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ABSTRACT

Out-of-distribution (OOD) robustness is a desired property of computer vision
models. Improving model robustness requires high-quality signals from robust-
ness benchmarks to quantify progress. While various benchmark datasets such
as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption
types are no longer OOD relative to today’s large datasets scraped from the web,
which already contain common corruptions such as blur or JPEG compression
artifacts. Consequently, these standard benchmarks are no longer well-suited for
evaluating OOD robustness in the era of web-scale datasets. Indeed, recent mod-
els show saturating scores on ImageNet-era OOD benchmarks, indicating that it
is unclear whether models trained on web-scale datasets truly become better at
OOD generalization or whether they have simply been exposed to the test distor-
tions during training. To address this, we here introduce LAION-C as a bench-
mark alternative for ImageNet-C. LAION-C consists of six novel distortion types
specifically designed to be OOD, even for web-scale datasets such as LAION. In
a comprehensive evaluation of state-of-the-art models, we find that the LAION-C
dataset poses significant challenges to contemporary models, including MLLMs
such as Gemini and GPT-4o. We additionally conducted a psychophysical exper-
iment to evaluate the difficulty of our proposed corruptions for human observers,
enabling a comparison of models to lab-quality human robustness data. We ob-
serve a paradigm shift in OOD generalization: from humans outperforming mod-
els, to the best models now matching or outperforming the best human observers.

1 INTRODUCTION

In recent years, large-scale vision models such as vision transformers (Dosovitskiy et al., 2021) and
ConvNeXt (Liu et al., 2022), trained on large web-scale datasets like LAION (Schuhmann et al.,
2022), have pushed the limits of performance on standard benchmarks. However, the continued
advancement and reliable evaluation of these models depends on the availability of datasets that
effectively challenge model robustness and generalization capabilities.

In the era of training models on curated datasets like ImageNet (Russakovsky et al., 2015), creating
OOD-benchmarks was relatively straight-forward: By introducing visual corruptions that were ab-
sent from the training set, such as blur and noise, researchers could evaluate the robustness of their
models in a controlled manner. If a model performs well on a corruption it has never seen, it can
be said to be robust to this corruption. For example, ImageNet-C (Hendrycks & Dietterich, 2019),
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which introduces different parametric corruptions to the ImageNet validation set, has long stood as
the de facto standard for OOD evaluation. Models that were trained on the (uncorrupted) ImageNet
images must robustly generalize in order to perform well on ImageNet-C.

With the shift towards training models on vast, largely unfiltered image datasets, it is much less clear
how to obtain test images that are truly OOD. Adding noise and blur to images can no longer be con-
sidered a distribution shift, because such images are already present in the training set, as demon-
strated in Fig. 1. Models trained on LAION have seen the types of corruption in ImageNet-C, and
are presumably exposed to all realistic corruptions. Therefore, the fact that models like CLIP (Rad-
ford et al., 2021) exhibit much better performance on classic OOD datasets than ImageNet-trained
models might not be an indication of true OOD robustness, but rather a consequence of a smaller
train-test gap. For distribution shifts defined by the style of an image, recent work empirically shows
that such datasets are indeed not OOD, but overlap with LAION-400M (Mayilvahanan et al., 2023;
2024). Hence, to measure the OOD robustness of modern models, a dataset containing truly new
image corruptions is needed—even if this means that the corruptions must be highly artificial.

Our contributions are as follows:

1. Given that existing OOD datasets are no longer OOD for models trained on web-scale datasets,
we introduce LAION-C, a novel benchmark dataset with six manually designed corruption types
and 16 superclasses to evaluate the robustness of web-scale vision models. This dataset serves as
a proxy for unseen challenges, allowing us to probe the limits of current models’ robustness in a
controlled but challenging environment.

2. We conduct a comprehensive performance analysis of various models on LAION-C and report a
robust human OOD generalization baseline obtained through psychophysical experiments with
19 participants, collecting 11,400 trials in a highly controlled laboratory environment.

3. The resulting data serves as an OOD benchmark for current and future models, enabling not
only an assessment of their generalization ability on truly OOD data but also providing insights
into the discrepancies between human and machine perception, observing a paradigm shift in
OOD generalization: from humans outperforming models to the best models now matching or
outperforming the best human observers.

A detailed related work section can be found in Appx. A.1.

2 METHODS

2.1 CONSTRUCTING NEW OOD DISTORTIONS

As described in the introduction and depicted in Fig. 1, ImageNet-C does no longer qualify as out-
of-distribution (OOD) for models trained on large-scale datasets and, therefore, can no longer be
employed for such testing. Given the limitations of existing benchmarks, we develop a novel dataset
specifically designed to challenge these foundation models more rigorously. Our dataset introduces
six carefully designed, fully synthetic distortions that models have not encountered during training.
These distortions are designed to be OOD even for web-scale datasets (as supported by quantitative
evidence presented later). Hence, models truly need to generalize beyond their training distributions
to perform well on this benchmark, which we term LAION-C.

Distortions The core idea behind our distortions is to create highly synthetic, artificial corruptions
that do not naturally appear even in large-scale datasets and are therefore OOD even for modern
vision models. At the same time, the corruptions should test relevant feature extraction capabilities
of the models. To achieve these goals, we intentionally disrupt visual consistency and perceptual
cues that models might rely on for image classification. The Stickers and Mosaic distortion requires
a model to holistically integrate the image, instead of being led astray by local image cues induced
by sub-images, which is notoriously difficult for DNNs (Brendel & Bethge, 2019). The Glitch and
Vertical Lines distortions are the most exotic and globally disruptive image transformations we could
come up with, which destroy the texture cues that models rely on (Geirhos et al., 2019). The Geo-
metric Shapes distortion tests amodal completion, which is a staple of human visual processing even
in infants (Kellman & Spelke, 1983; Nanay, 2018). They also change the color distribution of the
image, which humans are robust to because we do not rely primarily on color for object recognition
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Figure 1: ImageNet-C corruptions are not out-of-distribution (OOD) for web-scale datasets
like LAION-400M. Exemplary corrupted images from ImageNet-C (left) are similar to LAION-
400M samples (right). Each row shows example corruptions and dataset images for one ImageNet-C
corruption category (Noise, Blur, Weather, Digital). The presence of these distortions in web-scale
datasets indicates the need for an OOD benchmark in the era of web-scale vision models.

(Biederman & Ju, 1988; Tanaka & Presnell, 1999). The Luminance Checkerboard distortion tests a
model’s ability to adapt to local lighting conditions, an important skill of the human visual system
(Carandini & Heeger, 2012). These distortions provide a sufficient challenge for the models while
also offering varied levels of perceptual difficulty for humans. This way, LAION-C complements
existing benchmarks by including images that challenge human perception, instead of limiting our-
selves to visual domains in which humans excel.

As AI systems are increasingly deployed in high-stakes domains, it is crucial that benchmarks evolve
to robustly test these systems’ generalization capabilities. Following ImageNet-C, each distortion
consists of five different intensity levels. The distortions capture a range of visual challenges ranging
from disruptions of local image information to more global structural alterations, as described below
and illustrated in Fig. 2. For more detailed descriptions of the distortions, see Appx. A.4.

These distortions are applied to a carefully curated subset of images from the ImageNet validation
dataset. To contextualize model performance, we compare it to human performance. Following
prior work (Geirhos et al., 2018), we simplify the classification task to 16 superclasses, to ensure
human evaluations remain feasible. We derive the superclasses ball, bird, boat, bottle, butterfly,
car & truck, cat, chair, dog, fish, fruit, instrument, primate, snake, timekeeping, and tool from 285
ImageNet classes. Each superclass contains 273 images, enabling statistically significant detection
of a 3% performance difference. Additionally, we manually filter the dataset to remove ambiguous
labels and images requiring specific cultural knowledge for classification.

2.2 MEASURING MODEL PERFORMANCE

We use the generated dataset to evaluate the performance of a suite of 58 vision models. Our se-
lection includes models trained on large-scale web datasets and fine-tuned on ImageNet-1k, such as
Vision Transformers (ViT) (Dosovitskiy et al., 2021), ConvNeXt (Liu et al., 2022), and EVA (Fang
et al., 2023; 2024). For comparison, we also evaluate the performance of smaller-scale model fami-
lies such as ResNet (He et al., 2016) and MobileNet (Howard, 2017) and large-scale models trained
only on ImageNet-1k. Additionally, we also evaluate GPT-4o (OpenAI, 2024) and Gemini 1.5 Pro
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Figure 2: LAION-C distortions, intended to be OOD even for web-scale datasets. This figure
illustrates the six LAION-C distortions at five intensity levels. Following the standard experimental
paradigm from psychophysics, our dataset spans from near-perfect to chance-level difficulties, thor-
oughly testing models and leaving room for future model improvements. Best viewed on screen.

(Team et al., 2024) on a representative subset of LAION images. See Tab. 11 for a complete list of
all models we evaluate.

3 RESULTS

3.1 HOW OOD IS LAION-C?
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Figure 3: Performance Divergence of
Models on LAION-C and ImageNet-C.
Evaluating models on the 16-class ver-
sions of ImageNet-C and LAION-C pro-
duces a plateaued performance on ImageNet-
C, while LAION-C still yields high variance
across models.

Next, we empirically evaluate whether our LAION-
C dataset is indeed OOD relative to the large-scale
image datasets used to train modern vision mod-
els. Rigorously quantifying how OOD a test dataset
is with respect to some training dataset requires
a precise definition of the test and training do-
main (Mayilvahanan et al., 2024). As the distribu-
tion shifts introduced by the distortions of LAION-
C and ImageNet-C are fuzzy in nature, we use three
tools to compare the OOD-ness of our proposed
dataset to the OOD-ness of ImageNet-C. First, we
use a qualitative assessment. By searching for the
name and related concepts of ImageNet-C corrup-
tions, we easily find LAION samples with visual dis-
tortions akin to those of ImageNet-C(see Fig. 1).

Second, we use the difficulty of a test dataset (mea-
sured by the performance that models trained on a
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reference dataset yield on the test dataset) as a proxy for how much the test dataset differs from
the reference dataset. Here, the reasoning is that if a test dataset can be solved almost perfectly
by a model, it means that either the model has great generalization skills or the test dataset is not
strictly OOD. If, at the same time, another dataset has much greater difficulty according to the same
models, the second dataset is likely more OOD than the first. For the sake of comparability, we here
use a version of ImageNet-C restricted to the same 16 superclasses that were used for LAION-C,
where we implemented the ImageNet-C augmentations through the code by Michaelis et al. (2019).
Indeed, a comparison of the performance achieved by our suite of models (see Fig. 3) suggests that
LAION-C is more OOD to LAION than ImageNet-C is.

Third, we use the FID (Heusel et al., 2017; Kynkäänniemi et al., 2022) to quantify the difference
between LAION and ImageNet-C and LAION-C, respectively. Specifically, we employ a CLIP-
trained ViT-B as feature encoder and use the implementation by Parmar et al. (2022) to calculate
FID-scores. In line with previous evidence, we find a FID of ≈ 70 between LAION and LAION-C,
which is substantially higher than that between LAION and ImageNet-C (≈ 40). This means that
features of LAION are closer to those of ImageNet-C than those of LAION-C, again highlighting the
greater OOD-ness of LAION-C. In summary, we have presented three different kinds of evidence
suggesting that LAION-C is more OOD than ImageNet-C to LAION.

3.2 COMPARISON TO OTHER OOD BENCHMARK VARIANCES

We conduct a direct comparison between LAION-C and other well-established OOD datasets. As
illustrated in Figure 4, LAION-C provides a more detailed resolution of model performance vari-
ances, with a standard deviation of approximately ∼27%, compared to an average of ∼10% in other
common OOD datasets. Notably, LAION-C is evaluated on a 16-class basis, which is significantly
fewer than the 200-1000 classes used in typical OOD datasets, making the result even stronger.
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Figure 4: LAION-C offers better resolution of model differences. We tested 9 models pre-trained
on LAION2B, evaluating them across all intensity levels if applicable. LAION-C captures more
variance in model performance, with a standard deviation of ∼27%, compared to an average of
∼10% in other common OOD datasets.

3.3 MACHINE PERFORMANCE

In Fig. 5, we compare model performance on ImageNet-C against performance on LAION-C. Evi-
dently, the average model performance on ImageNet-C stays above or close to 60%, indicating that
current models are increasingly adept at handling the distortions in ImageNet-C. This observation
reinforces our hypothesis that the challenge presented by ImageNet-C may no longer be sufficiently
difficult to rigorously test the robustness of modern models.
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Figure 5: LAION-C poses a greater challenge to model robustness than ImageNet-C. We plot
distortion intensity against each model’s average accuracy. Visual foundation models evaluated on
ImageNet-C maintain high accuracy, with minimal drop across increasing intensity levels. On our
LAION-C dataset, the models exhibit a sharper decline in accuracy, highlighting the benchmark’s
effectiveness in measuring model robustness.

Table 1: LAION-C is challenging but can be solved by fine-tuning on the exact distortions. We
compare the performance of ViT-H-P14-336-CLIP-LAION-IN12K before and after fine-tuning it
on a mix of clean and LAION-C–corrupted ImageNet-1k training images. Fine-tuning significantly
improves performance on LAION-C and we don’t see a regression on ImageNet-Val accuracy. This
proves that LAION-C, although challenging, is solvable as it retains enough signal when applying
distortions.

Accuracy [%] Mosaic Vertical Lines Glitched Luminance Geometric Stickers ImageNet-Val (16 class)

Before 45.2 51.2 69.8 88.2 64.4 24.6 99.8
After 80.6 93.6 96.8 97.8 89.8 67.4 99.2

In contrast, models achieve much lower accuracy on LAION-C on average and exhibit more inter-
model variability. This showcases our dataset’s ability to uncover nuances that remain hidden on
more saturated benchmarks. These performance differences are particularly obvious at higher inten-
sity levels, illustrating LAION-C’s potential to serve as a more challenging and insightful benchmark
for evaluating robustness.

We also provide a detailed breakdown of results in Fig. 11. We observe significant variability in
the performance of different vision models across various datasets and distortion levels. These
results further highlight the effectiveness of our datasets in eliciting different responses from models
of different architectures, parameter scales, and training data sizes. This diversity is particularly
valuable for understanding which model designs are more robust to specific types of distortions,
offering insights that are beneficial for advancing the state-of-the-art model robustness.

3.4 CAN LAION-C BE SOLVED?

Given the low performance of current state-of-the-art models on LAION-C, one might wonder
whether the heavy distortions make classification impossible. To disprove this hypothesis and high-
light the validity of LAION-C as a benchmark for evaluating model robustness, we fine-tune a ViT-
Huge model (pretrained on LAION-2B and later fine-tuned on ImageNet-22k and ImageNet-1k)
using 336,000 ImageNet-1K images uniformly augmented with LAION-C distortions.

As shown in Tab. 1, fine-tuning the model results in substantial accuracy gains, which define an up-
per bound on LAION-C accuracy that no normal model can be expected to achieve. Notably, these
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accuracy gains are particularly pronounced on higher-intensity distortions, as detailed in Tab. 10,
where accuracy is broken down by distortion intensity. The fine-tuned model likely achieves such
good performance by employing un-human-like (or “spurious”) features, but the purpose of this ex-
periment is not to suggest that fine-tuning on LAION is a sensible approach to improve OOD robust-
ness, but to quantify how much learnable signal is left. LAION-C provides meaningful robustness
tests without being intractable, making it a valuable tool for a more comprehensive evaluation of
model performance under difficult conditions.

3.5 HUMAN AND MACHINE VISION DISCREPANCY

In addition to its utility as an OOD-benchmark, LAION-C can be used as a tool to investigate
differences between vision models and human observers. Since LAION-C consists of 16 high-level
classes, we can collect human reference data following the paradigm of Geirhos et al. (2018). For
this, 19 human subjects are briefly presented with a distorted image and are asked to classify it into
one of 16 classes, reminiscent of how a DNN might be evaluated on a classification task. Further
methodological details are provided in Appx. A.2. To quantify the alignment between human and
machine visual perception, we adopt the error consistency metric proposed in Geirhos et al. (2020b),
see Appx. A.3 for details.

For a detailed analysis of human-machine differences, we refer to Appx. A.6, but to summarize
results: We find that current state-of-the-art vision models now match or even outperform human
observers in OOD scenarios, even on our synthetic distortions, which they likely have never en-
countered during training—a stark contrast to just a few years ago, when humans were still vastly
outperforming models (Geirhos et al., 2018; Dodge & Karam, 2019; Taori et al., 2020; Jang & Tong,
2024). There is a high degree of variability in error consistency between human observers and dif-
ferent vision models ranging from 0.15 to 0.45. This indicates that while model families such as ViT
and EVA rival or surpass human performance, they are approaching the task with different strategies
than humans, demonstrating less human-like behaviors. The observed value range matches the one
found in previous work for older models and different image data (Geirhos et al., 2021). This again
suggests that while recent developments have boosted model performance, these models have not
become more human-like, as they follow alternative strategies.

4 DISCUSSION

Given that existing OOD benchmarks are no longer OOD for models trained on web-scale datasets
like LAION, we here introduce LAION-C: A novel benchmark designed to evaluate the robustness
and generalization capabilities of modern vision models. We demonstrate that LAION-C is more
challenging for a representative suite of vision models than ImageNet-C, particularly at higher dis-
tortion intensity levels. Given that LAION-C, by virtue of its construction, serves as a better proxy
for a model’s ability to recognize objects despite an unexpected distortion, we recommend it as an
OOD benchmark for current and future web-scale vision models. Furthermore, our thorough human
evaluation shows that the best models often outperform even the best human observers. While they
do not always follow similar strategies, this reassuring finding indicates that the best models have
indeed substantially progressed in their ability to handle unexpected input and are not just getting
better on in-distribution distortions. This marks a paradigm shift in OOD generalization: From hu-
mans outperforming models to models outperforming humans, from relying on a single strategy to a
diverse set of multiple robust strategies, and from OOD benchmarking measuring progress towards
human-like object recognition to better performance now indicating super-human (in other words,
less human-like) vision models.

CODE AND DATASET AVAILABILITY

The evaluation code for LAION-C is publicly available at: https://github.com/
FanfeiLi/LAION-C. The LAION-C dataset is published on Zenodo. A link to the dataset is
provided via the GitHub repository.
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we done with imagenet? arXiv preprint, 2020. URL https://arxiv.org/abs/2006.
07159.

Irving Biederman and Ginny Ju. Surface versus edge-based determinants of visual recognition.
Cognitive psychology, 20(1):38–64, 1988.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet. arXiv preprint arXiv:1904.00760, 2019.

Matteo Carandini and David J Heeger. Normalization as a canonical neural computation. Nature
reviews neuroscience, 13(1):51–62, 2012.

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psychological mea-
surement, 1960.

Samuel Dodge and Lina Karam. Human and dnn classification performance on images with quality
distortions: A comparative study. ACM Transactions on Applied Perception (TAP), 2019.

Adrien Doerig, Rowan P Sommers, Katja Seeliger, Blake Richards, Jenann Ismael, Grace W Lind-
say, Konrad P Kording, Talia Konkle, Marcel AJ Van Gerven, Nikolaus Kriegeskorte, et al. The
neuroconnectionist research programme. Nature Reviews Neuroscience, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

8

https://arxiv.org/abs/2006.07159
https://arxiv.org/abs/2006.07159


Published as an SCSL Workshop Paper at ICLR 2025

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale.
In CVPR, 2023.

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A
visual representation for neon genesis. Image and Vision Computing, 2024.

Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological cyber-
netics, 1975.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
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A APPENDIX

A.1 RELATED WORK

OOD generalization ability of vision models. As deep learning has advanced to the point where
models can reliably generalize to data that matches their training distribution or even exceed the
quality of the original labels (Beyer et al., 2020), OOD-robustness, as measured by specifically
designed OOD test sets, has moved to the center stage of computer vision research. In partic-
ular, ImageNet-C (Hendrycks & Dietterich, 2019), a dataset containing images from the test-set
of ImageNet to which various fairly natural corruptions such as blurring and pixelation were ap-
plied, has long been the gold standard for assessing OOD-performance, to the point where data
augmentations proposed to increase OOD robustness were found to only work well because they are
similar to the ImageNet-C corruptions (Mintun et al., 2021). In contrast, ImageNet-R (Hendrycks
et al., 2021a) instead provides a more complex distribution shift by collecting different renditions
of the target classes such as sculptures and paintings, instead of photos. A more subtle distribu-
tion shift which still caused considerable drops in model performance for ImageNet-trained models,
was proposed by Recht et al. (2019). They collected ImageNetV2, a new test set for ImageNet
that should theoretically not differ from the ImageNet test set at all, because it was collected with a
very similar methodology, but revealed that models do perform slightly worse on ImageNetV2 than
on the original test set. Hendrycks et al. (2021b) proposed two other OOD-test sets which do not
rely on synthetic image manipulations but instead consist of natural images that are in some sense
OOD relative to ImageNet, either by virtue of displaying object classes not present in ImageNet
(ImageNet-O) or by showing an object of an ImageNet-class in a scene that is weird enough to fool
most models (ImageNet-A). What all of these datasets have in common is that, by design, they pro-
vide distribution shifts relative to ImageNet. But with the rapid evolution of deep learning, these
traditional benchmarks have become less challenging for state-of-the-art vision models trained on
expansive web-scale datasets (Radford et al., 2021). While it is to some degree possible to predict a
model’s OOD generalization from its training set performance (Taori et al., 2020), the only reliable
measurements of this capability stem from empirical evaluations of models on OOD datasets. Our
work addresses this need by introducing LAION-C, a dataset that incorporates novel and complex
synthetic distortions tailored to challenge even advanced vision systems.

Advancement in visual foundation models The rise of visual foundation models such as Vi-
sion Transformers (ViT) (Dosovitskiy et al., 2021), ConvNeXt (Liu et al., 2022) and BeiT (Bao
et al., 2022) has redefined what constitutes standard performance across many visual tasks. These
improvements in performance partially stem from architectural innovations and parameter optimiza-
tion, but were mostly powered by the effective leveraging of unprecedented dataset sizes (Zhai et al.,
2022). However, because visual foundation models were trained on web-scale datasets, the extent
of their generalization capability remains underexplored.

Comparing human vs. machine perception. Deep Neural Networks were originally conceived
as models of human vision (Fukushima, 1975) and were found to be the best available models for
neuronal activity in the primate visual cortex (Yamins et al., 2014), even if not trained for this task.
Today, there is a growing body of research dedicated to evaluating the adequacy of neural networks
as behavioral models of human core object recognition (Doerig et al., 2023; Schrimpf et al., 2018;
Wichmann & Geirhos, 2023; Muttenthaler et al., 2023). Building upon the findings of Geirhos
et al. (2021), who illustrate the narrowing of the behavioral gap between humans and machines
in terms of their error consistency, our study further explores this dynamic utilizing LAION-C. We
conducted a systematic analysis of differences in perception between human and machine observers,
and assessed if the behavioral gap is closing further, as well as highlighting the persistent cognitive
differences between humans and machines.

A.2 EXPERIMENT PROCEDURE AND PARTICIPANT INCENTIVES

Participant recruitment and setup. We recruited 20 participants (10 female) from the university
student body via mailing lists. All participants were screened to ensure normal or corrected vision
and no color blindness, and gave informed consent to participate. One participant was excluded
post-hoc due to reporting extreme tiredness. Our experiments were conducted in a darkened cabin,
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Figure 6: Interface presented to participants. This figure illustrates the icon layout as displayed
to participants during the study. The grid is adapted from (Geirhos et al., 2018), while most of the
categories and therefore symbols are different.

using a 22” VIEWPixx 3D light LCD monitor (VPixx Technologies, Saint-Bruno, Canada) at a
refresh rate of 120 Hz (scanning backlight mode on). The screen measures 484 × 302 mm, at a
resolution of 1920 × 1200 pixels. Stimuli were presented foveally in the center of the screen, with
a viewing distance of 65 cm, resulting in 5 ◦ of visual angle. In line with earlier experiments, the
background was set to a grey value of 0.454 in the [0, 1] range. A chin rest was used to maintain
a fixed viewing distance and angle. The experiment was implemented using the Psychophysics
Toolbox (Kleiner et al., 2007, version 3.0.12) in MATLAB (Release 2016a, The MathWorks, Inc.,
Natick, Massachusetts, United States) using a 12-core desktop computer (AMD HD7970 graphics
card “Tahiti” by AMD, Sunnyvale, California, United States) running Kubuntu 14.04 LTS.

The entire classification task, including both the warm-up and main experiment phases, was orga-
nized into 12 blocks. In each block, participants were shown images from the 16 superclasses for
2.5 seconds—a duration empirically determined to balance efficient overall experiment length with
sufficient exposure time allowing for viewing and consideration time. After each image, the 16 cor-
responding class icons were displayed on screen, allowing participants 2 seconds to classify each
image into one of these categories. The icons were organized in a layout that roughly grouped them
by size and general category (e.g., animals and objects), as illustrated in image Fig. 6. To encourage
responses rather than leaving selections blank, a message was displayed at the top of the screen 0.75
second before icon display time ended, prompting participants to make a choice. At the end of each
block, if a participant surpassed the 90% accuracy threshold calibrated using internal baseline per-
formance data, they received an encouraging on-screen message (“Congratulations! You just earned
some extra money!”) along with a $0.50 bonus per block to incentivize higher performance.

Warm-up session and main experiment. The experiment began with a 10-minute warm-up ses-
sion, allowing participants to familiarize themselves with the icon layouts and the classification task
procedure through two practice blocks. Each practice block contained 45 images, with one block
consisting of clean images and the other of augmented images. To avoid test-time adaptation, the
augmentations used during the warm-up phase differed from those in the actual trials. The images
used for the practice trials were also a subsample of the ImageNet validation dataset, but did not
overlap with those used in the main experiment.

Following the warm-up, the main experiment proceeded consisting of 10 blocks, each block com-
prising 60 images. Each set of 5 blocks was augmented using a consistent method, with a balanced
distribution across different intensity levels and superclasses. To avoid fatigue, participants were
allowed an unlimited amount of time to rest between blocks and encouraged to rest their eyes or
accomodate elsewhere.
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A.3 ERROR CONSISTENCY

Here, we provide a more detailed explanation of error consistency (EC), summarizing Geirhos et al.
(2020b). The EC between two classifiers which both classified a sequence of samples is obtained by
first using the ground-truth labels to assess which images each observer classified correctly. A trial
increases the agreement if both classifiers solved it correctly, or if they both failed (and decreases it if
only one of them got the trial correct). One then calculates how much more agreement was observed
between the two classifiers than expected by chance, relative to the maximum possible delta. This is
done by calculating Cohen’s Kappa (Cohen, 1960), which is defined as κ = po−pe

1−pe
, where po is the

(empirically measured) proportion of agreement-trials and pe is the (theoretical) expected agreement
when modeling both observers as independent binomial observers. κ takes on values between −1
and 1, with a higher κ signifying higher levels of agreement, and a κ of 0 indicating that a pair of
observers does not agree more frequently than one would expect by chance, given their marginal
correctness probabilities.

We calculate the error consistency between model responses and human classification data by first
collecting all human responses, to obtain exactly one human response per image. We then calculate
each model’s EC to this list of human responses.

A.4 AUGMENTATION DESIGNS

A.4.1 MOSAIC

The image is divided into an n × n grid, where each tile is replaced by a patch from the ImageNet
validation set whose average color best matches that of the tile. This patchwork creates a mosaic
effect that disrupts edges and textures while introducing contextually irrelevant information.

Level 1 2 3 4 5

n 4 6 8 16 28

Table 2: Tile sizes at each level.

A.4.2 GLITCHED

The original image undergoes an artistic digital corruption with horizontal lines overlaying shifted
image segments and color channel shifts. This dislocates the global contextual structure of the
image. While the concept of such glitchy images has been explored in earlier work (Kaufmann
et al., 2019), our transformation introduces a more intense corruption. Pixel shifts and color channel
offsets are applied to random regions as follows:

Level 1 2 3 4 5

Shift 8% width 32% width 50% width 128% width 200% width

Regions 4 8 10 16 20

Offset ±4 px ±8 px ±10 px ±16 px ±20 px

Table 3: Glitch parameters at each level.

The implementation is inspired by GitHub user “totallynotchase” (T, 2020).

A.4.3 VERTICAL LINES

The original image is deconstructed into bent vertical sections, each of which is further subdivided
into smaller sections along the y-axis (called y-steps). Then, a vertical line is drawn within each
y-step with a slight x-offset based on the intensity level. The line color is determined by the average
color of that section. This distortion retains the original colors but strips away local information,
disrupting the contours and edges of the image and introducing visual discontinuity.
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Level 1 2 3 4 5

Vertical Sections 224 178 112 84 60

Y-Step 1 px 2 px 4 px 6 px 8 px

Table 4: Vertical sectioning and step sizes at each level.

A.4.4 GEOMETRIC SHAPES

The original image is overlaid with overlapping geometric figures such as squares, circles, and
stars. This visual clutter introduces local noise that obscures the main object, like the Kaleidoscope
corruption from Kaufmann et al. (2019).

Level 1 2 3 4 5

Shapes 150 300 600 800 1000

Table 5: Number of shapes at each level.

A.4.5 STICKERS

The original image is augmented by randomly placing 16 × 16 pixel image patches from the Im-
ageNet validation set onto the image, following a uniform distribution. This addition of visual
elements masks features of the primary object and introduces deceptive new features.

Level 1 2 3 4 5

Patches 100 200 400 600 1200

Table 6: Number of patches at each level.

For an estimate of the occlusion ration of the objects per intensity level, see Tab. 8.

A.4.6 LUMINANCE CHECKERBOARD

The original image is divided into a 14 × 14 grid, with the luminance of each cell altered in a
checkerboard pattern. The stark luminance contrast between adjacent tiles and artificial grid bound-
aries makes this distortion challenging.

Level 1 2 3 4 5

Luminance Variation ±50 ±50–100 ±100–125 ±125–150 ±150–255

Table 7: Luminance Variation at each level.

A.5 ACCURACY

In Tab. 9, we present a comprehensive evaluation of our suite of models on LAION-C. We report
each model’s top-1 accuracy on the (undistorted) ImageNet validation set as a baseline (Clean Ac-
curacy) and the average top-1 accuracy on LAION-C averaged across distortion types and intensity
levels (LAION-C). We then break the latter down into the six distortion types. This enables a thor-
ough comparison of model performance, highlighting which architectures generalize best.

To demonstrate the value of LAION-C as a benchmark for evaluating model robustness, we analyze
how model performance on LAION-C correlates with that on ImageNet-C. Grounding our compari-
son in models that have demonstrated a baseline level of robustness on well-established benchmarks,
we apply a threshold to include 40 models that achieved at least 60% accuracy on ImageNet-C.
As shown in Fig. 10, the majority of data points lie above the identity line representing performance
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Table 8: Occlusion ratio of objects in Stickers and Geometric Shapes distortions. We calculated
the object occlusion ratio for the Stickers and Geometric Shapes corruptions as an additional quan-
titative measurement of the distortion strength.

Intensity Level Geometric Shapes (%) Stickers (%)

1 61.88 65.83
2 72.51 76.52
3 85.35 86.19
4 90.16 89.54
5 93.21 91.63

Table 9: LAION-C benchmark results. Numbers show the top-1 accuracy in percent. ImageNet
refers to model accuracy on the (uncorrupted) ImageNet validation set, with values sourced from the
timm leaderboard (Wightman, 2024). For each corruption, we report the mean top-1 accuracy across
all intensity levels, with LAION-C as the overall benchmark metric (averaged across corruption
types). GPT-4o and Gemini 1.5 Pro were evaluated on 48,000 images, 100 for each class. For full
model names and descriptions, see Tab. 11 in the Appendix.

Model ImageNet LAION-C Mosaic Vertical Glitched Luminance Geometric Stickers

EVA-G-P14-560-M30M-IN22K 89.8 67.5 48.8 53.6 70.8 97.2 81.0 53.4
EVA02-L-P14-448-MIM-M38M-IN22K 90.1 66.8 53.6 58.2 78.2 93.6 76.4 40.6

ViT-H-P14-336-CLIP-LAION-IN12K 88.6 57.3 45.2 51.2 69.8 88.2 64.4 24.6
ViT-L-P14-224-CLIP-OpenAI-IN12K 88.3 57.8 52.6 49.8 68.2 98.6 55.4 22.4
ViT-B-P32-384-CLIP-LAION-IN12K 85.4 36.4 36.8 35.2 35.8 54.0 37.6 19.2
ViT-B-P16-224-AugReg-IN21K 85.5 47.1 46.4 42.8 62.0 71.4 42.4 17.6

BEiT-v2-L-P16-224-IN1K 87.4 47.7 52.4 44.8 63.2 70.2 11.8 43.8
BEiT-v2-B-P16-224-IN1K 85.6 42.2 46.2 40.4 52.6 68.2 11.4 34.6

ConvNeXt-XXL-CLIP-LAION-IN1K 88.6 54.8 53.0 53.4 71.8 77.4 52.2 20.8
ConvNeXt-B-CLIP-LAION-AugReg-IN12K 87.6 42.3 37.6 43.8 44.4 54.2 50.4 23.2

WRN101-2-TV-IN1K 78.8 21.4 30.4 28.4 22.0 22.8 18.2 6.8
WRN50-2-RACM-IN1K 81.5 24.0 26.8 21.4 17.0 45.0 24.6 9.4

RN50-A1-IN1K 81.2 19.9 28.0 18.8 20.8 23.4 21.2 7.0
EFF-B3-RA2-IN1K 82.3 33.2 32.4 31.8 40.2 45.2 37.6 12.2
DN201-TV-IN1K 77.3 19.2 28.6 26.2 13.2 23.2 16.8 7.2
DN161-TV-IN1K 77.3 20.0 31.0 26.8 15.2 25.2 15.4 6.6

GPT-4o - 54.1 42.8 45.4 65.1 80.1 54.2 36.5
Gemini 1.5 Pro - 50.2 34.9 37.0 46.2 84.4 60.9 38.1

Best human observer - 55.2 58.0 55.3 78.7 63.4 40.4 35.7
Average human observer - 47.0 50.8 43.6 71.0 53.1 34.3 29.1

alignment on LAION-C and ImageNet-C. The gradual slope of the data points, combined with their
positioning, indicates that models generally perform better on ImageNet-C, while their performance
on LAION-C is more dispersed and often substantially lower.
This broader distribution of performance highlights that LAION-C introduces more challenging dis-
tortions, prompting models to exhibit greater variability in robustness. The moderate Kendall’s tau
coefficient (τ = 0.66) between the models’ performances on LAION-C and ImageNet-C further un-
derscores this, indicating notable pairwise differences in how models rank across these two bench-
marks, unearthing vulnerabilities that are less pronounced on ImageNet-C. These results demon-
strate the necessity of LAION-C as a complementary benchmark for a more comprehensive evalua-
tion of model robustness.

A.6 DETAILS ON HUMAN AND MACHINE VISION DISCREPANCY

Occlusion and Luminance Manipulations. For distortions involving occlusions, such as Stick-
ers and Geometric Shapes, models usually match or exceed human performance (see second row
of Fig. 9). One possible hypothesis is that this can be attributed to the robustness that models develop
after e.g., masked image modeling (MIM) (Fang et al., 2023; 2024). The fact that models perform
so much better than humans on partially occluded images implies that models use different features
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Table 10: Model (ViT) Accuracy Before and After Fine-Tuning on LAION-C. The high accu-
racies after fine-tuning indicate that even though the dataset is challenging, there is, in principle,
enough signal left to perform well on LAION-C.

Intensity Level Accuracy Before (%) Accuracy After (%)

Mosaic

1 89.0 95.3
2 71.9 92.0
3 35.8 88.4
4 14.3 74.7
5 14.7 54.4

Vertical Lines

1 79.9 95.9
2 70.1 94.9
3 50.8 94.1
4 36.1 92.6
5 19.4 90.0

Glitched

1 95.9 98.6
2 86.2 98.4
3 63.6 96.8
4 55.6 96.4
5 47.1 95.6

Luminance Checkerboard

1 99.7 99.4
2 98.4 99.2
3 95.1 98.9
4 90.7 98.5
5 56.6 93.0

Geometric Shapes

1 30.9 99.4
2 11.2 98.6
3 6.7 93.2
4 6.6 85.4
5 6.3 73.0

Sticker

1 97.3 98.8
2 77.8 96.5
3 28.7 71.7
4 14.9 46.8
5 8.1 23.4

than humans. For example, for the Stickers distortion, certain ViT models outperform humans, likely
due to their ability to focus on those parts of the image background that remain visible despite the
occlusions. As shown in Fig. 1, the stickers occlude nearly the entire image on higher intensity lev-
els, and little to no meaningful object information is retained. Nevertheless, certain models are still
able to correctly classify the image based on subtle background cues. This indicates that while mod-
els are performing well, they may be doing so by leveraging unintended shortcuts (Geirhos et al.,
2020a), such as exploiting background information, when faced with severely occluded images. For
the Luminance Checkerboard distortion, we observe that models from the ViT and EVA families
outperform humans by a large margin. This advantage could potentially stem from their architec-
tural features, such as self-attention mechanisms and patch-based processing (Fang et al., 2023;
Dosovitskiy et al., 2021), which enable them to extract meaningful information from both light and
dark regions independently, as well as handle subtle luminance variations. These capabilities give
them a clear edge over humans and older models.

Performance on Complex Distortions. When analyzing more complex distortions such as Mo-
saic, Vertical Lines, and Glitched images (first row of Fig. 9), we observe that human performance
is generally on par with the best-performing models. Especially at greater intensity levels, humans
perform competitively, e.g., outperforming all models for the strongest Vertical Lines distortions.
As we show in Fig. 11, the gap between humans and older models like the ResNet variants is partic-
ularly large on these complex distortions. However, modern model classes demonstrate substantial
progress, approaching human-level performance even at higher intensity levels. While some mar-
gin for improvement remains, the narrowing gap suggests that achieving human-level robustness on
classification tasks is no longer the primary challenge for state-of-the-art architectures.
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Figure 7: LAION-C can be solved. For every distortion, we plot the accuracy of our reference
model (ViT-H-P14-336-CLIP-LAION-IN12K) before and after fine-tuning, in comparison to the
best human participant for reference. Most distortions can be learned perfectly, only the Stickers and
Mosaic distortions might have been too difficult at the highest intensity levels. Further performance
gains might be possible with more careful fine-tuning.
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Figure 8: Humans and models make different mistakes. We analyze the agreement of error
patterns between different families of vision models (see Tab. 11 for a complete list) and human
observers. The error consistency (κ) could theoretically achieve a maximum value of 1, but in line
with earlier work (Geirhos et al., 2021), the EC values range between 0.15 and 0.45, indicating that
behavioral differences between humans and machines are still quite large. Marker colors encode
model families.

A.7 BREAKDOWN OF MODEL PERFORMANCE

Evaluating VLMs To evaluate GPT-4o (OpenAI, 2024) and Gemini 1.5 Pro (Team et al., 2024)
on LAION-C, we decided to test a random subsample of the full dataset, consisting of 100 images
per category, which were then tested on all corruptions and intensity levels, resulting in a total of
48,000 images. For ImageNet-C, we limited ourselves to only 10 images per class, to get an initial
ballpark estimate of performance.

We employed the following system prompt, in line with our human experiments, during which
participants were also shown examples:
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Figure 9: Human vs. machine accuracy on all distortions. For each LAION-C distortion, we
plot the distortion intensity against the accuracy of the best human and the best model in this condi-
tion. The shaded regions indicate the 95% confidence intervals around the means. On the Mosaic,
Glitched and Vertical Lines distortions, humans and machines perform similarly, whereas the best
model vastly outperforms the best human observer on the Stickers, Geometric Shapes, and Lumi-
nance Checkerboard distortions.

System Prompt:
You are an image-recognition API.
You are always asked to classify the main object of images into one of 16 mutually exclusive
categories.
In some images, the distortion may be so strong that you might not recognize anything.
If you’re unsure, provide your best guess - you always have to pick exactly one of the 16
categories.
The 16 categories are: primate, dog, cat, bird, fish, snake, butterfly, fruit, boat, vehicle,
chair, ball, bottle, instrument, timekeeper, tool.
Here is a list of characterizations of every such category:
primate: a primate, like e.g. monkeys, chimpanzees, Orang-Utans etc.
dog: a dog, like e.g. german shepherd, labrador, golden retriever etc.
cat: a cat, like e.g. domestic cat, lion, cheetah etc.
bird: a bird, like e.g. songbird, eagle, chicken etc.
fish: a fish, like e.g. trout, shark, whale etc.
snake: a snake, like e.g. viper, cobra, seasnake etc.
butterfly: a butterfly, like e.g. monarch, cabbage butterfly, ringlet etc.
fruit: a fruit, like e.g. apple, orange, pineapple etc.
boat: a boat, like e.g. ship, gondola, fireboat etc.
vehicle: a vehicle, like e.g. truck, van, sports car etc.
chair: a chair, like e.g. bench, throne, couch etc.
ball: a ball (or a person playing with a ball), like e.g. soccer ball, football, tennis ball etc.
bottle: a bottle, like e.g. water bottle, jug, pill bottle etc.
instrument: a musical instrument (or a person playing an instrument), like e.g. sax, flute,
harp etc.
timekeeper: a timekeeper, like e.g. clock, watch, sundial etc.
tool: a tool (or a person using a tool), like e.g. hammer, power drill, chainsaw etc.
Since you are an API, you always respond with minimal messages that contain exactly one
word, which is the category name.

User Prompt:
What is the main object in this image? Categories are: primate, dog, cat, bird, fish, snake,
butterfly, fruit, boat, vehicle, chair, ball, bottle, instrument, timekeeper, tool.
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Figure 10: Performance Divergence of Models on LAION-C and ImageNet-C (1k classes). The
figure illustrates the scattered performance of models across the ImageNet-C and LAION-C dataset,
where a Kendall’s tau coefficient (τ ) of 0.66 and the shallow slope indicate a dispersed performance
on LAION-C. To provide a clearer trend and to better visualize the dispersion, we supplement the
suite of models with additional top-performing models sourced from the timm leaderboard (Wight-
man, 2024), bringing the total number of models to 40 (see Tab. 11 for a complete list).
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Figure 11: Model performance on LAION-C. Analogous to Fig. 9, we relate distortion intensity
level to classification accuracy for the different distortions, showing the different models individ-
ually. The shaded region around human performance corresponds to the 95% confidence interval,
which we omit for the models for better visibility.
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A.8 MODELS

Table 11: Model overview. For each model used in our evaluation, we show the full model names,
as used in timm, an abbreviated name used in the main text and a description of the model. While
the first 16 models were used in all analyses and figures, the rest was only used for selective analyses
such as Fig. 8.

Abbreviation Full Model Name Description
EVA-G-P14-560-M30M-IN22K eva giant patch14 560.m30m ft in22k in1k EVA giant model, patch size 14, pre-trained with masked image model-

ing (MIM) on a Merged-30M dataset, fine-tuned on ImageNet-22k and
ImageNet-1k (Fang et al., 2023).

EVA02-L-P14-448-MIM-M38M-IN22K eva02 large patch14 448.mim m38m ft in22k in1k EVA02 large model, patch size 14, pre-trained with masked image mod-
eling (MIM) on a Merged-38M dataset, fine-tuned on ImageNet-22k
and ImageNet-1k (Fang et al., 2024).

VIT-H-P14-336-CLIP-LAION-IN12K vit huge patch14 clip 336.laion2b ft in12k in1k Vision Transformer (VIT) huge model, patch size 14, pre-trained on
LAION-2B dataset using OpenCLIP, fine-tuned on ImageNet-12k and
ImageNet-1k (Dosovitskiy et al., 2021).

VIT-L-P14-224-CLIP-OPENAI-IN12K vit large patch14 clip 224.openai ft in12k in1k Vision Transformer large model, patch size 14, pre-trained on WIT-
400M using CLIP, fine-tuned on ImageNet-12k and ImageNet-1k
(Dosovitskiy et al., 2021).

VIT-B-P32-384-CLIP-LAION-IN12K vit base patch32 clip 384.laion2b ft in12k in1k Vision Transformer base model, patch size 32, pretrained on LAION-
2B using OpenCLIP,fine-tuned on ImageNet-12k and ImageNet-1k
(Dosovitskiy et al., 2021).

VIT-B-P16-224-AUGREG-IN21K vit base patch16 224.augreg2 in21k ft in1k Vision Transformer base model, patch size 16, trained on ImageNet-21k
and fine tuned on ImageNet-1k (Dosovitskiy et al., 2021).

BEITV2-L-P16-224-IN1K beitv2 large patch16 224.in1k ft in1k BEiTv2 large model, patch size 16, trained on ImageNet-1k, fine-tuned
on ImageNet-22k and ImageNet-1k (Bao et al., 2022; Peng et al., 2022).

BEITV2-B-P16-224-IN1K beitv2 base patch16 224.in1k ft in1k BEiTv2 base model, patch size 16, trained on ImageNet-1k, fine-tuned
on ImageNet-22k and ImageNet-1k (Bao et al., 2022; Peng et al., 2022).

CONV-XXL-CLIP-LAION-IN1K convnext xxlarge.clip laion2b soup ft in1k ConvNeXt xxlarge model, pre-trained using OpenCLIP on LAION-2B,
fine-tuned on ImageNet-1k (Liu et al., 2022).

CONV-B-CLIP-LAION-AUGREG-IN12K convnext base.clip laion2b augreg ft in12k in1k 384 ConvNeXt base model,pre-trained using OpenCLIP on LAION-2B,
fine-tuned on ImageNet-12k and ImageNet-1k (Liu et al., 2022).

WRN101-2-TV-IN1K wide resnet101 2.tv in1k Wide ResNet-101 model, trained on ImageNet-1k, with original
torchvision model weight (He et al., 2016; Zagoruyko & Komodakis,
2016).

WRN50-2-RACM-IN1K wide resnet50 2.racm in1k Wide ResNet-50 model, trained with RandAugment RACM recipe on
ImageNet-1k (He et al., 2016; Zagoruyko & Komodakis, 2016).

RN50-A1-IN1K resnet50.a1 in1k ResNet-50 model trained on ImageNet-1k (He et al., 2016; Wightman
et al., 2021).

EFF-B3-RA2-IN1K efficientnet b3.ra2 in1k EfficientNet-B3 model, trained with RandAugment RA2 recipe on
ImageNet-1k (Tan & Le, 2019).

DN201-TV-IN1K densenet201.tv in1k DenseNet-201, DenseNet pre-trained on ImageNet-1k (Huang et al.,
2017).

DN161-TV-IN1K densenet161.tv in1k DenseNet-161, DenseNet model pre-trained on ImageNet-1k (Huang
et al., 2017).

GPT-4o gpt-4o-2024-08-06 At the time of writing, the most recent snapshot of OpenAI’s flagship
model (OpenAI, 2024). Only evaluated on 48,000 LAION-C samples
and 12,000 ImageNet-C samples.

Gemini-1.5-Pro gemini-1.5-pro-002 At the time of writing, the most recent stable version of Google’s Gem-
ini model (Team et al., 2024). Only evaluated on 48,000 LAION-C
samples and 12,000 ImageNet-C samples.

convnextv2 pico.fcmae ft in1k
convnextv2 tiny.fcmae ft in22k in1k
convnext base.fb in22k ft in1k
convnext large mlp.clip laion2b augreg ft in1k 384
convnext large mlp.clip laion2b soup ft in12k in1k 384
convnext tiny.in12k ft in1k
convnext small.fb in22k ft in1k 384
convnext xlarge.fb in22k ft in1k
convnext small.in12k ft in1k 384
convnextv2 large.fcmae ft in22k in1k 384
vit betwixt patch16 reg4 gap 256.sbb2 e200 in12k ft in1k
vit mediumd patch16 rope reg1 gap 256.sbb in1k
vit wee patch16 reg1 gap 256.sbb in1k
vit mediumd patch16 reg4 gap 256.sbb2 e200 in12k ft in1k
vit mediumd patch16 reg4 gap 256.sbb in12k
vit pwee patch16 reg1 gap 256.sbb in1k
vit betwixt patch16 rope reg4 gap 256.sbb in1k
vit betwixt patch16 reg4 gap 256.sbb in12k ft in1k
maxxvitv2 rmlp base rw 384.sw in12k ft in1k
vgg19 bn.tv in1k
regnety 1280.swag lc in1k
regnety 1280.swag ft in1k
regnety 320.swag ft in1k
inception v3.tf adv in1k
beit base patch16 224.in22k ft in22k in1k
beit large patch16 512.in22k ft in22k in1k
deit3 large patch16 384.fb in22k ft in1k
deit base distilled patch16 224.fb in1k
swin base patch4 window7 224.ms in22k ft in1k
swinv2 base window12to24 192to384.ms in22k ft in1k
swinv2 large window12to24 192to384.ms in22k ft in1k
eva large patch14 336.in22k ft in1k
convformer b36.sail in22k ft in1k 384
caformer b36.sail in22k ft in1k 384
efficientformerv2 s2.snap dist in1k
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A.9 DATASHEET FOR LAION-C

As proposed by one of our anonymous reviewers, we here include a Datasheet for LAION-C fol-
lowing the template proposed by Gebru et al. (2021).

Motivation

For what purpose was the dataset cre-
ated? Was there a specific task in mind?
Was there a specific gap that needed to be
filled? Please provide a description.

The LAION-C dataset was created to serve
as a benchmark for evaluating the robustness
and Out-of-Distribution (OOD) generalization of
large-scale vision models. It can also be used to
study the difference between human and model
perception.

Who created this dataset (e.g., which
team, research group) and on behalf of
which entity (e.g., company, institution,
organization)?

Information will be provided upon publication.

Who funded the creation of the dataset?
If there is an associated grant, please pro-
vide the name of the grantor and the grant
name and number.

Information will be provided upon publication.

Any other comments?

None.

Composition

What do the instances that comprise the
dataset represent (e.g., documents, pho-
tos, people, countries)? Are there multi-
ple types of instances (e.g., movies, users,
and ratings; people and interactions be-
tween them; nodes and edges)? Please
provide a description.

The instances in the LAION-C dataset repre-
sent images grouped into 16 superclasses with
various synthetic distortions applied to them at 5
severity levels. Each superclass contains 273 im-
ages, and the distortions include mosaic effects,
glitched images, vertical lines, geometric shapes,
stickers, and luminance checkerboard patterns.

How many instances are there in total (of
each type, if appropriate)?

In total, LAION-C consists of 131,040 images.
(16 classes × 273 images × 6 corruptions × 5
severity levels.)

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set?
If the dataset is a sample, then what is the
larger set? Is the sample representative of
the larger set (e.g., geographic coverage)?
If so, please describe how this representa-
tiveness was validated / verified. If it is not
representative of the larger set, please de-
scribe why not (e.g., to cover a more diverse
range of instances, because instances were
withheld or unavailable).

The dataset is a sample of the ImageNet vali-
dation set and only contains 4,368 of the 50,000
images. As such, LAION-C is not representative
of ImageNet, because it only consists of coarse
superclasses. This decision was made to facili-
tate measuring human classification performance
on LAION-C, which would not be possible with
the fine-grained classes of ImageNet.

What data does each instance consist
of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please
provide a description.

Each instance consists of an RGB image, as well
as metadata about the ground-truth class, corrup-
tion type, and severity level, which are simply
part of the filename.

Is there a label or target associated with
each instance? If so, please provide a de-
scription.

Each image is labeled with its superclass (one
of 16) and can be traced back to its original Ima-
geNet class label.

Is any information missing from individ-
ual instances? If so, please provide a
description, explaining why this information
is missing (e.g., because it was unavail-
able). This does not include intentionally re-
moved information, but might include, e.g.,
redacted text.

No information is missing from individual in-
stances as each image in the dataset is synthet-
ically altered and labeled with the type of dis-
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tortion and its severity, ensuring comprehensive
data for evaluation purposes.

Are relationships between individual in-
stances made explicit (e.g., users’ movie
ratings, social network links)? If so,
please describe how these relationships are
made explicit.

The dataset does not contain explicit relation-
ships between individual instances such as so-
cial links or ratings since it primarily focuses on
image recognition and distortion type evaluation
without any relational context between the im-
ages.

Are there recommended data splits (e.g.,
training, development / validation, test-
ing)? If so, please provide a description of
these splits, explaining the rationale behind
them.

Since the dataset is primarily used for bench-
marking purposes, splitting specifics are not pro-
vided. Essentially, the entire dataset is a valida-
tion set.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.

The dataset is designed to introduce controlled
noise through synthetic distortions to test model
robustness. There are no unintentional errors
or redundancies; all modifications serve the pur-
pose of benchmark evaluation.

Is the dataset self-contained, or does
it link to or otherwise rely on external
resources (e.g., websites, tweets, other
datasets)? If it links to or relies on exter-
nal resources, a) are there guarantees that
they will exist, and remain constant, over
time; b) are there official archival versions of
the complete dataset (i.e., including the ex-
ternal resources as they existed at the time
the dataset was created); c) are there any
restrictions (e.g., licenses, fees) associated
with any of the external resources that might
apply to a future user? Please provide de-
scriptions of all external resources and any
restrictions associated with them, as well as
links or other access points, as appropriate.

The dataset is entirely self-contained.

Does the dataset contain data that might
be considered confidential (e.g., data
that is protected by legal privilege or by
doctor-patient confidentiality, data that

includes the content of individuals non-
public communications)? If so, please
provide a description.

The dataset does not contain confidential data as
it is based on publicly available ImageNet data.

Does the dataset contain data that, if
viewed directly, might be offensive, in-
sulting, threatening, or might otherwise
cause anxiety? If so, please describe why.

The dataset does not contain offensive or dis-
turbing content as it focuses on visual distortions
applied to non-sensitive images. Additionally,
the images sourced from ImageNet are manually
filtered to exclude any content that could be con-
sidered disturbing.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.

Yes, the LAION-C dataset relates to people to
some extent as it includes images from Ima-
geNet, some of which feature human faces and
figures. While the primary focus of the dataset is
not on the individuals depicted or on analyzing
human-specific data, the presence of human im-
ages means that the dataset does relate to people
indirectly.

Does the dataset identify any subpop-
ulations (e.g., by age, gender)? If so,
please describe how these subpopulations
are identified and provide a description
of their respective distributions within the
dataset.

The LAION-C dataset itself does not explic-
itly identify subpopulations by age, gender, or
other demographic characteristics as part of its
core design. However, since it includes im-
ages from ImageNet, which may contain human
faces, there is an implicit presence of such de-
mographic data.

Is it possible to identify individuals (i.e.,
one or more natural persons), either di-
rectly or indirectly (i.e., in combination
with other data) from the dataset? If so,
please describe how.

While the primary intention of the LAION-C
dataset is not to facilitate the identification of in-
dividuals, it incorporates images from ImageNet,
which may include human faces.

Does the dataset contain data that might
be considered sensitive in any way (e.g.,
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data that reveals racial or ethnic origins,
sexual orientations, religious beliefs, po-
litical opinions or union memberships, or
locations; financial or health data; bio-
metric or genetic data; forms of govern-
ment identification, such as social secu-
rity numbers; criminal history)? If so,
please provide a description.

While the LAION-C dataset primarily features
synthetic distortions applied to images for tech-
nical analysis, it includes images sourced from
ImageNet that may contain human faces. These
images can indirectly reveal racial or ethnic ori-
gins due to the diversity of individuals depicted.
However, there is no explicit focus on collecting
or analyzing data related to sexual orientations,
religious beliefs, political opinions, union mem-
berships, specific locations, financial or health
data, biometric or genetic data, government iden-
tification numbers, or criminal history. The in-
clusion of human images is incidental and not
intended for any analysis related to these sensi-
tive aspects.

Any other comments?

None.

Collection Process

How was the data associated with each
instance acquired? Was the data di-
rectly observable (e.g., raw text, movie rat-
ings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred / derived from
other data (e.g., part-of-speech tags, model-
based guesses for age or language)? If
data was reported by subjects or indirectly
inferred / derived from other data, was the
data validated / verified? If so, please de-
scribe how.

The data for each instance in the LAION-C
dataset is derived from ImageNet, where images
are directly observable and not reported by sub-
jects or inferred.

What mechanisms or procedures were
used to collect the data (e.g., hardware
apparatus or sensor, manual human cu-
ration, software program, software API)?
How were these mechanisms or procedures
validated?

First, 16 sensible high-level classes were se-
lected that the authors deemed suitable for hu-
mans to recognize in psychophysical experi-
ments. These classes are: ball, bird, boat, bot-
tle, butterfly, car & truck, cat, chair, dog, fish,

fruit, instrument, primate, snake, timekeeping,
and tool. Then, 200 classes from the original
ImageNet-1k set were selected that can consti-
tute these high-level classes. From the pools
of validation set images, 500 images were ran-
domly selected per superclass. These images
were then manually filtered to include only im-
ages that fall clearly into one of the 16 super-
classes (i.e. an image showing both a ball and a
dog would have been filtered out to ensure clean
class labels).

If the dataset is a sample from a larger
set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific
sampling probabilities)?

See previous question. Candidate images from
the constituent classes were sampled randomly
with uniform probability.

Who was involved in the data collection
process (e.g., students, crowdworkers,
contractors) and how were they compen-
sated (e.g., how much were crowdwork-
ers paid)?

Information will be provided upon publication.

Over what timeframe was the data col-
lected? Does this timeframe match the
creation timeframe of the data associ-
ated with the instances (e.g., recent crawl
of old news articles)? If not, please de-
scribe the timeframe in which the data asso-
ciated with the instances was created.

The source dataset for the creation of LAION-
C was the 2012 ILSVRC validation set (“Ima-
geNet”) which was collected over several years.
The distortions applied in LAION-C were cre-
ated specifically for benchmarking purposes at
the time of dataset development (2023 / 2024),
which do not coincide directly with the original
image collection periods.

Were any ethical review processes con-
ducted (e.g., by an institutional review
board)? If so, please provide a descrip-
tion of these review processes, including the
outcomes, as well as a link or other access
point to any supporting documentation.

The original ImageNet dataset underwent vari-
ous ethical and review processes during its de-
velopment, details are managed by the original
collector for ImageNet.

24



Published as an SCSL Workshop Paper at ICLR 2025

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.

Only indirectly. LAION-C includes images
from ImageNet that feature human faces and fig-
ures.

Did you collect the data from the individ-
uals in question directly, or obtain it via
third parties or other sources (e.g., web-
sites)?

Not applicable.

Were the individuals in question notified
about the data collection? If so, please
describe (or show with screenshots or other
information) how notice was provided, and
provide a link or other access point to, or oth-
erwise reproduce, the exact language of the
notification itself.

Not applicable.

Did the individuals in question consent
to the collection and use of their data?
If so, please describe (or show with screen-
shots or other information) how consent was
requested and provided, and provide a link
or other access point to, or otherwise repro-
duce, the exact language to which the indi-
viduals consented.

Not applicable.

If consent was obtained, were the
consenting individuals provided with a
mechanism to revoke their consent in the
future or for certain uses? If so, please
provide a description, as well as a link or
other access point to the mechanism (if ap-
propriate).

Not applicable.

Has an analysis of the potential impact
of the dataset and its use on data sub-
jects (e.g., a data protection impact anal-
ysis) been conducted? If so, please pro-
vide a description of this analysis, includ-
ing the outcomes, as well as a link or other
access point to any supporting documenta-
tion.

No specific data protection impact analysis has
been conducted for the LAION-C dataset as
its primary modifications involve applying syn-
thetic distortions like glitches to the images for
technical benchmarking purposes. These alter-
ations do not fundamentally change the nature

of the data regarding privacy or ethical concerns
beyond their original use in ImageNet.

Any other comments?

None.

Preprocessing / cleaning / labeling

Was any preprocessing / cleaning / la-
beling of the data done (e.g., discretiza-
tion or bucketing, tokenization, part-
of-speech tagging, SIFT feature extrac-
tion, removal of instances, processing of
missing values)? If so, please provide a
description. If not, you may skip the remain-
der of the questions in this section.

Images were resized to 256x256 pixels and
center-cropped to 224x224 pixels, as is common
for ImageNet. Images were filtered manually to
ensure clean labels as described above.

Was the “raw” data saved in addition
to the preprocessed / cleaned / labeled
data (e.g., to support unanticipated fu-
ture uses)? If so, please provide a link or
other access point to the “raw” data.

No, LAION-C only consists of the modified im-
ages, but every filename can be uniquely traced
back to the parent image from the ImageNet vali-
dation set, which can be found here: https://
www.image-net.org/download.php

Is the software used to preprocess /
clean / label the instances available? If
so, please provide a link or other access
point.

Yes, the preprocessing, cleaning, and labeling
of the dataset instances were conducted using
Python. The code used for these processes will
be made available upon publication.

Any other comments?

None.

Uses

Has the dataset been used for any tasks
already? If so, please provide a descrip-
tion.

Yes, the LAION-C dataset has been utilized to
evaluate the robustness and out-of-distribution
(OOD) generalization capabilities of large-scale
vision models.
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Is there a repository that links to any
or all papers or systems that use the
dataset? If so, please provide a link or other
access point.

Information will be provided upon publication.

What (other) tasks could the dataset be
used for?

Beyond benchmarking vision model robustness,
LAION-C could be used in studies investigating
the effects of image distortions on human per-
ception.

Is there anything about the composition
of the dataset or the way it was col-
lected and preprocessed / cleaned / la-
beled that might impact future uses? For
example, is there anything that a future user
might need to know to avoid uses that could
result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service
issues) or other undesirable harms (e.g., fi-
nancial harms, legal risks) If so, please pro-
vide a description. Is there anything a future
user could do to mitigate these undesirable
harms?

Given that the base images in the LAION-C
dataset are sourced from ImageNet, which is al-
ready publicly available, the additional risk for
harm is negligible.

Are there tasks for which the dataset
should not be used? If so, please provide
a description.

We would not recommend using the LAION-C
dataset for fine-tuning machine learning models,
due to dataset size.

Any other comments?

None.

Distribution

Will the dataset be distributed to third
parties outside of the entity (e.g., com-
pany, institution, organization) on behalf
of which the dataset was created? If so,
please provide a description.

The LAION-C dataset will be made publicly
available, allowing for distribution to third par-
ties outside of the originating entity.

How will the dataset will be distributed
(e.g., tarball on website, API, GitHub)

Does the dataset have a digital object iden-
tifier (DOI)?

Upon publication, the dataset will be published
via Zenodo.

When will the dataset be distributed?

The dataset will be distributed upon publication.

Will the dataset be distributed under a
copyright or other intellectual property
(IP) license, and / or under applicable
terms of use (ToU)? If so, please describe
this license and / or ToU, and provide a link
or other access point to, or otherwise repro-
duce, any relevant licensing terms or ToU,
as well as any fees associated with these
restrictions.

LAION-C will be available under a CC BY-
NC 4.0 license, allowing non-commercial use
with proper attribution only, to ensure compli-
ance with the original ImageNet license.

Have any third parties imposed IP-based
or other restrictions on the data associ-
ated with the instances? If so, please de-
scribe these restrictions, and provide a link
or other access point to, or otherwise repro-
duce, any relevant licensing terms, as well
as any fees associated with these restric-
tions.

The original ImageNet data is subject to terms
of access that limit its use to non-commercial re-
search and educational purposes only. The full
terms of access can be found here: https://
www.image-net.org/download.php

Do any export controls or other regula-
tory restrictions apply to the dataset or
to individual instances? If so, please de-
scribe these restrictions, and provide a link
or other access point to, or otherwise repro-
duce, any supporting documentation.

Since the images are modified ImageNet im-
ages, the restrictions of the ImageNet license ap-
ply.

Any other comments?

None

Maintenance

Who will be supporting / hosting / main-
taining the dataset?
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Information will be provided upon publication.

How can the owner / curator / manager of
the dataset be contacted (e.g., email ad-
dress)?

Information will be provided upon publication.

Is there an erratum? If so, please provide
a link or other access point.

There is not an explicit erratum as for now.

Will the dataset be updated (e.g., to cor-
rect labeling errors, add new instances,
delete instances)? If so, please describe
how often, by whom, and how updates will
be communicated to users (e.g., mailing list,
GitHub)?

Information will be provided upon publication.

If the dataset relates to people, are there
applicable limits on the retention of the
data associated with the instances (e.g.,
were individuals in question told that
their data would be retained for a fixed
period of time and then deleted)? If so,
please describe these limits and explain how
they will be enforced.

Not applicable (beyond agreements made for
ImageNet).

Will older versions of the dataset con-
tinue to be supported / hosted / main-
tained? If so, please describe how. If not,
please describe how its obsolescence will
be communicated to users.

Should newer versions of the dataset be created,
older versions will continue to be available via
Zenodo.

If others want to extend / augment / build
on / contribute to the dataset, is there
a mechanism for them to do so? If so,
please provide a description. Will these
contributions be validated / verified? If so,
please describe how. If not, why not? Is
there a process for communicating / dis-
tributing these contributions to other users?
If so, please provide a description.

We encourage other researchers to build on
LAION-C, for example by contributing their
own corruptions. While there is no automatic
mechanism (such as publicly accessible version
control, e.g. via Github) for this, we encourage
interested parties to reach out to the authors.

Any other comments?

None
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The image is highly pixelated, but I can discern the
general shape of a dog, especially the head and front
legs. The color pattern also suggests a dog's fur.

True label: fish
Predicted label: dog
mosaic (1)

The image seems to show a fruit, possibly an apple,
based on the red and green colors present in the
picture.

True label: chair
Predicted label: fruit
mosaic (1)

The distorted image appears to show the outline of a
bird with wings outstretched. The pointed shapes
resemble wings, and the overall posture suggests a
bird in flight.

True label: ball
Predicted label: bird
vertical_lines (2)

I can see pliers in the center of the image. Pliers
are a tool.

True label: tools
Predicted label: tools
stickers (2)

The image appears to show a bird, potentially a
chicken, due to the presence of orange feathers and
what looks like a wattle. The distortion makes it
difficult to be certain, but the color and shape
suggest a bird more than any other category.

True label: dog
Predicted label: bird
glitched (1)

The round shape and the presence of what appears to be
a drumstick suggest that this image represents a drum,
which is a musical instrument.

True label: tools
Predicted label: instruments
glitched (1)

Although the image is heavily distorted, it appears to
show the face of a primate. The discernible features,
such as the eyes and brow ridge, suggest a primate's
facial structure.

True label: cat
Predicted label: primate
glitched (2)

Figure 12: Visual Reasoning in Gemini. We provide examples of visual reasoning in Gemini-
1.5-Pro, consisting of a LAION-C sample, the reasons for classification that Gemini provided and
meta-information (like the final label, the ground-truth label and corruption details). In line with our
findings about Error Consistency (see Fig. 8), the model is frequently confused by visual impressions
that are trivial for humans to decode. Instead, it hallucinates unreasonable image properties.
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The image shows a shape that resembles the outline of
a bottle, with a neck and body typical of bottles,
despite the heavy distortion and colorful overlay.

True label: ball
Predicted label: bottle
geometric_shapes (3)

The image shows a metallic object with a handle,
resembling a hammer, which is a common tool. The shape
and context suggest it is used for hitting or driving
nails.

True label: chair
Predicted label: tools
glitched (1)

The image appears to be a mosaic or collage that forms
the shape of a primate, likely a monkey or ape. The
overall structure and features resemble the face and
body of a primate, which is why this category is
chosen.

True label: fish
Predicted label: primate
mosaic (2)

The image appears to depict a stylized or pixelated
representation of a primate, likely a monkey or ape,
based on the visible facial features and overall
shape.

True label: snakes
Predicted label: primate
mosaic (2)

The image shows a shape and texture that resembles a
fish, with a streamlined body and scales visible. The
colors and patterns are typical of fish, making it the
most likely category.

True label: chair
Predicted label: fish
vertical_lines (1)

The image appears to have a distorted outline that
resembles the shape of a primate, such as a monkey or
ape. The contours suggest facial features and a
posture typical of primates.

True label: bottle
Predicted label: primate
vertical_lines (5)

The image contains multiple small images, many of
which depict butterflies. The presence of wings and
colorful patterns typical of butterflies is
noticeable, making 'butterfly' the most fitting
category.

True label: fruit
Predicted label: butterfly
mosaic (4)

Figure 13: Visual Reasoning in GPT. Figure analogous to Fig. 12. Like Gemini, GPT has a ten-
dency to hallucinate visual impressions. Notably, when the model makes mistakes in the sticker-
corruption, it is typically led astray by the contents of the sticker-images, ignoring the background
completely and failing to perceive the global structure of the image, a behavior that Gemini exhibits
as well.
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