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Figure 1: Depth and height perception capability of existing VLM. Here, we show failure cases of
GPT-4V in understanding depth and height on GeoMeter, our proposed suite of benchmark datasets.

ABSTRACT

Geometric understanding—including depth and height perception—is fundamen-
tal to intelligence and crucial for navigating our environment. Despite the impres-
sive capabilities of large Vision Language Models (VLMs), it remains unclear how
well they possess the geometric understanding required for practical applications
in visual perception. In this work, we focus on evaluating the geometric under-
standing of these models, specifically targeting their ability to perceive the depth
and height of objects in an image. To address this, we introduce GeoMeter, a
suite of benchmark datasets—encompassing 2D and 3D scenarios—to rigorously
evaluate these aspects. By benchmarking 18 state-of-the-art VLMs, we found that
although they excel in perceiving basic geometric properties like shape and size,
they consistently struggle with depth and height perception. Our analysis reveal
that these challenges stem from shortcomings in their depth and height reasoning
capabilities and inherent biases. This study aims to pave the way for developing
VLMs with enhanced geometric understanding by emphasizing depth and height
perception as critical components necessary for real-world applications.

1 INTRODUCTION

In recent years, the AI community has significantly focused on integrating visual and natural lan-
guage inputs, notably in Visual Question Answering (VQA) systems. These systems analyze images
and answer questions about them, showing substantial advancements in understanding basic visual
concepts such as shape identification (Kuhnle & Copestakel [2017), object detection (Zou et al.
[2023), and the spatial relationships (Johnson et al., 2017; (Chen et al.| 2024} [Liu et all, 2023a) by
using large Visual Language Models (VLMs). These models have excelled in processing complex
text and visual inputs due to their strong visual understanding capability, leading to applications in
image captioning, visual question answering, image text retrieval, and so on.

The ability to understand visual properties such as size, shape, depth, and height is fundamental
to visual understanding, yet many existing Visual Question Answering (VQA) benchmarks
son et al., 2017}, [Chen et al, 2024} [Liu et all, [2023a} [Diwan et al., 2022}, [Thrush et al.| [2022) do
not specifically focus on the depth and height perception capabilities of Vision Language Models
(VLMs). Accurate perception of these dimensions is vital for practical applications like surveil-
lance, navigation, and assistive technologies. The lack of accurate depth and height understanding
in VLMs can lead to serious consequences, such as misjudging the proximity of objects, which
could result in catastrophic outcomes in real-world scenarios.
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Despite VLMs’ abilities to recognize object shapes and sizes, their depth and height reasoning often
relies on learned size/shape cues rather than actual spatial analysis, potentially influenced by biases
from training data (Jayaraman et al.,|2024)). Alternatively, models might estimate the depth based on
the apparent size of objects, without genuine inter-object reasoning. An example illustrated in Figure
[T}shows how GPT-4V (OpenAl,[2024), one of the most popular closed-source VLM, struggles with
depth perception in an image featuring two cats, despite the task being seemingly straightforward for
humans. The model incorrectly assesses the spatial relationship between the cats, relying on visual
cues that conflict with their actual arrangement. Additional examples in Figure[T|further demonstrate
GPT-4V’s failures in perceiving depth and height. These limitations highlight the need to explore
such shortcomings more thoroughly and develop targeted benchmarks and training strategies that
can better equip VLMs to handle complex, real-world environments with accurate depth and height
perception.

In this paper, we aim to evaluate the depth and height reasoning capabilities of Vision Language
Models (VLMs) to identify their strengths and limitations in visual perception. While auxiliary
sensors play a crucial role in depth estimation and other alternative methods of estimating depth and
height may outperform visual language models (VLMs) in specific tasks, our research aims to assess
the standalone capabilities of VLMs rather than suggesting their replacement. To achieve this, we
design GeoMeter, a suite of synthetic benchmark datasets focusing on 2D and 3D scenarios, named
GeoMeter-2D and GeoMeter-3D respectively. These probing datasets, feature basic shapes, such as
rectangles, circles, cubes, and cylinders, and are crafted to test the visual reasoning capabilities of
VLMs. The development of synthetic datasets is motivated by concerns about test-time data leakage,
where large VLM, trained on vast datasets, might encounter images during testing that they have
already seen during training. We prioritize clean, programmatically generated data over mere size
to ensure that the evaluation is not compromised by dataset familiarity. This controlled approach
minimizes the risk of data leakage and enables a more focused and precise assessment of VLMs’
understanding of depth and height, free from the confounding influence of real-world cues present
in many publicly sourced datasets. To this end, our probing datasets consist of around 4k unique
images and 11.2k image text pairs, designed to probe depth and height reasoning in VLMs.

We extensively analyze our proposed suite of benchmark datasets on /8 recent open-source and
closed-source models for the VQA task. Our findings reveal several key insights: (1) While VLMs
demonstrate basic geometric understanding, they struggle significantly with depth and height per-
ception tasks. (2) Models generally show better depth perception than height, likely due to the more
common and simpler depth cues like occlusion and perspective, which are prevalent in training
datasets, making depth easier to process than the more complex cues required for accurate height
estimation. (3) The lack of depth and height perception ability stems from the models’ intrinsic
visual reasoning abilities rather than the level of prompt detail. (4) Inherent biases are evident in
models’ responses when faced with advanced perception tasks.

Overall, our contributions can be summarized as follows:

* We investigate the depth and height reasoning capabilities of VLMs, identifying their
strengths and limitations in visual perception tasks and highlighting specific areas of im-
provement to enhance their visual reasoning and perception abilities.

* We conduct an extensive analysis of 18 open-source and closed-source VLMs, uncovering
their behavioral patterns and inherent biases in handling depth and height perception.

* To facilitate this evaluation, we develop GeoMeter which consists of two distinct datasets:
GeoMeter-2D and GeoMeter-3D, which challenge VLMs with depth and height perception
tasks.

2 RELATED WORKS

Visual Language Models (VLMs). The field of Al has undergone a significant transformation with
the advent of vision language models (VLMs), which are trained on extensive multimodal datasets
and are versatile across numerous applications (Radford et al., 2021} [Liu et al, [2023c). These
models have shown remarkable performance in language and vision-related tasks, e.g. recognition,
reasoning, etc. VLMs are models with a pre-trained LLM backbone and a vision encoder; which are
aligned by using different methods. Recent closed-source VLMs such as GPT-4 (OpenAll 2024),
Gemini (Team et al.,|2023), Claude (Anthropic, [2023)) showcase a strong potential for tasks that
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Table 1: Dataset statistics of our proposed benchmark suites. MCQ and T/F respectively denote
Multiple Choice Questions and True/False questions.

Dataset Task Description Question Images Img—Text
Type pairs
Depth per- | Determine which of the | MCQ,
SSOMeter_ ception given objects is on the top. T/F 1200 4800
. Provide height ordering
Helght. from shortest to tallest MCQ, 1200
perception . T/F
among the given stacks
Determine which of the
GeoMeter- lc)eelggnper- given objects is closer to the %SQ’ 800 6400
3D P camera.
. Provide height ordering
Helght. from shortest to tallest MCQ, 800
perception . T/F
among the given stacks

require understanding and processing information across different modalities. Additionally, various
openly available VLMs such as LLaVA (Liu et al,, [2023c), LLaVA-NeXT (Liu et al. 2023b),
Bunny (He et al.l 2024) etc. also have comparative performance with the closed-source models
across different vision-language tasks. All of these VLMs are trained on massive amount of public
and proprietary data, making them a strong performer of general reasoning.

Exploring Visual Reasoning Capability of VLMs. Previous works have extensively explored the
spatial reasoning and object understanding capabilities of Vision Language Models (VLMs), probing
their ability to grasp object-attribute relationships and spatial concepts like spatial reasoning through
various benchmarks (Thrush et al., 2022} Diwan et al., 2022; Johnson et al., [2017; |Krishna et al.,
2017; Liu et al., [2023a} |Schiappa et al.l 2024} Huang et al., [2024; Tong et al., |2024). However,
specific geometric properties such as depth and height perception have been largely under-explored.
While there are benchmarks that assess geometric property understanding (Chen et al., 2021} Zhang
et al.| 2024} Sun et al.,[2024), they often rely on mathematical knowledge and do not directly probe
these properties in the context of natural visual understanding. Moreover, many of the datasets
used in these studies (Thrush et al., [2022; |Diwan et al., [2022; [Krishna et al., 2017} |Liu et al.,
2023a}; [Schiappa et al., 2024} Tong et al., 2024) are curated from pre-existing datasets and/or the
internet, which introduces the risk of data leakage during testing, making it difficult to assess VLMs’
true capability for depth and height reasoning. Although synthetic datasets have been developed
(Johnson et al., 2017} [Kuhnle & Copestake}[2017); they are not specifically tailored to tasks focusing
on depth and height understanding, further limiting their effectiveness in thoroughly evaluating these
advanced visual concepts. Our proposed benchmark suite addresses this gap by offering image-text
pairs that target depth and height perception, without relying on mathematical reasoning, providing
a more focused assessment of VLMs in this area.

3 BENCHMARK

Our proposed suite of benchmark datasets consist of GeoMeter-2D, and GeoMeter-3D datasets that
are designed to test model performance on depth and height perception tasks, utilizing unique iden-
tifiers as diverse query attributes for question generation. Table[I} and Figure [2] respectively show
the dataset statistics and sample images of our proposed datasets. More samples from each dataset
is given in the appendix. In the following sections, we describe the detailed data generation process
for our proposed suite of benchmark datasets.

3.1 DATASETS

The dataset generation can be divided into two parts - Image generation (Section[3.1.1)) and Question
generation (Section [3.1.2).

3.1.1 IMAGE GENERATION

Our proposed synthetic datasets are divided into two categories - Depth and Height, with each image
containing a real-world scene background to add realism while maintaining controlled, programmat-
ically generated content. We generate images in two variety of scene density - 3 shapes and 5 shapes,
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GeoMeter-2D ' GeoMeter-3D

Figure 2: Samples from the proposed suite of benchmark datasets. Here each samples are shown
with random query attributes- color and numeric label for GeoMeter-2D; and color and material for
GeoMeter-3D dataset.

with each shape having one unique identifier which is used as query attribute to refer to that certain
object while probing the VLMs’ depth and height perception.

GeoMeter-2D: The GeoMeter-2D dataset includes 2400 images and 4800 unique questions, and is
designed to test depth and height perception through basic 2D shapes. The Depth category features
overlapping 3 or 5 geometric shapes, like rectangles, triangles, and circles, positioned to create depth
illusions. Ground truth for these images is stored in a scene graph that annotates each object’s shape,
size, color, and spatial positioning, including depth ordering through directed edges connecting
overlapping objects. Each object is assigned a unique identifier based on color and numeric labels.
For the Height category, we generated scenes featuring sequentially labeled 3 or 5 towers, each
consisting of four stacked rectangles. Each tower was created by randomizing the height and width
of the individual rectangles to add variability to the scene. The bottom-most rectangle in some
images is placed on a black strip representing an elevated platform, making the tower effectively
shorter by one rectangle in actual height but visually elevated. These images are categorized into
two subgroups: w/ step for towers placed on a platform and w/o step for towers directly placed on
the ground. This setup allows VLMs to be rigorously tested on height comparison tasks, requiring
them to correctly interpret both the visual cues of the towers’ absolute and relative heights, and
the additional complexity introduced by the raised platforms. Each object in the scene is uniquely
identified by its color and label, and the scene graph provides the ground truth, detailing the size,
position, and elevation of each tower.

GeoMeter-3D: The GeoMeter-3D dataset consists of /600 images and 6400 unique questions, cre-
ated based on the existing CLEVR dataset (Johnson et al 2017). Scenes are generated using
Blender (Community},[2018), with random jittering of light and camera positions to ensure variety.
Objects in these scenes are annotated using a scene graph, which records each object’s shape, size,
color, material (shiny “metal” or matte “rubber”), and position on the ground plane. The Depth
category includes randomly placed 3 or 5 cubes, spheres, and cylinders with distinct colors and
materials as unique identifiers. These shapes are colored from a palette of eight colors and two ma-
terials, with increased horizontal and vertical margins than original CLEVR images between objects
to reduce ambiguous spatial relationships. The scene graph captures all ground-truth information
required to evaluate depth perception tasks, such as object distances and relative positions. For the
Height category, same as the GeoMeter-2D dataset’s height category setup, we created scenes with
3 or 5 towers, each consisting of four cubes stacked on top of each other. We created a base tower
mesh and randomized each cube’s size, color, and material (either shiny “metal” or matte “rubber”)
for every image. Same as GeoMeter-2D, in some scenes, the bottom-most cube is black and matte,
representing an elevated platform. The ground truth for these images is represented in the scene
graph, detailing the exact size, position, and elevation of each tower.

3.1.2 QUESTION GENERATION

The method used for generating questions is consistent across all our proposed datasets. Each ques-
tion is a Description prompt appended with an Answer format instruction. The description prompt
contains some general information about the scene providing semantic cues to the given image;
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GeoMeter-2D (Depth)

Prompt Template

mcaQ

[more information] Provide depth/height ordering for the shapes/towers
<question items> in the image. [answer format instruction]

Prompt Example

% | The image shows 2D shapes placed randomly. The shapes overlap each

| | ShapelD and must be inferred as the label for the corresponding shape.

other, creating a depth effect. When two shapes are overlapping, the
shape that is complete is defined to be on top of the partially hidden
shape. Each 2D shape has a number written over them which we call

Provide depth ordering from top to bottom for the shapes '13, 92, 95" in
the image. Answer in the format: 'ShapelD, ShapelD, ...". For eg. '3, 1, 2'
is a valid answer format.

Q. From the given options: {answer_set}, select
the correct answer (ONLY output the answer).

A. 92,13,95 D. 92,9513

B. 13,92, 95 E. 13,9592

C. 95,13,92 F. 95,92,13
True/False

Q. Given the predicted depth ordering as "13, 92,
95', evaluate the prediction as Correct or
Incorrect.

Ans. Correct

GeoMeter-3D (Height)

Prompt Template

mca

[more information] Provide depth/height ordering for the shapes/towers
<question items> in the image. [answer format instruction]

Prompt Example

The image shows 3D cubes stacked on top of each other. There are
multiple stacks in the image. If there is a black cube at the bottom of the
stack, then that is considered as the ground level, and the stack lies on
top of it. The height of each stack is measured from its base. Each 3D
shape has a unique color. The stacks are labelled A, B, C,... from left to
right. Now order the stacks labelled ‘A, B, C’ from shortest to tallest.
Answer in the format: 'StackLabel, StackLabel, ...". For eg. 'B, A, C'is a
valid answer format.

Q. From the given options: {answer_set}, select
the correct answer (ONLY output the answer).

A. B,C,A D. ACB
B. C,B,A E. BAC
C. C,A,B F. AB.C

True/False

Q. Given the predicted depth ordering as 'C, B,
A", evaluate the prediction as Correct or
Incorrect.

Ans. Incorrect

Figure 3: Sample image-text pair from the datasets. Here, prompt template shows the basic
template for each image-text pair in our datasets, where the prompt example is the actual prompt for
the image. The prompt example is appended with either MCQ or True/False type question.

followed by the actual question and answer format instruction. For example, “[more information]
Provide depth/height ordering for the shapes <question items> in the image. [more information]”
is a descriptive prompt. This is followed by “From the given options: <answer set>, select the
correct answer [more information].” which is an answer format instruction.

The question items is a list containing <query attribute> appended by <shape>. Here <query
attributes> is one of the unique identifiers of the dataset. For example in the question item “green
metal cube”, “green metal” is the <query attribute> and <cube> is the shape. The answer set
contains all possible valid values (<query attribute> + <shape>) to that given prompt. To generate
both the question items and answer set, we read through the scene graph and run depth-first search
on it to generate valid unambiguous values of object-pair relationship. For each image, there are two
types of questions - MCQ and True/False. Some example prompts along with their corresponding
image is shown in Figure 3]

4 EXPERIMENTAL SETUP

4.1 VISION LANGUAGE MODELS

We perform our benchmark evaluation on 18 state-of-the-art visual-language models. All of our
chosen VLM:s are trained on very large (public and/or proprietary) datasets. The selected VLMSs can
be categorized into 14 open-source and 4 closed-sourced models.

Open-source models. LLaVA & LLaVA-NeXT (Liu et al. are a family of large open-
source models combining the CLIP visual encoder (Radford et al.,[202T)) with the Vicuna language
decoder (Chiang et all, 2023). Fuyu-8B (Bavishi et al., [2023) is a more efficient open-source
multimodal model that projects image patches directly into the transformer, eliminating the need for
an image encoder. Bunny is a flexible multimodal model family offering various
combinations of vision encoders and LLM backbones. InstructBLIP 2023) leverages
the BLIP-2 architecture (Li et al.| for visual instruction tuning. LLaMA-Adapter
2023) is a parameter-efficient visual instruction model, and MiniGPT-4 aligns a
frozen BLIP-2 visual encoder with the Vicuna LLM using a projection layer. We evaluate various
versions of these open-source models.
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2D(D) MCQ
3D(D) MCQ
2D(D) T/F
3D(D) T/F
30
2D(H) MCQ
3D(H) MCQ
2D(H) T/F

3D(H) T/F
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Figure 4: Depth and height perception performance on the proposed GeoMeter-2D and
GeoMeter-3D dataset on MCQ and True/False (T/F) questions. D and H respectively denote depth,
height performance. For example, 2D(D) MCQ and 2D(H) MCQ corresponds to respectively
GeoMeter-2D depth and height performance on MCQ questions. Y-axis denotes the average per-
formance across shape and query attributes and X-axis denotes all the evaluated models. Darker
color denotes better performance.

Closed-source models. GPT-4 is a closed-source multimodal conversational model
by OpenAl, based on a transformer architecture, pre-trained on large datasets and fine-tuned with
Reinforcement Learning from Human Feedback (RLHF) (Christiano et al. [2017). We evaluated
GPT-4V, and GPT-40. Claude 3 Opus is a closed-source multimodal model
by Anthropic with competitive performance against other closed-source models. Gemini 1.5 Pro
is a closed-source multimodal model by Google, surpassing GPT-4V performance
across several benchmarks.

4.2 HUMAN EVALUATORS

We conducted a preliminary human evaluation across all of our proposed benchmark datasets, in-
volving three evaluators who were tasked with assessing 100 uniformly sampled data from all sub-
categories. Similar to the model evaluation setup, each evaluator was shown one image and one
prompt at a time, with a combination of multiple-choice (MCQ) and true/false questions. As illus-
trated in Figure 3] evaluators were asked to either select the correct depth/height ordering (MCQ)
or determine whether a given prediction was accurate (T/F). The human evaluators’ responses were
compared against the ground truth to compute their final accuracy scores, providing a baseline for
human performance on these tasks.

4.3 EVALUATION METRICS

We evaluate our benchmark on the task of visual question answering (VQA), with accuracy being
the performance metric on MCQ and True/False type questions. Evaluation is done across query
attributes and scene density for probing the VLMs’ depth and height perception.

4.4 IMPLEMENTATION DETAILS

All models are used in accordance to the provided evaluation code and model weights. The closed-
source models were accessed through APIs which have been provided through a paywall by the
corresponding developing team of those models. For MCQ, the order of the given options are
randomly generated, and ground truth is always randomly placed in one of those options. We have
implemented already established practices (Liu et al., 2024} [Suzgun et al.}2022) for creating options
in multiple choice questions, randomizing both the position and the quantity of these options (up to
120 choices), and ensuring variability in the correct answer’s location. For the True/False questions,
the ground truth is randomly selected between True and False.

4.5 RESULTS

The performance of the selected models and human evaluators on the VQA task for MCQ and
True/False type questions on the proposed benchmark datasets are shown in Table 2} where each
model’s performance represents the average accuracy of depth and height perception across all dif-
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Table 2: Performance comparison of the studied models on proposed datasets. The reported
results are averaged across depth and height category, query attributes and scene density with top
scores in bold. Average denotes average performance of both datasets. Here, T/F denotes True/False
type questions.

Model GeoMeter-2D | GeoMeter-3D Average
MCQ T/F | MCQ T/F | MCQ T/F
LLaVA 1.57B 28.8 50.5 28.0 49.8 284 50.2
LLaVA 1.5 13B 17.8 52.5 29.0 51.3 234 519
LLaVA 1.6 Mistral 7B 22.1 52.2 26.7  48.7 244  50.5
LLaVA 1.6 Vicuna 7B 17.1 51.7 28.6  50.0 229 509
LLaVA 1.6 Vicuna 13B 28.2 54.2 32.5 52.7 304 535
Bunny-v1.0-3B 24.1 50.1 17.1 37.1 20.6 43.6
5] Bunny-v1.0-4B 242  52.6 199 393 22.1  46.0
é’“ Bunny-vl1.1-4B 26.6 523 269 444 26.8 484
Bunny-Llama-3-8B-V 27.9 50.2 26.9 43.2 274  46.7
Fuyu-8B 8.6 53.0 194 432 14.0  48.1
InstructBLIP-Flan-T5-XL 10.8 474 37.5 52.1 242  49.8
InstructBLIP-Vicuna-7B 28.3 49.0 38.1 53.8 332 514
LLaMA-Adapter-v2-Multimodal | 22.9 48.8 32.7 52.4 27.8 50.6
MiniGPT-4 250 504 | 394 56.3 322 534
5 GPT-4V 25.5 54.0 35.2 50.5 304 523
Q GPT-40 30.8 56.7 | 38.5 524 | 347 54.6
8 Claude 3 Opus 29.0 519 36.2 499 32.6 509
Gemini 1.5 Pro 28.8 54.5 36.5 51.0 327 528
[ Human evaluators [ 910  99.0 | 905 97.0 | 90.8 98.0
TR GeoMeter-2D-Basic |
— O . k 100
— @ i
| L1\ § -87
3 / I k LLaVA- LLaVA 1.6- Bunny- Fuyu-8B Instruct- MiniGPT-4 GPT-4V  GPT-4o Claude 3-
! Line Shape Spatial : 1.5 7B Vicuna 13B Llama- BLIP-Flan- Opus
% understanding understanding relationship | 3-8B-V T5-XL

and counting understanding |

Figure 5: Model behavior on basic understanding of shapes and size on our created GeoMeter-
2D-Basic dataset (samples on the lef). Performance of selected models on this dataset is shown in
right. Here, LU, SI, SC and SR respectively denote line understanding, shape identification, shape
counting and spatial reasoning. Y-axis denotes performance accuracy of different categories and
X-axis denotes evaluated models. Darker color denotes better performance.

ferent query attributes and scene density. Depth and height category wise results are presented in
Figure[d] Additional results across all query attributes and scene density are reported in the appendix.

5 ANALYSIS AND DISCUSSION

5.1 MODEL BEHAVIOR ANALYSIS

Human evaluations confirm tasks are straightforward. Despite the seemingly straightforward
nature of depth and height perception tasks for humans, current Vision Language Models (VLMs)
struggle to achieve comparable performance. Our initial human evaluations on our datasets show
consistently high accuracy in both depth and height perception tasks (Table 2] Figure[d), demonstrat-
ing that humans can effortlessly solve these tasks. In contrast, VLMs exhibit significant limitations.
This performance discrepancy highlights that while these tasks may appear trivial from a human
perspective, they pose substantial challenges for foundation models. Moreover, the human evalua-
tion serves as a baseline, indicating that these tasks should be within the capability of an advanced
Al system. This clear gap in model performance underscores critical limitations in VLMs’ visual
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Chain of Thought Prompt

Original Prompt . _
<more information>

Let's think step by step.

i Step 1: Identify the Shapes and Their Colors: Observe the image carefully and list the 3D shapes along with
1 their colors. For example: "l see a red cube, a purple cylinder, and a yellow sphere.”

i Step 2: Determine the Depth Ordering of the Shapes: Focus on the relative positions of the shapes from the

<more information>

Provide depth i camera viewpoint. Look for visual cues such as overlapping shapes, size differences due to perspective, and
ordering from front to i shadows. For example: "The red cube is in front of the yellow sphere. The purple cylinder is behind the yellow
back for the shapes i sphere.”

<question items> in Step 3: Provide the Depth Ordering from Front to Back: Based on the observations from Step 2, arrange the

i shapes in order from the closest to the furthest from the camera. For example: "The depth ordering from front
i to back is: red cube, yellow sphere, purple cylinder."
i Final Answer: Format the final answer as specified in the prompt. For example: "red cube, purple cylinder"

the image. <answer
format instruction>

format instruction>

Figure 6: Prompt engineering using chain of thought prompting. Here the intermediate reasoning
steps introduced in the engineered prompts of the GeoMeter-3D dataset is denoted by a dashed box.

reasoning, revealing that the models are not yet equipped to handle even elementary geometric un-
derstanding without additional sensory input.

Models show basic visual reasoning capability but struggles in advance perception tasks. We
developed a specialized dataset called GeoMeter-2D-Basic containing 30 image-text pairs (some
samples shown in Figure [5]left) to evaluate the fundamental visual reasoning capabilities of Vision
Language Models (VLMs). This dataset focuses on basic geometric tasks like line understanding,
shape recognition, shape counting, and assessing spatial relationships between shapes. The initial
assessments using MCQs demonstrate high performance by models on these basic tasks, as detailed
in Figure [5] right. Despite this proficiency in simple visual properties, results from Figure [4 high-
light that these same models struggle significantly with depth and height perception tasks involving
similar shapes. This discrepancy underscores the benchmark’s value in identifying gaps in VLMs’
capabilities to handle more complex spatial reasoning, beyond mere shape recognition.

Height perception poses greater challenges than
depth perception, especially in stacked object ar-
rangements. The superior performance of models
in depth perception tasks, as compared to height per- LL\ _

. . aVA 1.6 Vicuna 13B
ception (Figure [Z_f] row 1,2 vs row 5,6), can be at- \
tributed to the prevalence of more common and Sim-  jnstructsLP Flan T5 X1, ; 20 125
pler depth cues such as occlusion and perspective. <10 o
These cues are widely available in many training
datasets and are relatively easier for VLMs to inter-
pret. On the other hand, we hypothesize that height GPT 4V
estimation presents a more complex challenge as it
involves analyzing the vertical placement of objects Gemfi 1.5 Pro
in the scene and interpreting relationships between T4
object sizes and perspectives in a stacked arrange- Claude 3 Opus
ment. This type of height-related information is less
frequent in the training data, making it harder for
models to generalize effectively. To further support
our hypothesis, we perform an analysis on single ob-
jects and stacks of objects for both depth and height
tasks using a carefully curated subset of 100 images
for each category from our GeoMeter-3D dataset.
The analysis revealed that while the performance
gap between depth and height for single objects is
relatively narrow, there is a significant decline in per-
formance for height tasks involving stacked objects.
Figure [/ shows this discrepancy of depth and height performance gap for single objects and stack
of objects. This underscores our hypothesis that height perception is inherently more complex for
VLMs, especially when it involves multiple objects stacked together, complicating their evaluation
within a confined vertical space. Depth tasks, on the other hand, benefiting from simpler spatial
cues, show better model performance.

—— Ain Single Object A in Stack of Objects

Bunny-Llama-3-8B-V

Fuyu

|
LLaVA 1.5 7B
|

Figure 7: Height perception is more chal-
lenging in stacked object arrangements
than depth. Here, A denotes performance
gap between depth and height perception,
which grows even larger with stacked ar-
rangement of objects, as opposed to single
objects. This suggests that while models
struggle with height perception in general,
stacked objects further degrade their perfor-
mance.
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Models’ limitation is due to inherent reasoning capability and not insufficient prompt
detail. To provide models with additional contextual information regarding visual cues
with the help of intermediate reasoning, we implemented chain-of-thought prompting fol-
lowing (Wei et al, 2023). Chain of thought prompting enhances problem-solving by
guiding models through logical reasoning steps, similar to human cognitive processes.
To assess its effectiveness,

we selected a small subset

(100 image-text pairs) of the £,

GeoMeter-3D dataset from the 7§

depth category. We manually &

generated chain-of-thought g2

prompts by rewriting the origi- £

nal standard prompts to include : : : : : : : . :
these intermediate reasoning LLaYA  LLa¥A Bunny P Instact GFT Gpy o Clagde Gemini
steps, as illustrated in Figure 78 Viuna 388V Flan T5 Opus  Pro

We evaluated some of the

selected top-performing models  Figure 8: Performance gain with chain of thought prompting

using these prompts, with re-  over standard prompting on subset of GeoMeter-3D dataset.
sults shown in Figure [§] Despite

the highly detailed nature of these prompts, the evaluation revealed only marginal performance
improvements. This suggests that even with extensive intermediate reasoning provided, the models
did not benefit significantly possibly indicating that they are already performing some level of
internal reasoning with the standard prompts. More importantly, this highlights that the limited
performance in depth and height perception tasks is due to the inherent lower capability of the
models in these areas. This is a fundamental challenge that cannot be addressed solely through
prompt engineering. Instead, it points to the need for careful revisions in model architecture to
improve visual reasoning capabilities in tasks involving complex spatial understanding.

Increased scene density lowers models’ perception capability. Figure [9] shows average perfor-
mance decline in the GeoMeter-2D and 3D datasets as scene density increases from 3 to 5 shapes.
Open-source models like LLaVA and Bunny experience a more pronounced performance drop with
increased scene complexity, while closed-source models demonstrate better resilience, suggesting
they are more capable of handling visual reasoning in denser environments. However, in case of
both open and closed models, the average performance drop is almost similar suggesting in general
both kinds of models get affected by increased scene density.

5.2 MODEL BIAS ANALYSIS

We conducted further analysis on the type of prompts to study any inherent biases in the models
could be influencing their performance on MCQ and True/False type questions on a smaller subset
(1600 image-text pairs uniformly selected from the depth and height categories) of the GeoMeter-3D
dataset.

Some open-source models are more biased towards picking True over False than others. The
performance of some open-source models on True/False questions tends to hover around 50% (Ta-
ble [2), suggesting they might not be effectively distinguishing between true and false statements,
potentially defaulting to random guesses. This is highlighted by experiments showing similar out-
comes (Figure |10| left) when ground truth is random versus always set to ”True,” and a significant
performance decline when it is always “False,” indicating a bias towards predicting “True.” This
bias toward True” may arise from imbalances in training data, where models are overexposed to
affirmative statements or lack sufficient counterexamples of false statements. As a result, rather
than demonstrating genuine understanding, these models often rely on heuristic patterns or short-
cuts. Furthermore, this behavior highlights a deeper issue: the models’ inability to engage in more
nuanced decision-making or reasoning under uncertainty. True/False questions, though simple in
format, test models’ grasp of logical consistency and factual correctness—an area where many open-
source models falter. By exposing such tendencies, this evaluation method provides valuable insight
into where these models need refinement, particularly in developing the capacity for more context-
driven and accurate judgments.

Some open source models are more biased towards picking the first choice in case of MCQ.
Experiments reveal that while closed-source models show consistent performance across various
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Figure 9: Performance drop in depth perception with increased scene density. Here, Y-axis
denotes the performance drop with increased scene density (3 shapes to 5 shapes) on average of
GeoMeter-2D and GeoMeter-3D datasets for MCQ. The X-axis denotes all the evaluated models
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Figure 10: Model bias analysis. Left: Effect of ground truth value in True/False questions. GT-R
denotes randomly set ground truth between true and false; whereas GT-T/F denotes ground truth
always true or always false. Right: Effect of ground truth ordering in choices of MCQs. GT-Cl
and GT-Ab denotes ground truth being choice 1 and not present respectively. The Y-axis denotes
the average performance and X-axis denotes all the evaluated models. Darker colors denote better
performance.

MCQ ground truth placements, open-source models exhibit a significant bias toward selecting the
first option, particularly when the ground truth is positioned as the first choice (Figure[T0|right). This
bias could stem from the way training data is structured, where the first choice is frequently correct
or if the models encounter more examples with answers listed early in the sequence, leading models
to develop a preference for selecting it. Their performance drops notably when the correct answer is
absent, suggesting these models struggle with identifying “None of the above” options and may rely
on heuristics rather than actual reasoning, leading to random selections. This reflects a limitation in
their reasoning abilities, as they likely rely on pattern recognition rather than genuine understanding
of the question and its context, which suggests that open-source models may lack sophisticated
decision-making processes, opting for shortcuts when faced with challenging questions.

6 LIMITATIONS

Our work on the depth and height perception of VLMs using synthetic datasets highlights key areas
for further exploration, including the need for temporal dynamics and higher-order reasoning tasks
to better understand VLM capabilities. While our benchmarks provide valuable insights, it also
highlights the necessity for broader geometric reasoning and the enhancement of models’ ability
to process complex visual cues. Addressing these limitations will be crucial for improving VLM
performance in real-world applications and extending their practical use across diverse scenarios.

7 CONCLUSION

Our study highlights significant challenges in the depth and height reasoning capabilities of current
Vision Language Models (VLMs). While these models demonstrate basic geometric understand-
ing and spatial reasoning, they consistently struggle with more complex visual tasks, particularly
depth and height perception, which remains underdeveloped. These shortcomings are not resolved
by improved prompting alone, indicating an intrinsic limitation in the models’ visual reasoning abil-
ities. Future work should focus on developing more targeted training strategies and benchmarks that
address these perceptual weaknesses, particularly in height perception.

10
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8 APPENDIX

The appendix will provide additional results on our proposed datasets. Additional results for Ge-
oMeter 2D and GeoMeter 3D datasets are in Section [0.1] and Section Sections respec-
tively contain the broader impact and computational resources needed for our work.

9 ADDITIONAL RESULTS

9.1 QUANTITATIVE EVALUATION

Table [3] Table ] present detailed results for the GeoMeter 2D dataset; and Table [5] Table [6] present
detailed results for the GeoMeter 3D dataset. All of these results examine the impact of scene
complexity (3 shapes vs 5 shapes), query attributes (color, labels), and question types (MCQ and
True/False) on depth and height perception (respectively). While the main paper reports average
results, the individual category-specific outcomes offer deeper insights. For instance, performance
deteriorates with increased scene complexity (5 shapes) for many open-source models, highlighting
the superior robustness of closed-source models under these conditions. Additionally, changes in
query attributes show minimal impact on performance for most models, indicating their resilience
to variations in query types.

Table 3: Performance of the studied models on proposed GeoMeter-2D depth category. Evalu-
ation is done on the VQA task on MCQ and True/False type questions. Color, RL, PL are the query
attributes. Here, RL, PL respectively denotes random numeric label, patterned numeric label.

Depth-3 shapes Depth-5 shapes

Model MCQ T/F MCQ T/F
Color RL PL | Color RL PL | Color RL PL | Color RL PL
LLaVA 1.57B 480 375 545] 490 545 470 365 31.0 39.0 | 450 56.0 495
LLaVA 1.5 13B 365 210 290 | 520 570 540 | 355 150 11.0 | 545 530 54.0
LLaVA 1.6 Mistral 7B 440 345 250 | 555 545 525 285 240 11.0| 540 56.0 54.0
LLaVA 1.6 Vicuna 7B 370 205 130 | 545 505 495 | 290 70 1.0 | 505 525 550
LLaVA 1.6 Vicuna 13B 350 420 620 | 455 535 720 | 28,0 355 320 | 560 540 625
Bunny-v1.0-3B 415 405 385 | 48.0 455 540 | 31.0 300 135 | 465 525 550
3 Bunny-v1.0-4B 380 47.0 335 | 555 555 555 | 265 295 225 | 525 530 53.0
) Bunny-v1.1-4B 455 475 335 | 525 555 555 340 360 315 525 53.0 53.0
Bunny-Llama-3-8B-V 345 450 46.0 | 41.0 585 515 | 275 365 48.0 | 485 535 46.0
Fuyu-8B 335 170 45 | 585 555 555 | 300 155 3.0 | 535 530 53.0
InstructBLIP-Flan-T5-XL 45.5 8.5 0.0 445 445 445 | 320 400 00 47.0 470 47.0
InstructBLIP-Vicuna-7B 435 400 59.0 | 495 440 430 | 320 31.0 340 | 465 475 46.0
LLaMA-Adapter-v2-Multimodal | 41.0 40.0 39.5 | 485 455 455 | 31.0 30.0 33.0 47 455 455
MiniGPT-4 420 415 430 | 520 515 515 340 320 300 | 485 475 475
3 GPT-4V 450 49.0 415 545 570 615 385 370 405 ] 560 585 53.0
3 GPT-40 475 445 470 | 555 585 705 | 495 365 360 | 620 59.0 520
O Claude 3 Opus 475 405 50 51.5 515 565 | 365 360 41.0| 525 515 56.0

9.2 QUALITATIVE EXAMPLES

Figure |1 1] displays sample predictions from both open and closed models, highlighting their chal-
lenges with depth and height perception. The examples particularly emphasize the models’ inaccu-
racies, especially in height perception, showcasing their limitations in spatial understanding. This
figure includes predictions from the best-performing models in both the open (LLaVA 1.5 7B) and
closed (GPT 4o) categories. Figures [I2] and [T3] present examples from the GeoMeter-2D dataset,
including the specific prompts for both MCQ and True/False questions, serving as visual aids for the
evaluations discussed. Similarly, Figures[T4]and[I5] showcase samples and corresponding prompts
from the GeoMeter-3D depth and height category, respectively. These figures provide insights into
the different scenarios and questions used to assess depth and height perception across various data
types. Additionally, Figure[T6]features image-text pairs from the GeoMeter-2D Basic dataset, high-
lighting the initial stages of evaluating the models’ capabilities in recognizing basic properties. This
collection of figures effectively illustrates the range and focus of the datasets employed to test the
perceptual abilities of the models.
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Table 4: Performance of the studied models on proposed GeoMeter-2D height category. Eval-
uation is done on the VQA task on MCQ and True/False type questions. Color, Label are the query

attributes. Here, SP, SP respectively denote w/ step, and w/o step.

Height-3 towers SP Height-3 towers SP
Model MCQ T/F MCQ T/F
Color Label | Color Label | Color Label | Color Label
LLaVA 1.57B 15.5 18.0 50.0 54.0 21.0 16.5 49.5 57.0
LLaVA 1.5 15.5 9.0 49.0 54.0 14.5 10.0 49.0 56.9
LLaVA 1.6 Mistral 7B 16.0 17.0 50.5 55.5 14.0 15.5 49.5 53.0
LLaVA 1.6 Vicuna 7B 14.0 19.0 49.0 55.0 18.5 18.0 50.0 58.0
LLaVA 1.6 Vicuna 13B 19.0 19.0 49.5 54.0 13.5 20.5 49.5 57.0
Bunny-v1.0-3B 13.5 17.5 49.0 51.0 18.5 20.0 49.0 57.0
5 Bunny-v1.0-4B 18.0 16.5 49.0 54.0 16.0 12.5 49.0 57.0
OQ* Bunny-v1.1-4B 11.0 18.5 49.0 54.0 19.0 15.0 49.0 57.0
Bunny-Llama-3-8B-V 15.0 15.5 49.0 54.5 14.5 18.0 49.0 53.5
Fuyu-8B 0.0 0.0 45.5 55.0 0.0 0.0 53.5 55.0
InstructBLIP-Flan-T5-XL 0.5 0.5 51.0 46.0 0.0 0.5 51.0 43.0
InstructBLIP-Vicuna-7B 19.0 16.0 52.0 54.0 21.0 20.5 52.5 57.0
LLaMA-Adapter-v2-Multimodal | 11.0 9.0 52.0 50.0 13.0 10.0 53.0 50.0
MiniGPT-4 13.0 12.0 54.0 52.5 15.0 14.0 54.0 51.5
2 GPT-4V 6.5 7.0 48.0 55.5 3.0 10.0 48.5 56.0
z GPT-40 21.0 17.0 57.0 53.0 17.5 15.5 51.5 56.5
@) Claude 3 Opus 15.0 13.5 50.5 51.5 16.0 18.5 50.0 56.0
Height-5 towers SP Height-5 towers SP
Model MCQ MCQ T/F
Color Label | Color Label | Color Label | Color Label
LLaVA 1.57B 14.0 14.0 46.0 47.0 14.0 18.5 51.5 51.0
LLaVA 1.5 13B 12.0 9.0 52.0 49.0 | 85.0 8.0 49.0 48.0
LLaVA 1.6 Mistral 7B 16.0 14.5 46.0 46.0 17.5 20.5 48.0 51.0
LLaVA 1.6 Vicuna 7B 16.0 13.5 51.5 49.5 16.0 15.0 48.5 49.0
LLaVA 1.6 Vicuna 13B 16.5 16.0 52.0 49.0 20.0 14.5 49.0 49.0
Bunny-v1.0-3B 13.0 11.5 50.5 44.0 12.5 19.5 49.0 50.5
5 Bunny-v1.0-4B 16.0 14.5 52.0 49.0 14.0 17.0 49.0 49.0
8 Bunny-v1.1-4B 14.5 13.0 52.0 49.0 12.0 18.0 49.0 49.0
Bunny-Llama-3-8B-V 15.0 15.0 52.0 47.5 14.5 21.0 49.0 49.5
Fuyu-8B 0.0 0.0 52.5 51.5 0.0 0.0 49.0 46.5
InstructBLIP-Flan-T5-XL 0.0 1.5 48.0 51.0 0.0 1.5 51.0 51.0
InstructBLIP-Vicuna-7B 15.0 11.0 52.5 49.0 15.0 16.0 48.5 49.0
LLaMA-Adapter-v2-Multimodal | 10.5 8.5 51.0 52 9.5 9.0 50.0 51.5
MiniGPT-4 13.5 10.0 52.0 50.0 12.0 10.5 51.0 49.5
2 GPT-4V 17.5 12.5 51.5 50.0 14.0 6.5 50.0 49.0
3 GPT-40 18.0 18.5 59.5 50.0 19.0 19.0 51.0 52.0
O Claude 3 Opus 19.5 14.0 48.5 51.5 13.0 19.5 47.5 48.5
10 BROADER IMPACT

To our understanding, there are no negative societal impacts of our work. The goal of this work
was to evaluate the depth and height perception capabilities of models that may later be used in
real-world settings. This research provides insights into the depth and height perception capabilities
of vision language models (VLMs), significantly impacting practical applications like autonomous
driving, augmented reality, and assistive technologies. This work not only advances theoretical
understanding but also opens up new possibilities for real-world applications.

11 COMPUTATIONAL RESOURCES

All experiments were run on an internal cluster. Each run used a single NVIDIA GPU, with memory
ranging from 16GB-24GB.
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Table 5: Performance of the studied models on proposed GeoMeter-3D height category. Evalu-
ation is done on the VQA task on MCQ and True/False type questions. Color, ColMat are the query
attributes. Here, ColMat denotes color+material

Depth-3 shapes Depth-5 shapes
Model MCQ T/F MCQ T/F
Color ColMat | Color ColMat | Color ColMat | Color ColMat
LLaVA 1.57B 49.1 42.5 59.4 53.8 43.1 37.5 55.7 50.4
LLaVA 1.5 13B 51.3 459 61.9 58.4 37.3 35.1 50.3 44.3
LLaVA 1.6 Mistral 7B 47.1 45.3 51.9 50.6 34.8 30.8 50.3 48.9
LLaVA 1.6 Vicuna 7B 48.8 47.3 61.9 58.3 40.2 32.9 459 40.2
LLaVA 1.6 Vicuna 13B 51.8 50.3 64.2 61.2 48.3 429 50.2 45.9
Bunny-v1.0-3B 34.8 29.3 40.2 35.8 21.9 18.3 34.8 29.8
g Bunny-v1.0-4B 34.2 30.8 453 432 28.2 23.2 349 30.7
OQ“ Bunny-v1.1-4B 45.2 40.3 44.2 429 40.2 38.3 48.3 429
Bunny-Llama-3-8B-V 442 42.1 45.2 40.8 40.8 359 40.8 38.3
Fuyu-8B 41.8 38.4 59.3 51.8 30.5 27.5 48.3 472
InstructBLIP-Flan-T5-XL 58.3 54.2 55.3 51.3 61.9 59.3 54.9 53.8
InstructBLIP-Vicuna-7B 57.4 56.3 56.9 55.4 60.2 57.3 59.9 58.6
LLaMA-Adapter-v2-Multimodal | 52.9 48.3 47.3 44.2 59.8 56.8 57.8 54.7
MiniGPT-4 60.3 56.3 57.8 54.8 65.3 62.9 60.3 54.8
2 GPT-4V 54.3 50.1 63.9 60.2 45.3 40.9 48.4 432
F3 GPT-4o0 59.9 52.9 65.9 60.3 50.3 443 50.3 44.8
O Claude 3 Opus 56.3 53.9 57.3 52.3 47.3 432 51.8 47.4
""""""""""""""""" GeoMeter2D-Depth i GeoMeter2D-Height

Prompt ‘ Prompt

Q. The stacks are labelled A, B, C,... from left to right. ||
Swap light blue rectangle from stack B with light H
green rectangle from stack C. Now order the stacks
labelled B, A, C’ from shortest to tallest.

Q. Provide depth ordering from top to bottom
for the shapes 'brown rectangle, blue
triangle, pink triangle’

Model Output Model Output

LLaVA1.57B "A, B, C" |:

LLaVA 1.5 7B "brown rectangle, blue triangle, pink triangle”

GPT 40 ‘brown rectangle, blue triangle, pink triangle” GPT 40 “A, C, B" |:

GeoMeter 2D - Depth GeoMeter 2D - Height
: L

Prompt

- | Q. Provide depth ordering from top to bottom
for the shapes '2, 0, 17

Prompt '
Q. The stacks are labelled A, B, C,... from left to right. '
Swap shape 1 from stack A with shape 9 from stack
C. Now order the stacks labelled ‘B, A, C’ from
shortest to tallest.

Model Output Model Output
LLavVA1.57B "A, B, C" |

GPT 40 ‘B, A, C" |

LLavVA1.57B “2,1,0"
GPT40 “2,0,1"

GeoMeter 3D - Depth GeoMeter 3D - Height

Prompt ‘ Prompt

Q. The stacks are labelled A, B, C,... from left to right.
Now order the stacks labelled ‘A, B, C’ from shortest ||
to tallest. H

Q. Provide depth ordering from front to back for
the shapes 'red cylinder, purple sphere,
green cylinder’

Model Output Model Output B
LLavVA1.57B "A, B, C" |

GPT40 “C,A, B |

LLaVA 1.5 7B “green cylinder, purple cylinder, red cylinder”

GPT 40 “green cylinder, purple cylinder, red cylinder”

GeoMeter 3D - Depth GeoMeter 3D - Height

‘ Prompt H
Q. The stacks are labelled A, B, C,... from left to right.
Now order the stacks labelled ‘A, B, C’ from shortest |
to tallest. H

Prompt
Q. Provide depth ordering from front to back for

the shapes 'red cube, purple cylinder’

Model Output Model Output
LLaVA1.57B "A, B, C" |

GPT 40 “C,A, B" |

LLaVA 1.5 7B “purple cylinder, red cube”

GPT 40 “red cube, purple cylinder”

Figure 11: Depth and height perception of open and closed models. Here we show the prediction
of LLaVA 1.5 7B and GPT 4o0. Here Q and A respectively denote Question and Ground Truth
Answer. Green and Red boxes respectively denote correct and incorrect prediction.

15



Under review as a conference paper at ICLR 2025

Table 6: Performance of the studied models on proposed GeoMeter-3D height category. Evalu-
ation is done on the VQA task on MCQ and True/False type questions. Color, ColMat are the query
attributes. Here, ColMat, SP, SP respectively denotes color+material, w/ step, and w/o step.

Height-3 towers SP Height-3 towers SP
Model MCQ T/F MCQ T/F
Color ColMat | Color ColMat | Color ColMat | Color ColMat
LLaVA 1.57B 20.3 12.9 48.2 40.8 18.8 8.1 46.3 40.3
LLaVA 1.5 13B 22.8 18.3 52.1 48.9 19.9 15.8 48.2 459
LLaVA 1.6 Mistral 7B 21.9 18.7 49.9 42.7 18.3 12.8 479 44.3
LLaVA 1.6 Vicuna 7B 20.8 18.9 48.7 44.8 18.7 12.7 49.7 43.8
LLaVA 1.6 Vicuna 13B 24.9 19.8 50.7 47.3 20.8 17.3 50.2 459
Bunny-v1.0-3B 12.4 94 51.4 50.4 9.4 53 42.9 40.3
g Bunny-v1.0-4B 14.9 10.4 51.8 48.3 12.9 10.5 44.3 41.7
OQ* Bunny-v1.1-4B 159 12.7 54.8 52.6 13.7 11.8 50.3 48.5
Bunny-Llama-3-8B-V 16.3 12.8 55.7 53.9 14.9 13.9 52.9 49.3
Fuyu-8B 9.3 7.9 40.2 354 5.9 3.9 37.9 34.7
InstructBLIP-Flan-T5-XL 25.1 20.9 53.8 50.3 22.9 20.4 50.3 48.2
InstructBLIP-Vicuna-7B 24.9 21.9 54.3 52.9 20.8 18.9 52.7 49.3
LLaMA-Adapter-v2-Multimodal | 23.9 20.3 49.3 47.8 20.2 18.7 48.2 45.8
MiniGPT-4 26.9 24.8 54.8 53.7 24.8 20.4 53.8 51.8
2 GPT-4V 28.8 25.9 48.3 48.0 27.1 26.9 46.0 439
3 GPT-40 30.5 28.9 50.9 49.2 28.9 27.8 49.3 46.8
@) Claude 3 Opus 28.3 24.0 51.8 48.3 26.1 22.0 47.3 43.0
Height-5 towers SP Height-5 towers SP
Model MCQ T/F MCQ T/F
Color ColMat | Color ColMat | Color ColMat | Color ColMat
LLaVA 1.57B 12.9 10.4 48.3 42.3 10.4 93 47.3 43.8
LLaVA 1.5 13B 13.9 11.3 50.3 49.2 11.8 10.5 49.3 47.3
LLaVA 1.6 Mistral 7B 11.0 9.3 50.4 47.3 10.3 8.3 47.0 46.9
LLaVA 1.6 Vicuna 7B 13.9 10.3 51.9 49.2 11.8 10.8 50.8 47.1
LLaVA 1.6 Vicuna 13B 15.9 12.3 54.1 50.3 12.9 9.3 52.9 48.3
Bunny-v1.0-3B 9.2 4.2 343 28.4 7.3 6.9 332 30.9
5 Bunny-v1.0-4B 11.9 9.3 35.3 30.4 9.3 53 343 33.9
O‘:‘“ Bunny-v1.1-4B 13.9 11.4 39.3 36.3 12.9 10.2 373 33.9
Bunny-Llama-3-8B-V 13.3 12.1 38.3 37.9 10.3 9.9 36.3 35.9
Fuyu-8B 4.2 1.8 35.3 30.0 0.0 0.0 32.8 31.9
InstructBLIP-Flan-T5-XL 19.8 18.9 47.2 42.1 16.3 159 429 38.3
InstructBLIP-Vicuna-7B 18.3 17.9 46.3 45.8 17.0 16.9 439 42.7
LLaMA-Adapter-v2-Multimodal | 15.3 12.8 48.3 48.0 13.9 12.8 47.4 45.4
MiniGPT-4 20.8 19.3 53.2 50.2 19.2 16.0 49.3 473
2 GPT-4V 19.3 17.3 48.4 47.8 18.3 16.9 47.0 46.3
] GPT-4o0 22.6 21.9 51.9 50.3 20.9 19.6 494 474
O Claude 3 Opus 21.9 19.3 49.3 47.0 19.7 15.9 48.9 44.8
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Prompt

The image shows 2D shapes placed randomly. The shapes overlap
each other, creating a depth effect. When two shapes are overlapping,
the shape that is complete is defined to be on top of the partially hidden
shape. Each 2D shape has a number written over them which we call
ShapelD and must be inferred as the label for the corresponding shape.
Provide depth ordering from top to bottom for the shapes '2, 0, 1" in the
image. Answer in the format: 'ShapelD, ShapelD, ...". For eg. '3, 1, 2'is
a valid answer format.

mMcQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A 2,1,0 D. 20,1

B. 0,21 E. 01,2

C. 1,0,2 F. 1,2,0
True/False

Q. Given the predicted depth ordering as ‘2, 1, 0",
evaluate the prediction as Correct or Incorrect.
Ans. Correct

Prompt

The image shows 2D shapes placed randomly. The shapes overlap
each other, creating a depth effect. When two shapes are overlapping,
the shape that is complete is defined to be on top of the partially hidden
shape. Each 2D shape has a number written over them which we call
ShapelD and must be inferred as the label for the corresponding shape.
Provide depth ordering from top to bottom for the shapes '3, 0, 1" in the
image. Answer in the format: 'ShapelD, ShapelD, ...". For eg. '3, 1, 2"is
a valid answer format.

mcQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A 1,30 D. 301

B. 0,31 E. 013

C. 10,3 F. 3,1,0
True/False

Q. Given the predicted depth ordering as '3, 1, 0,
evaluate the prediction as Correct or Incorrect.

Ans. Correct

Prompt

The image shows 2D shapes placed randomly. The shapes overlap
each other, creating a depth effect. When two shapes are overlapping,
the shape that is complete is defined to be on top of the partially hidden
shape. Each 2D shape has a number written over them which we call
ShapelD and must be inferred as the label for the corresponding shape.
Provide depth ordering from top to bottom for the shapes ‘26, 61 in the
image. Answer in the format: 'ShapelD, ShapelD, ...". For eg. '3, 1, 2' is
a valid answer format.

mcaQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).
A. 61,26 B. 26,61

True/False

Q. Given the predicted depth ordering as ‘26, 61',
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 2D shapes placed randomly. The shapes overlap
each other, creating a depth effect. When two shapes are overlapping,
the shape that is complete is defined to be on top of the partially hidden
shape. Each 2D shape has a unique color which we call the ShapeColor
for the corresponding shape. Provide depth ordering from top to bottom
for the shapes 'brown rectangle, blue triangle, pink triangle' in the
image. Answer in the format: 'ShapeColor shape, ShapeColor shape,
...". For eg. 'red triangle, blue circle, green rectangle' is a valid answer
format.

mca

Q. From the given options: {answer_set}, select the correct answer
(ONLY output the answer)
A, brown rectangle, blue triangle, pink triangle
blue triangle, brown rectangle, pink triangle
brown rectangle, pink triangle, blue triangle
blue triangle, pink triangle, brown rectangle
pink triangle, blue triangle, brown rectangle
pink triangle, brown rectangle, blue triangle

"moowm

True/False

Q. Given the predicted depth ordering as "pink triangle,
brown rectangle, blue triangle', evaluate the prediction
as Correct or Incorrect.

Ans. Incorrect

Prompt

The image shows 2D shapes placed randomly. The shapes overlap
each other, creating a depth effect. When two shapes are overlapping,
the shape that is complete is defined to be on top of the partially hidden
shape. Each 2D shape has a unique color which we call the ShapeColor
for the corresponding shape. Provide depth ordering from top to bottom
for the shapes 'brown rectangle, cyan triangle’ in the image. Answer
in the format: 'ShapeColor shape, ShapeColor shape, ...". For eg. 'red
triangle, blue circle, green rectangle’ is a valid answer format.

mcaQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. brown rectangle, cyan triangle

B. cyan triangle, brown rectangle

True/False

Q. Given the predicted depth ordering as '26, 61',
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 2D shapes placed randomly. The shapes overlap
each other, creating a depth effect. When two shapes are overlapping,
the shape that is complete is defined to be on top of the partially hidden
shape. Each 2D shape has a unique color which we call the ShapeColor
for the corresponding shape. Provide depth ordering from top to bottom
for the shapes ‘orange circle, brown triangle, magenta triangle’ in the
image. Answer in the format: 'ShapeColor shape, ShapeColor shape,
... For eg. 'red triangle, blue circle, green rectangle' is a valid answer
format.

mca

Q. From the given options: {answer_set}, select the correct answer
(ONLY output the answer).
orange circle, brown triangle, magenta triangle

orange circle, magenta triangle, brown triangle

brown triangle, orange circle, magenta triangle

brown triangle, magenta triangle, orange circle,

magenta triangle, orange circle, brown triangle

magenta triangle, brown triangle, orange circle

amoow>

True/False

Q. Given the predicted depth ordering as ‘brown
triangle, magenta triangle, orange circle’, evaluate the
prediction as Correct or Incorrect.

Ans. Incorrect

Figure 12: Samples from GeoMeter-2D dataset - depth category. Here each row represents one
image and its corresponding prompt along with MCQ and True/False questions. First three rows
show samples for labels as query attribute, whereas last three rows show samples for color as query
attribute.

17



Under review as a conference paper at ICLR 2025

Prompt

The image shows red 2D rectangles stacked on top of each other There are
multiple stacks in the image. The black region at the bottom of the image is
the ground level, and is where the base of the stack lies. The height of each
stack is measured from its base. Each 2D shape has a number written over
them which we call ShapelD and must be inferred as the label for the
corresponding shape.The stacks are labelled A, B, C from left to right. Swap
shape 1 from stack A with shape 9 from stack C. Now order the stacks
labelled ‘B, A, C’ from shortest to tallest. Answer in the format: 'StackLabel,
StackLabel, ...". For eg. 'B, A, C'is a valid answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. AC,B

B. C,BA E. BAC

C. CAB F. A/B,C
True/False

Q. Given the predicted depth ordering as 'C, B, A",
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

mca

The image shows red 2D rectangles stacked on top of each other There are
multiple stacks in the image. The black region at the bottom of the image is
the ground level, and is where the base of the stack lies. The height of each
stack is measured from its base. Each 2D shape has a number written over
them which we call ShapelD and must be inferred as the label for the
corresponding shape.The stacks are labelled A, B, C, D, E from left to right.
Swap shape 2 from stack A with shape 15 from stack D. Now order the
stacks labelled ‘B, C, A’ from shortest to tallest. Answer in the format:
'StackLabel, StackLabel, ...". For eg. 'B, A, C' is a valid answer format.

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. AC,B

B. C,BA E. B,AC

C. CAB F. A B,C
True/False

Q. Given the predicted depth ordering as 'A, B, C”',
evaluate the prediction as Correct or Incorrect.
Ans. Correct

Prompt

The image shows red 2D rectangles stacked on top of each other There are
multiple stacks in the image. The black region at the bottom of the image is
the ground level, and is where the base of the stack lies. The height of each
stack is measured from its base. Each 2D shape has a number written over
them which we call ShapelD and must be inferred as the label for the
corresponding shape.The stacks are labelled A, B, C from left to right. Swap
shape 4 from stack B with shape 9 from stack C. Now order the stacks
labelled ‘A, B, C’ from shortest to tallest. Answer in the format: 'StackLabel,
StackLabel, ...". For eg. 'B, A, C'is a valid answer format

mcQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. ACB

B. C,BA E. BAC

C. C,AB F. A B,C
True/False

Q. Given the predicted depth ordering as 'C, B, A,
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 2D rectangles stacked on top of each other There are
multiple stacks in the image. The black region at the bottom of the
image is the ground level, and is where the base of the stack lies. The
height of each stack is measured from its base. Each 2D shape has a
unique color. The stacks are labelled A, B, C from left to right. Swap light
blue rectangle from stack B with light green rectangle from stack C. Now
order the stacks labelled ‘B, A, C’ from shortest to tallest. Answer in the
format: 'StackLabel, StackLabel, ...". For eg. 'B, A, C' is a valid answer
format.

mcQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. ACB

B. C,BA E. BAC

C. C,AB F. AB,C
True/False

Q. Given the predicted depth ordering as 'C, B, A,
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 2D rectangles stacked on top of each other There are
multiple stacks in the image. The black region at the bottom of the
image is the ground level, and is where the base of the stack lies. The
height of each stack is measured from its base. Each 2D shape has a
unique color. The stacks are labelled A, B, C, D, E from left to right.
Swap red rectangle from stack E with navy blue rectangle from stack E.
Now order the stacks labelled ‘D, E, C’ from shortest to tallest. Answer
in the format: 'StackLabel, StackLabel, ...". For eg. 'B, A, C' is a valid
answer format.

mMca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. D,CE D. EC,D

B. C,D,E E. D,EC

C. CED F. E,D,C
True/False

Q. Given the predicted depth ordering as 'C, E, D",
evaluate the prediction as Correct or Incorrect.
Ans. Correct

Prompt

The image shows 2D rectangles stacked on top of each other There are
multiple stacks in the image. The black region at the bottom of the
image is the ground level, and is where the base of the stack lies. The
height of each stack is measured from its base. Each 2D shape has a
unique color. The stacks are labelled A, B, C from left to right. Swap
dark green rectangle from stack C with orange rectangle from stack C.
Now order the stacks labelled ‘C, A, B’ from shortest to tallest. Answer
in the format: 'StackLabel, StackLabel, ...". For eg. 'B, A, C' is a valid
answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. CAB

B. B,AC E. C,BA

C. ACB F. AB,C
True/False

Q. Given the predicted depth ordering as ‘A, B, C”,
evaluate the prediction as Correct or Incorrect.

Ans. Correct

Figure 13: Samples from GeoMeter-2D dataset - height category. Here each row represents one
image and its corresponding prompt along with MCQ and True/False questions. First three rows
show samples for labels as query attribute, whereas last three rows show samples for color as query
attribute
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Prompt

The image shows 3D shapes placed randomly. From the camera
viewpoint distance some shapes are in front and some are at the back,
creating a depth effect. Each 3D shape has a color and an associated
material which we call Color and Material and must be inferred as the
label for the corresponding shape. Provide depth ordering from front to
back for the shapes 'red cube, purple cylinder’ in the image. Answer in
the format: 'ShapeColor shape, ShapeColor shape, ... For eg. 'red
cube, blue sphere, green cylinder is a valid answer format.

McQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. red cube, purple cylinder

B. purple cylinder, red cube

True/False
['Q. Given the predicted depth ordering as ‘purple |
cylinder, red cube”, evaluate the prediction as
Correct or Incorrect.

Ans. Incorrect

Prompt

The image shows 3D shapes placed randomly. From the camera
viewpoint distance some shapes are in front and some are at the back,
creating a depth effect. Each 3D shape has a color and an associated
material which we call Color and Material and must be inferred as the
label for the corresponding shape. Provide depth ordering from front to
back for the shapes 'red cylinder, green cube, yellow cylinder’ in the
image. Answer in the format: 'ShapeColor shape, ShapeColor shape,

'. For eg. 'red cube, blue sphere, green cylinder is a valid answer
format.

Q. From The given oplions: {answer_set], select The correct answer
(ONLY output the answer).

red cylinder, green cube, yellow cylinder

red cylinder, yellow cylinder, green cube

green cube, red cylinder, yellow cylinder

green cube, yellow cylinder, red cylinder

yellow cylinder, red cylinder, green cube

yellow cylinder, green cube, red cylinder

mmoOow>

True/False

Q. Given the predicted depth ordering as ‘yellow cylinder,
red cylinder, green cube’, evaluate the prediction as
Correct or Incorrect.

Ans. Incorrect

Prompt

The image shows 3D shapes placed randomly. From the camera
viewpoint distance some shapes are in front and some are at the back,
creating a depth effect. Each 3D shape has a color and an associated
material which we call Color and Material and must be inferred as the
label for the corresponding shape. Provide depth ordering from front to
back for the shapes 'red cylinder, purple sphere, green cylinder’ in
the image. Answer in the format: 'ShapeColor shape, ShapeColor
shape, ...". For eg. 'red cube, blue sphere, green cylinder is a valid
answer format.

mMca

Q- From the given options: {answer_set], select the Gorrect answer
(ONLY output the answer).

red cylinder, purple sphere, green cylinder

red cylinder, green cylinder, purple sphere.

purple sphere, red cylinder, green cylinder

purple sphere, green cylinder, red cylinder

green cylinder, red cylinder, purple sphere

green cylinder, purple sphere, red cylinder

amoow>

True/False

Q. Given the predicted depth ordering as green cylinder,
red cylinder, purple sphere, evaluate the prediction as
Correct or Incorrect.

Ans. Correct

Prompt

The image shows 3D shapes placed randomly. From the camera
viewpoint distance some shapes are in front and some are at the back,
creating a depth effect. Each 3D shape has a color and an associated
material which we call Color and Material and must be inferred as the
label for the corresponding shape. Provide depth ordering from front to
back for the shapes 'red rubber cube, cyan rubber sphere’ in the
image. Answer in the format: 'ShapeColor ShapeMeterial shape,
ShapeColor ShapeMeterial shape, ...". For eg. red metal cube, blue
rubber sphere, green metal cylinder is a valid answer format.

Mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).
A. red rubber cube, cyan rubber cylinder

B. cyan rubber cylinder , red rubber cube

True/False

Q. Given the predicted depth ordering as red rubber cube,
cyan rubber cylinder, evaluate the prediction as Correct or
Incorrect.

Ans. Correct

Prompt

The image shows 3D shapes placed randomly. From the camera
viewpoint distance some shapes are in front and some are at the back,
creating a depth effect. Each 3D shape has a color and an associated
material which we call Color and Material and must be inferred as the
label for the corresponding shape. Provide depth ordering from front to
back for the shapes 'red metal sphere, blue rubber cube’ in the
image. Answer in the format: 'ShapeColor ShapeMeterial shape,
ShapeColor ShapeMeterial shape, For eg. 'red metal cube, blue
rubber sphere, green metal cylinder is a valid answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. red metal sphere, blue rubber cube

B. blue rubber cube, red metal sphere

True/False

Q. Given the predicted depth ordering as blue rubber cube,
red metal sphere evaluate the prediction as Correct or
Incorrect.

Ans. Correct

Prompt |
The image shows 3D shapes placed randomly. From the camera ||
viewpoint distance some shapes are in front and some are at the back, |
creating a depth effect. Each 3D shape has a color and an associated |
material which we call Color and Material and must be inferred as the
label for the corresponding shape. Provide depth ordering from front to :
|
|
|

back for the shapes ‘green rubber sphere, purple metal sphere, blue
rubber cylinder’ in the image. Answer in the format: 'ShapeColor
ShapeMeterial shape, ShapeColor ShapeMeterial shape, ...". For eg.
‘red metal cube, blue rubber sphere, green metal cylinder is a valid
answer format.

Q

. From the given options: {answer_set], select the correct answer (ONLY
output the answer).

green rubber sphere, purple metal sphere, blue rubber cylinder
green rubber sphere, blue rubber cylinder, purple metal sphere
purple metal sphere, green rubber sphere, blue rubber cylinder
purple metal sphere, blue rubber cylinder, green rubber sphere
blue rubber cylinder, green rubber sphere, purple metal sphere

blue rubber cylinder, purple metal sphere, green rubber sphere

amoowm>

True/False

Q. Given the predicted depth ordering as purple metal sphere,
green rubber sphere, blue rubber cylinder evaluate the
prediction as Correct or Incorrect.

Ans. Incorrect

Figure 14: Samples from GeoMeter-3D dataset - depth category. Here each row represents one
image and its corresponding prompt along with MCQ and True/False questions. First three rows
show samples for color as query attribute, whereas last three rows show samples for color+material
as query attribute
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Prompt

The image shows 3D cubes stacked on top of each other. There are
multiple stacks in the image. If there is a black cube at the bottom of the
stack, then that is considered as the ground level, and the stack lies on top
of it. The height of each stack is measured from its base. Each 3D shape
has a unique color. The stacks are labelled A, B, C,... from left to right.
Swap cyan cube from stack B with red cube from stack A. Now order the
stacks labelled ‘B, A, C’ from shortest to tallest. Answer in the format:
'StackLabel, StackLabel, ...". For eg. 'B, A, C'is a valid answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,C,A D. AC,B

B. C,BA E. BAC

C. CAB F. A B,C
True/False

Q. Given the predicted depth ordering as 'C, B, A",
evaluate the prediction as Correct or Incorrect.
Ans. Inorrect

Prompt

The image shows 3D cubes stacked on top of each other. There are
multiple stacks in the image. If there is a black cube at the bottom of the
stack, then that is considered as the ground level, and the stack lies on top
of it. The height of each stack is measured from its base. Each 3D shape
has a unique color. The stacks are labelled A, B, C,... from left to right.
Swap purple cube from stack A with blue cube from stack C. Now order
the stacks labelled ‘A, C, B’ from shortest to tallest. Answer in the
format: 'StackLabel, StackLabel, ...". For eg. 'B, A, C' is a valid answer
format.

mMca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. AC,B

B. C,B,A E. BAC

C. C,AB F. A B,C
True/False

Q. Given the predicted depth ordering as 'C, B, A,
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 3D cubes stacked on top of each other. There are
multiple stacks in the image. If there is a black cube at the bottom of the
stack, then that is considered as the ground level, and the stack lies on top
of it. The height of each stack is measured from its base. Each 3D shape
has a unique color. The stacks are labelled A, B, C,... from left to right.
Swap red cube from stack A with cyan cube from stack B. Now order the
stacks labelled ‘A, B, C’ from shortest to tallest. Answer in the format:
'StackLabel, StackLabel, ...". For eg. 'B, A, C'is a valid answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. AC,B

B. C,BA E. BAC

C. C,AB F. A B,C
True/False

Q. Given the predicted depth ordering as 'C, B, A",
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 3D cubes stacked on top of each other. There are
multiple stacks in the image. If there is a black cube at the bottom of the
stack, then that is considered as the ground level, and the stack lies on top
of it. The height of each stack is measured from its base. Each 3D shape
has a unique color and material. The stacks are labelled A, B, C,... from
left to right. Swap cyan ruber cube from stack A with cyan metal cube
from stack E. Now order the stacks labelled ‘A, B, C’ from shortest to
tallest. Answer in the format: 'StackLabel, StackLabel, ...". For eg. 'B, A,
C'is a valid answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. ACB

B. C,B,A E. B,A.C

C. C,AB F. A, B,C
True/False

Q. Given the predicted depth ordering as 'C, B, A”,
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 3D cubes stacked on top of each other. There are
multiple stacks in the image. If there is a black cube at the bottom of the
stack, then that is considered as the ground level, and the stack lies on top
of it. The height of each stack is measured from its base. Each 3D shape
has a unique color and material. The stacks are labelled A, B, C,... from
left to right. Swap green rubber cube from stack A with green rubber
cube from stack D. Now order the stacks labelled ‘A, D, E’ from shortest
to tallest. Answer in the format: 'StackLabel, StackLabel, ...". For eg. 'B,
A, C'is a valid answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. ADE D. D,EA

B. A ED E. EAD

C. D,AE F. ED,A
True/False

Q. Given the predicted depth ordering as 'D, E, A",
evaluate the prediction as Correct or Incorrect.
Ans. Incorrect

Prompt

The image shows 3D cubes stacked on top of each other. There are
multiple stacks in the image. If there is a black cube at the bottom of the
stack, then that is considered as the ground level, and the stack lies on top
of it. The height of each stack is measured from its base. Each 3D shape
has a unique color and material. The stacks are labelled A, B, C,... from
left to right. Swap green rubber cube from stack A with green metal cube
from stack B. Now order the stacks labelled ‘A, C, B’ from shortest to
tallest. Answer in the format: 'StackLabel, StackLabel, ...". For eg. 'B, A,
C'is a valid answer format.

mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. B,CA D. A/C,B

B. C,BA E. B,AC

C. C,AB F. ABC
True/False

Q. Given the predicted depth ordering as ‘A, C, B”,
evaluate the prediction as Correct or Incorrect.

Ans. Correct

Figure 15: Samples from GeoMeter-3D dataset - height category. Here each row represents one
image and its corresponding prompt along with MCQ and True/False questions. First three rows
show samples for color as query attribute, whereas last three rows show samples for color+material
as query attribute
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Prompt mca

I Q. From the given options: {answer_set}, select the
| | correct answer (ONLY output the answer).
" . . . A 2
How many pairs of lines in the image are parallel? :
|

1
3
4

Prompt mcQ
-
Q. From the given options: {answer_set}, select the
Is the black line perpendicular to the blue line? correct answer (ONLY output the answer).
A. (Yes) B. (No)

com

Prompt mMca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

|
Which are the different kinds of shapes seen in the image? Answer I N
| | A. circle, rectangle
|
|

- in the format 'shape1, shape2...". For example, 'triangle, circle' is a B. rectangle, triangle
valid answer format. C. circle, rectangle, triangle
D. circle, square

Prompt mMcQ

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).

A. circle, rectangle, triangle

B. circle

C. circle, square

D. square, triangle

|
Which are the different kinds of shapes seen in the image? Answer :
in the format 'shape1, shape2...". For example, 'triangle, circle' is a |
|

. . valid answer format.

Prompt McQ
‘ Q. From the given options: {answer_set}, select the

‘ correct answer (ONLY output the answer).
The image shows various shapes. How many triangles are in the
image?

Sow>
oo

Prompt McQ
‘ I . Q. From the given options: {answer_set}, select the

correct answer (ONLY output the answer).
The image shows various shapes. How many rectangles are in the

. image?

SO0w>

4
3
1

Prompt mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).
2

How many shapes are to the left of the red circle? Q: 1
C. 3
D. 4

Prompt mca

Q. From the given options: {answer_set}, select the
correct answer (ONLY output the answer).
The image shows some shapes and two lines.How many shapes .2

are in between the two lines?

com»

3
1
4

Figure 16: Samples from GeoMeter-2D-Basic dataset. Here each two rows respectively represent
line understanding, shape identification, shape counting and spatial relationship categories. Each
row shows one image and its corresponding prompt along with the MCQ.
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