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Abstract

Hallucination remains a critical challenge for
multimodal large language models (MLLMs),
undermining their reliability in real-world ap-
plications. While fine-grained hallucination
detection (FHD) holds promise for enhancing
high-quality vision-language data construction
and model alignment through enriched feed-
back signals, automated solutions for this task
have yet to be systematically explored. Inspired
by the concept of “MLLM as a Judge”, we
introduce MHALO, the first comprehensive
benchmark specifically designed for evaluating
MLLMs’ capability in performing token-level
FHD. Our benchmark encompasses 12 distinct
hallucination types spanning both multimodal
perception and reasoning domains. Through ex-
tensive evaluations of 9 selected MLLMs, we
reveal substantial performance limitations, with
the leading model achieving an average F'1y,1r
of only 40.59%. To address this limitation, we
develop HALODET-4B, a specialized model
trained on our curated training data, which sig-
nificantly outperforms existing models. We
hope the benchmark can provide valuable in-
sights for future research on hallucination miti-
gation in MLLMs. The code and dataset will
be publicly available.

1 Introduction

The advancement of Multimodal Large Language
Models (MLLMs; (OpenAl, 2024; gpt, 2023; Team
et al., 2024; Anthropic, 2024)) represents a ground-
breaking achievement in the field of Al, demon-
strating exceptional capabilities in perception and
reasoning (Wang et al., 2024b; OpenAl, 2024; gpt,
2023; Team et al., 2024; Liu et al., 2024b). Despite
their promise, MLLMs are still plagued by hallu-
cination, a phenomenon that involves generating
erroneous or fabricated responses contradicting the
actual visual content or language context (Bai et al.,
2024a; Liu et al., 2024a; Sahoo et al., 2024).
Therefore, to address this issue and enhance the
reliability of MLLMs, Fine-grained Hallucination

Detection (FHD), which offers enriched token-level
feedback signals, emerges as a crucial solution to
mitigate the generation of erroneous or fabricated
responses. Unlike coarse-grained feedback that pe-
nalizes hallucinations at the expense of suppressing
correct content (Yu et al., 2024), FHD accelerates
human annotation and data refinement by pinpoint-
ing hallucinations (Fu et al., 2024b), thereby fa-
cilitating efficient acquisition of high-quality data.
Furthermore, FHD offers more informative signals,
leading to effective model alignment. (Yu et al.,
2024; Gunjal et al., 2024; Jing and Du, 2024a; Xiao
et al., 2024).

Despite its advantages, current research on mul-
timodal hallucination detection still exhibits lim-
itations in granularity. Jing et al. (2024) was one
of the first to conduct fine-grained hallucinations
evaluations by verifying the extracted atomic facts
in responses against the input image. Chen et al.
(2024b) proposed a unified detection framework us-
ing external tools to validate hallucinations. Both
of them operate detection at the claim level and
lack the ability to precisely localize hallucinations.
Automated hallucination detection at a more fine-
grained level, token level, remains unexplored.

Inspired by the concept of MLLMs as a
judge (Lee et al., 2024; Chen et al., 2024a; Wen
et al., 2024), a natural question emerges: “Can
MLILMs serve as reliable judges for FHD?” This
necessitates establishing a meta-evaluation bench-
mark that can effectively assess the performance
of MLLMs on FHD. Building such a benchmark
presents two key challenges: (1) Construct a tai-
lored dataset ensuring comprehensive coverage of
hallucination types across diverse scenarios. (2)
Developing quantitative and objective evaluation
metrics that align with human judgment.

To bridge these research gaps, we introduce
MHALO, a novel FHD benchmark consisting of
2,155 carefully curated instances with token-level
annotations. It features the following aspects: on



Q: Which pillow is closer to the camera?

: The pillow that is closer to the camera is the one on the
| left side of the bed.
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e
1

Q: In OP, m £ EN = 66° and m 2 GPM = 89°. Find m
£ GNM. Choices: (A) 44.5 (B) 66 (C) 89 (D) 155

: Let's solve this step by step: The circle is labeled
as o dot P, with key points G, M, N, E on the
circumference and the center marked as P. The given
values are: m 2 EN = 66° (measure of the arc EN). m
£ GPM = 89° (central angle subtending arc GM). We
are tasked to find m 2« GNM, which is an inscribed

Q: How many people can wash
their hands at a time in here?

: Only one person can wash hands
at a time.

(
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angle subtending arc GM. Recall the relationship (5]
between an inscribed angle and its intercepted arc: m o0
£ GNM = 1/2 * m arc GM. To find m arc GM, notice @ FSy
that m £ GPM = 2 * m arc GM because GPM is a @% ?’%
central angle. Thus: m arc GM = 44.5°. Substitute m @ Q ‘9%39\ 2
arc GM = 44.5° info the formula for m 2 GNM: m £ %8 " % T
GNM = 1/2 * 44.5° = 22.25°. Therefore, the measure 72y “’/,9 2
of m £ GNM is 22.25°, and the correct option is: A. %, %
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carrot cake $26
apple tart $24
almond tart $20
coconut cake $18
peach pie $15

Q: How much money does Carrie need to buy a peach
pie and a carrot cake?

: Let's solve this step by step: 1. From the image,
the prices of the items are: Carrot cake: $26 Peach
pie: $18 2. To calculate the total money Carrie
needs to buy both items, we add their prices: Total
Price of carrot cake + Price of peach pie. Total
$26 + $18 = $46. Therefore, the answer is 46."
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2
3
2
-
£
<<
z
X
&R
(2L

®

Figure 1: The MHALO Benchmark. Our benchmark

e Q@ What is being washed in the sink?
: A toothbrush is being washed in the sink.
Containing hallucination types

\

Q: What are the keyl
features you observe in |
the image? 1
: A young man standing |
on stage wearing white |
pants and shoes. !
Containing hallucination !
types: @ !
1

Q: Give a thorough description of the
image, focusing on the landmark it shows.

: The image features a large sandstone
building with several white domes, which is
a well-known landmark in Islamabad,
Pakistan. This architectural masterpiece is
known as the Faisal Mosque, named after
the late King Faisal of Saudi Arabia. The
mosque's design is inspired by ancient
Persian architecture, and its large dome
and four minarets make it stand out among
other structures. There are several people
near the mosque, with some walking and
others possibly riding bicycles or motorcycle.
Additionally, there are several cars parked
around the area, indicating that this is a
busy place of interest for both locals and
tourists alike.

Containing hallucination types:

features token-level annotations with comprehensive

coverage of hallucination types across both Perception and Reasoning scenarios. Text highlighted in different
colors corresponds to various types of hallucination annotations.

the one hand, prior work has mainly focused on nat-
ural scenes and contains only a small proportion of
questions requiring mathematical reasoning (Chen
et al., 2024b; Yu et al., 2024; Gunjal et al., 2024),
leaving a comprehensive investigation of halluci-
nation detection within vision-language reasoning
largely unexplored. Thus, we present a compre-
hensive taxonomy covering hallucinations in both
multimodal perception and reasoning processes,
categorizing hallucinations into 12 distinct types
(see the pie chart in Figure 1). On the other hand,
MHALO defines FHD as a task requiring mod-
els to provide token-level hallucination annotations
(see examples in Figure 1), taking into account both
recognition and localization aspects, and we pro-
pose the corresponding metrics F'1ps and F'ljy,p,
the latter inspired by object detection to objectively
assess the accuracy of detection. We demonstrate
their effectiveness through rigorous validation.

We evaluate multiple well-known MLLMs (Ope-
nAl, 2024; Anthropic, 2024) on MHALO and in-
vestigate the impact of different prompting strate-
gies on their performance. It can be observed
that FHD poses significant challenges for state-of-
the-art (SOTA) MLLMs, with the leading MLLM
on MHALO, GPT-40, achieving an average

F1j,p of only 40.59%. In order to build a high-
performance fine-grained hallucination detector,
we adopt a data-driven strategy to fine-tune a
specialized model HALODET-4B, which achieves
SOTA performance on MHALO. Our contribu-
tions are as follows:

1. We propose a comprehensive FHD benchmark
covering hallucination types both in percep-
tion and reasoning scenarios with specially-
designed metrics F'1 s and F'1j,y for token-
level hallucination.

. In our benchmark evaluation of various
MLLMs, we have identified a significant per-
formance gap in executing FHD. Notably,
none of the models have surpassed the 50%
threshold in terms of F'17,(;.

. We develop HALODET-4B, a detector that
achieves SOTA performance on the proposed
benchmark.

2 MHALO

We present MHALO, a novel benchmark encom-
passing 2,155 meticulously curated entries. The



Definition

Type

Object

Incorrect identification of objects in visual content.

OCR

Failure in text recognition processes within images.

Numerical Attribute

Misinterpretation of numerical values in visual elements.

Color Attribute Errors in identifying the color.

Shape Attribute Misrecognition of object shapes.

Logical Error

Errors in reasoning, such as incorrect causal relationships or conflicts in inference steps.

Calculation Error

Errors in mathematical operations (e.g., addition, subtraction, equation solving).

Knowledge Error

Applies incorrect domain knowledge or makes unrealistic inferences (e.g., violating common sense or physical laws).

Query Misunderstanding

Provides incorrect or irrelevant answers due to misunderstanding the query.

Numerical Relation

Misinterpreting the numerical relationship between objects (e.g., misreading proportions or quantities).

Spatial Relation

\
\
\
\
\
\
Spatial Attribute \ Errors in recognizing the position, orientation, or distance of the object.
\
\
\
\
\
\

Misunderstanding the spatial, orientation, or distance relationships between objects.

Table 1: Hallucination types and definitions
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Figure 2: Fine-grained Annotation. Hallucinated seg-
ment length distribution of different subsets.

benchmark construction addresses three core chal-
lenges: (1) granular annotation framework, (2)
comprehensive hallucination taxonomy, and (3)
detection-oriented metrics. We begin by describ-
ing its unique features compared to previous works
(Section 2.1). Next, we outline the data curation
pipeline (Section 2.2). Finally, we show the de-
sign of token-level metrics (Section 2.3) for the
automated and quantitative assessment of precise
detection performance.

2.1 Key Features of MHALO

Our benchmark advances previous work through
two fundamental innovations:

Token-level Annotation Framework. Un-
like the existing detection approaches supporting
claim-level (Chen et al., 2024b; Jing et al., 2024),
which require extracting claims from annotated
text, MHALO offers a token-level hallucination
annotation directly on the predicted response, as
illustrated in Figure 1. We ensure the annotation
identifies the minimal erroneous components re-
quiring revision during the dataset construction

process, more details can be found in Appendix A.
The distribution of hallucinatory segment lengths
in our benchmark is shown in Figure 2. Most seg-
ments have fewer than five tokens, highlighting the
precise localization of the hallucinatory part rather
than offering a rough and approximate annotation.
This enables accurate token-level feedback, facili-
tating the data selection process and enhancing the
post-training process through fine-grained reward
techniques (Yu et al., 2024; Gunjal et al., 2024).
Unified Perception-Reasoning Taxonomy.
Reasoning is indispensable to fully unlocking
the potential of Artificial General Intelligence
(AGI) (Wang et al., 2023b). Earlier studies predom-
inantly focused on hallucinations in natural scenes
(Chen et al., 2024b; Yu et al., 2024; Gunjal et al.,
2024), with only a limited proportion of questions
involving mathematical reasoning. Nevertheless,
actually, hallucinations can occur in both percep-
tion and reasoning processes. As shown in Figure 1
and Table 1, we distinguish two hierarchical stages:

* Perception involving image understanding
and information extraction (e.g., misinterpre-
tations of objects, text, or visual attributes like
color, shape, and spatial positioning).

* Reasoning builds upon perception to infer re-
lationships between objects or interpret com-
plex scenarios (e.g., logical fallacies, computa-
tional errors, or misinterpretations of complex
queries).

Our taxonomy identifies 12 distinct hallucination
types across both stages beyond conventional hallu-
cination types like object and attribute errors (Bai
et al., 2024b; Jiang et al., 2024), enabling holistic
evaluation of MLLMs in diverse scenarios.



Statistic | Number
NATURE 1000
RLHF-V 500
M-HalDetect 500
REASONING 1000
Geol70K 500
MathV360K 500
MC 155
Total 2155
Average hallucinated segment length ‘ 3.45
Average response length | 7241

Table 2: Detailed statistics of MHALO

2.2 Dataset Collection Process

MHALO comprises instance tuples (1, Q, O, A),
where I denotes the input image, () represents
the query prompt, O indicates the potentially hal-
lucinated response, and A serves as the ground
truth annotation with fine-grained hallucination
tags for each hallucinated segments. The dataset
of MHALO can be divided into three distinct sub-
sets: (1) The NATURE set is curated from two
existing human-labeled fine-grained hallucination
datasets (Yu et al., 2024; Gunjal et al., 2024), and
we further filter and tailor it to meet requirements
of the benchmark. (2) The REASONING set focus
on reasoning. As most existing multimodal mathe-
matical reasoning datasets are coarsely annotated,
we adopt the way of perturbing ground-truth so-
lutions (Fu et al., 2024a; Mishra et al., 2024b) to
acquire large amounts of fine-grained annotated
instances. (3) To further verify the detector’s per-
formance in real-world applications, we collect
out-of-distribution datasets (Sun et al., 2023; Lu
et al., 2024; Guan et al., 2024) covering both per-
ception and reasoning aspects and apply manual
fine-grained annotation, denoted as the MC set.
Accordingly, the NATURE set evaluates the hal-
lucination detection ability mainly from percep-
tion aspects, the REASONING set stresses whether
MLLM evaluators can truly detect hallucination
in a multimodal reasoning process. The detailed
statistics are shown in Table 2. We provide the
detailed construction process of each subset in Ap-
pendix A.
Quality Examination. To ensure the accuracy
and granularity of hallucination annotations, we
manually evaluated the dataset. Three authors in-
dependently reviewed a 200-entry sample from the
benchmark. The success rate was determined by
majority voting, considering a sample successful
only if at least two annotators agreed on its fine-

grained annotation quality. The evaluation results
revealed a success rate of 95%, supported by a sub-
stantial inter-annotator agreement of 0.79, as mea-
sured by Fleiss’ Kappa (Fleiss et al., 1981). These
findings validate the high quality of our dataset.
Further details can be found in Appendix A.4.

2.3 Metric

FHD Task: Given a multimodal query ¢ consisting
of an image [ and a textual prompt (), and the
corresponding output O from an MLLM, our task
is to identify and localize all hallucinated intervals
in O, as shown in Figure 3. Hallucinated intervals
are text segments in O that are not grounded in the
input query q.

Notation and Definitions: To formalize this task,
we introduce the following notations:

* G = {Bét,Bth,...,B;?}: Ground truth in-
tervals, where Bét = |gj,hy] for j =
1,2,...,m. Here, g; and h; represent the

start and end token indices of the j-th ground
truth interval in the sequence of tokens O =

[01,09,...,0p].

* O ={B,,B;,..., B}}: Predicted intervals,
where B), = [s;, t;] fori = 1,2,...,n. The
indices s; and ¢; denote the start and end token
indices of the ¢-th predicted interval.

» T(B): The text span corresponds to an in-
terval B in O, where B can refer to either a
ground truth or a predicted interval. This is the
actual sequence of tokens within the indices
defined by the interval.

We use two metrics to evaluate the model’s per-
formance: F'1ps and Fly,p.

> F'1ps: The evaluation of the model’s perfor-
mance is based on partial matches between the
ground truth intervals and the predicted intervals.
Specifically, we use a recall-based partial match
score (PMp) (Jafari et al., 2024) to assess the de-
gree to which the predicted intervals match the
ground truth intervals. PMp, is defined as:

1, if3Bjst B, =By,
PMr(j) = § {75y i 3B} st. B € By,
0, otherwise.
(M

Similarly, the precision-based partial match score
PMp is defined analogously. The recall Recp,



Q: What are the objects from right to left?

l@' MLLM response
From right to left, the objects are a cup, a
spoon, and a plate

&0

T

Fine-grained hallucination annotation

: From right to left, the objects are a
<hallucination>cup</hallucination>, a spoon,
and a <hallucinationsplate</hallucinations.

@ Detector output

From right to leff, the
objects are a cup, a spoon, and
<hallucinationsa plate</hallucinations.

o Ve,

Metric

F110U=2/3 F1M=1/2

Figure 3: An overview of token-level FHD and corresponding metrics.

and precision Precys are then computed as:

1

Recy = — ]Z_; PMg(j), )
1 n

Precy = - ; PMp(i). 3)

Finally, F'1ps is calculated as the harmonic
mean of recall and precision.

> Fly,y: Although F'14 can indicate the de-
gree of overlap between predictions and ground
truth, it fails to capture the inherent ambiguity
in detection tasks. For example, when annotating
hallucinations, there may be multiple valid ways
to label the text. For instance, an image showing a
black shirt and white pants could lead to MLLM
hallucination responses like “black pants”. Both
“black” and “pants” could be valid hallucinations,
where simply measuring the proportion of matched
tokens becomes less meaningful. Inspired by ob-
ject detection metrics (Padilla et al., 2020; Zang
et al., 2022), we propose F'1 1,y to mitigate this is-
sue. First, we introduce the Intersection over Union
(IoU) score, which measures the overlap between
predicted and ground truth intervals. The IoU is
defined as:
B}, B

IoU(i,j) = —2——2.
yB]guBgt\

4

A match is considered valid if IToU > 0.5. Let
1(-) be the indicator function, the F'11,ys score is

computed through optimal interval matching:

o~

M = i .
max 1(IoU(7,5) > 0.5) (5)
(i,j)EM
2M
F1 = — 6

where M == {M C O x G | Y(a,b),(c,d) €
M, (a # ¢) A (b # d)} is the set of all bipar-
tite matchings, and M is the maximum matching
solved by the Hungarian algorithm (Kuhn, 1955).
In this way, we anticipate a more precise evaluation
of the detection of hallucinatory segments.

3 Fine-tuning an MLLM as a Detector

In our preliminary experiments, we observed that
leading MLLMs (OpenAl, 2024; Team et al., 2024)
are not particularly effective at detecting halluci-
natory segments (see Table 3). This shortfall is
probably due to the absence of such tasks in the
training data, which has prevented the full potential
of these models from being realized. To enhance
the ability of hallucination detection, we collect
and construct labeled data and train a specialized
detection model. Specifically, we use GLM-4V
(4B) (GLM et al., 2024) as our backbone model
and fine-tune it to get HALODET-4B. The training
set is constructed using a process similar to Sec-
tion 2.2. Additional details about training set con-
struction and fine-tuning parameters can be found
in Appendix B.1.
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Open-Source Evaluation Models

MINICPM-V 2.6
INTERNVL2-LLAMA3-76B
LLAMA-3.2-90B-VISION-INSTRUCT

25.09
31.62
3571

20.96
26.81
29.49

99.20
99.59
99.79

8.53
15.00
18.40

3.01
6.30
7.81

97.00
99.53
99.80

10.73
28.90
36.85

390 4183
19.44  58.46
18.36  79.76

24.48
32.49
42.54

19.15
25.53
3272

88.74
94.38
96.78

34.97
50.53
55.49

3242
44.57
45.52

83.33
98.47
95.30

18.36
28.54
34.89

13.13
21.17
23.63

82.14
88.09
94.05

Closed-Source Evaluation Models

QWEN-VL-MAX
ABAB7-CHAT-PREVIEW
GLM-4V-PLUS
CLAUDE-3.5-SONNET
CLAUDE-3.5-SONNET*
GEMINI-1.5-PRO
GEMINI-1.5-PRO*
GPT-40

GPT-40*

32.70
38.38
38.85
43.94
43.98
41.54
4437
43.92
46.55

26.66
3242
3230
28.73
28.12
29.71
33.00
30.63
3574

100.00
98.99
99.80
99.00
99.80
99.60
99.60
100.00
99.80

11.43
27.94
28.65
39.65
44.46
35.83
37.14
45.97
4727

9.65
16.39
20.38
20.59
25.24
19.64
21.09
3285
30.30

100.00
96.99
99.80
97.80
98.60
99.80
99.60
100.00
100.00

37.55
34.16
3491
51.69
52.02
52.96
56.00
63.03
57.717

19.65
19.33
30.83
27.36
26.76
30.17
31.07
45.22
34.08

99.39
88.41
81.40
98.80
98.40
99.60
98.40
98.80
98.80

37.02
40.57
3733
56.87
56.08
62.01
65.27
62.63
72.61

31.95
3579
33.99
37.77
35.60
50.79
54.29
45.12
5827

99.60
95.40
94.78
98.20
99.00
100.00
98.80
99.80
99.00

40.19
57.64
48.12
58.32
59.02
63.90
68.03
64.90
70.97

34.98
5333
42.36
4491
47.16
55.50
60.07
56.07
58.69

98.67
98.70
97.40
99.29
97.87
99.35
98.05
99.29
96.52

30.38
36.88
35.87
48.71
49.79
49.22
51.94
54.63
56.83

22.89
27.97
30.30
29.68
30.13
3422
36.67
39.62
40.59

99.67
95.23
94.19
98.50
98.88
99.72
99.03
99.63
99.24

HALODET-4B [49.11 3970 99.00 | 5649 47.06 9980 |

70.64

6143 9620 | 7339 6454 9500 | 7077 6131 9870 | 63.01 5376 9759

Table 3: The overall performance of different MLLMs on MHALO (%). The best results are highlighted in bold,
while the suboptimal ones are marked with underline. Models using Analyze-then-Judge prompting are denoted

with *.

4 Experiments

4.1 Experimental Setup

Model Selection. We evaluate a total of 10
MLLMs on MHALO, including GPT-40 (Ope-
nAl, 2024), GEMINI-1.5-PR0O-002 (Team et al.,
2024), CLAUDE-3-5-SONNET (Anthropic, 2024),
GLM-4V-PLUS (GLM et al., 2024), ABAB7-
CHAT-PREVIEW, QWEN-VL-MAX (Bai et al.,
2023), LLAMA-3.2-90B-VISION (Al@Meta,
2024), INTERNVL2-LLAMA3-76B (Chen et al.,
2024c), MINICPM-V-2.6 (Yao et al., 2024), and
our trained expert detector HALODET-4B.
Evaluation Metrics. We utilize the metrics
F17,u and F'1, defined in section 2.3. Given
the challenges faced by MLLM in performing FHD,
the testee models sometimes fail to follow the in-
struction. We introduce the metric IF to represent
the proportion of successful entries that complete
the FHD task, samples on which the model fails to
accomplish the task will receive a score of zero for
these metrics.

Evaluation Settings. We experiment various
prompting strategies to evaluate the testee models:
(1) The baseline method uses direct instructions to
prompt the MLLM for FHD in a zero-shot setting.
The MLLM then outputs the detection result using
XML-style tags, as illustrated in Figure 3. We pro-
vide the discussion of using different annotation
formats in Appendix C.2. (2) To further explore
the capability of MLLMs to perform FHD, we ex-
periment with three additional prompting strategies
(See Appendix C.1 for details). Our results indicate
that the “Analyze-then-Judge” paradigm achieves
superior performance across nearly all subsets. It

1https ://www.minimaxi.com/en/news/
abab7-preview-release.

builds on prior one-step chain-of-thought evalua-
tion (Chiang and yi Lee, 2023; Wei et al., 2023;
Chen et al., 2024a), and we implement it through
a two-phase reasoning process that first generates
a detailed hallucination analysis with factual cor-
rections and then annotating the response with hal-
lucination tags. Here, we evaluate all the mod-
els using the baseline method and also evaluate
the performance of SOTA MLLMs with “Analyze-
then-Judge”. The prompts used for evaluation are
provided in Table 11 and Table 14 in Appendix D.

4.2 Main Results

The results of ten selected MLLMs on MHALO
are presented in Table 3. Our comprehensive evalu-
ation yields the following key insights:

FHD remains a challenge for SOTA MLLMs.
Despite significant advancements in current
MLLMs, top-performance models still struggle
with FHD. The results show that GPT-40 leads
the benchmark, but achieves an average F'lj,r;
of only 40.59%, and GEMINI-1.5-PRO follows
behind. Notably, nearly half of the evaluated mod-
els exhibit particularly weak performance, with
F1j,u values below 30%, especially among open-
source models, which exhibit the worst results.
These findings highlight inherent limitations in
their capabilities for FHD.

Lightweight HALODET-4B achieves superior
performance. HALODET-4B outperforms the best
commercial model, GPT-40, by an impressive mar-
gin, achieving nearly a 13% absolute gain in aver-
age F'1j,y. Furthermore, it nearly achieves SOTA
performance across all the subsets. These results
underscore the critical need for specialized solu-
tions like HALODET-4B, while also highlighting
the substantial room for improvement in general-
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Figure 4: Metric Correlation with Human Evaluation.

purpose MLLMs for FHD. A detailed case study
comparing the detection outputs of various models
can be found in Appendix E.

5 Analysis

5.1 Metric Correlation with Human
Evaluation

To evaluate whether F'17,y and F'1ps can serve
as reliable proxies for human judgment, we com-
pute their Pearson correlation coefficients (Co-
hen et al., 2009) with human annotations across
MHALO. Three authors independently scored
each predicted hallucination segment in GPT-40
detection results using an integer scale x (1 <
x < 4), which reflects the degree of correctness
and precision in identifying hallucinated segments.
The details criteria are provided in Table 4 in Ap-
pendix B.2. The final score for each sample is
obtained by averaging the scores of all predicted
hallucination segments. We compare our metrics
against token-level accuracy (ACC) from (Fu et al.,
2024b), which formulates hallucination detection
as a binary token classification task.

The overall results are presented in Figure 4.
F1;,u demonstrates the strongest alignment with
human judgments, achieving Pearson correlation
scores of 0.951 and 0.807 on the MC and Geol70K
datasets, respectively. In contrast, F'1 5, exhibits
suboptimal alignment, while ACC shows signifi-
cantly weaker correlations, with an overall corre-
lation score of just 0.359. We attribute this dis-
crepancy to the following factors: (1) F'17,¢ and
F'1 s explicitly account for the spatial alignment
of intervals, while ACC reduces detection to bi-
nary token classification, which fails to capture
the granularity of the annotations. (2) F'1,¢; uti-
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Figure 5: Detection Performance of four representative
MLLMs across 12 hallucination types.

lizes thresholding for interval matching, effectively
addressing annotation boundary ambiguity and en-
hancing both flexibility and robustness across di-
verse datasets, thus achieving superior performance
compared to F'lp;. Flj,uy proves to be the
most reliable proxy for human judgment, followed
by F'1,s, whereas traditional token-level metrics,
such as ACC, exhibit significant limitations in the
FHD task.

5.2 Performance in Identifying Different
Types of Hallucinations

Figure 5 presents the accuracies of cutting-edge
models on MHALO in identifying hallucina-
tions across different types. The models evalu-
ated include GPT-40 (OpenAl, 2024), CLAUDE-
3-5-SONNET (Anthropic, 2024), GEMINI-1.5-
PRrRO (Team et al., 2024), and HALODET-4B. We
provide the experiment details in Appendix B.3.
We can observe that MLLMs excel at identify-
ing hallucinations involving numerical attribute
and calculation error, achieving over 90% accu-
racy. However, they exhibit notable weaknesses
with logical error and spatial attribute, which
require advanced reasoning and spatial comprehen-
sion. While our HALODET-4B achieves a more
balanced performance overall, it still struggles with
spatial attribute and spatial relation. In summary,
MLLMs are doing well in hallucinations related to
arithmetic and object recognition, but face persis-
tent challenges in logical coherence, spatial reason-
ing, and complex attribute understanding.
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Figure 6: Results of four representative MLLMs on
samples without hallucination in MHALO.

5.3 FHD on Non-Hallucinated Samples

Figure 6 shows the accuracy of various models in
detecting hallucinations in non-hallucinated sam-
ples from MHALO. It reveals that current SOTA
MLLMs tend to produce a high rate of false posi-
tives, incorrectly flagging truthful information as
hallucinated, with average accuracy consistently
below 25%. In contrast, our HALODET-4B out-
performs other MLLMs across all subsets. The
performance gap is especially pronounced in the
M-HalDetect dataset, where our method reaches
an impressive 82%. On average, HALODET-4B
reaches 53% accuracy, more than twice the perfor-
mance of the best-performing MLLM, highlighting
its reliability.

6 Related Work
6.1 Hallucinations in MLLMs

Recent advances in MLLMs have achieved remark-
able breakthroughs in cross-modal perception and
reasoning (Wang et al., 2024b; OpenAl, 2024; gpt,
2023; Team et al., 2024; Liu et al., 2024b), enabling
them to perform complex tasks requiring visual-
language reasoning beyond basic recognition capa-
bilities (GLM et al., 2024). Despite these advance-
ments, hallucinations remain significant challenges,
where MLLMs generate responses contradicting
the visual input or linguistic context. This crit-
ical limitation hinders practical deployment like
autonomous driving (Cui et al., 2024), where ac-
curate and trustworthy performance is essential.
Addressing this fundamental challenge is crucial
to unlocking the full potential of MLLMs in real-
world applications.

Previous studies have progressively expanded
from initial investigations into object hallucina-
tions (Rohrbach et al., 2019; Li et al., 2023) to
the evaluation of a broader range of types involving
category, attribute, and relation hallucinations (Bai

et al., 2024a; Wang et al., 2024a; Jing et al., 2024).
However, current research remains limited to natu-
ral scenarios, overlooking the critical dimensions of
hallucinations induced during reasoning processes.
In this paper, we bridge this gap by establishing
a unified taxonomy that encompasses hallucina-
tion types across both the perception and reasoning
stages.

6.2 MLLM as a Judge for Fine-grained
Hallucination Detection

Recent advancements in hallucination evaluation
and detection have moved towards a more fine-
grained level, targeting evaluation at the sen-
tence (Yan et al.,, 2024; Xiao et al., 2024),
claim (Jing et al., 2024; Chen et al., 2024b), and
even token levels (Jing and Du, 2024b). While
the meta-evaluation paradigm, such as MLLM as
a judge (Gu et al., 2024; Chen et al., 2024a; Lee
et al., 2024), has yet to be systematically explored.
For instance, Wang et al. (2023a) first proposed
training MLLMs with synthetic data for hallucina-
tion detection, but their approach was limited to
response level. Chen et al. (2024b) introduced a
claim-level benchmark and suggested leveraging
external tools to assist in hallucination detection.
Nevertheless, this method is restricted to certain
types of hallucinations, such as those involving
factual knowledge or verifiable objects, leaving it
ineffective in scenarios that require complex rea-
soning, such as identifying spatial relations. Addi-
tionally, claim-level detection requires extracting
claims, which introduces further complexity. In
this paper, we focus on exploring the potential of
MLLMs to perform FHD at the token level.

7 Conclusion

In this paper, we introduce a novel meta-evaluation
benchmark, MHALO, designed to assess different
MLLMs ’ capability in performing FHD. By sys-
tematically evaluating 9 well-known MLLMs, we
highlight the significant performance gaps, none of
the models exceeded 50% F'11,¢7. To address this
limitation, we develop HALODET-4B, a special-
ized model that significantly outperforms existing
models. This benchmark, along with the trained de-
tector, provides valuable tools for improving hallu-
cination detection in MLLMs and can guide future
research in model alignment.



8 Limitations

Our study makes progress in fine-grained hallucina-
tion detection for MLLMs through MHALO and
HALODET-4B, but several limitations should be
acknowledged to guide future research:
Optimization Potential of the Detector. Although
HALODET-4B achieves SOTA performance on
MHALO, our training employs standard hyper-
parameters without exhaustive optimization. The
4B parameter architecture is lightweight and effi-
cient, but may not fully exploit the training data’s
potential. Systematic exploration of model scaling
(e.g., 13B/70B variants), advanced optimization
techniques, and architectural innovations could fur-
ther boost detection accuracy.

Generalization Across Modalities. =~ While
MHALO covers 12 hallucination types, its cur-
rent instantiation focuses on image-text interac-
tions. Emerging multimodal scenarios involving
video, audio, and 3D data may introduce new hal-
lucination patterns requiring framework adaptation.
Extending our methodology to these domains re-
mains an open challenge.
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A Details on Benchmark Construction

A.1 The NATURE Set

The NATURE set focuses on tasks related to the
perception and comprehension of natural images.
The data used in this set are derived from RLHF-
V (Yu et al., 2024) and M-HalDetect (Gunjal et al.,
2024), two existing fine-grained annotated hallu-
cination datasets labeled by human. RLHF-V is
a fine-grained human preference dataset, contain-
ing 5.7k QA and captioning samples, the image-
instruction pairs are collected from diverse datasets,
mostly from COCO, and two corresponding out-
puts (O, Op) in each instance, hallucinated out-
puts O; generated by diverse MLLM, such as In-
structBLIP, Qwen, and LLaVA, the corresponding
refined response O,, is written by people through
fixing the hallucination span in O;. We adopt the
image-instruction pair and O; as I, ), O, and ac-
quire A by comparing O,, and O;. We then further
manually check and filter to make sure O is cor-
rectly annotated in each instance. We split part of
the dataset to be used in the benchmark while re-
maining to construct a training set. M-HalDetect fo-
cuses exclusively on captioning tasks and includes
12k training samples and 3k testing samples. Its im-
ages are collected from COCO-val2014 (Lin et al.,
2015), and corresponding caption output is sam-
pled from MLLMs and the hallucination segment
is labeled with the "Inaccurate” class. We sample
instances from the testing set and further adjust
their format to match our benchmark.

A.2 The REASONING Set

The REASONING set expands the benchmark’s
scope beyond the natural scenario to include mathe-
matical reasoning. We meticulously select two mul-
timodal math reasoning datasets Geol70K (Gao
et al., 2023) and MathV360K (Shi et al., 2024)
as the data source. Unlike the NATURE set, they
only contain ground truth solution in each instance
and no hallucination responses exist. Inspired
by Mishra et al. (2024a), We apply the perturbation
method to get the hallucinated solution and corre-
sponding annotation. Geol70K is a multimodal
geometry dataset containing more than 170K geo-
metric problem instances, and the answers to each
problem have a detailed reasoning process. To in-
troduce hallucination in the solution while balanc-
ing the distribution of different types of hallucina-
tion in our taxonomy, we prompt GPT-40 (OpenAl,
2024), which takes the image-instruction pair and

12

original solution as input and is instructed to gener-
ate hallucinated solution accompanying annotation
for 12 different types. MathV360K is a multimodal
mathematical reasoning dataset containing 360K
question-answer pairs from different domains thus
covering diverse tasks requiring reasoning. How-
ever, it only has a final answer and lacks the inter-
mediate reasoning step. So we first prompt GPT-40
to generate the Chain-of-thought (CoT) (Wei et al.,
2023) solutions. Then apply a similar process like
Geol70K to insert hallucination. The correspond-
ing prompt template is in Appendix D. We finally
filtered samples to ensure the balanced coverage of
different hallucination types.

A.3 The MC Set

We construct a carefully human-annotated dataset
comprising 155 samples, with 81 entries sourced
from MMHAL-BENCH (Sun et al., 2023),58 en-
tries from MathVista (Lu et al., 2024), and 16 en-
tries from HallusionBench (Guan et al., 2024) to en-
sure comprehensive coverage of perceptual and rea-
soning capabilities. Both source datasets provide
sample-level annotations indicating response cor-
rectness from various MLLMs. We specifically se-
lect responses flagged as erroneous for fine-grained
annotation, focusing on two key criteria: (1) Cor-
rectness. The annotated text segment should con-
tain hallucinatory content. (2) Granularity. The
proportion of hallucinatory content within the an-
notated segment. To ensure the quality of the data,
all the samples were manually annotated by the au-
thors of this paper and subsequently refined through
a comprehensive review process. We employed a
two-phase approach to maintain consistency in an-
notation. In the first phase, each sample was inde-
pendently annotated by three annotators, with the
criteria of identifying the smallest erroneous com-
ponents requiring revision. This method resulted
in a relatively high inter-annotation agreement rate
of 86%, where consistency was defined as an ex-
act match of each labeled hallucination segment
for each sample. Specifically, of the 155 newly
collected question-answer pairs, only 21 entries
showed discrepancies in the annotations. Then we
employed a majority voting system, where multiple
authors collaboratively decided whether to retain or
adjust contentious annotations. This was achieved
through team discussions, ensuring consensus was
reached on each sample.



Score |

Description

Completely incorrect labeling of the hallucination interval. The marked interval either doesn’t correspond to
the actual hallucination or completely misses it, including falsely labeling non-hallucination as a hallucina-

tion.

Partially correct labeling. The marked interval covers part of the hallucination but misses other parts or
inaccurately identifies the boundaries. There are notable errors, but some correct areas are included.

Mostly accurate labeling. The marked interval is mostly correct with only minor errors, such as slight

inaccuracies in boundary detection or very small areas missed.

Completely accurate and fine-grained labeling. The hallucination interval is marked precisely with no
misjudgments or omissions, correctly identifying the smallest details that need modification.

Table 4: Scoring criteria for human labeling

MLLM

Strategy

Flpy

RLHF-V
Fliu

IF

M-HalDetect

Fly

Flru

IF

Fly

Geol70K

Flru

IF

F1y,

Flru

MathV360K

IF

Fly

MC
Flru

IF

Fly,

Average
Flru

IF

GPT-40

Vanilla

2-shot

Criteria
Analyze-then-Judge

43.97
45.75
44.11
46.55

30.63
32,59
3249
35.74

100.00
100.00
100.00
99.80

45.97
43.78
45.88
47.27

32.85
29.05
31.71
30.30

100.00
100.00
100.00
100.00

63.03
51.34
56.98
57.711

45.22
27.69
36.43
34.08

98.80
99.80
99.20
98.80

62.63
64.69
66.39
72.61

45.12
47.26
50.97
58.27

99.80
99.80
99.80
99.00

64.90
56.99
62.59
70.97

56.07
44.20
53.52
58.69

99.29
99.13
98.33
96.52

54.63
51.70
53.87
56.83

39.62
34.70
38.78
40.59

99.63
99.86
99.67
99.24

GEMINI-1.5-PRO

Vanilla

2-shot

Criteria
Analyze-then-Judge

41.54
43.73
44.40
44.37

29.71
31.05
3441
33.00

99.60
99.60
100.00
99.60

35.83
34.22
3527
37.14

19.64
17.97
19.85
21.09

99.80
99.80
99.59
99.60

52.96
4843
57.00
56.00

30.17
2291
3371
31.07

99.60
99.40
99.78
98.40

62.01
63.70
63.49
65.27

50.79
52.02
53.43
54.29

100.00
99.60
98.97
98.80

63.90
62.82
65.10
68.03

55.50
53.86
56.74
60.07

99.35
99.35
98.69
98.05

49.22
48.61
51.10
51.94

34.22
32.62
36.97
36.67

99.72
99.58
99.52
99.03

Table 5: Results of GPT-40 and GEMINI-1.5-PRO
highlighted in bold
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Figure 7: Response length distribution of different sub-
sets.

A.4 Details on Human Evaluation

We selected three annotators with expertise in both
English and the research field, who are also co-
authors of this study. Each annotator was respon-
sible for annotating all 200 samples. The task for
each sample involved making a binary decision
based on the following criteria:

e 1

Do you think each annotated hallucination
segment is accurate and fine-grained
enough that identify the smallest erroneous
components requiring revision?

Your choice:
* Yes

e No
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with different prompting strategies. The best results are

A.5 Details on Benchmark Analysis

We analyze the types of hallucinations through
GPT-40 annotations. Specifically, for the NATURE
and MC sets, we prompt GPT-40 with samples that
include fine-grained hallucination annotations to
identify the types of hallucinations based on the
definition in Table 1. We provide the correspond-
ing prompt in D. For the REASONING set, the type
labels are already provided during the synthetic
process. To assess the quality of hallucination type
classification, we conduct a human evaluation on
a set of 100 samples from the benchmark. Three
authors independently judge the correctness of the
hallucination types for each hallucinated segment.
GPT-40 achieves an accuracy of 0.92 across all seg-
ments, with final results determined through a ma-
jority vote, requiring agreement from at least two
annotators. This suggests that GPT-4o is highly re-
liable in classifying hallucination types when given
ground-truth annotations and the taxonomy. The
inter-annotator agreement, measured by Cohen’s
Kappa, is 0.76, reflecting substantial consistency
among the annotators.

B Detailed Experiment Settings

B.1 Training Settings

Training Set Synthetic Process. We select 7,387
instances from M-HalDetect, ensuring that the pro-
portion of non-hallucinated samples is 1/10, and



RLHF-V
Fliu

M-HalDetect
Fliu

MLLM Annotation Format

Fly IF | Fln IF

Fly

Geol70K
Fliu

MathV360K
Fliu

MC
Fliu

Average

IF Fly IF Fly IF Fly Flpu IF

Vanilla
XML w/ other elements
JSON w/ index

43.97
43.17
45.98

30.63
31.05
19.55

100.00
100.00
100.00

45.97
45.94
38.62

32.85
33.21
6.71

100.00
100.00
100.00

GPT-40

63.03
56.91
46.35

4522
34.71
9.48

98.80
100.00
100.00

62.63
61.57
46.91

45.12
4431
7.93

99.80
99.40
100.00

64.90
61.34
42.97

56.07
50.65
13.06

99.29
100.00
100.00

54.63
52.58
44.38

39.62
36.88
11.04

99.63
99.86
100.00

41.54
4272
42.20

29.71
30.54
15.35

19.64
19.05
11.79

Vanilla
XML w/ other elements
JSON w/ index

99.60
100.00
100.00

35.83
36.56
41.15

99.80
99.80
100.00

GEMINI-1.5-PRO

52.96
55.07
43.31

30.17
32.03
7.72

99.60
99.80
100.00

62.01
61.36
51.26

50.79
49.64
5.02

100.00
99.80
100.00

63.90
62.17
46.74

55.50
52.59
14.69

99.35
100.00
100.00

49.22
49.87
44.64

3422
34.23
10.31

99.72
99.86
100.00

Table 6: Results of GPT-40 and GEMINI-1.5-PRO with different annotation formats.The best results are highlighted

in bold

use the remaining instances from RLHF-V. To
strengthen our model’s ability to perform FHD
in math-related reasoning, we synthetic 5,000 en-
tries using the process similar to the process in
Appendix A. In total, we construct a training set
consisting of 17,120 entries.

Training Hyperparameters. We employ GLM-
4V (4B) as the backbone MLLM for HALODET-
4B. The learning rate is set to le-5, with a weight
decay of 0.1 and a maximum sequence length of
4096 tokens. We use the Adam optimizer and a
cosine learning rate scheduler. The model is trained
for 1 epoch with a batch size of 256. Training is
performed on a server equipped with 8 NVIDIA
A800 80GB GPUs.

B.2 Maetric Correlation with Human
Evaluation

We provide the score criteria for human labeling in
Table 4.

B.3 Performance in Identifying Different
Types of Hallucinations

We evaluate the performance of different MLLMs
in detecting hallucinations with the help of GPT-
4o0. For each sample, we provide GPT-40 with the
hallucination type label and the ground truth an-
notation to compare with the MLLM’s detection
result. GPT-40 then identifies the correctly detected
hallucination type from the MLLM'’s output. The
accuracy for each hallucination type can be cal-
culated by comparing the detected type with the
ground truth label. We find that this approach is
not only effective but also reliable, as confirmed
through the quality assessment process described
in Appendix A.5.

C More Experimental Results

C.1 Prompting Strategies for MLLM
Detectors

We evaluate three prompting strategies on GPT-40
and GEMINI-1.5-PRO, with the results shown in
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Category | Examples
Letters A B, C
a,b,c
Symbols | @ # &
Mixed Case | aA, Bb, Cc

Table 7: Different XML elements

Table 5. We provide the corresponding prompt for
each strategy in Table 11-14 in Appendix D.

Vanilla. Our baseline approach employs direct in-
struction for MLLM to perform hallucination detec-
tion task through a zero-shot prompting paradigm.
Given the input image I, corresponding query
prompt ) and MLLM response O, The MLLM
is tasked to only output O with the hallucina-
tion annotation using XML-style tags (<hallucina-
tion></hallucination>), as illustrated in Figure 3.

2-shot. Extending the baseline with in-context
learning (Dong et al., 2022), we incorporate two
annotated examples to illustrate the expected input-
output mappings. However, the results indicate
a fluctuation in detection performance. We at-
tribute this to the inherent restriction of text-based
prompts, which fail to adequately capture multi-
modal hallucinations due to the absence of image
modality. Without visual grounding, the demonstra-
tion examples provide little meaningful guidance
and may inadvertently constrain the annotation pat-
terns of MLLMs.

Criteria. By explicitly integrating our hallucina-
tion taxonomy (Table 1) into the prompt, We ob-
serve consistent performance improvement across
all subsets in GEMINI-1.5-PRo. This suggests that
clearly defined hallucination types may help fo-
cus the model’s attention on hallucination-prone
regions, enabling more precise detection. How-
ever, this approach noticeably affects instruction
following.

Analyze-then-Judge. Building on prior one-step

chain-of-thought evaluation (Chiang and yi Lee,
2023; Wei et al., 2023; Chen et al., 2024a), we im-



plement a two-phase reasoning process that first
generates a detailed hallucination analysis with fac-
tual corrections and then annotating the response
with hallucination tags. This method achieves state-
of-the-art performance across all prompting strate-
gies while slightly impacting instruction following.

C.2 Ablation on Annotation Format

We investigate the effect of different output for-
mats on the model’s performance, focusing on how
variations in format influence hallucination detec-
tion. Experiment results on GPT-40 and GEMINI-
1.5-PRO are shown in Table 6. Our task requires
the output of token indices rather than simple text
segments to avoid potential misidentification of
text located at different positions. Common output
formats in real-world applications include XML
and JSON.

In our experiments, we first explored the impact
of XML-based outputs. We replaced the <halluci-
nation> element with various other elements, in-
cluding individual uppercase or lowercase letters,
punctuation marks, etc. We average the perfor-
mance of using different elements to get the final
result. We provide the detailed element used in
the experiment in Table 7. The results showed
that these changes had little impact on detection
performance, with only minor fluctuations when
using different elements in the XML format. Next,
we tested the JSON format, where token indices
are output sequentially. Despite having the VLM
output the indices for each token, we found that
the model was still unable to accurately identify
the hallucination segments’ corresponding indices.
This failure led to a significant decline in detec-
tion performance, demonstrating that the direct use
of indices in JSON format was not effective for
hallucination detection. In contrast, we adopted
the XML output format for hallucination detection,
which proved to be more robust and effective in
maintaining performance. We provide the corre-
sponding prompt templates in Table 15-16 in Ap-
pendix D.

D Prompt Templates

In this section, we provide the prompts used to
construct dataset and analyze (shown in Table 8-
10) and prompt templates used to perform FHD for
evaluation (shown in Table 11-16).
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E Case Study

We present the case study comparing the detection
outputs of different models in Table 17-18.



Template prompts of dataset construction(Geol70K)

SYSTEM
You are an expert at injecting diverse types of visual hallucinations into math problem solutions.

Your task is to analyze the input data (including the question, original solution, and corre-
sponding image) to determine which hallucination categories are applicable and then introduce
hallucinations accordingly.

Input:

A Question and its corresponding image. The Original Solution to the question.

Your Tasks:

Analysis: Identify relevant hallucination categories for the input.

Output with Hallucinations:

Inject hallucinations into the original solution based on your analysis. Use <halluci-
nated_solution> tags to wrap the entire solution. Use <hallucination> tags only around specific
hallucinated values, descriptions, or statements. Maintain the original solution’s structure,
terminology, and final answer format.

DEFINITION OF 12 HALLUCINATION TYPES

Hallucination Categories You Should Consider:

. **QObject**: Misidentify objects in the image

. **OCR**: Misread text or numbers in the image

. **Numerical Attribute**: Misread quantities, sizes, measurements

. **Color Attribute**: Misidentify colors of objects

. **Shape Attribute**: Misinterpret shapes of objects

. **Spatial Attribute®*: Misread positions, orientations, distances

. **Numerical Relations**: Misinterpret quantitative comparisons

. **Spatial Relations**: Misinterpret positions between objects

. **Logical Errors**: Make mistakes in reasoning steps

10. **Calculation Errors**: Perform incorrect mathematical operations

11. **Knowledge Errors**: Apply incorrect formulas or concepts

12. **Query Misunderstanding**: Misunderstand the query intent and gives wrong or irrelevant
answers

EXAMPLE

Example Format: Input: Question: question Image: [Corresponding Image] Original Solution:
original_solution

Output: Analysis: Applicable hallucination categories and reasoning for selection
—OUTPUT—

<hallucinated_solution> Hallucinated solution with inserted hallucinations </halluci-
nated_solution>

Example:

Input: Question: In triangle ABC, where angle A = 90°, side AB = 6 cm, and side AC =8 cm,
calculate the hypotenuse BC. Image: [A triangle diagram with labels] Original Solution: Using
the Pythagorean theorem: BC?2 = AB2 + AC2= 62+ 82 =36 + 64 = 100. BC' = /100 = 10cm.
Output: ANALYSIS: **Shape Attribute®**: Misidentifying angle B as 90°. **Knowl-
edge Errors**: Misapplication of the Law of Cosines with an incorrect formula (a + b +
2abcos(0)insteadofa + b — 2abcos(f)). OUTPUT:

<hallucinated_solution> Since angle <hallucination>B</hallucination> is 90°: Using the Law
of Cosines: <hallucination>AC2 = AB2 + BC2 + 2 x AB x BC x c0s(90°)</hallucination>. Since
c0s(90°) = 0, this simplifies to: <hallucination>AC? = AB? + BC2</hallucination>.
Rearranging to solve for BC%

<hallucination>BC2 = AC2 - AB? = 82 - 62 = 28</hallucination>. <hallucination>BC = /28 =
5.29cm</hallucination>. </hallucinated_solution>

NelioREN e WU, I SN U S T

Requirements:

1. Only use <hallucination> tags for the specific hallucinated values or descriptions

2. Do not add explanatory text about the hallucinations,especially Please dont include anywords
like"misidentified","misinterpreting".’ misinterpreted"

3. Choose hallucination types that naturally fit the context and maintain plausibility. Not every
type needs to be used.

4. hallucination types in analysis should be strictly chosen from the hallucination types list, and
written in correct format like "**Qbject™*", "#*OCR**", "**Numerical Attribute**", "**Color
Attribute**", "**Shape Attribute**", "**Spatial Attribute**", "**Numerical Relations**",
"#*Spatial Relations**", "**Logical Errors**", "**Calculation Errors**", "**Knowledge
Errors**", "**Query Misunderstanding**".

Table 8: Template prompts of dataset construction(Geol70K)
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MathV3

SYSTEM
You are an expert at mathematical reasoning and visual hallucination injection.

Your task has three parts:

Part 1 - Generate Original Solution:

1. Carefully analyze the image, question and answer

2. Create a detailed step-by-step solution with clear reasoning

3. Make sure the solution is accurate and matches the visual elements

4. Wrap this solution in <original_solution> tags

Part 2 - Analyze Hallucination Opportunities:

1. Analyze the original solution to identify what types of information are present and select appropriate types of hallucinations from the
hallucination types list:

DEFINITION OF 12 HALLUCINATION TYPES

1. **Objec Incorrect identification of objects in visual content.

: Failure in text recognition processes within images.

Numerical Attribute**: Misinterpretation of numerical values in visual elements.

Color Attribute**: Errors in identifying the color.

5. **Shape Attribute**: Misrecognition of object shapes.

6. **Spatial Attribute**: Errors in recognizing the position, orientation, or distance of the object.

7. **Numerical Relatio : Misinterpreting the numerical relationship between objects (e.g., misreading proportions or quantities).

8. **Spatial Relations**: Misunderstanding the spatial, orientation, or distance relationships between objects.

9. **Logical Errors**: Errors in reasoning, such as incorrect causal relationships or conflicts in inference steps.

10. **Calculation Errors**: Errors in mathematical operations (e.g., addition, subtraction, equation solving).

11. **Knowledge Errors**: Applies incorrect domain knowledge or makes unrealistic inferences (e.g., violating common sense or physical
laws).

12. *#*Query Misunderstanding**: Provides incorrect or irrelevant answers due to misunderstanding the query.

3. Write your analysis in <hallucination_analysis> tags, explaining what types of hallucinations would be natural to inject based on the content,
when writing the hallucination types, please strictly choose from the above 12 types of hallucinations, use the identical format like "**Object**",
"#*QCR**", "**Numerical Attribute**", "**Color Attribute**", "**Shape Attribute**", "**Spatial Attribute**", "**Numerical Relations**",
"##*Spatial Relations**", "**Logical Errors**", "**Calculation Errors**", "**Knowledge Errors**", "**Query Misunderstanding**".

Part 3 - Create Hallucinated Version:

1. Based on your analysis, create a version with plausible but incorrect visual details

2. Tag ALL hallucinated spans with <hallucination> tags, and the final answer should also be tagged when it is hallucinated

3. Wrap the hallucinated version in <hallucinated_solution> tags

4. Do not add explanatory text about the hallucinations,especially Please dont include anywords
like"misidentified","misinterpreting".’ misinterpreted"

EXAMPLES

Example:

Q: In the geometric diagram, what is the area of the triangle?

A: 12

<original_solution> Let’s solve this step by step:

1. Looking at the image, I see:

- A right triangle drawn on a grid

- Base length is 4 units

- Height is 6 units

- Right angle marked with a square symbol

2. To find the area of a triangle:

Area = (base x height) + 2

3. Plugging in our values:

Area=(4x6)+2=24+2=12

Therefore, the area is 12 square units. </original_solution>

<hallucination_analysis>The original solution contains:

1. Shape information (right triangle)

2. Numerical measurements (base and height)

3. Visual markers (square symbol)

4. Mathematical calculations

5. area formula (knowledge)

Suitable hallucination types:

**Shape Attribute**: modify the triangle type

**Numerical Attribute**: alter the measurements

**Knowledge Errors™*: apply incorrect formulas

These would maintain solution plausibility while introducing controlled errors.</hallucination_analysis>
<hallucinated_solution>Let’s solve this step by step:

1. Looking at the image, I see:

- A <hallucination>isosceles triangle</hallucination> drawn on a grid

- Base length is <hallucination>5 units</hallucination>

- Height is <hallucination>4.8 units</hallucination>

- Right angle marked with a square symbol

2. To find the area of a triangle:

<hallucination>Area = (base x height)</hallucination>

3. Plugging in our values:

<hallucination>Area = (5 x 4.8) = 24</hallucination>

Therefore, the area is <hallucination>24</hallucination> square units. </hallucinated_solution>
NOTICEMENTS

Requirements:

1. ALWAYS provide all three parts: original solution, hallucination analysis, and hallucinated solution
2. ALWAYS tag ALL hallucinated spans with <hallucination> tags

3. Keep solutions detailed and specific

4. Do not explain or point out the hallucinations in the hallucinated solution

5. Start solutions with "Let’s solve this step by step:" or "Let’s analyze the image step by step:"
Remember: Success depends on proper tagging of EVERY hallucinated span and maintaining the solution structure!

Table 9: Template prompts of dataset construction(MathV360K)
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Template prompts of hallucination type analysis

SYSTEM

You are an expert at analyzing hallucinations in visual language models. Your task is to analyze
the hallucinations in the given solution.

DEFINITION OF 12 HALLUCINATION TYPES

Available Hallucination Types:

1. **Object**: Incorrect identification of objects in visual content.

2. ¥**QCR**: Failure in text recognition processes within images.

3. **Numerical Attribute**: Misinterpretation of numerical values in visual elements.

4. **Color Attribute**: Errors in identifying the color.

5. **Shape Attribute**: Misrecognition of object shapes.

**Spatial Attribute**: Errors in recognizing the position, orientation, or distance of the
object.

7. **Numerical Relations**: Misinterpreting the numerical relationship between objects (e.g.,
misreading proportions or quantities).

8. **Spatial Relations**: Misunderstanding the spatial, orientation, or distance relationships
between objects.

8. **Logical Errors**: Errors in reasoning, such as incorrect causal relationships or conflicts in
inference steps.

10. **Calculation Errors**: Errors in mathematical operations (e.g., addition, subtraction,
equation solving).

11. **Knowledge Errors**: Applies incorrect domain knowledge or makes unrealistic infer-
ences (e.g., violating common sense or physical laws).

12. **Query Misunderstanding**: Provides incorrect or irrelevant answers due to misunder-
standing the query.

)

Please analyze the hallucinations in the following solution and provide:

1. A list of each hallucination and its type (using the exact format from above)
2. Make sure to use the exact hallucination type format (e.g. **Object**, **OCR**, etc.)
Original solution: original_solution

Hallucinated solution: hallucinated_solution

EXAMPLE

Please respond in the following format:

<type_analyze>

1. "hallucinated text" - **Hallucination Type™**

2. "hallucinated text" - **Hallucination Type** ...

</type_analyze>

Table 10: Template prompts of hallucination type analysis.
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Template prompts of Vanilla

SYSTEM
You are a hallucination detector for multimodal large language models. Your task is to tag
hallucinations in the model’s response.

IMPORTANT OUTPUT FORMAT REQUIREMENTS:

1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"

2. Then use <Tagged_Text> tags to wrap the tagged response

3. Inside <Tagged_Text> tags:

- Output the original response with ONLY <hallucination> tags added

- DO NOT modify or change any words in the original response

- ONLY add <hallucination> tags around hallucinated content

- If there are no hallucinations, output the original text exactly as is

4. End with </Tagged_Text>

5. DO NOT add any other text, analysis, or explanation

6. ANY OTHER FORMAT WILL BE REJECTED

EXAMPLE

Example Input:

prompt given to the model: describe the image model’s response: The bright red sports car is
parked near a lake.

Correct Output Format:

Here is the response with hallucinated content tagged: <Tagged_ Text> The <hallucina-
tion>bright red</hallucination> sports car is <hallucination>parked near a lake</hallucination>.
</Tagged_Text>

INCORRECT Outputs (DO NOT DO THESE):

Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>

Any text after </Tagged_Text>

Any explanatory text or analysis

Any modification to the original text

Any additional formatting or tags besides <hallucination>

Table 11: Template prompts of Vanilla.
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Template prompts of 2-shot

SYSTEM
You are a hallucination detector for multimodal large language models. Your task is to tag
hallucinations in the model’s response.

Here is the prompt given to the model:

{prompt}

Here is the model’s response:

{test_description}

Please analyze the image and add <hallucination> tags to any hallucinated content in the model’s
response. Remember to tag each hallucinated content separately!

IMPORTANT OUTPUT FORMAT REQUIREMENTS:

1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"

2. Then use <Tagged_Text> tags to wrap the tagged response

3. Inside <Tagged_Text> tags:

- Output the original response with ONLY <hallucination> tags added

- DO NOT modity or change any words in the original response

- ONLY add <hallucination> tags around hallucinated content

- If there are no hallucinations, output the original text exactly as is

4. End with </Tagged_Text>

5. DO NOT add any other text, analysis, or explanation

6. ANY OTHER FORMAT WILL BE REJECTED

EXAMPLES

Example Input 1:

prompt given to the model: describe the image

model’s response: The bright red sports car is parked near a lake.

Example Output 1:

Here is the response with hallucinated content tagged:

<Tagged_Text>

The <hallucination>bright red</hallucination> sports car is <hallucination>parked near a
lake</hallucination>.

</Tagged_Text>

Example Input 2:

prompt given to the model: what is the person wearing?

model’s response: The woman is wearing a blue dress with white flowers and holding a black
umbrella.

Example Output 2:

Here is the response with hallucinated content tagged:

<Tagged_Text>

The <hallucination>woman</hallucination> is wearing a <hallucination>blue dress with white
flowers</hallucination> and <hallucination>holding a black umbrella</hallucination>.
</Tagged_Text>

INCORRECT Outputs (DO NOT DO THESE):
Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>

Any text after </Tagged_Text>

Any explanatory text or analysis

Any modification to the original text

Any additional formatting or tags besides <hallucination>

nn

Table 12: Template prompts of 2-shot

20



Template prompts of Criteria

SYSTEM
You are a hallucination detector for multimodal large language models. Your task is to tag
hallucinations in the model’s response.

IMPORTANT OUTPUT FORMAT REQUIREMENTS:

1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"

2. Then use <Tagged_Text> tags to wrap the tagged response

3. Inside <Tagged_Text> tags:

- Output the original response with ONLY <hallucination> tags added

- DO NOT modify or change any words in the original response

- ONLY add <hallucination> tags around hallucinated content

- If there are no hallucinations, output the original text exactly as is

4. End with </Tagged_Text>

5. DO NOT add any other text, analysis, or explanation

6. ANY OTHER FORMAT WILL BE REJECTED

DEFINITION OF 12 HALLUCINATION TYPES

When identifying hallucinations, refer to these types:

. ¥*Object**: Incorrect identification of objects in visual content.

. **OCR**: Failure in text recognition processes within images.

. **Numerical Attribute**: Misinterpretation of numerical values in visual elements.

. **Color Attribute**: Errors in identifying the color.

. **Shape Attribute**: Misrecognition of object shapes.

**Spatial Attribute**: Errors in recognizing the position, orientation, or distance of the
object.

7. **Numerical Relations**: Misinterpreting the numerical relationship between objects (e.g.,
misreading proportions or quantities).

8. **Spatial Relations**: Misunderstanding the spatial, orientation, or distance relationships
between objects.

9. **Logical Errors**: Errors in reasoning, such as incorrect causal relationships or conflicts in
inference steps.

10. **Calculation Errors**: Errors in mathematical operations (e.g., addition, subtraction,
equation solving).

11. **Knowledge Errors**: Applies incorrect domain knowledge or makes unrealistic infer-
ences (e.g., violating common sense or physical laws).

12. **Query Misunderstanding**: Provides incorrect or irrelevant answers due to misunder-
standing the query.

EXAMPLE Example Input:

prompt given to the model: describe the image

model’s response: The bright red sports car is parked near a lake.

Correct Output Format:

Here is the response with hallucinated content tagged:

<Tagged_Text>

The <hallucination>bright red</hallucination> sports car is <hallucination>parked near a
lake</hallucination>.

</Tagged_Text>

o O I S

INCORRECT Outputs (DO NOT DO THESE):
Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>

Any text after </Tagged_Text>

Any explanatory text or analysis

Any modification to the original text

Any additional formatting or tags besides <hallucination>

nn

Table 13: Template prompts of Criteria
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Template prompts of Analyze-then-Judge

SYSTEM
You are a hallucination detector for multimodal large language models.

Your task is to: 1. Analyze the image and the model’s response to an image-related query.
2. First provide your analysis in <Analysis>...</Analysis> tags: - Analyze what is actually
present in the image - Compare it with what the model claims - Explain any discrepancies you
find 3. Then in <Tagged_Text>...</Tagged_Text> tags: - Output the original model’s response
unchanged with <hallucination> tags - Tag hallucinated words/phrases with <hallucination> - If
no hallucinations, output the original text unchanged

EXAMPLE

Example Input: prompt given to the model: describe the image model’s response: The bright
red sports car...

Example Output Format: <Analysis> The image shows a car, but: 1. The car is actually blue,
not red 2. It’s a regular sedan, not a sports car Therefore, both the color description and car type
are hallucinations. </Analysis>

<Tagged_Text> The <hallucination>bright red</hallucination> sports car... </Tagged_Text>

Table 14: Template prompts of Analyze-then-Judge.

Template prompts of XML format

SYSTEM
You are a hallucination detector for multimodal large language models.

Your task is to tag hallucinations in the model’s response.

IMPORTANT OUTPUT FORMAT REQUIREMENTS:

1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"

2. Then use <Tagged_Text> tags to wrap the tagged response

3. Inside <Tagged_Text> tags: - Output the original response with ONLY <A> tags added -
DO NOT modify or change any words in the original response - ONLY add <A> tags around
hallucinated content - If there are no hallucinations, output the original text exactly as is

4. End with </Tagged_Text>

5. DO NOT add any other text, analysis, or explanation

6. ANY OTHER FORMAT WILL BE REJECTED

EXAMPLE

Example Input: prompt given to the model: describe the image model’s response: The bright
red sports car is parked near a lake.

Correct Output Format: Here is the response with hallucinated content tagged: <Tagged_Text>
The <A>bright red</A> sports car is <A>parked near a lake</A>. </Tagged_Text>

INCORRECT Outputs (DO NOT DO THESE):

Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>

Any text after </Tagged_Text>

Any explanatory text or analysis

Any modification to the original text

Any additional formatting or tags besides <A>

nn

Table 15: Template prompts of XML format.
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Template prompts of JSON index format

SYSTEM
You are a hallucination detector for multimodal large language models.

Your task is to identify hallucinations by providing their exact word indices in the text. Please
output your results in JSON format.

IMPORTANT OUTPUT FORMAT REQUIREMENTS:

1. Start with EXACTLY this line: "Here is the hallucination analysis:"

2. Then output the hallucinations as a JSON object with the following structure:
{

"hallucinations": [ {

"start": X,

"end": Y,

"text": "hallucinated text"

b1

where: X is the starting word index (0-based) Y is the ending word index (exclusive)
hallucinated_text is the exact text from those indices

DO NOT add any other text, analysis, or explanation.

ANY OTHER FORMAT WILL BE REJECTED.

EXAMPLE

Example Input: prompt given to the model: describe the image

model’s response: The bright red sports car is parked near a lake.

Correct Output Format: Here is the hallucination analysis: {

"hallucinations": [

{

"start": 1,

"end": 3,

"text": "bright red"

}

{

"start": 6,

"end": 10,

non

"text": "parked near a lake"

1]
}

INCORRECT Outputs (DO NOT DO THESE):

Any text before "Here is the hallucination analysis:"

Any text between the header and the JSON output

Any text after the JSON output Any explanatory text or analysis
Any modification to the original text

Any additional formatting or tags besides JSON

Table 16: Template prompts of JSON index format.
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An example of FHD on MHALO

A B c

8. In the figure above, the ratio of the length of AB to the
the length of AT is 2 : 5. If AC' = 25, what is the length
of AB?

(A) 8

Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B, C,
D, at the end.
Question: In the figure above, the ratio of the length of line AB to the length of line ACis 2 : 5.
If AC =25, what is the length of line AB?
Choices:
(A)8
(B) 10
©) 15
(D) 18
(E) 20
Ground truth annotation: The correct answer is <hallucination>(C)</hallucination> <hal-
lucination>15</hallucination>. The ratio of AB to AC is 2:5, which means AB = <hal-
lucination>2/7</hallucination> * AC. Plugging in AC = 25, we get AB = <hallucina-
tion>2/7</hallucination> * 25 = <hallucination>15</hallucination>. So the answer is <halluci-
nation>(C)</hallucination>.
HALODET-4B response: The correct answer is <hallucination>(C) 15.</hallucination>The
ratio of AB to AC is 2:5, which means AB = <hallucination>2/7</hallucination> * AC.
Plugging in AC = 25, we get AB = <hallucination>2/7</hallucination> * 25 = <hallucina-
tion>15.</hallucination>So the answer is <hallucination>(C).</hallucination>

: The correct answer is (C) 15. The ratio of AB to AC is 2:5, which means
<hallucination>AB = 2/7 * AC</hallucination>. Plugging in AC = 25, we get <hallucina-
tion>AB = 2/7 * 25 = 15</hallucination>. So the answer is (C).
GEMINI-1.5-PRo response: The correct answer is (C) 15. The ratio of AB to AC is 2:5, which
means <hallucination>AB = 2/7 * AC</hallucination>. <hallucination>Plugging in AC =25,
we get AB =2/7 * 25 = 15.</hallucination>So the answer is (C).

: The correct answer is (C) 15.<hallucination>The ratio of AB

to AC is 2:5, which means AB = 2/7 * AC.</hallucination><hallucination>Plugging in AC =
25, we get AB = 2/7 * 25 = 15.</hallucination>So the answer is (C).

Table 17: An example of FHD on MHALO.
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An example of FHD on MHALO

Question: What is being washed in the sink?

Ground truth annotation: <hallucination>A toothbrush</hallucination> is being washed in
the sink.

HALODET-4B response: <hallucination>A toothbrush</hallucination> is being washed in the
sink.

GPT-40 response:  <hallucination>toothbrush</hallucination> is being <hallucina-
tion>washed</hallucination> in the sink.

GEMINI-1.5-PRO response: A <hallucination>toothbrush</hallucination> is being <hallucina-
tion>washed</hallucination> in the sink.

CLAUDE-3.5-SONNET  response: <hallucination>A  toothbrush  is  being
washed</hallucination> in the sink.

Table 18: An example of FHD on MHALO.
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