47±0.05(0.00) 0.00 837.96
FT 8.87±0.14(3.02) 92.32±0.01(0.24) 87.75±0.11(0.29) 10.53±0.91(3.94) 1.87 84.88
RL 9.54±0.10(2.35) 91.85±0.04(0.23) 87.83±0.11(0.21) 29.43±2.67(14.96) 4.44 245.60
GA 12.42±2.08(0.53) 87.68±2.25(4.40) 84.99±1.81(3.05) 12.12±1.05(2.35) 2.58 59.57

NegGrad+ 12.12±0.89(0.23) 91.67±0.27(0.41) 86.86±0.42(1.18) 15.63±0.45(1.16) 0.74 85.96
SFRon 25.77±0.00(13.88) 78.50±0.00(13.58) 77.86±0.00(10.18) 59.40±1.68(44.93) 20.64 87.65
SalUn 8.85±0.88(3.04) 91.67±0.29(0.41) 87.75±0.29(0.29) 22.65±0.00(8.18) 2.98 225.75
NegTV 10.06±0.04(1.83) 91.47±0.05(0.61) 87.11±0.17(0.93) 13.07±0.29(1.40) 1.19 22.29
MCU 11.78±0.12(0.11) 91.06±0.03(1.02) 87.22±0.11(0.82) 14.89±0.22(0.42) 0.59 150.57

MCUβ 10.98±0.07(0.91) 92.06±0.10(0.02) 87.40±0.14(0.64) 14.58±0.18(0.11) 0.42 149.88

Tiny-ImageNet with VGG-16-BN
RT 46.72±0.25(0.00) 99.65±0.01(0.00) 54.10±0.06(0.00) 57.81±0.03(0.00) 0.00 33.73
FT 5.44±0.03(41.28) 99.44±0.01(0.21) 56.53±0.11(2.43) 15.85±0.16(41.96) 21.47 4.20
RL 30.49±0.39(16.23) 98.77±0.03(0.88) 52.61±0.19(1.49) 83.52±0.45(25.71) 11.08 14.11
GA 4.42±0.14(42.30) 95.91±0.13(3.74) 53.60±0.08(0.50) 7.83±0.19(49.98) 24.13 0.50

NegGrad+ 45.02±0.70(1.71) 85.23±0.31(14.42) 47.55±0.27(6.55) 40.13±0.11(17.68) 10.09 4.22
SFRon 1.33±0.07(45.39) 99.87±0.00(0.22) 56.71±0.07(2.61) 6.19±0.15(51.62) 24.96 17.23
SalUn 39.55±0.01(7.17) 97.66±0.04(1.99) 53.32±0.29(0.78) 86.07±0.36(28.26) 9.55 13.73
NegTV 1.85±0.96(44.87) 98.81±0.54(0.84) 56.04±0.69(1.94) 6.95±1.83(50.86) 24.63 0.97
MCU 38.38±0.09(8.34) 97.73±0.18(1.92) 52.35±0.12(1.75) 47.25±1.12(10.56) 5.64 9.78

MCUβ 44.72±0.06(2.00) 96.94±0.07(2.71) 50.75±0.25(3.35) 45.25±0.50(12.56) 5.16 8.44

influence of the forgetting class) or over-forgetting (excessively degrading model performance) in the
class-wise forgetting scenario. This extreme phenomenon suggests a weight entanglement issue in
the linear NegTV method to achieve the delicate balance required for effective class-wise unlearning.
Comparing our MCUs with NegTV, we observe that the nonlinear pathway leads to more stable and
effective unlearning. This indicates that our nonlinear unlearning method, MCU, is free from the
weight entanglement issue that exists in the linear approach.

Stability to Scarce Retaining Data. The amount of retaining data Dr used during our training
process can be only a subset of the full set. The intuition is that the end models θo and θp already
preserve sufficient information about Dr. As a result, our framework is able to consistently identify
an effective unlearning pathway, making it notably insensitive to scarce retaining data. We validate
this claim on CIFAR-10 with PreResNet-100 under the 10% random data forgetting scenario, with
NegGrad+ as pre-unlearning model in our MCU framework. As illustrated in Figure 9, the accuracy

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Unlearning performance of MU methods for class-wise forgetting on CIFAR-10 with PreResNet-110.
The table adopts the same format as Table 7.

Methods UA UAtest RA TA MIA Avg. Gap RTE

Class-wise Forgetting
RT 100.00±0.00(0.00) 100.00±0.00(0.00) 99.98±0.00(0.00) 90.37±0.08(0.00) 100.00±0.00(0.00) 0.00 104.93
FT 18.53±1.65(81.47) 24.63±2.75(75.37) 99.94±0.02(0.04) 91.01±0.10(0.64) 43.18±3.26(56.82) 42.87 5.52
RL 100.00±0.00(0.00) 100.00±0.00(0.00) 96.67±0.45(3.31) 87.81±0.61(2.56) 100.00±0.00(0.00) 1.17 6.80
GA 85.01±0.19(14.99) 88.50±0.08(11.50) 90.55±0.40(9.43) 80.90±0.40(9.47) 86.27±0.07(13.73) 11.82 0.40

NegGrad+ 99.94±0.05(0.06) 100.00±0.00(0.00) 98.07±0.25(1.91) 87.25±0.28(3.12) 99.97±0.04(0.03) 1.02 2.95
SFRon 100.00±0.00(0.00) 100.00±0.00(0.00) 83.46±0.34(16.52) 81.80±0.37(8.57) 100.00±0.00(0.00) 5.02 18.59
SalUn 100.00±0.00(0.00) 100.00±0.00(0.00) 99.81±0.01(0.17) 90.34±0.30(0.03) 100.00±0.00(0.00) 0.04 6.97
NegTV 25.28±4.92(74.72) 31.95±5.35(68.05) 93.03±0.04(6.95) 82.43±0.22(7.94) 29.05±3.75(70.95) 45.72 0.71
MCU 99.96±0.01(0.04) 100.00±0.00(0.00) 99.80±0.01(0.18) 90.37±0.03(0.00) 100.00±0.00(0.00) 0.04 7.27

MCUβ 100.00±0.00(0.00) 100.00±0.00(0.00) 99.85±0.00(0.13) 90.37±0.03(0.00) 100.00±0.00(0.00) 0.03 7.29

Table 8: Unlearning performance of MU methods for class-wise forgetting on TinyImageNet with VGG-16-
BN.

Methods UA UAtest RA TA MIA Avg. Gap RTE

Class-wise Forgetting
RT 100.00±0.00(0.00) 100.00±0.00(0.00) 99.34±0.03(0.00) 56.94±0.11(0.00) 100.00±0.00(0.00) 0.00 42.06
FT 74.27±2.45(25.73) 78.67±5.25(21.33) 99.29±0.02(0.05) 56.71±0.12(0.23) 90.53±2.07(9.47) 11.36 4.29
RL 98.87±1.04(1.13) 100.00±0.00(0.00) 98.83±0.01(0.51) 56.52±0.10(0.42) 100.00±0.00(0.00) 0.41 7.24
GA 91.80±0.59(8.20) 87.33±0.94(12.67) 94.75±0.06(4.59) 52.86±0.05(4.08) 96.60±0.16(3.40) 6.59 0.13

NegGrad+ 94.76±1.50(5.24) 93.60±3.67(6.40) 99.33±0.03(0.01) 56.73±0.06(0.21) 97.33±1.97(2.67) 2.91 2.25
SFRon 100.00±0.00(0.00) 100.00±0.00(0.00) 88.62±0.07(10.72) 51.90±0.21(5.04) 100.00±0.00(0.00) 3.15 12.03
SalUn 99.27±0.62(0.73) 100.00±0.00(0.00) 98.95±0.02(0.39) 56.58±0.15(0.36) 100.00±0.00(0.00) 0.30 7.25
NegTV 0.50±0.10(99.50) 50.00±0.00(50.00) 99.38±0.02(0.04) 56.96±0.00(0.02) 6.10±0.90(93.9) 48.69 0.20
MCU 100.00±0.00(0.00) 100.00±0.00(0.00) 99.10±0.01(0.24) 56.44±0.02(0.50) 100.00±0.00(0.00) 0.15 5.78

MCUβ 100.00±0.00(0.00) 100.00±0.00(0.00) 99.07±0.01(0.27) 56.47±0.09(0.47) 100.00±0.00(0.00) 0.15 5.77

values of the optimal unlearning model on the MCU pathway remain stable across varying retaining
data proportions.

Superiority of the Adaptive β Strategy under Scarce Retaining Data In Figure 10, we present
the results of nonlinear pathway searching across varying proportions of retaining data Dr, ranging
from 10% to 100%. These experiments were conducted using MCUβ on CIFAR-10 with PreResNet-
110 under the 10% random data forgetting scenario. MCUβ consistently outperforms other unlearning
methods across all retaining data proportion settings (see Table 1 for other baselines’ specific results).
As expected, the optimal performance is achieved when utilizing 100% of the retaining data for curve
training. In this case, the pathway searching process fully leverages the entire dataset, leading to
the highest retaining accuracy and minimizing any degradation in model utility. By comparison, the
worst performance occurs when only 10% or 20% of the retaining data is available. In these cases,
the retaining accuracy drops significantly, indicating that an insufficient amount of retaining data
negatively impacts the learning process. However, when the proportion of Dr exceeds 30%, retaining
accuracy remains consistently high with relatively small average accuracy gaps. This demonstrates
the inherent stability of our MCUs even under limited retaining data conditions. This stems from
our framework of searching nonlinear pathways in the parameter space between the original and
pre-unlearning models as end points, which effectively preserves critical retaining data information
along the pathway. Consequently, an effective unlearning model can consistently be identified across
the pathway, regardless of the scarce retaining data used. Overall, we suggest that maintaining at
least 30% of the retaining data during pathway searching is enough to achieve a balance between
training efficiency, effective unlearning, and model utility.

Robustness of Adaptive β Strategy to Hyperparameters k and kr. While MCUβ under the
default settings of k = 0.5 and kr = 0.1 already yield strong performance in the main paper’s
experimental results, we further investigate the robustness of our proposed adaptive unlearning
penalty coefficient β under different values of k and kr. Specifically, we conduct ablation studies
over a range of values: k ∈ {0.3, 0.5, 0.8} and kr ∈ {0.0, 0.1, 0.2}.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Unlearning performance of MU methods for 10% random data forgetting scenario on CIFAR-10
with VGG-16-BN.

Methods UA RA TA MIA Avg. Gap RTE

RT 10.00±0.12(0.00) 99.96±0.01(0.00) 89.81±0.07(0.00) 15.14±0.02(0.00) 0.00 17.97
FT 0.25±0.04(9.75) 99.94±0.02(0.02) 90.31±0.08(0.50) 1.31±0.11(13.83) 6.03 1.84
RL 14.98±0.60(4.98) 99.90±0.01(0.06) 88.53±0.05(1.28) 57.50±0.86(42.36) 12.17 7.38
GA 0.24±0.00(9.76) 99.93±0.00(0.03) 87.67±0.02(2.14) 4.20±0.11(10.94) 5.72 0.17

NegGrad+ 2.63±0.25(7.37) 99.77±0.03(0.19) 89.88±0.21(0.07) 4.57±1.84(10.57) 4.55 2.52
SFRon 20.48±1.66(10.48) 88.46±1.80(11.50) 84.09±0.81(5.72) 26.28±1.20(11.14) 9.71 6.23
SalUn 11.30±0.24(1.30) 99.34±0.02(0.62) 89.66±0.20(0.15) 22.50±1.07(7.36) 2.36 5.96
NegTV 4.58±0.06(5.42) 98.06±0.10(1.90) 85.00±0.09(4.81) 5.23±0.37(9.91) 5.51 0.32
MCU 9.71±0.28(0.29) 99.14±0.06(0.82) 88.22±0.03(1.59) 14.73±0.12(0.41) 0.77 5.89

MCUβ 9.99±0.01(0.01) 99.58±0.01(0.38) 88.31±0.09(1.50) 14.55±0.07(0.59) 0.62 5.88

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.00

(a) 10%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.04

(b) 20%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.80

(c) 30%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.80

(d) 40%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.67

(e) 50%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.81

(f) 60%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.76

(g) 70%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.61

(h) 80%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.80

(i) 90%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.60

(j) 100%

Figure 10: Performance with different proportions of retaining data in pathway searching process. The results
show that MCUβ consistently outperforms other unlearning methods (see Table 1 for the specific values of all
baselines) across all retaining data proportion settings.

Figures 11 and 12 present the results of these experiments. In each figure, subplots (a)-(c) show
results for the vanilla MCU with a fixed penalty coefficient β = 0.2, while (d)-(f) show the results for
MCUβ with our adaptive strategy. In Figure 11, kr is fixed at 0.1 while varying k, and in Figure 12,
k is fixed at 0.5 while varying kr.

The results demonstrate that MCUβ exhibits strong robustness to changes in both k and kr. Its
performance remains stable across different settings, indicating that the adaptive penalty strategy
effectively accommodates varying k and kr. In contrast, the vanilla MCU model shows noticeable
fluctuations, suggesting a greater sensitivity to hyperparameter choices. This highlights the advantage
of using an adaptive β for more reliable unlearning performance under diverse conditions.

Table 10: Unlearning performance of MU methods for 1% random data forgetting scenario on CIFAR-10
with PreResNet-110.

Methods UA RA TA MIA Avg. Gap RTE

RT 11.00±0.01(0.00) 99.98±0.00(0.00) 90.66±0.02(0.00) 18.20±0.07(0.00) 0.00 78.80
FT 0.47±0.34(10.53) 99.93±0.01(0.05) 90.96±0.15(0.30) 3.20±0.58(15.00) 6.47 3.99
RL 17.20±1.56(6.20) 99.91±0.01(0.07) 90.45±0.05(0.21) 46.6±0.65(28.40) 8.72 8.98
GA 1.40±1.56(9.60) 99.18±1.09(0.80) 90.12±1.04(0.54) 3.53±2.11(14.67) 6.40 0.08

NegGrad+ 20.47±0.98(9.47) 98.37±0.07(1.61) 89.68±0.32(0.98) 24.80±1.77(6.60) 4.67 3.06
SFRon 39.20±7.20(28.20) 62.41±8.40(37.57) 62.88±8.36(27.78) 32.10±2.24(13.90) 26.86 16.11
SalUn 7.53±0.50(3.47) 99.05±0.03(0.93) 91.03±0.03(0.37) 17.47±1.05(0.73) 1.38 6.17
NegTV 0.13±0.19(10.87) 99.98±0.00(0.00) 90.97±0.09(0.31) 1.26±0.34(16.94) 7.03 0.17
MCU 10.63±0.03(0.37) 99.98±0.02(0.00) 89.82±0.05(0.84) 17.240.51±(0.96) 0.54 6.43

MCUβ 11.02±0.01(0.02) 99.97±0.01(0.01) 91.02±0.04(0.36) 19.000.34±(0.80) 0.30 6.43

1% Random Data Forgetting. To evaluate the effectiveness of our MCUs in scenarios with
extremely sparse forgetting data, we conduct experiments with 1% random data forgetting on CIFAR-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.10

(a) k = 0.3

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(b) k = 0.5

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.77

(c) k = 0.8

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100
A

cc
ur

ac
y(

%
)

0.72

(d) k = 0.3

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.67

(e) k = 0.5

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.66

(f) k = 0.8

Figure 11: Robustness analysis of k on MCU and MCUβ . (a)-(c) are results of MCU while (d)-(f) are results
of MCUβ . Compared to vanilla MCU, MCUβ demonstrates greater robustness to variations in k.

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.66

(a) kr = 0.0

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(b) kr = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.02

(c) kr = 0.2

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.65

(d) kr = 0.0

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.67

(e) kr = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.72

(f) kr = 0.2

Figure 12: Robustness analysis of kr on MCU and MCUβ . (a)-(c) are results of MCU while (d)-(f) are results
of MCUβ . Compared to vanilla MCU, MCUβ demonstrates greater robustness to variations in kr .

10 using PreResNet-110. As shown in Table 10, our MCUs still perform well under this challenging
setting.

Table 11: Different parameter mask strategies for unlearning performance of MCUβ on CIFAR-10 with
PreResNet-110 under 10% random data forgetting.

Methods UA RA TA MIA Avg. Gap RTE

RT 10.54±0.34(0.00) 99.98±0.01(0.00) 89.59±0.22(0.00) 18.41±0.52(0.00) 0.00 105.70

MCUβ −mSalUn 10.34±0.05(0.20) 98.18±0.21(1.80) 88.53±0.11(1.06) 16.10±0.93(2.31) 1.34 9.27
MCUβ −mSFRon 9.33±0.06(1.21) 99.39±0.06(0.59) 88.82±0.19(0.77) 16.73±0.43(1.68) 1.06 9.46
MCUβ −mOurs 10.29±0.24(0.25) 98.69±0.04(1.29) 89.11±0.13(0.48) 16.45±0.89(1.96) 1.00 6.82

Performance of Different Parameter Mask Strategies. In this section, we analyze alternative
parameter mask strategies proposed by other machine unlearning methods, specifically SalUn and
SFRon. All experiments are conducted on the CIFAR-10 dataset using PreResNet-110 under the 10%
random data forgetting setting. We examine the effectiveness of different parameter mask strategies
by substituting the masks used in SalUn Fan et al. (2023) and SFRon Huang et al. (2025) into our
MCUβ framework. The results are shown in Table 11. We observe that MCUβ remains effective
regardless of the specific masking strategy applied, indicating the robustness of our framework. The
RA and TA results of MCUβ −mSalUn are relatively poor because the SalUn mask only considers the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

importance of parameters to the forgetting data, without accounting for the need to freeze parameters
important to the retaining data. This leads to poor performance in both RA and TA. However, our
masking strategy offers a significant advantage in terms of running time efficiency (RTE). While
element-wise parameter masks (as used in SFRon and SalUn) still require gradient computation
for all parameters during training, limiting practical speedup, our method masks entire parameters.
This allows us to completely bypass gradient computations for masked parameters during training,
resulting in substantial runtime improvements.

Comparing with Best Intermediate Checkpoints of Pre-unlearning Models. In this section, we
find the best intermediate checkpoint of pre-unlearning models using a similar search process with the
best-t search strategy in our method. Revisit the cases of under-forgetting (RL with 15 epochs) and
over-forgetting (RL with 20 epochs) that we discussed in Figure 4. For each case, we also examine
the training checkpoints of pre-unlearning models and apply the similar best-t search strategy used in
MCU to identify the checkpoint that minimizes the average gap. The experiments are conducted on
CIFAR-10 with PreResNet-110 under 10% random data forgetting scenario. The accuracy values at
epoch=0 are the original model’s results and values at epoch=0 are the original model’s results.

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0 8 15
Epoch

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.72

(a) Under-forgetting

0 10 20
Epoch

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.04

(b) Over-forgetting

Figure 13: Effectiveness of MCUβ across
both under-forgetting and over-forgetting
pre-unlearning model θp.

For the under-forgetting scenario, the result is shown in
Figure 13a. Despite applying our best-t search strategy to
the training trajectory, we are consistently unable to find
any intermediate checkpoint that achieves a better average
gap than the final checkpoint. This suggests that check-
point selection cannot compensate for the under-unlearning
behavior of the method. Notably, our method achieves an
average gap of 0.62, as shown in Figure 4a.

For the over-forgetting scenario, the result is presented in
Figure 13b. While we observe that earlier checkpoints
can mitigate some of the over-forgetting, even the best
checkpoint we identified using the search strategy performs
significantly worse than our MCU interpolation (as shown
in Figure 4b), i.e., 1.04 vs 0.43. The performance gap remains substantial.

These findings suggest that checkpoint selection is inherently limited by the discrete nature of training
snapshots. In contrast, MCU operates in the continuous parameter space, enabling more precise and
effective exploration of intermediate models. Thus, MCU provides a more powerful and flexible
mechanism for balancing forgetting and retaining performance than simply selecting from available
training checkpoints.

E PSEUDO CODE OF MCU FRAMEWORK

The pseudo code can be found in Algorithm 1. We present it with three components: parameter mask
generating, nonlinear pathway searching, and optimal model/effective unlearning region searching.

F THE USAGE STATEMENT OF LARGE LANGUAGE MODELS

We used Large Language Model (LLMs) only to assist with language polishing. All ideas, methods,
and experiments were conceived and implemented by the authors.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 1 Pseudo code of MCUβ

1: Hyper-parameters: number of iterations n, learning rate η, parameter mask parameter k and
kr

2: Require: original model θo, pre-unlearning model θp, training accuracy and test accuracy on the
original model θo

3: # 1. Generate a parameter mask
4: Compute loss L(Dr;θo) and L(Df ;θo)
5: Compute gradient ∇θoL(Dr;θo) and ∇θoL(Df ;θo)
6: Calculate ∥∇θi

o
L(Dr;θo)∥2/|θi

o| and ∥∇θi
o
L(Df ;θo)∥2/|θi

o| for each parameter
7: Filter out top kr proportion of parameters based on ∥∇θi

o
L(Dr;θo)∥2/|θi

o| and generate mask
mr

8: Preserve top k proportion of parameters based on ∥∇θi
o
L(Df ;θo)∥2/|θi

o| and generate mask
mf

9: Calculate parameter mask m = 1(mr &mf)
10: # 2. Search pathways in parameter space
11: β ← 0.5 (unlearing penalty coefficient is initialized as 0.5)
12: for i← 1, 2, ..., n do
13: Sample t ∼ U(0, 1)
14: Compute accuracy of retaining data and forgetting data
15: Adaptively update β guided by Eq. 7
16: Compute cross-entropy loss L(Dr;ϕθc

(t)) for retaining data
17: Compute cross-entropy loss L(Df ;ϕθc

(t)) for forgetting data
18: Compute MCU loss Lmcu = L(Dr;ϕθc

(t))− β · L(Df ;ϕθc
(t))

19: Compute gradient ∇θc⊙mLmcu based on the parameter mask m
20: Update θc using gradient descent:
21: θc ⊙m← θc ⊙m− η∇θc⊙mLmcu

22: end for
23: # 3. Search optimal model and effective unlearning region on the pathway
24: Sample t ∼ U(0, 1)
25: for each t do
26: Compute accuracy of retaining data Dr, forgetting data Df and test data Dt

27: Calculate retaining gap, forgetting gap and test gap and their average gap
28: Compare average gap with pre-unlearning model θp and search the optimal model and effective

unlearning models
29: end for
30: Return: The optimized pathway ϕθc

(t) which connects θo and θp, optimal unlearning model
θ∗
u and a range of t where can generate effective unlearning models θu across pathway

21

	Introduction
	Related Work
	Machine Unlearning
	Mode Connectivity

	Mode Connectivity Unlearning
	Preliminaries and Notations
	Unlearning Pathway Searching
	Parameter Mask
	Adaptive Unlearning Penalty Coefficient
	Optimal Model and Effective Region

	Experiments
	Experiment Setups
	Experiment Results

	Conclusion
	Weight Entanglement in Linear MU Method
	Proof of Theorem 1
	Implementation Details
	Additional Experimental Results
	Pseudo Code of MCU Framework
	The Usage Statement of Large Language Models

