
Generalized Linear Bandits with Limited Adaptivity

Ayush Sawarni ∗ Nirjhar Das † Siddharth Barman ‡ Gaurav Sinha §

Abstract

We study the generalized linear contextual bandit problem within the constraints
of limited adaptivity. In this paper, we present two algorithms, B-GLinCB and
RS-GLinCB, that address, respectively, two prevalent limited adaptivity settings.
Given a budget M on the number of policy updates, in the first setting, the algorithm
needs to decide upfront M rounds at which it will update its policy, while in the
second setting it can adaptively perform M policy updates during its course. For
the first setting, we design an algorithm B-GLinCB, that incurs Õ(

√
T) regret

when M = Ω(log log T) and the arm feature vectors are generated stochastically.
For the second setting, we design an algorithm RS-GLinCB that updates its policy
Õ(log2 T) times and achieves a regret of Õ(

√
T) even when the arm feature vectors

are adversarially generated. Notably, in these bounds, we manage to eliminate the
dependence on a key instance dependent parameter κ, that captures non-linearity
of the underlying reward model. Our novel approach for removing this dependence
for generalized linear contextual bandits might be of independent interest.

1 Introduction

Contextual Bandits (CB) is an archetypal framework that models sequential decision making in
time-varying environments. In this framework, the algorithm (decision maker) is presented, in each
round, with a set of arms (represented as d-dimensional feature vectors), and it needs to decide which
arm to play. Once an arm is played, a reward corresponding to the played arm is accrued. The regret
of the round is defined as the difference between the maximum reward possible in that round and the
reward of the played arm. The goal is to design a policy for selecting arms that minimizes cumulative
regret (referred to as the regret of the algorithm) over a specified number of rounds, T . In the last few
decades, much progress has been made in designing algorithms for special classes of reward models,
e.g. linear model [3, 4, 1, 16], logistic model [6, 2, 7, 27] and generalized linear models [8, 19].

However, despite this progress, there is a key challenge that prevents deployment of CB algorithms
in the real world. Practical situations often allow for very limited adaptivity, i.e., do not allow
CB algorithms to update their policy at all rounds. For example, in clinical trials [10], each trial
involves administering medical treatments to a cohort of patients, with medical outcomes observed
and collected for the entire cohort at the conclusion of the trial. This data is then used to design the
treatment for the next phase of the trial. Similarly, in online advertising [24] and recommendations
[18], updating the policy after every iteration during deployment is often infeasible due to infras-
tructural constraints. A recent line of work [22, 21, 11, 12, 20, 9, 25] tries to address this limitation
by developing algorithms that try to minimize cumulative regret while ensuring that only a limited
number of policy updates occur. Across these works, two settings (called M1 and M2 from here
onwards) of limited adaptivity have been popular. Both M1, M2 provide a budget M to the algorithm,
determining the number of times it can update its policy. In M1 [22, 13], the algorithm is required to

∗Microsoft Research, Bengaluru, India. sawarniayush@gmail.com
†Microsoft Research, Bengaluru, India. nirjhar.das@alumni.iitd.ac.in
‡Indian Institute of Science. barman@iisc.ac.in
§Microsoft Research, Bengaluru, India. gauravsinha@microsoft.com

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

mailto:sawarniayush@gmail.com
mailto:nirjhar.das@alumni.iitd.ac.in
mailto:barman@iisc.ac.in
mailto:gauravsinha@microsoft.com

decide upfront a sub-sequence of M rounds where policy updates will occur. While in M2 [1, 22]),
the algorithm is allowed to adaptively decide (during its course) when to update its policy.

Limited adaptivity algorithms were recently proposed for the CB problem with linear reward models
under the M1 setting [22, 11], and optimal regret guarantees were obtained when the arm feature
vectors were stochastically generated. Similarly, in their seminal work on linear bandits, [1] developed
algorithms for the M2 setting and proved optimal regret guarantees with no restrictions on the arm
vectors. While these results provide tight regret guarantees for linear reward models, extending them
to generalized linear models is quite a challenge. Straightforward extensions lead to sub-optimal
regret with a significantly worse dependence on an instance dependent parameter κ (See Section 2 for
definition) that captures non-linearity of the problem instance. In fact, to the best of our knowledge,
developing optimal algorithms for the CB problem with generalized linear reward models under the
limited adaptivity settings M1, M2, is an open research question. This is the main focus of our work.
We make the following contributions.

1.1 Our Contributions

• We propose B-GLinCB, an algorithm that solves the CB problem for bounded (almost surely)
generalized linear reward models (Definition 2.1) under the M1 setting of limited adaptivity. We
prove that, when the arm feature vectors are generated stochastically, the regret of B-GLinCB at
the end of T rounds is Õ(

√
T), when M = Ω(log log T). When M = O(log log T), we prove

an Õ(T 2M−1/(2M−2)) regret guarantee. While the algorithm bears a slight resemblance to the one
in [22], direct utilization of their key techniques (distributional optimal design) results in a regret
guarantee that scales linearly with the instance dependent non-linearity κ. On the other hand, the
leading terms in our regret guarantee for B-GLinCB have no dependence on κ. To achieve this, we
make novel modifications to the key technique of distributional optimal design in [22]. Along with
this, the rounds for policy updates are also chosen more carefully (in a κ dependent fashion) leading
to a stronger regret guarantee.
•We propose RS-GLinCB, an algorithm that solves the CB problem for bounded (almost surely) gen-
eralized linear reward models (Definition 2.1) under the M2 setting of limited adaptivity. RS-GLinCB
builds on a similar algorithm in [1] by adding a novel context-dependent criterion for determining if
a policy update is needed. This new criterion allows us to prove optimal regret guarantee (Õ(

√
T))

with only O(log2 T) updates to the policy. It is quite crucial for the generalized linear reward settings,
since without it the resultant regret guarantees have a linear dependence on κ.
• Our work also resolves a conjecture in [17] by proving an optimal (Õ(

√
T)) regret guarantee (for

the CB problem with logistic reward model) that does not depend polynomially on S (the known
upper bound on size of the model parameters, i.e. ∥θ⋆∥ ≤ S, See Section 2). RS-GLinCB is, to our
knowledge, the first CB algorithm for generalized linear reward models, that is both computationally
efficient (amortized O(log T) computation per round) and incurs optimal regret. We also perform
experiments in Section 5 that validate its superiority both in terms of regret and computational
efficiency in comparison to other baseline algorithms proposed in [14] and [6].

1.2 Important Remarks on Contributions and Comparison with Prior Work

Remark 1.1 (κ-independence). For both B-GLinCB and RS-GLinCB, our regret guarantees are free
of κ (in their leading term), an instance-dependent parameter that can be exponential in the size
of the unknown parameter vector, i.e., ∥θ⋆∥ (See Section 2 for definition). Our contribution in
this regard is two-fold. Not only do we prove κ-independent regret guarantees under the limited
adaptivity constraint, we also characterize a broad class of generalized linear reward models for
which a κ-independent regret guarantee can be achieved. Specifically, our results imply that the CB
problem with generalized linear reward models originally proposed in [8] and subsequently studied
in literature [19, 14, 23] admits a κ-independent regret.
Remark 1.2 (Computational efficiency). Efforts to reduce the total time complexity to be linear
in T have been active in the CB literature with generealized linear rewards models. For e.g., [14]
recently devised computationally efficient algorithms but they suffer from regret dependence on κ.
Optimal (κ-independent) guarantees were recently achieved for logistic reward models [6, 2], and the
algorithms were subsequently made computationally efficient in [7, 27]. However, the techniques
involved rely heavily on the structure of the logistic model and do not easily extend to more general
models. To the best of our knowledge, ours is the first work that achieves optimal κ-independent

2

regret guarantees for bounded generalized linear reward models while remaining computationally
efficient5.
Remark 1.3 (Self Concordance of bounded GLMs). In order to prove κ-independent regret guar-
antees, we prove a key result about self concordance of bounded (almost surely) generalized linear
models (Definition 2.1) in Lemma 2.2. This result was postulated in [8] for GLMs (with same
definition as ours) but no proof was provided. While [6, 7] partially tackled this issue for logistic
reward models6, in our work, we prove self concordance for much more general generalized linear
models.

2 Notations and Preliminaries

Notations: A policy π is a function that maps any given arm set X to a probability distribution over
the same set, i.e., π(X) ∈ ∆(X), where ∆(X) is the probability simplex supported on X . We will
denote matrices in bold upper case (e.g. M). ∥x∥ denotes the ℓ2 norm of vector x. We write ∥x∥M
to denote

√
x⊤Mx for a positive semi-definite matrix M and vector x. For any two real numbers

a and b, we denote by a ∧ b the minimum of a and b. Throughout, Õ(·) denotes big-O notation
but suppresses log factors in all relevant parameters. For m,n ∈ N with m < n, we denote the set
{1, . . . , n} by [n] and {m, . . . , n} by [m,n].

Definition 2.1 (GLM). A Generalized Linear Model or GLM with parameter vector θ⋆ ∈ Rd is a
real valued random variable r that belongs to the exponential family with density function

P(r | x) = exp
(
r · ⟨x, θ∗⟩ − b (⟨x, θ∗⟩) + c (r)

)
Function b (called the log-partition function) is assumed to be twice differentiable and ḃ is assumed
to be monotone. Further, we assume that r ∈ [0, R] almost surely for some known R ∈ R.

Important properties of GLMs such as E[r] = ḃ(⟨x, θ⋆⟩) and variance V[r] = b̈(⟨x, θ⋆⟩) are detailed
in Appendix C. We define the link function µ as µ (⟨x, θ∗⟩) := E[r]. Thus, µ is also monotone. We
now present a key Lemma on GLMs (see Appendix C for details) that enable us to achieve optimal
regret guarantees for our algorithms designed in Sections 3 and 4.

Lemma 2.2 (Self-Concordance of GLMs). For any GLM supported on [0, R] almost surely, the link
function µ(·) satisfies |µ̈(z)| ≤ Rµ̇(z), for all z ∈ R.

Next we describe the two CB problems with GLM rewards that we address in this paper. Let T ∈ N
be the total number of rounds. At round t ∈ [T], we receive an arm set Xt ⊂ Rd, with number of
arms K = |Xt| and must select an arm xt ∈ Xt. Following this, we receive a reward rt sampled
from the GLM distribution P(r|xt) with unknown θ∗.

Problem 1: In this problem we assume that at each round t, the set of arms Xt ⊂ Rd is drawn from
an unknown distribution D. Further, we assume the constraints of limited adaptivity setting M1, i.e.,
the algorithm is given a budget M ∈ N and needs to decide upfront the M rounds at which it will
update its policy. Let supp (D) denote the support of distribution D. We want to design an algorithm
that minimizes the expected cumulative regret given as

RT = E
[T∑
t=1

max
x∈Xt

µ (⟨x, θ∗⟩) −
T∑

t=1

µ (⟨xt, θ
∗⟩)
]

Here, the expectation is taken over the randomness of the algorithm, the distribution of rewards rt,
and the distribution of the arm set D.

Problem 2: In this problem we do not make any assumptions on the arm feature vectors, i.e., the
arm vectors can be adversarially chosen. However, we assume the constraints of limited adaptivity
setting M2, i.e., the algorithm is given a budget M ∈ N and needs to adaptively decide the M rounds

5While RS-GLinCB and B-GLinCB have total running time of Õ(T), their per-round complexity can reach
O(T). This stands in contrast to [7], which maintains efficiency in both total and per-round time complexity.

6In [5], a claim about κ independent regret for all generalized linear models with bounded θ∗ was made,
however, we can construct counterexamples to this claim (see Appendix C, Remark C.5).

3

at which it will update its policy (during its course). We want to design an algorithm that minimizes
the cumulative regret given as

RT =

T∑
t=1

max
x∈Xt

µ (⟨x, θ∗⟩) −
T∑

t=1

µ (⟨xt, θ
∗⟩)

2.1 Instance Dependent Non-Linearity Parameters

As in prior works [6, 7], we define instance dependent parameters that capture non-linearity of the
underlying instance and critically impact our algorithm design. Algorithm 1 (B-GLinCB) that solves
Problem 1, requires three such parameters that are defined using the derivative of the link function
µ̇(·). Specifically, for any arm set X , write optimal arm x∗ = argmaxx∈X µ (⟨x, θ∗⟩) and define,

κ := max
X∈supp(D)

max
x∈X

1

µ̇ (⟨x, θ∗⟩)
,

1

κ∗ := max
X∈supp(D)

µ̇ (⟨x∗, θ∗⟩), 1

κ̂
:= E

X∼D
[µ̇ (⟨x∗, θ∗⟩)]

Remark 2.3. These quantities feature prominently in our regret analysis of Algorithm 1. In particular,
the dominant term in our regret bound scales as O(

√
T/κ∗). We also note that κ̂ ≥ κ∗; in fact, for

specific distributions D, the gap between them can be significant. Hence, we also provide a regret
upper bound of O(

√
T/κ̂). In this latter case, however, we incur a worse dependence on d. Section 3

provides a quantified form of this trade-off.

Algorithm 2 (RS-GLinCB) that solves Problem 2, requires another such non-linearity parameter κ,
defined as,

κ := max
x∈∪T

t=1Xt

1

µ̇ (⟨x, θ∗⟩)
We note that, here, κ is defined considering the parameter vector θ∗ in contrast to prior work on
logistic bandits [7], where its definition involved a maximization over all vectors θ with ∥θ∥ ≤ S
(known upper bound of ∥θ⋆∥). Hence, our definition of κ is potentially much smaller and can lead
to lower regret, compared to prior works. Standard to the CB literature with GLM rewards, we will
assume that tight upper bounds on these parameters is known to the algorithms.
Assumption 2.4. We make the following additional assumptions which are standard for the CB
problem with linear or GLM reward models.

• For every round t ∈ [T], and each arm x ∈ Xt, ∥x∥ ≤ 1.

• Let θ∗ be the unknown parameter of the GLM reward, then ∥θ∗∥ ≤ S for a known constant S.

2.2 Optimal Design Policies

G-optimal Design Given an arm set X , the G-OPTIMAL DESIGN policy πG is the solution of
the following optimization problem: minλ∈∆(X) maxx∈X ||x||2U(λ)−1 , where U(λ) = Ex∼λ[xx

T].
Now consider the following optimization problem, also known as the D-optimal design problem:
maxλ∈∆(X) logDet(U(λ)). This is a concave maximization problem as opposed to the G-optimal
design which is non-convex. We have the following equivalence theorem due to Kiefer and Wol-
fowitz [15]:
Lemma 2.5 (Keifer-Wolfowitz). Let X ⊂ Rd be any set of arms and WG be the expected design
matrix, defined as WG := Ex∼πG(X)

[
xxT

]
, with πG(X) as the solution to the D-optimal design

problem. Then, πG(X) also solves the G-optimal design problem, and for all x ∈ X , ∥x∥2W−1
G
≤ d.

Distributional optimal design Notably, the upper bound on ∥x∥W−1
G

specified in Lemma 2.5 holds
only for the arms x in X . When the arm set Xt varies from round to round, securing a guarantee
analogous to Lemma 2.5 is generally challenging. Nonetheless, when the arm sets Xt are drawn from
a distribution, it is possible to extend the guarantee, albeit with a worse dependence on d; see Section
A.2 in Appendix A. Improving this dependence motivates the need of studying DISTRIBUTIONAL
OPTIMAL DESIGN and towards this we utilize the results of [22].

The distributional design policy is defined using a collection of tuplesM = {(pi,Mi) : p1, . . . , pn ≥
0 and

∑
i pi = 1}, wherein each Mi is a d× d positive semi-definite matrix and n ≤ 4d log d. The

4

collectionM is detailed next. Let softmaxα ([s1, . . . , sk]) denote the probability distribution where
the ith element is sampled with probability sαi∑k

j=1 sαj
. For a specificM = {(pi,Mi)}ni=1, and each

i ∈ [n] write πMi
(X) = softmaxα({∥x∥2Mi

: x ∈ X}). Finally, with πG as the G-OPTIMAL
DESIGN policy (Section 2.2), we define the DISTRIBUTIONAL OPTIMAL DESIGN policy π as

π (X) =
{
πG (X) with probability 1/2

πMi
(X) with probability pi/2

Given a collection of arm sets {X1, . . . ,Xs} (called core set) sampled from the distribution D, we
utilize Algorithm 2 of [22] to find the collectionM; see Algorithm 4 of [22]. Overall, the computed
M induces a policy π that upholds the following guarantee.
Lemma 2.6 (Theorem 5, [22]). Let π be the DISTRIBUTIONAL OPTIMAL DESIGN policy that has
been learnt from s independent samples X1, . . .Xs ∼ D. Also, let W denote the expected design
matrix, W = EX∼D

[
Ex∼π(X)

[
xxT | X

]]
. Then,

P
{

E
X∼D

[
max
x∈X

∥x∥W−1

]
≤ O

(√
d log d

)}
≥ 1− exp

(
O
(
d4 log2 d

)
− sd−12 · 2−16

)
.

3 B-GLinCB

In this section, we present B-GLinCB (Algorithm 1) that solves Problem 1 described in Section 2,
which enforces constraints of limited adaptivity setting M1. Given limited adaptivity budget M ∈ N,
our algorithm first computes the batch length for each of the M batches (i.e., rounds where the policy
remains constant). We build upon the batch length construction in [9]; however, the first batch is
chosen to be κ dependent which crucially helps in removing κ from the leading term in the regret.

Batch Lengths: For each batch k ∈ [M], let Tk denote all the consecutive rounds within the kth

batch. We will refer to the first batch T1 as the warm-up batch. The batch lengths τk := |Tk|, k ∈ [M]
are calculated as follows:

τ1 :=

(√
κ e3Sd2γ2

S
α

)2/3

, τ2 := α, τk := α
√
τk−1, for k ∈ [3,M] (1)

where γ := 30RS
√
d log T 7 and α = T

1

2(1−2−M+1) if M ≤ log log T and α = 2
√
T otherwise.

During the warm-up batch (Lines 2, 3), the algorithm follows the G-OPTIMAL DESIGN policy, πG.
At the end of the warm-up batch (Line 4), the algorithm computes the Maximum Likelihood Estimate
(MLE), θ̂w, of θ∗8, and design matrix V :=

∑
t∈T1

xtx
T
t + λI, with parameter λ = 20Rd log T .

Now, for each batch k ≥ 2 and every round t ∈ Tk, the algorithm updates Xt by eliminating arms
from it using the confidence bounds (see Equation (5)) computed in the previous batches (Line 10).
The algorithm next computes X̃t, a scaled version of Xt, as follows

X̃t :=

{√
µ̇(⟨x, θ̂w⟩)/β(x) x : for all x ∈ Xt

}
. (2)

Finally, we use the distributional optimal design policy πk, on the scaled arm set X̃t, to sample
the next arm (Line 11). At the end of every batch, we equally divide the batch Tk into two sets A
and B. We use samples from A to compute the estimator θ̂k and the scaled design matrix Hk. The
rounds in B are used to compute πk+1, the distributional optimal design policy for the next batch. It
is important to note, while the policy πk is utilized in each round (Line 11) to draw arms, it is updated
(to πk+1) only at the end of the batch. Hence, conforming to setting M1, the algorithm updates the
selection policy at M rounds that were decided upfront.

Confidence Bounds: The scaled design matrix Hk, an estimator of the Hessian, is computed at the
end of each batch k ∈ 2, . . . ,M (Line 13):

Hk =
∑
t∈A

(
µ̇(⟨xt, θ̂w⟩)/β(xt)

)
xtx

T
t + λI, where β(x) = exp

(
Rmin

{
2S, γ

√
κ ∥x∥V−1

})
(3)

7Recall that R provides an upper bound on the stochastic rewards and S is an upper bound on the norm of θ∗.
8In case the MLE lies outside the set {θ∗ : ∥θ∗∥ ≤ S}, we follow the projection step detailed in Appendix

E.

5

Algorithm 1 B-GLinCB: Batched Generalized Linear Bandits Algorithm
Input: Number of batches M and horizon of play T .

1: Initialize batches T1, . . . , TM , as defined in equation (1), and set λ := 20Rd log T .
2: for rounds t ∈ T1 do
3: Observe arm set Xt, sample arm xt ∼ πG(Xt), and observe reward rt.
4: Compute θ̂w = argminθ

∑
s∈T1

ℓ(θ, xs, rs) and matrix V = λI+
∑

t∈T1
xtx

T
t .

5: Initialize policy π1 as G-OPTIMAL DESIGN.
6: for batches k = 2 to M do
7: for each round t ∈ Tk do
8: Observe arm set Xt.
9: for j = 1 to k − 1 do

10: Update arm set Xt ← Xt \ {x ∈ Xt : UCBj(x) < maxy∈Xt
LCBj(y)}.

11: Scale Xt, as in (2), to obtain X̃t., then sample xt ∼ πk−1

(
X̃t

)
.

12: Equally divide Tk into two sets A and B.

13: Define Hk = λI+
∑

t∈A
µ̇(⟨x,θ̂w⟩)

β(xt)
xtx

T
t , and θ̂k = argminθ

∑
s∈A ℓ(θ, xs, rs).

14: Compute DISTRIBUTIONAL OPTIMAL DESIGN policy πk using the arm sets {Xt}t∈B.

where A is the first half of Tk. Using this, we define the upper and lower confidence bounds (UCBk

and LCBk) computed at the end of batch Tk:

UCBk(x) :=

{
⟨x, θ̂w⟩+ γ

√
κ ∥x∥V−1 k = 1

⟨x, θ̂k⟩+ γ ∥x∥H−1
k

k > 1
, (4)

LCBk(x) :=

{
⟨x, θ̂w⟩ − γ

√
κ ∥x∥V−1 k = 1

⟨x, θ̂k⟩ − γ ∥x∥H−1
k

k > 1
(5)

Remark 3.1. The confidence bounds employed by the algorithm exhibit a significant distinction
between the first batch and subsequent batches. While the first batch’s bounds are influenced by
the parameter κ, subsequent batches utilize κ-independent bounds. This difference arises from the
use of the standard design matrix V in the first batch and a scaled design matrix Hk (equation 3) in
later batches, leveraging the self-concordance property of GLM rewards to achieve κ-independence.
Notably, the first batch’s confidence bounds influence the scaling factor β(x) in later batches, creating
a trade-off (addressed in the regret analysis in Appendix A) where an inaccurate estimate of θ̂w can
exponentially increase the scaling factor and confidence bounds.

In Theorem 3.2 and Corollary 3.3, we present our regret guarantee for B-GLinCB. Detailed proofs
for both are provided in Appendix A. The computational efficiency of B-GLinCB is discussed in
Appendix D.
Theorem 3.2. Algorithm 1 (B-GLinCB) incurs regret RT ≤ (R1 + R2) log log T , where

R1 = O

(
RSd

(√
d

κ̂
∧
√

1

κ∗

)
T

1

2(1−21−M) log T

)
and

R2 = O

(
κ1/3d2e2S(RS log T)2/3T

1

3(1−21−M)

)
.

Corollary 3.3. When the number of batches M ≥ log log T , Algorithm 1 achieves a regret bound of

RT ≤ Õ

((√
d

κ̂
∧
√

1

κ∗

)
dRS

√
T + d2e2S(S2R2κT)1/3

)
.

Remark 3.4. Scaling the arm set (as in (2)) for optimal design is a crucial aspect of our algorithm,
allowing us to obtain tight estimates of µ̇ (⟨x, θ∗⟩) (see Lemma A.10). This result relies on multiple
novel ideas and techniques, including self-concordance for GLMs, matrix concentration, Bernstein-
type concentration for the canonical exponential family (Lemma A.1), and application of distributional
optimal design on scaled arm set.

6

Algorithm 2 RS-GLinCB: Rarely-Switching GLM Bandit Algorithm

1: Initialize: V = H1 = λI, To = ∅, τ = 1, λ := d log(T/δ)/R2 and γ := 25RS
√
d log

(
T
δ

)
.

2: for rounds t = 1, . . . , T do
3: Observe arm set Xt.
4: if maxx∈Xt

∥x∥2V−1 ≥ 1/(γ2κR2) then // Switching Criterion I
5: Select xt = argmaxx∈Xt

∥x∥V−1 and observe reward rt.
6: Update To ← To ∪ {t}, V← V + xtx

T
t and Ht+1 ← Ht.

7: Compute θ̂o = argminθ
∑

s∈To
ℓ(θ, xs, rs) +

λ
2 ∥θ∥

2
2.

8: else
9: if det(Ht) > 2 det(Hτ) then // Switching Criterion II

10: Set τ = t and θ̃ ← argminθ
∑

s∈[t−1]\To
ℓ(θ, xs, rs) +

λ
2 ∥θ∥

2
2 and

11: θ̂τ ← Project(θ̃).
12: Update Xt ← Xt \ {x ∈ Xt : UCBo(x) < maxz∈Xt

LCBo(z)}.
13: Select xt = argmaxx∈Xt

UCB(x,Hτ , θ̂τ) and observe reward rt.

14: Update Ht+1 ← Ht +
µ̇(⟨xt,θ̂w⟩)

e xtx
⊺
t .

Remark 3.5. The κ-dependent batch construction is a crucial feature of our algorithm, enabling
effective estimation of µ̇⟨θ, x⟩ at the end of the first batch. Since the first batch incurs regret linear in
its length, achieving a κ-independent guarantee requires the first batch to be o(

√
T). We demonstrate

that choosing τ1 = O(T
1
3) is sufficient for this purpose (see Appendix A).

4 RS-GLinCB

In this section we present RS-GLinCB (Algorithm 2) that solves Problem 2 described in Section 2,
which enforces constraints of limited adaptivity setting M2. This algorithm incorporates a novel
switching criterion (Line 4), extending the determinant-doubling approach of [1]. Additionally, we
introduce an arm-elimination step (Line 12) to obtain tighter regret guarantees. Throughout this
section, we set λ = d log(T/δ)/R2 and γ = 25RS

√
d log (T/δ).

At round t, on receiving an arm set Xt, RS-GLinCB first checks the Switching Criterion I (Line 4).
This criterion checks whether for any arm x ∈ Xt the quantity ∥x∥V−1 is greater than a carefully
chosen κ-dependent threshold. Here V is the design matrix corresponding to all arms that have been
played in the rounds in To (:= the set of rounds preceding round t, where Switching Criterion I was
triggered). Under this criterion the arm that maximizes ∥x∥V−1 is played (call this arm xt) and the
corresponding reward is obtained. Subsequently in Line 6, the set To is updated to include t; the
design matrix V is updated as V← V + xtx

⊺
t ; and the scaled design matrix Ht+1 is set to Ht. The

MLE is computed (Line 7) based on the data in the rounds in To to obtain θ̂o.

When Switching Criterion I is not triggered, the algorithm first checks (Line 9) the Switching Criterion
II, that is whether the determinant of the scaled design matrix Ht has become more than double of that
of Hτ (where τ is the last round before t when Switching Criterion II was triggered). If Switching
Criterion II is triggered at round t, then in Line 10, the algorithm sets τ ← t and recomputes the
MLE over all the past rounds except those in To to obtain θ̃. Then θ̃ is projected into an ellipsoid
around θ̂o to obtain the estimate θ̂τ via the following optimization problem9,

min
θ

∥∥∥∥∥∑
s∈To

(
µ (⟨xs, θ⟩)− µ(⟨xs, θ̃⟩)

)
xs

∥∥∥∥∥
H(θ)

s.t.
∥∥∥θ − θ̂w

∥∥∥
V
≤ γ
√
κ. (6)

Here H(θ) :=
∑

s∈To
µ̇ (⟨xs, θ⟩)xsx

T
s . After checking Switching Criterion II, the algorithm

performs an arm elimination step (Line 12) based on the parameter estimate θ̂o as follows:
for every arm x ∈ Xt, we compute UCBo(x) = ⟨x, θ̂o⟩ + γ

√
κ ∥x∥V−1 and LCBo(x) =

9This optimization problem is non-convex. However, a convex relation of this optimization problem is
detailed in Appendix E, which leads to slightly worse regret guarantees in poly(R,S)

7

⟨x, θ̂o⟩ − γ
√
κ ∥x∥V−1 . Then, Xt is updated by eliminating from it the arms with UCBo(·) less

than the highest LCBo(·). For arms in the reduced arm set Xt, RS-GLinCB computes the index
UCB(x,Hτ , θ̂τ) := ⟨x, θ̂τ ⟩ + 150 ∥x∥H−1

τ

√
d log (T/δ), and plays the arm xt with the highest

index (Line 13). After observing the subsequent reward rt, the algorithm updates the scaled design
matrix Ht (Line 14) as follows: Ht+1 ← Ht + (µ̇(⟨xt, θ̂o⟩)/e)xtx

⊺
t . With this, the round t ends

and the algorithm moves to the next round. Next, in Lemma 4.1 and Theorem 4.2 we present the
guarantees on number of policy updates and regret, respectively, for RS-GLinCB. Detailed proofs for
both are provided in Appendix B.

Lemma 4.1. RS-GLinCB (Algorithm 2), during its entire execution, updates its policy at most
O(R4S2 κd2 log2(T/δ)) times.

Theorem 4.2. Given δ ∈ (0, 1), with probability ≥ 1− δ, the regret of RS-GLinCB (Algorithm 2)
satisfies RT = O

(
d
√∑

t∈[T] µ̇ (⟨x∗
t , θ

∗⟩) log (RT/δ) + κd2R5S2 log2 (T/δ)
)
.

Remark 4.3. Switching Criterion I is essential in delivering tight regret guarantees in the non-linear
setting. Unlike existing literature [7], which relies on warm-up rounds based on observed rewards
(hence heavily dependent on reward models), RS-GLinCB presents a context-dependent criterion
that implicitly checks whether the estimate µ̇(⟨x, θ̂o⟩) is within a constant factor of µ̇ (⟨x, θ∗⟩) (see
Lemmas B.4 and B.5). We show that the number of times Switching Criterion I is triggered is only
O(κd2 log2(T)) (see Lemma B.3), hence incurring a small regret in these rounds.
Remark 4.4. Unlike [1], our determinant-doubling Switching Criterion II uses the scaled design
matrix Ht instead of the unscaled version (similar to V). The matrix Ht, estimating the Hessian
of the log-loss, is crucial for achieving optimal regret. This modification is a crucial in extending
algorithms satisfying limited adaptivity setting M2 for the CB problem with a linear reward model to
more general GLM reward models.

Remark 4.5. The feasible set for the optimization stated in 6 is an ellipsoid around θ̂o, which contains
θ∗ with high probability. Deviating from existing literature on GLM Bandits which projects the
estimate into the ball set of radius S ({θ : ∥θ∥ ≤ S}), our projection step leads to tighter regret
guarantees; notably, the leading

√
T term is free of parameters S (and R). This resolves the conjecture

made in [17] regarding the possibility of obtaining S-free regret in the
√
T term in logistic bandits.

5 Experiments

We tested the practicality of our algorithm RS-GLinCB against various baselines for logistic and
generalized linear bandits. For these experiments, we adjusted the warm-up threshold constant
in RS-GLinCB to 0.01 and used data from both warm-up and non-warm-up rounds to estimate θ̃.
These modifications do not affect the overall efficiency as θ̃ is calculated only O(log(T)) times.
The experiment code is available at https://github.com/nirjhar-das/GLBandit_Limited_
Adaptivity.

Logistic. We compared RS-GLinCB against ECOLog [7] and GLOC [14], the only algorithms with
overall time complexity Õ(T) for this setting. The dimension was set to d = 5, number of arms per
round to K = 20, and θ∗ was sampled from a d-dimensional sphere of radius S = 5. Arms were
sampled uniformly from the d-dimensional unit ball. We ran simulations for T = 20, 000 rounds,
repeating them 10 times. RS-GLinCB showed the smallest regret with a flattened regret curve, as seen
in Fig. 1 (top-left).
Probit. For the probit reward model, we compared RS-GLinCB against GLOC and GLM-UCB [8]. The
dimension was set to d = 5 and number of arms per round to K = 20. θ∗ was sampled from a
d-dimensional sphere of radius S = 3. Arm features were generated similarly as in the logistic
bandit simulation. We ran simulations for T = 5, 000 rounds, repeating them 10 times. RS-GLinCB
outperformed both baselines, as shown in Fig. 1 (top-right).
Comparing Execution Times. We compared the execution times of RS-GLinCB and ECOLog. We
created two logistic bandit instances with d = 5 and K = 20, and different κ values. We ran
both algorithms for T = 20, 000 rounds, repeating each run 20 times. For low κ, RS-GLinCB took
about one-fifth of the time of ECOLog, and for high κ, slightly more than one-third, as seen in Fig. 1
(left-bottom). This demonstrates that RS-GLinCB has a significantly lower computational overhead
compared to ECOLog. We also compared the execution times of RS-GLinCB and GLOC under the

8

https://github.com/nirjhar-das/GLBandit_Limited_Adaptivity
https://github.com/nirjhar-das/GLBandit_Limited_Adaptivity

Figure 1: Top: Cumulative Regret vs. number of rounds for Logistic (left) and Probit (right) reward
models. Bottom: (left) Execution times of ECOLog and RS-GLinCB for different values of κ (low
κ = 9.3 and high κ = 141.6) for Logistic rewards. (right) Execution times of GLOC and RS-GLinCB
for different values of κ (low κ = 17.6 and high κ = 202.3) Probit rewards.

probit reward model, creating two bandit instances with d = 5 and K = 20, but with differing κ. We
ran both algorithms for T = 20, 000 rounds, repeating each run 20 times. The result is shown in
Fig. 1 (bottom-right). We observe that for low κ, RS-GLinCB takes less than half time of GLOC while
for high κ, it takes about two-third time of GLOC. A more detailed discussion of these experiments is
provided in Appendix D.

6 Conclusion and Future Work

The Contextual Bandit problem with GLM rewards is a ubiquitous framework for studying online
decision-making with non-linear rewards. We study this problem with a focus on limited adaptivity.
In particular, we design algorithms B-GLinCB and RS-GLinCB that obtain optimal regret guarantees
for two prevalant limited adaptivity settings M1 and M2 respectively. A key feature of our guarantees
are that their leading terms are independent of a instance dependent parameter κ that captures non-
linearity. To the best of our knowledge, our paper provides the first algorithm for CB algorithms
for GLM rewards under limited adaptivity (and otherwise) that achieves κ-independent regret. The
regret guarantee of RS-GLinCB, not only aligns with the best-known guarantees for Logistic Bandits
but enhances them by removing the dependence on S (upper bound on ∥θ∗∥) in the leading term
of the regret and therefore resolves a conjecture in [17]. The batch learning algorithm B-GLinCB,
for M = Ω(log (log T)), achieves a regret of Õ

(
dRS

(√
d/κ̂ ∧

√
1/κ∗

)√
T
)

. We believe that
the dependence on d along with the κ̂ term is not tight and improving the dependence is a relevant
direction for future work.

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Marc Abeille, Louis Faury, and Clément Calauzènes. Instance-wise minimax-optimal algorithms
for logistic bandits. In International Conference on Artificial Intelligence and Statistics, pages

9

3691–3699. PMLR, 2021.

[3] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[4] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 208–214, Fort Lauderdale, FL, USA, 11–13
Apr 2011. PMLR.

[5] Louis Faury. Variance-sensitive confidence intervals for parametric and offline bandits. Theses,
Institut Polytechnique de Paris, Oct 2021.

[6] Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic
algorithms for logistic bandits. In International Conference on Machine Learning, pages
3052–3060. PMLR, 2020.

[7] Louis Faury, Marc Abeille, Kwang-Sung Jun, and Clément Calauzènes. Jointly efficient and
optimal algorithms for logistic bandits. In International Conference on Artificial Intelligence
and Statistics, pages 546–580. PMLR, 2022.

[8] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. Advances in neural information processing systems, 23, 2010.

[9] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits
problem. Advances in Neural Information Processing Systems, 32, 2019.

[10] International Stroke Trial Collaborative Group et al. The international stroke trial (ist): a
randomised trial of aspirin, subcutaneous heparin, both, or neither among 19 435 patients with
acute ischaemic stroke. The Lancet, 349(9065):1569–1581, 1997.

[11] Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose Blanchet, Peter W Glynn, and Yinyu
Ye. Sequential batch learning in finite-action linear contextual bandits. arXiv preprint
arXiv:2004.06321, 2020.

[12] Osama Hanna, Lin Yang, and Christina Fragouli. Learning from distributed users in contextual
linear bandits without sharing the context. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[13] Osama Hanna, Lin Yang, and Christina Fragouli. Efficient batched algorithm for contextual
linear bandits with large action space via soft elimination. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

[14] Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, and Rebecca Willett. Scalable gen-
eralized linear bandits: Online computation and hashing. Advances in Neural Information
Processing Systems, 30, 2017.

[15] Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian
Journal of Mathematics, 12:363–366, 1960.

[16] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[17] Junghyun Lee, Se-Young Yun, and Kwang-Sung Jun. Improved Regret Bounds of (Multinomial)
Logistic Bandits via Regret-to-Confidence-Set Conversion, October 2023.

[18] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[19] Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear
contextual bandits. In International Conference on Machine Learning, pages 2071–2080.
PMLR, 2017.

10

[20] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit
problems. In Peter Grünwald, Elad Hazan, and Satyen Kale, editors, Proceedings of The 28th
Conference on Learning Theory, volume 40 of Proceedings of Machine Learning Research,
pages 1456–1456, Paris, France, 03–06 Jul 2015. PMLR.

[21] Zhimei Ren and Zhengyuan Zhou. Dynamic batch learning in high-dimensional sparse linear
contextual bandits. Management Science, 70(2):1315–1342, 2024.

[22] Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning
distributional optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 74–87, 2021.

[23] Yoan Russac, Olivier Capp’e, and Aurélien Garivier. Algorithms for non-stationary generalized
linear bandits. ArXiv, abs/2003.10113, 2020.

[24] Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display
advertising using multi-armed bandit experiments. Marketing Science, 36(4):500–522, 2017.

[25] David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal
algorithm for contextual bandits under realizability. Mathematics of Operations Research,
47(3):1904–1931, 2022.

[26] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and
Trends® in Machine Learning, 8(1-2):1–230, 2015.

[27] Yu-Jie Zhang and Masashi Sugiyama. Online (multinomial) logistic bandit: Improved regret
and constant computation cost. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

11

A Regret Analysis of B-GLinCB

Additional Notation: We write c to denote absolute constant(s) that appears throughout our analysis.
Our analysis also utilizes the following function

γ(λ) = 24RS

(√
log (T) + d+

R (log (T) + d)√
λ

)
+ 2S

√
λ. (7)

Note that γ(λ) is a ‘parameterized’ version of γ (which was defined in section 3). In our proof,
we present the arguments using this parameterized version. A direct minimization of the above
expression in terms of λ would not suffice since we need λ to be sufficiently large for certain matrix
concentration lemmas to hold (see Section A.2). However, later we show that setting λ equal to
cRd log T leads to the desired bounds.

We use x̃ to denote the scaled versions of the arms (see Line 11 of the algorithm); in particular,

x̃ :=

√√√√ µ̇
(
⟨x, θ̂w⟩

)
β(x)

x (8)

Furthermore, to capture the non-linearity of the problem, we introduce the term ϕ(λ):

ϕ(λ) :=

√
κ e3S γ(λ)2

S
.

Recall that the scaled data matrix Hk (for each batch k) was computed using θ̂w as follows

Hk =
∑
t∈Tk

µ̇
(
⟨xj , θ̂w⟩

)
β(xt)

xtx
T
t + λI.

Following the definition of Hk and using the true vector θ∗ we define

H∗
k =

∑
t∈Tk

µ̇ (⟨xt, θ
∗⟩)xtx

T
t + λI.

We will show that Hk is an estimator of H∗
k. Furthermore, we assume that the MLE estimator θ∗

obtained by minimizing the log-loss objective always satisfies
∥∥∥θ̂∥∥∥ ≤ S. In case, that’s not true,

one can use the non-convex projection described in Appendix E. The projected vector satisfies the
same guarantees as described in the subsequent lemmas up to a multiplicative factor of 2. Hence, the
assumption

∥∥∥θ̂∥∥∥ ≤ S is non-limiting.

Lemma A.1 (Bernstein’s Inequality). Let X1, . . . , Xn be a sequence of independent random vari-
ables with |Xt − E [Xt] | ≤ b. Also, let sum S :=

∑n
t=1 (Xt − E [Xt]) and v :=

∑m
t=1 Var[Xt].

Then, for any δ ∈ [0, 1], we have

P

{
S ≥

√
2v log

1

δ
+

2b

3
log

1

δ

}
≤ δ.

Lemma A.2. Let X = {x1, x2, . . . , xs} ∈ Rd be a set of vectors with ∥xt∥ ≤ 1, for all t ∈ [s],
and let scalar λ ≥ 0. Also, let r1, r2, . . . , rs ∈ [0, R] be independent random variables distributed
by the canonical exponential family; in particular, E [rs] = µ (⟨xs, θ

∗⟩) for θ∗ ∈ Rd. Further, let
θ̂ = argminθ

∑t
s=1 ℓ(θ, xs, rs) be the maximum likelihood estimator of θ∗ and let matrix

H∗ =

s∑
j=1

µ̇ (⟨xj , θ
∗⟩)xjx

T
j + λI.

Then, with probability at least than 1− 1
T 2 , the following inequality holds∥∥∥θ∗ − θ̂

∥∥∥
H∗
≤ 24RS

(√
log (T) + d+

R (log (T) + d)√
λ

)
+ 2S

√
λ (9)

12

Proof. We first define the following quantities

α(x, θ∗, θ̂) :=

∫ 1

v=1

µ̇
(
⟨x, θ∗⟩+ v⟨x,

(
θ̂ − θ∗

)
⟩
)
dv

G :=

s∑
j=1

α(x, θ∗, θ̂)xjx
T
j +

λ

1 + 2RS
I

Using Lemma C.2 we have

G ⪰ 1

1 + 2RS
H∗ (10)

Hence we write

∥∥∥θ∗ − θ̂
∥∥∥
H∗
≤
√
(1 + 2RS)

∥∥∥θ∗ − θ̂
∥∥∥
G

=
√
1 + 2RS

∥∥∥(θ∗ − θ̂
)
G
∥∥∥
G−1

=
√
1 + 2RS

∥∥∥∥∥∥
s∑

j=1

(
⟨θ∗, xj⟩ − ⟨θ̂, xj⟩

)
α(x, θ∗, θ̂)xj +

λ

1 + 2RS

(
θ∗ − θ̂

)∥∥∥∥∥∥
G−1

≤
√
1 + 2RS

∥∥∥∥∥∥
s∑

j=1

(
µ (⟨θ∗, xj⟩)− µ

(
⟨θ̂, xj⟩

))
xj

∥∥∥∥∥∥
G−1

+
λ√

1 + 2RS

∥∥∥θ∗ − θ̂
∥∥∥
G−1

≤
√
1 + 2RS

∥∥∥∥∥∥
s∑

j=1

(
µ (⟨θ∗, xj⟩)− µ

(
⟨θ̂, xj⟩

))
xj

∥∥∥∥∥∥
G−1

+ 2S
√
λ

(since G ⪰ λ
1+2RS I and

∥∥∥θ∗ − θ̂
∥∥∥
2
≤ 2S)

≤ 3RS

∥∥∥∥∥∥
s∑

j=1

(
µ (⟨θ∗, xj⟩)− µ

(
⟨θ̂, xj⟩

))
xj

∥∥∥∥∥∥
H∗−1

+ 2S
√
λ

(Using (10) and assuming RS ≥ 1)

Now by the optimality condition on θ̂ we have
∑s

j=1 µ
(
⟨xj , θ̂⟩

)
xj =

∑s
j=1 rjxj (see equation (3)

[8]). Hence, we write

∥∥∥∥∥∥
s∑

j=1

(
µ (⟨θ∗, xj⟩)− µ

(
⟨θ̂, xj⟩

))
xj

∥∥∥∥∥∥
H∗−1

=

∥∥∥∥∥∥
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj

∥∥∥∥∥∥
H∗−1

(11)

Let B denote the unit ball in Rd. We can write

∥∥∥∥∥∥
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj

∥∥∥∥∥∥
H∗−1

= max
y∈B
⟨y,H∗−1/2

s∑
j=1

(µ (⟨θ∗, xj⟩)− rj)xj⟩

13

We construct an ε-net for the unit ball, denoted as Cε. For any y ∈ B, we define yε :=
argminb∈Cε

∥b− y∥2. We can now write∥∥∥∥∥∥
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj

∥∥∥∥∥∥
H∗−1

= max
y∈B
⟨y − yε,H

∗−1/2
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj⟩+ ⟨yε,H∗−1/2
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj⟩

≤ ∥y − yε∥2

∥∥∥∥∥∥
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj

∥∥∥∥∥∥
H∗−1

+ ⟨yε,H∗−1/2
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj⟩

≤ ε

∥∥∥∥∥∥
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj

∥∥∥∥∥∥
H∗−1

+ ⟨yε,H∗−1/2
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj⟩

Rearranging, we obtain∥∥∥∥∥∥
s∑

j=1

(µ (⟨θ∗, xj⟩)− rj)xj

∥∥∥∥∥∥
H∗−1

≤ 1

1− ε
⟨yε,H∗−1/2

s∑
j=1

(µ (⟨θ∗, xj⟩)− rj)xj⟩

Next, we use Lemma A.3 (stated below) with δ = T 2|Cε| and union bound over all vectors in Cε.
We also observe that |Cε| ≤

(
2
ε

)d
. Substituting ϵ = 1/2 and using Lemma A.3, we obtain that the

following holds with probability greater than 1− 1
T 2 ,∥∥∥∥∥∥

s∑
j=1

(µ (⟨θ∗, xj⟩)− rj)xj

∥∥∥∥∥∥
H∗−1

≤ 3
√
log (T 2|Cε|) +

4R

3
√
λ
log
(
T 2|Cε|

)
≤ 8

(√
log (T) + d+

R (log (T) + d)√
λ

)
Substituting in equations (11), we get the desired inequality in the lemma statement.

Lemma A.3. Let y be a fixed vector with ∥y∥ ≤ 1. Then, with the notation stated in Lemma A.2, the
following inequality holds with probability at least 1− δ

s∑
j=1

(µ (⟨θ∗, xj⟩)− rj) y
TH∗−1/2xj ≤

√
2 log

1

δ
+

2R

3
√
λ
log

1

δ
.

Proof. Let us denote the jth term of the sum as Zj . Note that each random variable Zj has variance

Var(Zj) = µ̇ (⟨xj , θ
∗⟩)
(
yTH∗−1/2xj

)2
. Hence, we have

s∑
j=1

Var(Zj) =

s∑
j=1

µ̇ (⟨θ∗, xj⟩)
(
yTH∗−1/2xj

)2
= yTy ≤ 1.

Moreover, each Zj is at most R√
λ

(since ∥xj∥ ≤ 1, H∗ ⪰ λI and r ∈ [0, R]). Now applying Lemma
A.1, we have

P


s∑

j=1

Zj ≥
√
2 log

1

δ
+

2R

3
√
λ
log

1

δ

 ≤ δ.

14

Corollary A.4. Let x1, x2, . . . , xτ be the sequence of arms pulled during the warm-up batch and let
θ̂w be the estimator of θ∗ computed at the end of the batch. Then, for any vector x and λ ≥ 0 the
following bound holds with probability greater than 1− 1

T 2

|⟨x, θ∗ − θ̂w⟩| ≤
√
κ ∥x∥V−1 γ(λ).

Proof. This result is derived directly from Lemma A.2 and the definition of (see). By applying the
lemma, we obtain

|⟨x, θ∗ − θ̂w⟩| ≤ ∥x∥H∗−1

∥∥∥θ∗ − θ̂w

∥∥∥
H∗
≤ ∥x∥H∗−1 γ(λ)

Considering the definition of κ, we have µ̇ (⟨x, θ∗⟩) ≥ 1
κ . This implies that H∗ ⪰ 1

κV which in turn
leads to the inequality ∥x∥H∗−1 ≤

√
κ ∥x∥V−1 .

Lemma A.5. For each batch k ≥ 2 and the scaled data matrix Hk computed at the end of batch, the
following bound holds with probability at least 1− 1

T 2 :

Hk ⪯ H∗
k.

Proof. If the event stated in Lemma A.4 holds,

From Lemma C.2, we apply the multiplicative bound on µ̇ to obtain

µ̇
(
⟨x, θ̂w⟩

)
≤ µ̇ (⟨x, θ∗⟩) exp

(
R|⟨x, θ̂w − θ∗⟩|

)
Via Lemma A.4 we have |⟨x, θ̂w⟩ − ⟨x, θ∗⟩| ≤

√
κ ∥x∥V−1 γ(λ). Additionally, given that∥∥∥θ̂∥∥∥ , ∥θ∗∥ ≤ S and ∥x∥ ≤ 1 we also have |⟨x, θ̂w⟩ − ⟨x, θ∗⟩| ≤ 2S. Hence, we write

µ̇
(
⟨x, θ̂w⟩

)
≤ µ̇ (⟨x, θ∗⟩) exp

(
Rmin{

√
κ ∥x∥V−1 γ(λ), 2S}

)
≤ µ̇ (⟨x, θ∗⟩)β(x)

Substituting these results into the definitions of Hk and H∗
k proves the lemma statement.

Claim A.6. The Algorithm 1 runs for at most log log T batches.

Proof. When M ≤ log log T then the claim trivially holds. When M ≥ log log T + 1, we define the
length of the second batch, τ2, as 2

√
T . The length of the M th batch is

τM = (2
√
T)

∑M−1
k=1

1

2k−1

≥ 2T T
−1

2M−1

≥ 2T T
−1

2log log T (M ≥ log log T + 1)
≥ T.

Corollary A.7. Let θ̂k be the estimator of θ∗ calculated at the end of the kth batch. Then for any
vector x the following holds with probability greater than 1− log log T

T 2 for every batch k >= 2.

|⟨x, θ∗ − θ̂⟩| ≤ ∥x∥H−1
k

γ(λ)

Proof. This result is a direct consequence of Lemma A.2 and the definition of γ(λ) (see 7). According
to the lemma, we have

|⟨x, θ∗ − θ̂w⟩| ≤ ∥x∥H∗
k
−1

∥∥∥θ∗ − θ̂w

∥∥∥
H∗

k

≤ ∥x∥H∗
k
−1 γ(λ)

Using Lemma A.5, we can further bound ∥x∥H∗
k
−1 ≤ ∥x∥Hk

−1 . Finally, a union bound over all
batches and considering the fact that there are at most log log T batches (Claim A.6) we establish the
corollary’s claim.

15

Claim A.8. For any x ∈ [0,M] the following holds

ex ≤
(
eM − 1

) x

M
+ 1.

Proof. The claim follows from the convexity of ex.

Lemma A.9. Let x ∈ X be the selected in any round of batch k ≥ 2 in the algorithm, and let x∗ be
the optimal arm in the arm set X , i.e., x∗ = argmaxx∈ X . With probability greater than 1− log log T

T 2 ,
the following inequality holds-

µ (⟨x∗, θ∗⟩)− µ (⟨x, θ∗⟩) ≤ 6ϕ(λ)
∑

y∈{x,x∗}
ỹ∈{x̃,x̃∗}

∥y∥V−1∥ỹ∥Hk−1
+ 2γ(λ)

√
µ̇ (⟨x∗, θ∗⟩)

(
∥x̃∗∥Hk−1

+ ∥x̃∥Hk−1

)

Proof. We begin by applying Taylor’s theorem, which yields the following for some z ∈
[⟨x∗, θ∗⟩, ⟨x, θ∗⟩]

|µ (⟨x∗, θ∗⟩)− µ (⟨x, θ∗⟩)| (12)
= µ̇(z) |⟨x, θ∗⟩ − ⟨x, θ∗⟩|

= µ̇(z)
∣∣∣⟨x∗, θ∗⟩ − ⟨x∗, θ̂k−1⟩+ ⟨x∗, θ̂k−1⟩ − ⟨x, θ̂k−1⟩+ ⟨x, θ̂k−1⟩ − ⟨x, θ∗⟩

∣∣∣
≤ µ̇(z)

(∣∣∣⟨x∗, θ∗⟩ − ⟨x∗, θ̂k−1⟩
∣∣∣+ ∣∣∣⟨x∗, θ̂k−1⟩ − ⟨x, θ̂k−1⟩

∣∣∣+ ∣∣∣⟨x, θ̂k−1⟩ − ⟨x, θ∗⟩
∣∣∣)

≤ 2µ̇(z)
(
∥x∗∥Hk−1

γ(λ) + ∥x∥Hk−1
γ(λ)

)
(via Lemma A.7)

≤ 2µ̇(z)γ(λ)

√√√√ β(x∗)

µ̇
(
⟨x∗, θ̂w⟩

) ∥x̃∗∥Hk−1
+

√√√√ β(x)

µ̇
(
⟨x, θ̂w⟩

) ∥x̃∥Hk−1


≤ 2γ(λ)

√
µ̇(z)

√√√√ µ̇(z)β(x∗)

µ̇
(
⟨x∗, θ̂w⟩

) ∥x̃∗∥Hk−1
+ 2
√
µ̇(z)γ(λ)

√√√√ µ̇(z)β(x)

µ̇
(
⟨x, θ̂w⟩

) ∥x̃∥Hk−1
(13)

We now invoke Lemmas C.2 and A.4 to obtain√√√√ µ̇(z)

µ̇
(
⟨x, θ̂w⟩

)β(x) ≤√exp
(
min

{
2S,
∣∣∣z − ⟨x, θ̂w⟩∣∣∣})β(x)

(by stated assumptions and Lemma C.2)

≤ exp

(
min

{
S,
|⟨x, θ∗⟩ − ⟨x, θ̂w⟩|+ |⟨x, θ∗⟩ − z|

2

})√
β(x)

≤ exp

(
min

{
S,
|⟨x, θ∗⟩ − ⟨x, θ̂w⟩|+ |⟨x, θ∗⟩ − ⟨x∗, θ∗⟩|

2

})√
β(x)

(since z ∈ [⟨x∗
t , θ

∗⟩, ⟨x, θ∗⟩])

≤ exp

(
min

{
S,

3
√
κ ∥x∥V−1 γ (λ) + 2

√
κ ∥x∗∥V−1 γ (λ)

2

})√
β(x)

(using Lemma A.4)

≤ exp
(
min

{
2S, 2

√
κ ∥x∥V−1 γ (λ) +

√
κ ∥x∗∥V−1 γ (λ)

})
(substituting the definition of β(x))

Similarly, we also have√
µ̇ (z) ≤

√
µ̇ (⟨x∗, θ∗⟩) exp

(
min

{
S,
√
κ ∥x∥V−1 γ (λ) +

√
κ ∥x∗∥V−1 γ (λ)

})
.

16

Further, we can simplify each term in equation (13) as

√
µ̇(z)

√√√√ µ̇(z)β(x∗)

µ̇
(
⟨x∗, θ̂w⟩

) ∥x̃∗∥Hk−1


≤ 2
√

µ̇ (⟨x∗, θ∗⟩)
(
∥x̃∗∥Hk−1

exp
(
min

{
3S, 3

√
κγ (λ)

(
∥x∥V−1 + ∥x∗∥V−1

)}))
≤ 6

√
µ̇ (⟨x∗, θ∗⟩)κ e3S γ(λ)

S

2 (
∥x∗∥V−1 + ∥x∥V−1

)
∥x̃∗∥Hk−1

+ 2γ(λ)
√

µ̇ (⟨x∗, θ∗⟩) ∥x̃∗∥Hk−1

≤ 6

√
µ̇ (⟨x∗, θ∗⟩)κ e3S γ(λ)

S

2 (
∥x∗∥V−1 + ∥x∥V−1

)
∥x̃∗∥Hk−1

+ 2γ(λ)
√

µ̇ (⟨x∗, θ∗⟩) ∥x̃∗∥Hk−1

≤ 6
√

µ̇ (⟨x∗, θ∗⟩)ϕ(λ)
(
∥x∗∥V−1 + ∥x∥V−1

)
∥x̃∗∥Hk−1

+ 2γ(λ)
√

µ̇ (⟨x∗, θ∗⟩) ∥x̃∗∥Hk−1

Finally, we substitute the above bound in (13) to obtain

|µ (⟨x∗, θ∗⟩)− µ (⟨x, θ∗⟩) | ≤6
√

µ̇ (⟨x∗, θ∗⟩)ϕ(λ)
(
∥x∗∥V−1 + ∥x∥V−1

) (
∥x̃∗∥Hk−1

+ ∥x̃∥Hk−1

)
+ 2
√

µ̇ (⟨x∗, θ∗⟩)
(
∥x̃∗∥Hk−1

+ ∥x̃∥Hk−1

)

For Phase k, the distribution of the remaining arms after the elimination step (X in line 10 of the
Algorithm 1) is represented as Dk.
Lemma A.10. During any round in batch k of Algorithm 1, and for an absolute constant c, we have

E [|µ (⟨x∗, θ∗⟩)− µ (⟨x, θ∗⟩) |] ≤ c

(
ϕ(λ)d2
√
τ1 τk−1

+
γ(λ)
√
τk−1

(
d√
κ̂
∧
√

d log d

κ∗

))

Proof. The proof here invokes Lemma A.9. We begin by noting that

E
X∼Dk

∑
y∈{x,x∗}
ỹ∈{x̃,x̃∗}

∥y∥V−1 ∥ỹ∥Hk−1
≤ 4 E

X∼Dk

[
max
x∈X
∥x∥V−1 max

x∈X
∥x̃∥H−

k−11

]

≤ 4

√
E

X∼Dk

[
max
x∈X
∥x∥2V−1

]
E

X∼Dk

[
max
x∈X
∥x̃∥2H−1

k−1

]
(via Jensen’s inequality)

≤ 4

√
E

X∼D

[
max
x∈X
∥x∥2V−1

]
E

X∼Dk−1

[
max
x∈X
∥x̃∥2H−1

k−1

]
(via Claim A.11)

≤ c

(√
d2

τ1
· d2

τk−1

)
(using Lemma A.17)

We also have
E

X∼Dk

[√
µ̇ (⟨x∗, θ∗⟩)

(
∥x̃∗∥Hk−1

+ ∥x̃∥Hk−1

)]
≤ 2 E

X∼Dk

[√
µ̇ (⟨x∗, θ∗⟩)max

x∈X
∥x∥

H−1
k−1

]

≤ 2min

{
√
κ∗ E

X∼Dk

[
max
x∈X

∥x∥
H−1

k−1

]
,

√
E

X∼Dk

[µ̇ (⟨x∗, θ∗⟩)] E
X∼Dk

[
∥x∥2

H−1
k−1

]}
(using the definition of κ∗ for the first bound and Jensen for the second)

≤ c

(√
d log d

κ∗τk−1
∧

√
d2

κ̂τk−1

)
(using Lemma A.17)

Substituting the above bounds in Lemma A.9 we obtained the stated inequality. This completes the
proof.

17

A.1 Proof of Theorem 3.2

We trivially upper bound the regret incurred during the warm-up batch as τ1R; recall that R denotes
the upper bound on the rewards and τ1 denotes the length of the first (warm-up) batch; see equation
(3)).

For each batch k and an absolute constant c, Lemma A.10 gives us

E

[∑
t∈Tk

µ (⟨x∗
t , θ

∗⟩)− µ (⟨xt, θ
∗⟩)

]
≤ τk · c

(
ϕ(λ)d2
√
τ1 τk−1

+
γ(λ)
√
τk−1

(
d√
κ̂
∧
√

d log d

κ∗

))

≤ c

(
ϕ(λ)d2
√
τ1

α+

(
d√
κ̂
∧
√

d log d

κ∗

)
γ(λ)α

)
(via (1))

Since there are at most log log T batches, we can upper bound the regret as

RT ≤ c

(
τ1R+

ϕ(λ)d2
√
τ1

α+

(
d√
κ̂
∧
√

d log d

κ∗

)
γ(λ)α

)
log log(T)

Setting τ1 =
(

ϕ(λ)d2α
R

)2/3
we get

RT ≤ O

((
ϕ(λ)d2α

R

)2/3

+

(
d√
κ̂
∧
√

d log d

κ∗

)
γ(λ)α

)
log log(T)

Now with the choice of λ = 20dR log T , we have

γ(λ) ≤ γ where γ = 30RS
√
d log T .

Substituting α = T
1

2(1−2−M) and ϕ(λ) =
√
κ e3S γ2

S we get

RT ≤ O

((√
κd3 e3S RST

1

2(1−2−M) log T

)2/3

+

(
d√
κ̂
∧
√

d log d

κ∗

)
RST

1

2(1−2−M)
√
d log T

)
.

A.2 Optimal Design Guarantees

In this section, we study the optimal design policies utilized in different batches of the algorithm.
Specifically, πG denotes the G-OPTIMAL DESIGN policy applied during the warm-up batch, while πk

refers to the DISTRIBUTIONAL OPTIMAL DESIGN policy calculated at the end of batch k (and used
in the (k + 1)th batch). Recall that the distribution of the remaining arms after the elimination step (
X in line 10 of the Algorithm) is represented as Dk. We define expected design matrices for each
policy:

WG := E
X∼D

[
E

x∼πG(X)

[
xxT|X

]]
Wk := E

X∼Dk

[
E

x∼πk(X)

[
x̃x̃T|X

]]
Recall, for all batches starting from the second batch (k ≥ 2), we employ the scaled arm set,
denoted as X̃ , for learning and action selection under the DISTRIBUTIONAL OPTIMAL DESIGN policy.
However, during the initial warm-up batch, we utilize the original, unscaled arm set.
Claim A.11. The following holds for any positive semidefinite matrix A and any batch k-

E
X∼Dk

max
x∈X
∥x∥A ≤ E

X∼Dj

max
x∈X
∥x∥A ∀j ∈ [k − 1].

This is due to the fact that the set of surviving arms in batch k is always a smaller set than the previous
batches.
Lemma A.12 (Lemma 4 [22]). The expected data matrix WG satisfies. We have

E
X∼D

[
max
x∈X

∥x∥2W−1
G

]
≤ d2

18

Lemma A.13 (Theorem 5 [22]). Let the DISTRIBUTIONAL OPTIMAL DESIGN π which has been
learnt from s independent samples X1, . . .Xs ∼ D and let W denote the expected data matrix,
W = EX∼D

[
Ex∼π(X)

[
xxT|X

]]
. We have

P
{

E
X∼D

[
max
x∈X

∥x∥W−1

]
≤ O

(√
d log d

)}
≥ 1− exp

(
O
(
d4 log2 d

)
− sd−12 · 2−16

)
. (14)

Lemma A.14. Under the notation of Lemma A.13, we have

E
X∼D

[
max
x∈X

∥x∥2W−1

]
≤ 2d2. (15)

Proof. Recall that the DISTRIBUTIONAL OPTIMAL DESIGN policy samples according to the πG

policy with half probability. Hence, we have

W = E
X∼Dk

[
E

x∼π(X)

[
xxT|X

]]
⪰ E

X∼Dk

[
1

2
E

x∼πG(X)

[
xxT|X

]]
=

1

2
WG

Therefore,

E
X∼D

[
max
x∈X

∥x∥2W−1

]
≤ 2 E

X∼D

[
max
x∈X

∥x∥2W−1

]
≤ 2d2.

Lemma A.15 (Matrix Chernoff [26, 22]). Let x1, x3, . . . , xn ∼ D be vectors, with ∥xt∥ ≤ 1, then
we have

P

{
3εnI+

n∑
i=1

xix
T
i ⪰

n

8
E

x∼D

[
xxT

]}
≥ 1− 2d exp

(
−εn
8

)
Corollary A.16. In Algorithm 1 the warm-up matrix V, with λ ≥ 16 log (Td), satisfies the following
with probability greater than 1− 1

T 2 .

V ⪰ τ1
8

E
X∼D

E
x∼πG(X)

xxT

Similarly Hk, with λ ≥ 6 log (Td) satisfies the following for each batch k ≥ 2 with probability
greater than 1− 1

T 2

Hk ⪰
τk
8

E
X∼Dk

E
x̃∼πG(X)

x̃x̃T.

Proof. The results for both V and Hk are obtained directly by applying Lemma A.15 with ε = log(T)
τ1

and ε = log(T)
τk

, respectively.

We note that the analysis of [22] gives an optimal guarantee (in expectation) on ∥x∥V, but not on
∥x∥2V. We obtain such a bound here and use it in the analysis.

Lemma A.17. The following holds with probability greater than 1− 1
T 2

E
X∼D

max
x∈X
∥x∥2V−1 ≤ O

(
d2

τ1

)
(16)

E
X∼Dk

max
x∈X
∥x̃∥2H−1 ≤ O

(
d2

τk

)
∀k ∈ [M] (17)

We also have that for sufficiently large T ≳ O
(
d32(log 2T)2

)
, the following holds with probability

greater than 1− log log T
T

E
X∼Dk

max
x∈X
∥x̃∥H−1

k
≤ O

(√
d

τk

)
∀k ∈ [M] (18)

19

Proof. First, we note from Corollary A.16 that the following holds with high probability

∥x∥V−1 ≤
8

τ1
∥x∥W−1

G

∥x̃∥H−1
k
≥ 8

τ1
∥x̃∥W−1

k

We obtain the first to inequalities, (16) and (17), by a direct use of Corollary A.16. For (18) we note
that for every phase we have at least O(

√
T) samples for learning the DISTRIBUTIONAL OPTIMAL

DESIGN policy (for any M). Since, T ≥ d32 log 2T 2 the event stated in Lemma A.13 holds with
probability greater than 1− 1

T 2 .

B Regret Analysis of RS-GLinCB

Recall To denotes the set of warm-up rounds. We write τw to denote the size of the set τw = |To|.
We define the following (scaled) data matrix

H∗
w =

∑
s∈To

µ̇ (⟨xs, θ
∗⟩)xsx

⊺
s + λI .

We will specify the regularizer λ later. We also define

γ := cRS

√
d log

T

δ

Below, we state the main concentration bound used in the proof.
Lemma B.1 (Theorem 1 of [6]). Let {Ft}∞t=1 be a filtration. Let {xt}∞t=1 be a stochastic process in
B1(d) such that xt is Ft measurable. Let {ηt}∞t=1 be a martingale difference sequence such that ηt
is Ft measurable. Furthermore, assume we have |ηt| ≤ 1 almost surely, and denote σ2

t = V[ηt|Ft].
Let λ > 0 and for any t ≥ 1 define:

St =

t−1∑
s=1

ηsxs Ht =

t−1∑
s=1

σ2
sxsx

⊺
s + λI

Then, for any δ ∈ (0, 1],

P

[
∃t ≥ 1 : ∥St∥H−1

t
≥
√
λ

2
+

2√
λ
log

(
det(Ht)

1
2

λd/2δ

)
+

2√
λ
d log(2)

]
≤ δ

Lemma B.2. At any round t, let θ̂o be the maximum likelihood estimate calculated using set of
rewards observed in the warm-up rounds To. With probability at least 1− δ we have

∥θ̂w − θ∗∥H∗
w
≤ γ.

Proof. Let us define the matrix Gw =
∑

s∈To
α(x, θ∗, θ̂o)xsx

⊺
s + λI. First, we note that by self-

concordance property of µ (Lemma C.2), Gw ⪰ 1
1+2RSH

∗
w. Hence,

∥θ̂o − θ∗∥H∗
w
≤
√
1 + 2RS∥θ̂o − θ∗∥Gw

=
√
1 + 2RS

∥∥∥Gw

(
θ̂o − θ∗

)∥∥∥
G−1

w

=
√
1 + 2RS

∥∥∥∥∥∑
s∈To

(
⟨θ̂o, xs⟩ − ⟨θ∗, xs⟩

)
α(xs, θ̂o, θ

∗)xs + λθ̂o − λtθ
∗

∥∥∥∥∥
G−1

w

=
√
1 + 2RS

∥∥∥∥∥∑
s∈To

(
µ
(
⟨θ̂o, xs⟩

)
− µ (⟨θ∗, xs⟩)

)
xs + λθ̂o − λtθ

∗

∥∥∥∥∥
G−1

w

(Taylor’s theorem)

≤ (1 + 2RS)

∥∥∥∥∥∑
s∈To

(
µ
(
⟨θ̂o, xs⟩

)
− µ (⟨θ∗, xs⟩)

)
xs + λθ̂o − λθ∗

∥∥∥∥∥
H∗−1

w

(Gw ⪰ 1
1+2RSH

∗
w)

20

Since θ̂o is the maximum likelihood estimate, by optimality condition, we have the following relation:∑
s∈To

µ
(
⟨xs, θ̂o⟩

)
xs + λθ̂o =

∑
s∈To

rsxs. Substituting this above, we get

∥θ̂o − θ∗∥H∗
w
≤ (1 + 2RS)

∥∥∥∥∥∑
s∈To

(rs − µ (⟨θ∗, xs⟩))xs − λθ∗

∥∥∥∥∥
H∗−1

w

≤ (1 + 2RS)

∥∥∥∥∥∑
s∈To

(rs − µ (⟨θ∗, xs⟩))xs

∥∥∥∥∥
H∗−1

w

+ λ ∥θ∗∥H∗−1
w

≤ (1 + 2RS)

∥∥∥∥∥∑
s∈To

ηsxs

∥∥∥∥∥
H∗−1

w

+ S
√
λ. (H∗

w ⪰ λtI, ∥θ∗∥2 ≤ S)

where ηs := (rs − µ (⟨θ∗, xs⟩)).

We will now apply Lemma B.1 ηs scaled by R. First note that
∥∥∑

s∈To
ηsxs

∥∥
(H∗

w)−1
=∥∥∑

s∈To

ηs

R xs

∥∥
(R2H∗

w)−1
which, in turn ensures that the noise variable is upper bounded by 1.

Applying B.1 we get

∥θ̂o − θ∗∥H∗
w
≤ S
√
R2λ

+ (1 + 2RS)

(√
R2λ

2
+

2d√
R2λ

log
(
1 +

τw
R2λd

)
+

2√
R2λ

log

(
1

δ

)
+

2√
R2λ

d log(2)

)

Simplifying constants and setting
√
R2λ = c

√
d log(T) + log(1/δ), we have

∥∥∥θ̂o − θ∗
∥∥∥
H∗

w

≤

cRS
√
d log(T/δ) + log(1/δ) ≤ cRS

√
d log (T/δ).

Next, we obtain a bound on the number of warm-up rounds.

Lemma B.3. Algorithm 2, during its entire execution, enters the enters the warmup segment at most
2dR2κγ2 log (T/δ) times.

Proof. Via the warm-up condition (Line 5) ∥x∥2V−1 > 1/(R2κγ2). Let Vm be the sequence of V
matrices (line 7 of 2) for m ∈ To. That is, V1 = λI,Vm =

∑
s∈[m−1]\To

xsx
⊺
s + λI). Thus,∑

t∈To

∥x∥2V−1
t
≥ τw

R2κγ2
(19)

Furthermore, by the Elliptic Potential Lemma (Lemma B.11) we have∑
t∈To

∥x∥2V−1
t
≤ 2d log

(
1 +

τw
λd

)
(20)

Combining (20) and (19) we have

τw ≤ 2dR2κγ2 log
(
1 +

τw
λd

)
≤ 2dR2κγ2 log (T) ≤ 2dR2κγ2 log (T/δ)

We define Ew be the event define in Lemma B.2, that is, Ew = {∥θ̂w − θ∗∥H∗
w
≤ γt}.

Lemma B.4. If in round t the warmup criteria is not satisfied and event Ew, holds, we have

|⟨x, θ̂o − θ∗⟩| ≤ 1

R
for all x ∈ Xt.

21

Proof.

|⟨x, θ̂o − θ∗⟩| ≤ ∥x∥H∗−1
w
· ∥θ̂o − θ∗∥H∗

w
(Cauchy-Schwarz)

≤ ∥x∥H∗−1
w

γ (via Lemma B.2)

≤ γ
√
κ∥x∥V−1

w
(Vw ⪯ κH∗

w)

≤ γ
√
κ

1√
R2κγ2

(warm-up criteria is not satisfied)

≤ 1

R

Recall that Ht is defined in line 14 of Algorithm 2. Further, we define

H∗
t =

∑
s∈[t−1]\To

µ̇ (⟨xs, θ
∗⟩)xsx

⊺
s + λI

.
Corollary B.5. Under event Ew, Ht ⪯ H∗

t ⪯ e2Ht

Proof. For a given s ∈ [t− 1] \ To, let θ̂so denote the value of θ̂o in that round. Then, for all x ∈ Xs,
by Lemma C.2,

µ̇
(
⟨x, θ̂so⟩

)
exp(−R|⟨x, θ̂so − θ∗⟩|) ≤ µ̇ (⟨x, θ∗⟩) ≤ µ̇

(
⟨x, θ̂so⟩

)
exp(R|⟨x, θ̂so − θ∗⟩|)

Applying lemma B.4, gives e−1µ̇
(
⟨x, θ̂so⟩

)
≤ µ̇ (⟨x, θ∗⟩) ≤ e1µ̇

(
⟨x, θ̂so⟩

)
. Thus,

Ht =
∑

s∈[t−1]\To

e−1µ̇
(
⟨xs, θ̂

s
o⟩
)
xsx

⊺
s + λI ⪯

∑
s∈[t−1]\To

µ̇ (⟨xs, θ
∗⟩)xsx

⊺
s + λI = H∗

t

. Further, H∗
t ⪯

∑
s∈[t−1]\To

e2
µ̇(⟨xs,θ̂

s
o⟩)

e xsx
⊺
s + e2λI = e2Ht.

Now we define the following quantities:

gτ (θ) =
∑

s∈[τ−1]\To

µ (⟨xs, θ⟩)xs + λτθ

Hτ (θ) =
∑

s∈[τ−1]\To

µ̇ (⟨xs, θ⟩)xsx
⊺
s + λI

Θ =
{
θ|
∥∥∥θ − θ̂o

∥∥∥
V
≤ γ
√
κ
}

θ̃ = argmin
θ∈Rd

∑
s∈[t−1]\To

ℓ(θ, xs, rs)

β := c
√
d log(T/δ)

Moreover, recall the following definition θ̂τ :

θ̂τ = argmin
θ∈Θ

∥∥∥gτ (θ)− gτ (θ̃)
∥∥∥
Hτ (θ)−1

(21)

Lemma B.6. Under event Ew,
∥∥∥θ̂τ − θ∗

∥∥∥
V
≤ 2γ

√
κ

Proof. First, we observe from Lemma B.2 that
∥∥∥θ̂o − θ∗

∥∥∥
H∗

w

≤ γ. Using V ⪯ κH∗
w, we can write∥∥∥θ̂o − θ∗

∥∥∥
V
≤ γ
√
κ. This implies that θ∗ ∈ Θ. Now, θ̂τ ∈ Θ by virtue of being a feasible solution

22

to the optimization in (21). Thus,∥∥∥θ̂τ − θ∗
∥∥∥
V

=
∥∥∥θ̂τ − θ̂o + θ̂o − θ∗

∥∥∥
V

≤
∥∥∥θ̂τ − θ̂o

∥∥∥
V
+
∥∥∥θ̂o − θ∗

∥∥∥
V

(triangle inequality)

≤ 2γ
√
κ

Lemma B.7. Let δ ∈ (0, 1). Then, under event Ew, with probability 1 − δ,
∥∥∥θ̂τ − θ∗

∥∥∥
H∗

τ

≤ β :=

c
√

d log(T/δ).

Proof. We have for all main rounds s ∈ [τ − 1] \ To,

|⟨xs, θ
∗ − θ̂τ ⟩| ≤ ∥xs∥V−1

∥∥∥θ∗ − θ̂τ

∥∥∥
V

(Cauchy-Schwarz)

≤ ∥xs∥V−1 2γ
√
κ (by Lemma B.6)

≤ 2γ
√
κ

1

Rγ
√
κ

(warm up criterion not satisfied)

=
2

R

Also note that θ∗ ∈ Θ. Hence,∥∥∥θ̂τ − θ∗
∥∥∥
H∗

τ

≤ 2(1 + 2)

∥∥∥∥∥∥gτ (θ∗)−
∑

s∈[τ−1]

rsxs

∥∥∥∥∥∥
H∗−1

(by Lemma E.1)

≤ 6c
√
d log(T/δ) (by Lemma B.1)

Let the event in lemma B.7 be denoted by Eτ , or in other words, Eτ = {∥θ̂τ − θ∗∥H∗
τ
≤ β}.

Corollary B.8. If round t is a main round for Algorithm 2, then, under event Eτ , |⟨x, θ̂τ − θ∗⟩| ≤
β∥x∥H−1

τ

Proof.

|⟨x, θ̂τ − θ∗⟩| ≤ ∥x∥H∗−1
τ
· ∥θ̂τ − θ∗∥H∗

τ
(Cauchy-Schwartz)

≤ β∥x∥H∗−1
τ

(by Lemma B.7)

≤ β∥x∥H−1
τ

(Hτ ⪯ H∗
τ)

Lemma B.9. For main rounds in Algorithm 2, let xt be the played arm defined via line 13 Algorithm 2.
Then, under event Eτ , ⟨x∗

t − xt, θ
∗⟩ ≤ 2

√
2β ∥xt∥H∗−1

t
.

Proof.

⟨x∗
t , θ

∗⟩ − ⟨xt, θ
∗⟩ ≤

(
⟨x∗

t , θ̂τ ⟩+ β ∥x∗
t ∥H∗−1

t

)
−
(
⟨xt, θ̂τ ⟩ − β ∥xt∥H∗−1

t

)
(by Corollary B.8)

≤
(
⟨xt, θ̂τ ⟩+ β ∥xt∥H∗−1

τ

)
−
(
⟨xt, θ̂τ ⟩ − β ∥xt∥H∗−1

τ

)
(optimistic xt, see line 13 algo. 2)

= 2β ∥xt∥H∗−1
τ

≤ 2
√
2β ∥xt∥H∗−1

t
(Lemma B.12, det(H−1

τ)

det(H−1
t)

= det(Ht)
det(Hτ

) ≤ 2)

23

Lemma B.10. For non-warm up rounds, the arm set X ′
t obtained after eliminating arms from Xt

(line 12 Algorithm 2), under event Ew, satisfies: (a) x∗
t ∈ Xt (b) for xt, x

∗
t , ⟨x∗

t − xt, θ
∗⟩ ≤ 4

R

Proof. Suppose x′ = argmaxx∈Xt
LCBw(x). Now, we have, for all x ∈ Xt,

|⟨x, θ̂o − θ∗⟩| ≤ ∥x∥H∗−1
w

∥∥∥θ̂o − θ∗
∥∥∥
H∗

w

(Cauchy-Schwarz)

≤ γ ∥x∥H∗−1
w

(by Lemma B.2)

≤ γ
√
κ ∥x∥V−1 (V ⪯ κH∗

w)

Thus, for x∗
t , we can write,

⟨x∗
t , θ̂o⟩+ γ

√
κ ∥x∗

t ∥V−1 ≥ ⟨x∗
t , θ

∗⟩
≥ ⟨x′, θ∗⟩ (optimality of x∗

t)

≥ ⟨x′, θ̂o⟩ − γ
√
κ ∥x′∥V−1

Thus, x∗
t ∈ X ′

t .

Since xt is also in X ′
t ,

⟨xt, θ̂o⟩+ γ
√
κ ∥xt∥V−1 ≥ ⟨x′, θ̂o⟩ − γ

√
κ ∥x′∥V−1

≥ ⟨x∗
t , θ̂o⟩ − γ

√
κ ∥x∗

t ∥V−1 (x′ has max LCB)

Again, using the fact that ⟨x∗
t , θ̂o⟩ ≥ ⟨x∗

t , θ
∗⟩ − γ

√
κ ∥x∗

t ∥V−1 and ⟨xt, θ̂o⟩ ≤ ⟨xt, θ
∗⟩ +

γ
√
κ ∥xt∥V−1 , we obtain,

⟨xt, θ
∗⟩+ 2γ

√
κ ∥xt∥V−1 ≥ ⟨x∗

t , θ
∗⟩ − 2γ

√
κ ∥x∗

t ∥V−1

=⇒ ⟨x∗
t − xt, θ

∗⟩ ≤ 2γ
√
κ ∥xt∥V−1 + 2γ

√
κ ∥x∗

t ∥V−1

Finally, since this is a non warm-up round, ∥x∥V−1 < 1
Rγ

√
κ

for all x ∈ Xt. Plugging this above,

⟨x∗
t − xt, θ

∗⟩ ≤ 4

R

.

B.1 Proof of Theorem 4.2

We prove Theoreom 4.2 in this section

Proof. Firstly, we will assume throughout the proof that Ew∩Eτ holds, which happens with probability
at least 1− δ. Thus, regret of Algorithm 2 is upper bounded as:

RT =
∑
t∈[T]

µ (⟨x∗
t , θ

∗⟩)− µ (⟨xt, θ
∗⟩)

≤ Rτw +
∑

t∈[T]\To

µ (⟨x∗
t , θ

∗⟩)− µ (⟨xt, θ
∗⟩) (Upper bound of R for warm-up rounds)

≤ cR3κγ2 log(T/δ) +
∑

t∈[T]\To

µ̇(z)⟨x∗
t − xt, θ

∗⟩ (some z ∈ [⟨xt, θ
∗⟩, ⟨x∗

t , θ
∗⟩]; lemma B.3)

Now, let R1(T) =
∑

t∈[T]\To
µ̇(z)⟨x∗

t − xt, θ
∗⟩. Hereon, we will slightly abuse notation Hτ to

denote the Hτ matrix last updated before time t for each time step t ∈ [T]. This will be clear from

24

the context as we will only use Hτ term-wise. With this, we upper bound R1(T) as follows:

R1(T) ≤
∑

t∈[T]\To

µ̇(z)2β∥xt∥H−1
τ

(by Lemma B.9)

≤
√
2β

∑
t∈[T]\To

µ̇(z)2∥xt∥H−1
t

(Lemma B.12, det(H−1
τ)

det(H−1
t)

= det(Ht)
det(Hτ

) ≤ 2)

≤ 2
√
2β

∑
t∈[T]\To

µ̇(z)e1∥xt∥H∗−1
t

(by Lemma B.5)

≤ 2e
√
2β

∑
t∈[T]\To

√
µ̇ (⟨x∗

t , θ
∗⟩) µ̇ (⟨xt, θ∗⟩) exp(R⟨x∗

t − xt, θ
∗⟩)∥xt∥H∗−1

t

(by Lemma C.2)

≤ 2e
√
2β

∑
t∈[T]\To

√
µ̇ (⟨x∗

t , θ
∗⟩)
√

µ̇ (⟨xt, θ∗⟩)e4 ∥xt∥H∗−1
t

(by Lemma B.10)

= 2e5
√
2β

∑
t∈[T]\To

√
µ̇ (⟨x∗

t , θ
∗⟩)
√
µ̇ (⟨xt, θ∗⟩) ∥xt∥H∗−1

t

= 2e5
√
2β

∑
t∈[T]\To

√
µ̇ (⟨x∗

t , θ
∗⟩) ∥x̃t∥H∗−1

t
(x̃t =

√
µ̇ (⟨xt, θ∗⟩)xt)

≤ 2e5
√
2β

√√√√√
 ∑

t∈[T]\To

µ̇ (⟨x∗
t , θ

∗⟩)

 · ∑
t∈[T]\To

∥x̃t∥2H∗−1
t

(Cauchy-Schwarz)

≤ 2e5
√
2β

√√√√√
 ∑

t∈[T]\To

µ̇ (⟨x∗
t , θ

∗⟩)

 · 2d log(1 + RT

λd

)
(Elliptic Potential Lemma; ∥x̃t∥2 ≤ R)

≤ cd log(RT/δ)

√ ∑
t∈[T]\To

µ̇ (⟨x∗
t , θ

∗⟩).

Putting things back,

RT ≤ cd log(RT/δ)

√ ∑
t∈[T]\To

µ̇ (⟨x∗
t , θ

∗⟩) + cR5S2κ log(T/δ)2.

B.2 Proof of Lemma 4.1

We first restate Lemma 4.1.

Lemma (4.1). Algorithm 2, during its entire execution, updates its policy at most
O(R4S2 κd2 log2(T/δ)) times.

Proof. Note that in Algorithm 2, policy changes happen only in the warm-up rounds and when the
determinant of Ht doubles in the main round. Thus, total number of policy switches is upper bounded
by the number of warm-up rounds and the number of times det(Ht) doubles. The first quantity is
bounded by Lemma B.3 while the second quantity is bounded by Lemma B.14. Thus in total, the
number of policy changes in Algorithm A is upper bounded by 2dR2κγ2 log(T/δ)+ cd log(T) .

B.3 Some Useful Lemmas

Lemma B.11 (Elliptic Potential Lemma (Lemma 10 [1])). Let x1, x2, . . . xt be a sequence of vectors
in Rd and let ∥xs∥2 ≤ L for all s ∈ [t]. Further, let Vs =

∑s−1
m=1 xmx⊺

m + λI. Suppose λ ≥ L2.

25

Then,
t∑

s=1

∥xs∥2V−1
s
≤ 2d log

(
1 +

L2t

λd

)
(22)

Lemma B.12 (Lemma 12 of [1]). Let A ⪰ B ≻ 0. Then

sup
x̸=0

x⊺Ax

x⊺Bx
≤ det(A)

det(B)

Lemma B.13 (Lemma 10 of [1]). Let {xs}ts=1 be a set of vectors. Define the sequence {Vs}ts=1 as
V1 = λI, Vs+1 = Vs + xsx

⊺
s for s ∈ [t− 1]. Further, let ∥xs∥2 ≤ L ∀ s ∈ [t]. Then,

det(Vt) ≤
(
λ+ tL2/d

)d
.

Lemma B.14. Let {xs}ts=1 be a set of vectors. Define the sequence {Vs}ts=1 as V1 = λI, Vs+1 =
Vs + xsx

⊺
s for s ∈ [t− 1]. Further, let ∥xs∥2 ≤ L ∀ s ∈ [t]. Define the set {1 = τ1, τ2 . . . τm = t}

such that: det(Vτi+1
) ≥ 2 det(Vτi) but det(Vτi+1−1) < 2 det(Vτi) for i ∈ {2, . . .m− 1}. Then,

the number of time doubling happens,i.e.m is at most O(d log(t)).

Proof. By Lemma B.13, det(Vt) ≤
(
λ+ tL2/d

)d
. But we have that from definition of τi’s

det(Vt) ≥ det(Vτm−1
)

≥ 2 det(Vτm−2
)

...

≥ 2m−2 det(Vτ1)

= 2m−2 det(V1)

= 2m−2λd (V1 = λI)

Thus, 2m−2λd ≤
(
λ+ tL2/d

)d
which implies that

2m−2 ≤
(
1 +

tL2

λd

)d

Hence, m ≤ O(d log(t)) .

C Useful Properties of GLMs

Recall that a Generalized Linear Model is characterized by a canonical exponential family, i.e.,
the random variable r has density function pz (r) = exp (rz − b (z) + c (r)), with parameter z,
log-partition function b(·), and a function c. Further, ḃ(z) = µ(z) is also called the link function.

Hereon, we will assume that the random variable has a bounded non-negative support, i.e., r ∈ [0, R]
almost surely. Now, we state the following key Lemmas on GLMs
Lemma C.1 (Self-Concordance for GLMs). For distributions in the exponential family the function
µ(·) satisfies that for all z ∈ R, |µ̈(z)| ≤ Rµ̇(z).

Proof. Indeed,

|
...
b (z)| = |E[(r − E[r])3]| (Lemma C.3)

≤ E
[
|(r − E[r])3|

]
(Jensen’s inequality)

= E
[
|r − E[r]| · (r − E[r])2

]
≤ E[R(r − E[r])2] (r,E[r] ∈ [0, R])

= RE[(r − E[r])2]
= Rb̈(z) (Lemma C.3)

26

As a consequence, we have the following simple modification of the self-concordance results of [6].
Lemma C.2. For an exponential distribution with log-partition function b(·), for all z1, z2 ∈ R,
letting µ(z) := ḃ(z), following holds:

α(z1, z2) :=

∫ 1

v=0

µ̇ (z1 + v (z2 − z1)) ≥
µ̇ (z)

1 +R|z1 − z2|
for z ∈ {z1, z2} (23)

µ̇(z2)

eR|z2−z1|
≤ µ̇ (z1) ≤ eR|z2−z1|µ̇ (z2) (24)

α̃(z1, z2) :=

∫ 1

v=0

(1− v)µ̇ (z1 + v(z2 − z1)) dv ≥
µ̇(z1)

2 +R|z1 − z2|
(25)

Proof. Without loss of generality, assume that z2 ≥ z1. Note that by property of integration∫ b

a
f(x)dx =

∫ a

b
f(b+ a− x)dx, α(z1, z2) = α(z2, z1). Now, by proposition C.1, and the fact that

µ̈(z) =
...
b (z), we have for any v ∈ R and z ≥ z1,

−Rµ̇(v) ≤µ̈(v) ≤ Rµ̇(v) (Lemma C.1)

−R ≤ µ̈(v)

µ̇(v)
≤ R

−R
∫ z1

z

dv ≤
∫ z1

z

µ̈(v)

µ̇(v)
dv ≤ R

∫ z1

z

dv

−R(z − z1) ≤ log

(
µ̇(z)

µ̇(z1)

)
≤ R(z − z1)

µ̇(z1) exp(−R(z − z1)) ≤µ̇(z) ≤ µ̇(z1) exp(R(z − z1))

Putting z = z2 establishes 24. To show 23, we further set z = z1 + u(z2 − z1) for u ∈ [0, 1], (note
that z ≥ z1) and integrate on u,

µ̇(z1)

∫ 1

0

exp(−Ru(z2 − z1))du ≤
∫ 1

0

µ̇(z1 + u(z2 − z1))du ≤
∫ 1

0

exp(Ru(z2 − z1))du

which gives µ̇(z1)
1− exp(−R(z2 − z1))

R(z2 − z1)
≤α(z1, z2) ≤ µ̇(z1)

exp(R(z2 − z1))− 1

R(z2 − z1)

Next, we use the fact that for x > 0, e−x ≤ (1 + x)−1 which on rearranging gives (1− e−x)/x ≥
1/(1 + x). Applying this inequality to the LHS above finishes the proof. Note that similar exercise
can be repeated with z2 ≤ z1 to get the same result for z2.

For 25, we have, by application of 24, µ̇(z1 + v(z2 − z1)) ≥ µ̇(z1) exp(R|v(z2 − z1)|). Therefore,

α̃(z1, z2) =

∫ 1

v=0

(1− v)µ̇ (z1 + v(z2 − z1)) dv

≥
∫ 1

v=0

(1− v)µ̇(z1) exp(−R|v(z1 − z2)|)dv

= µ̇(z1)

∫ 1

v=0

(1− v) exp(−Rv|(z1 − z2)|)dv (v ∈ [0, 1])

= µ̇(z1)

(
1

R|z1 − z2|
+

exp(−R|z1 − z2|)− 1

R2|z1 − z2|2

)
≥ µ̇(z1) ·

1

2 +R|z1 − z2|
(Lemma 10 of [2])

Next we state some nice properties of the GLM family that is the key in deriving Lemma C.1.
Lemma C.3 (Properties of GLMs). For any random variable r that is distributed by a canonical
exponential family, we have

27

1. E [r] = µ (z) = ḃ (z)

2. V[r] = E
[
(r − E [r])

2
]
= µ̇ (z) = b̈ (z)

3. E
[
(r − E[r])3

]
=

...
b (z)

Proof. 1. Indeed, since pz(r) is a probability distribution,
∫
r
pz(r)dr = 1 which in turn

implies that b(z) = log
(∫

r
exp(rz + c(r))dr

)
. Thus, taking derivative,

ḃ(z) =
1∫

r
exp(rz + c(r))dr

∫
r

∂

∂z
exp(rz + c(r))dr

= exp(−b(z))
∫
r

r exp(rz + c(r))dr

=

∫
r

r exp(rz − b(z) + c(r))dr = E[r]

2. Let f(z) :=
∫
r
r exp(rz + c(r))dr. Thus, ḃ(z) = exp(−b(z))f(z). Taking derivative on

both sides,

b̈(z) = −ḃ(z) exp(−b(z))f(z) + exp(−b(z))ḟ(z)

= −E[r]2 + exp(−b(z))
∫
r

r2 exp(rz + c(r))dr

= −E[r]2 +
∫
r

r2 exp(rz − b(z) + c(r))dr

= −E[r]2 + E[r2] = V[r]

3. Again let f(z) :=
∫
r
r2 exp(rz+c(r))dr. Thus, b̈(z) = −ḃ(z)2+exp(−b(z))f(z). Taking

derivative on both sides,
...
b (z) = −2ḃ(z)b̈(z)− ḃ(z) exp(−b(z))f(z) + exp(−b(z))ḟ(z)

= −2ḃ(z)b̈(z)− ḃ(z)E[r2] +
∫
r

r3 exp(rz − b(z) + c(r))dr

= −2E[r]V[r]− E[r]E[r2] + E[r3]

Now, let us expand E[(r − E[r])3].

E[(r − E[r])3] = E[r3 − 3r2 E[r] + 3rE[r]2 − E[r]3]
= E[r3]− 3E[r]E[r2] + 3E[r]3 − E[r]3

= E[r3]− E[r]E[r2]− 2E[r]
(
−E[r2] + E[r]2

)
= E[r3]− E[r]E[r2]− 2E[r]V[r]

Corollary C.4. For all exponential family, b(·) is a convex function.

Proof. Indeed, note that b̈(z) = V[r] which is always non-negative. Thus, b̈(z) ≥ 0 implying that
b(·) is convex.

Remark C.5. In [5] Section 1.4.1, the author claims that if the GLM parameter z lies in a bounded
set, then the GLM is self-concordant, i.e., |µ̈(z)| ≤ aµ̇(z), for some appropriate constant a over
this bounded set. Thereafter the author notes that the techniques developed in [5] guarantees κ-free
regret rates (in

√
T term) for such GLMs (i.e., all GLMs with bounded parameter). However, the

claim regarding self-concordance of GLMs is not true in general. There are classes of GLMs whose
parameters may be restricted in a bounded set, but for them no constant a exists. One such example is
the exponential distribution. The link function µ for exponential distribution is given as µ(z) = − 1

z .

28

If we allow z to lie in the set (−c, 0) for some positive c, then we have µ(z) strictly increasing
(satisfying our assumption on monotonicity of µ, thus a valid example). However, for this GLM,

µ̇(z) =
1

z2
µ̈(z) = − 2

z3

Note that µ̈(z) is positive for the assumed support of z. Suppose this GLM is self-concordant, then
we must have some positive constant a such that

|µ̈(z)| = − 2

z3
≤ aµ̇(z) = a

1

z2
.

Simplifying, we obtain the following relation:

−2

z
≤ a .

However, since z ∈ (−c, 0), we have limz→0− 2
z →∞. Hence, no constant a is possible. By this

counterexample it can be seen that bounded parameter set is not enough to guarantee self-concordance
of GLMs. In this work, we give a characterization of self-concordance of GLMs with bounded
support of the random variable. It will be interesting to understand a complete characterization of
self-concordance of GLMs.

D Computational Cost

Consider a log-loss minimization oracle that returns the unconstrained MLE for a given GLM class
with a computational complexity of Copt · n, when the log-loss is computed over n data points. Let
the maximum number of arms available every round be K. Furher, let the computational cost of an
oracle that solves the non-convex optimization 6 be NCopt.

Computational Cost of B-GLinCB: In the B-GLinCB algorithm, we employ the log-loss oracle
at the end of each batch. The estimator θ̂ calculated at the end of a batch of length τ incurs a
computational cost of Coptτ . Furthermore, this oracle is invoked for a maximum of M ≤ log log T
batches. Additionally, the computation of the distributional optimal design at the end of each batch is
efficient in d (poly(d)). Moreover, in every round, the algorithm solves the D/G− Optimal Design
problem (requiring O(d log d) computation) and runs elimination based on prior (at most log log T)
phases. Hence, the amortized cost per round of B-GLinCB is O(K log log T + d log d+ Copt).

Computational Cost of RS-GLinCB: In the RS-GLinCB algorithm, the estimator θ̂w is computed
during each warmup round. Additionally, during non-warmup rounds, the estimator θ̂ is computed a
maximum of O(log(T)) times. These computations involve utilizing both the log-loss oracle and the
non-convex projection oracle. Furthermore, in each non-warmup round, the algorithm executes an
elimination step. This yields an amortized time complexity of O(Copt log T +NCopt log

2(T) +K)
per round.

Performance in Practice: As evident from Fig. 1, RS-GLinCB has much better computational
performance in practice. We ran all the experiments on an Azure Data Science VM equipped with
AMD EPYC 7V13 64-Core Processor (clock speed of 2.45 GHz) and Linux Ubuntu 20.04 LTS
operating system. It was ensured that no other application processes were running while we tested
the performance. We implemented and tested our code in Python, and measured the execution times
using time.time() command. We allowed no operations for 10 seconds after every run to let the
CPU temperature come back to normal, in case the execution heats up the CPU, thereby causing
subsequent runs to slow down.

Comparison with ECOLog [7] shows that execution time for RS-GLinCB is significantly smaller. We
posit that this is because RS-GLinCB solves a large convex optimization problem but less frequently,
resulting into smaller overhead at the implementation level, while ECOLog solves a smaller convex
optimization problem, but does so every round. On an implementation level, this translates into more
function calls and computation. Further, we observe that with increasing κ, the execution time of
RS-GLinCB increases, which is in accordance with Lemma 4.1 that quantifies the number of policy
switches as an increasing function of κ.

While comparing with GLOC [14], we observe that RS-GLinCB performs better than GLOC in both high
and low κ regimes. Since GLOC runs an online convex optimization (online Newton step) algorithm

29

to generate its confidence sets, the time taken by GLOC is nearly constant with changing κ. On the
other hand, in accordance with Lemma 4.1, the computational cost of RS-GLinCB increases with κ.
However, after a few initial rounds, when neither of the switching criteria are triggered, RS-GLinCB
does not need to solve any computationally intensive optimization problem, hence these rounds
execute very fast. In practice, with typical data distribution, RS-GLinCB reaches this stage much
before what the worst-case guarantees show, hence we see it perform better than GLOC.

E Projection

We describe the projection step used in Algorithms 1 and 2. We present arguments similar to the ones
made in Appendix B.3 of [6]. We write

H(θ) =

t∑
s=1

µ̇ (⟨θ, xs⟩)xsx
T
s + λI

Recall, H∗ = H(θ∗). Let θ̂ be the MLE estimator of θ∗ calculated after the sequence arm pulls
x1, x2, . . . , xt. Let r1, r2, . . . , rt be the corresponding observed rewards. We project θ̂ to a set Θ by
solving the following optimization problem

θ̃ := argmin
θ∈Θ

∥∥∥∥∥
t∑

s=1

(µ (⟨xs, θ⟩)− µ
(
⟨xs, θ̂⟩

)
)xs

∥∥∥∥∥
H(θ)−1

(26)

Lemma E.1. Using the notations described above, if θ∗ ∈ Θ and maxi∈[t] |⟨xi, θ̃ − θ∗⟩| ≤ c/R,
then we have ∥∥∥θ̃ − θ∗

∥∥∥
H(θ∗)

≤ 2(1 + c)

∥∥∥∥∥
t∑

s=1

(µ (⟨xs, θ
∗⟩)− rs)xs

∥∥∥∥∥
H(θ∗)−1

Proof. First, we note that by self-concordance property of µ (lemma C.2), for any s ∈ [t],

α(xs, θ̃, θ
∗) ≥ µ̇ (⟨xs, θ

∗⟩)
1 +R|⟨xs, θ̃ − θ∗⟩|

≥ µ̇ (⟨xs, θ
∗⟩)

1 +R(c/R)
(maxi∈[s] |⟨xs, θ̃ − θ∗⟩| ≤ c/R)

=
µ̇ (⟨xs, θ

∗⟩)
1 + c

Similarly, we have α(xs, θ̃, θ
∗) ≥ µ̇(⟨xs,θ̃⟩)

1+c .

Let us define the matrix G =
∑

s∈[t] α(x, θ̃, θ
∗)xsx

⊺
s . Using the above fact, we obtain the relation:

G ⪰ 1
1+cH

∗ and G ⪰ 1
1+cH(θ̃). Also define the vector g(θ) =

∑
s∈[t] µ (⟨θ, xs⟩)xs. Now,∥∥∥θ̃ − θ∗

∥∥∥
H∗
≤
√
1 + c

∥∥∥θ̃ − θ∗
∥∥∥
G

(H∗ ⪯ (
√
1 + c)G)

=
√
1 + c

∥∥∥G(θ̃ − θ∗
)∥∥∥

G−1

=
√
1 + c

∥∥∥∥∥∥
∑
s∈[t]

(
α(xs, θ̃, θ

∗)⟨θ̃ − θ∗, xs⟩
)
xs

∥∥∥∥∥∥
G−1

=
√
1 + c

∥∥∥∥∥∥
∑
s∈[t]

(
µ
(
⟨xs, θ̃⟩

)
− µ (⟨xs, θ

∗⟩)
)
xs

∥∥∥∥∥∥
G−1

(Taylor’s theorem)

=
√
1 + c

∥∥∥∥∥∥
∑

s∈[t]

µ
(
⟨θ̃, xs⟩

)
xs

−
∑

s∈[t]

µ (⟨θ∗, xs⟩)xs

∥∥∥∥∥∥
G−1

30

Let g(θ) =
∑t

s=1 µ̇ (⟨xs, θ⟩)xs for any θ. Therefore, we have,∥∥∥θ̃ − θ∗
∥∥∥
H∗
≤
√
1 + c

∥∥∥g(θ̃)− g(θ∗)
∥∥∥
G−1

=
√
1 + c

∥∥∥g(θ̃)− g(θ̂) + g(θ̂)− g(θ∗)
∥∥∥
G−1

≤
√
1 + c

(∥∥∥g(θ̃)− g(θ̂)
∥∥∥
G−1

+
∥∥∥g(θ̂)− g(θ∗)

∥∥∥
G−1

)
(△ inequality)

≤ (1 + c)

(∥∥∥g(θ̃)− g(θ̂)
∥∥∥
H(θ̃)

−1
+
∥∥∥g(θ̂)− g(θ∗)

∥∥∥
H∗−1

)
(H∗−1 ⪰ (

√
1 + c)G−1)

≤ 2(1 + c)
∥∥∥g(θ̂)− g(θ∗)

∥∥∥
H∗−1

(by (26))

= 2(1 + c)

∥∥∥∥∥∥g(θ∗)−
∑
s∈[t]

rsxs

∥∥∥∥∥∥
H∗−1

(θ̂ is the unconstrained MLE, g(θ̂) =
∑

s∈[t] rsxs.)

E.1 Convex Relaxation

The optimization problem in (26) is a non-convex optimization problem and therefore it is not clear
what is the computational complexity of the problem. However, it is possible to substitute this
optimization problem with a convex one, whose computational complexity can be better tractable.
The process is similar to the one detailed in [2, section 6]. Here we briefly outline the steps.

Let Lt(θ) =
∑t

s=1 ℓ(θ, xs, rs) and θ̆ be defined as follows:

θ̆ := argmin
θ∈Θ

Lt(θ) (27)

Note that when the set Θ is a convex set, then the above optimization problem is convex by property
of the log-likelihood function of GLMs. Hence it can be solved efficiently. With this projected θ̆, we
have the following guarantee:

Lemma E.2. Suppose
∥∥∥g(θ̂)− g(θ∗)

∥∥∥
H∗−1

≤ γ and λ = γ/R. If θ∗ ∈ Θ and maxi∈[t] |⟨xi, θ̆ −
θ∗⟩| ≤ c/R, then we have

∥∥∥θ̆ − θ∗
∥∥∥
H(θ∗)

≤ c
√
(2 + c)R3Sγ

Proof. First we note that by self-concordance property of µ, for any s ∈ [t],

α̃(xs, θ
∗, θ̆) ≥ µ̇ (⟨xs, θ

∗⟩)
2 +R|⟨xs, θ̆ − θ∗⟩|

(Lemma C.2)

≥ µ̇ (⟨xs, θ
∗⟩)

2 +R(c/R)
(maxi∈[s] |⟨xs, θ̃ − θ∗⟩| ≤ c/R)

=
µ̇ (⟨xs, θ

∗⟩)
2 + c

Let us define G̃(θ∗, θ) :=
∑t

s=1 α̃(xs, θ
∗, θ)xsx

⊺
s . Using the above fact, we obtain G̃(θ∗, θ) ⪰

1
2+cH

∗.

31

We now follow closely the proof outlined in Appendix B.3 of [2] with minor changes. By second-order
Taylor’s expansion, for any θ ∈ Rd, we can write

Lt(θ)− Lt(θ
∗)− ⟨∇Lt(θ

∗), θ − θ∗⟩ = ∥θ − θ∗∥2G̃(θ,θ∗)

≥ 1

2 + c
∥θ − θ∗∥2H∗

Taking absolute value on both sides, and substituting θ = θ̆,

∥∥∥θ̆ − θ∗
∥∥∥2
H∗
≤ (2 + c)

(
|Lt(θ̆)− Lt(θ

∗)|+ |⟨∇Lt(θ
∗), θ̆ − θ∗⟩|

)
(△-inequality)

≤ (2 + c)
(
|Lt(θ̆)− Lt(θ

∗)|+ ∥∇Lt(θ
∗)∥H∗−1

∥∥∥θ̆ − θ∗
∥∥∥
H∗

)
(Cauchy-Schwarz)

= (2 + c)

|Lt(θ̆)− Lt(θ
∗)|+

∥∥∥∥∥∥g(θ∗)−
∑
s∈[t]

rsxs

∥∥∥∥∥∥
H∗−1

∥∥∥θ̆ − θ∗
∥∥∥
H∗


Recall that θ̂ is the unconstrained MLE, therefore ∇Lt(θ̂) = 0. By a similar Taylor expansion as
above and some algebraic manipulations (see Appendix B.3 of [2]), we have, for θ∗.

Lt(θ
∗)− Lt(θ̂) ≤

∥∥∥g(θ∗)− g(θ̂)
∥∥∥2
G(θ∗,θ̂)−1

≤ R√
λ

∥∥∥g(θ∗)− g(θ̂)
∥∥∥2
H∗−1

+
∥∥∥g(θ∗)− g(θ̂)

∥∥∥
H∗−1

≤ R√
λ
γ2 + γ (Lemma B.1)

≤ 2R3Sγ (recall
√
R2λ = γ/RS)

We also have, by definition of θ̆, whenever θ∗ ∈ Θ, Lt(θ̆) ≤ Lt(θ
∗), therefore we have Lt(θ̆) −

Lt(θ̂) ≤ Lt(θ
∗)− Lt(θ̂) ≤ 2R3Sγ Thus, we have,∥∥∥θ̆ − θ∗

∥∥∥2
H∗
≤ (2 + c)

(
4R3Sγ + γ

∥∥∥θ̆ − θ∗
∥∥∥
H∗

)
Using the inequality that for some x2 ≤ bx+ c =⇒ x ≤ b+

√
c, we have,∥∥∥θ̆ − θ∗

∥∥∥
H∗
≤ (2 + c)γ +

√
(2 + c)4R3Sγ

= c
√
(2 + c)R3Sγ

32

	Introduction
	Our Contributions
	Important Remarks on Contributions and Comparison with Prior Work

	Notations and Preliminaries
	Instance Dependent Non-Linearity Parameters
	Optimal Design Policies

	B-GLinCB
	RS-GLinCB
	Experiments
	Conclusion and Future Work
	Regret Analysis of B-GLinCB
	Proof of Theorem 3.2
	Optimal Design Guarantees

	Regret Analysis of RS-GLinCB
	Proof of Theorem 4.2
	Proof of Lemma 4.1
	Some Useful Lemmas

	Useful Properties of GLMs
	Computational Cost
	Projection
	Convex Relaxation

