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Abstract
Hallucination remains a critical challenge for001
multimodal large language models (MLLMs),002
undermining their reliability in real-world ap-003
plications. While fine-grained hallucination004
detection (FHD) holds promise for enhancing005
high-quality vision-language data construction006
and model alignment through enriched feed-007
back signals, automated solutions for this task008
have yet to be systematically explored. Inspired009
by the concept of “MLLM as a Judge”, we010
introduce MHALO, the first comprehensive011
benchmark specifically designed for evaluating012
MLLMs’ capability in performing token-level013
FHD. Our benchmark encompasses 12 distinct014
hallucination types spanning both multimodal015
perception and reasoning domains. Through ex-016
tensive evaluations of 9 selected MLLMs, we017
reveal substantial performance limitations, with018
the leading model achieving an average F1IoU019
of only 40.59%. To address this limitation, we020
develop HALODET-4B, a specialized model021
trained on our curated training data, which sig-022
nificantly outperforms existing models. We023
hope the benchmark can provide valuable in-024
sights for future research on hallucination miti-025
gation in MLLMs. The code and dataset will026
be publicly available.027

1 Introduction028

The advancement of Multimodal Large Language029

Models (MLLMs; (OpenAI, 2024; gpt, 2023; Team030

et al., 2024; Anthropic, 2024)) represents a ground-031

breaking achievement in the field of AI, demon-032

strating exceptional capabilities in perception and033

reasoning (Wang et al., 2024b; OpenAI, 2024; gpt,034

2023; Team et al., 2024; Liu et al., 2024b). Despite035

their promise, MLLMs are still plagued by hallu-036

cination, a phenomenon that involves generating037

erroneous or fabricated responses contradicting the038

actual visual content or language context (Bai et al.,039

2024a; Liu et al., 2024a; Sahoo et al., 2024).040

Therefore, to address this issue and enhance the041

reliability of MLLMs, Fine-grained Hallucination042

Detection (FHD), which offers enriched token-level 043

feedback signals, emerges as a crucial solution to 044

mitigate the generation of erroneous or fabricated 045

responses. Unlike coarse-grained feedback that pe- 046

nalizes hallucinations at the expense of suppressing 047

correct content (Yu et al., 2024), FHD accelerates 048

human annotation and data refinement by pinpoint- 049

ing hallucinations (Fu et al., 2024b), thereby fa- 050

cilitating efficient acquisition of high-quality data. 051

Furthermore, FHD offers more informative signals, 052

leading to effective model alignment. (Yu et al., 053

2024; Gunjal et al., 2024; Jing and Du, 2024a; Xiao 054

et al., 2024). 055

Despite its advantages, current research on mul- 056

timodal hallucination detection still exhibits lim- 057

itations in granularity. Jing et al. (2024) was one 058

of the first to conduct fine-grained hallucinations 059

evaluations by verifying the extracted atomic facts 060

in responses against the input image. Chen et al. 061

(2024b) proposed a unified detection framework us- 062

ing external tools to validate hallucinations. Both 063

of them operate detection at the claim level and 064

lack the ability to precisely localize hallucinations. 065

Automated hallucination detection at a more fine- 066

grained level, token level, remains unexplored. 067

Inspired by the concept of MLLMs as a 068

judge (Lee et al., 2024; Chen et al., 2024a; Wen 069

et al., 2024), a natural question emerges: “Can 070

MLLMs serve as reliable judges for FHD?” This 071

necessitates establishing a meta-evaluation bench- 072

mark that can effectively assess the performance 073

of MLLMs on FHD. Building such a benchmark 074

presents two key challenges: (1) Construct a tai- 075

lored dataset ensuring comprehensive coverage of 076

hallucination types across diverse scenarios. (2) 077

Developing quantitative and objective evaluation 078

metrics that align with human judgment. 079

To bridge these research gaps, we introduce 080

MHALO, a novel FHD benchmark consisting of 081

2,155 carefully curated instances with token-level 082

annotations. It features the following aspects: on 083
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Q: In ⊙P, m ∠ EN = 66° and m ∠ GPM = 89°. Find m
∠ GNM. Choices: (A) 44.5 (B) 66 (C) 89 (D) 155
A: Let‘s solve this step by step: The circle is labeled
as o dot P, with key points G, M, N, E on the
circumference and the center marked as P. The given
values are: m ∠ EN = 66° (measure of the arc EN). m
∠ GPM = 89° (central angle subtending arc GM). We
are tasked to find m ∠ GNM, which is an inscribed
angle subtending arc GM. Recall the relationship
between an inscribed angle and its intercepted arc: m
∠ GNM = 1/2 * m arc GM. To find m arc GM, notice
that m ∠ GPM = 2 * m arc GM because GPM is a
central angle. Thus: m arc GM = 44.5°. Substitute m 
arc GM = 44.5° into the formula for m ∠ GNM: m ∠ 
GNM = 1/2 * 44.5° = 22.25°. Therefore, the measure
of m ∠ GNM is 22.25°, and the correct option is: A.

Containing hallucination types： ⑨⑩
Q: Give a thorough description of the
image, focusing on the landmark it shows.
A: The image features a large sandstone
building with several white domes, which is
a well-known landmark in Islamabad,
Pakistan. This architectural masterpiece is
known as the Faisal Mosque, named after 
the late King Faisal of Saudi Arabia. The
mosque‘s design is inspired by ancient
Persian architecture, and its large dome
and four minarets make it stand out among
other structures. There are several people
near the mosque, with some walking and
others possibly riding bicycles or motorcycle.
Additionally, there are several cars parked 
around the area, indicating that this is a
busy place of interest for both locals and
tourists alike.
Containing hallucination types: ①③⑨

Q: How much money does Carrie need to buy a peach
pie and a carrot cake?
A: Let‘s solve this step by step: 1. From the image,
the prices of the items are: Carrot cake: $26 Peach
pie: $18 2. To calculate the total money Carrie
needs to buy both items, we add their prices: Total =
Price of carrot cake + Price of peach pie. Total =
$26 + $18 = $46. Therefore, the answer is 46."
Containing hallucination types： ②⑧

Q: Which pillow is closer to the camera?
A: The pillow that is closer to the camera is the one on the 
left side of the bed.
Containing hallucination types： ⑫

Q: What is being washed in the sink?
A: A toothbrush is being washed in the sink.
Containing hallucination types: ①

Q: What are the key
features you observe in
the image?
A: A young man standing
on stage wearing white
pants and shoes.
Containing hallucination
types: ④

Q: How many people can wash
their hands at a time in here?
A: Only one person can wash hands
at a time.
Containing hallucination types：③

Figure 1: The MHALO Benchmark. Our benchmark features token-level annotations with comprehensive
coverage of hallucination types across both Perception and Reasoning scenarios. Text highlighted in different
colors corresponds to various types of hallucination annotations.

the one hand, prior work has mainly focused on nat-084

ural scenes and contains only a small proportion of085

questions requiring mathematical reasoning (Chen086

et al., 2024b; Yu et al., 2024; Gunjal et al., 2024),087

leaving a comprehensive investigation of halluci-088

nation detection within vision-language reasoning089

largely unexplored. Thus, we present a compre-090

hensive taxonomy covering hallucinations in both091

multimodal perception and reasoning processes,092

categorizing hallucinations into 12 distinct types093

(see the pie chart in Figure 1). On the other hand,094

MHALO defines FHD as a task requiring mod-095

els to provide token-level hallucination annotations096

(see examples in Figure 1), taking into account both097

recognition and localization aspects, and we pro-098

pose the corresponding metrics F1M and F1IoU ,099

the latter inspired by object detection to objectively100

assess the accuracy of detection. We demonstrate101

their effectiveness through rigorous validation.102

We evaluate multiple well-known MLLMs (Ope-103

nAI, 2024; Anthropic, 2024) on MHALO and in-104

vestigate the impact of different prompting strate-105

gies on their performance. It can be observed106

that FHD poses significant challenges for state-of-107

the-art (SOTA) MLLMs, with the leading MLLM108

on MHALO, GPT-4O, achieving an average109

F1IoU of only 40.59%. In order to build a high- 110

performance fine-grained hallucination detector, 111

we adopt a data-driven strategy to fine-tune a 112

specialized model HALODET-4B, which achieves 113

SOTA performance on MHALO. Our contribu- 114

tions are as follows: 115

1. We propose a comprehensive FHD benchmark 116

covering hallucination types both in percep- 117

tion and reasoning scenarios with specially- 118

designed metrics F1M and F1IoU for token- 119

level hallucination. 120

2. In our benchmark evaluation of various 121

MLLMs, we have identified a significant per- 122

formance gap in executing FHD. Notably, 123

none of the models have surpassed the 50% 124

threshold in terms of F1IoU . 125

3. We develop HALODET-4B, a detector that 126

achieves SOTA performance on the proposed 127

benchmark. 128

2 MHALO 129

We present MHALO, a novel benchmark encom- 130

passing 2,155 meticulously curated entries. The 131
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Type Definition

Object Incorrect identification of objects in visual content.

OCR Failure in text recognition processes within images.

Numerical Attribute Misinterpretation of numerical values in visual elements.

Color Attribute Errors in identifying the color.

Shape Attribute Misrecognition of object shapes.

Spatial Attribute Errors in recognizing the position, orientation, or distance of the object.

Logical Error Errors in reasoning, such as incorrect causal relationships or conflicts in inference steps.

Calculation Error Errors in mathematical operations (e.g., addition, subtraction, equation solving).

Knowledge Error Applies incorrect domain knowledge or makes unrealistic inferences (e.g., violating common sense or physical laws).

Query Misunderstanding Provides incorrect or irrelevant answers due to misunderstanding the query.

Numerical Relation Misinterpreting the numerical relationship between objects (e.g., misreading proportions or quantities).

Spatial Relation Misunderstanding the spatial, orientation, or distance relationships between objects.

Table 1: Hallucination types and definitions
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Figure 2: Fine-grained Annotation. Hallucinated seg-
ment length distribution of different subsets.

benchmark construction addresses three core chal-132

lenges: (1) granular annotation framework, (2)133

comprehensive hallucination taxonomy, and (3)134

detection-oriented metrics. We begin by describ-135

ing its unique features compared to previous works136

(Section 2.1). Next, we outline the data curation137

pipeline (Section 2.2). Finally, we show the de-138

sign of token-level metrics (Section 2.3) for the139

automated and quantitative assessment of precise140

detection performance.141

2.1 Key Features of MHALO142

Our benchmark advances previous work through143

two fundamental innovations:144

Token-level Annotation Framework. Un-145

like the existing detection approaches supporting146

claim-level (Chen et al., 2024b; Jing et al., 2024),147

which require extracting claims from annotated148

text, MHALO offers a token-level hallucination149

annotation directly on the predicted response, as150

illustrated in Figure 1. We ensure the annotation151

identifies the minimal erroneous components re-152

quiring revision during the dataset construction153

process, more details can be found in Appendix A. 154

The distribution of hallucinatory segment lengths 155

in our benchmark is shown in Figure 2. Most seg- 156

ments have fewer than five tokens, highlighting the 157

precise localization of the hallucinatory part rather 158

than offering a rough and approximate annotation. 159

This enables accurate token-level feedback, facili- 160

tating the data selection process and enhancing the 161

post-training process through fine-grained reward 162

techniques (Yu et al., 2024; Gunjal et al., 2024). 163

Unified Perception-Reasoning Taxonomy. 164

Reasoning is indispensable to fully unlocking 165

the potential of Artificial General Intelligence 166

(AGI) (Wang et al., 2023b). Earlier studies predom- 167

inantly focused on hallucinations in natural scenes 168

(Chen et al., 2024b; Yu et al., 2024; Gunjal et al., 169

2024), with only a limited proportion of questions 170

involving mathematical reasoning. Nevertheless, 171

actually, hallucinations can occur in both percep- 172

tion and reasoning processes. As shown in Figure 1 173

and Table 1, we distinguish two hierarchical stages: 174

• Perception involving image understanding 175

and information extraction (e.g., misinterpre- 176

tations of objects, text, or visual attributes like 177

color, shape, and spatial positioning). 178

• Reasoning builds upon perception to infer re- 179

lationships between objects or interpret com- 180

plex scenarios (e.g., logical fallacies, computa- 181

tional errors, or misinterpretations of complex 182

queries). 183

Our taxonomy identifies 12 distinct hallucination 184

types across both stages beyond conventional hallu- 185

cination types like object and attribute errors (Bai 186

et al., 2024b; Jiang et al., 2024), enabling holistic 187

evaluation of MLLMs in diverse scenarios. 188
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Statistic Number

NATURE 1000
RLHF-V 500
M-HalDetect 500

REASONING 1000
Geo170K 500
MathV360K 500

MC 155
Total 2155

Average hallucinated segment length 3.45

Average response length 72.41

Table 2: Detailed statistics of MHALO

2.2 Dataset Collection Process189

MHALO comprises instance tuples (I,Q,O,A),190

where I denotes the input image, Q represents191

the query prompt, O indicates the potentially hal-192

lucinated response, and A serves as the ground193

truth annotation with fine-grained hallucination194

tags for each hallucinated segments. The dataset195

of MHALO can be divided into three distinct sub-196

sets: (1) The NATURE set is curated from two197

existing human-labeled fine-grained hallucination198

datasets (Yu et al., 2024; Gunjal et al., 2024), and199

we further filter and tailor it to meet requirements200

of the benchmark. (2) The REASONING set focus201

on reasoning. As most existing multimodal mathe-202

matical reasoning datasets are coarsely annotated,203

we adopt the way of perturbing ground-truth so-204

lutions (Fu et al., 2024a; Mishra et al., 2024b) to205

acquire large amounts of fine-grained annotated206

instances. (3) To further verify the detector’s per-207

formance in real-world applications, we collect208

out-of-distribution datasets (Sun et al., 2023; Lu209

et al., 2024; Guan et al., 2024) covering both per-210

ception and reasoning aspects and apply manual211

fine-grained annotation, denoted as the MC set.212

Accordingly, the NATURE set evaluates the hal-213

lucination detection ability mainly from percep-214

tion aspects, the REASONING set stresses whether215

MLLM evaluators can truly detect hallucination216

in a multimodal reasoning process. The detailed217

statistics are shown in Table 2. We provide the218

detailed construction process of each subset in Ap-219

pendix A.220

Quality Examination. To ensure the accuracy221

and granularity of hallucination annotations, we222

manually evaluated the dataset. Three authors in-223

dependently reviewed a 200-entry sample from the224

benchmark. The success rate was determined by225

majority voting, considering a sample successful226

only if at least two annotators agreed on its fine-227

grained annotation quality. The evaluation results 228

revealed a success rate of 95%, supported by a sub- 229

stantial inter-annotator agreement of 0.79, as mea- 230

sured by Fleiss’ Kappa (Fleiss et al., 1981). These 231

findings validate the high quality of our dataset. 232

Further details can be found in Appendix A.4. 233

2.3 Metric 234

FHD Task: Given a multimodal query q consisting 235

of an image I and a textual prompt Q, and the 236

corresponding output O from an MLLM, our task 237

is to identify and localize all hallucinated intervals 238

in O, as shown in Figure 3. Hallucinated intervals 239

are text segments in O that are not grounded in the 240

input query q. 241

Notation and Definitions: To formalize this task, 242

we introduce the following notations: 243

• G = {B1
gt, B

2
gt, . . . , B

m
gt }: Ground truth in- 244

tervals, where Bj
gt = [gj , hj ] for j = 245

1, 2, . . . ,m. Here, gj and hj represent the 246

start and end token indices of the j-th ground 247

truth interval in the sequence of tokens O = 248

[o1, o2, . . . , on]. 249

• O = {B1
p , B

2
p , . . . , B

n
p }: Predicted intervals, 250

where Bi
p = [si, ti] for i = 1, 2, . . . , n. The 251

indices si and ti denote the start and end token 252

indices of the i-th predicted interval. 253

• T (B): The text span corresponds to an in- 254

terval B in O, where B can refer to either a 255

ground truth or a predicted interval. This is the 256

actual sequence of tokens within the indices 257

defined by the interval. 258

We use two metrics to evaluate the model’s per- 259

formance: F1M and F1IoU . 260

▷ F1M : The evaluation of the model’s perfor- 261

mance is based on partial matches between the 262

ground truth intervals and the predicted intervals. 263

Specifically, we use a recall-based partial match 264

score (PMR) (Jafari et al., 2024) to assess the de- 265

gree to which the predicted intervals match the 266

ground truth intervals. PMR is defined as: 267

PMR(j) =


1, if ∃Bi

p s.t. Bi
p = Bj

gt,
|T (Bi

p)|
|T (Bj

gt)|
, if ∃Bi

p s.t. Bi
p ⊆ Bj

gt,

0, otherwise.
(1)

268

Similarly, the precision-based partial match score 269

PMP is defined analogously. The recall RecM 270
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GT: From right to left, the objects are a
<hallucination>cup</hallucination>, a spoon,
and a <hallucination>plate</hallucination>.

MLLM response

Predict: From right to left, the
objects are a cup, a spoon, and
<hallucination>a plate</hallucination>.

𝐹1𝐼𝑜𝑈 = 2/3 𝐹1𝑀 = 1/2

Detector output

Q: What are the objects from right to left?

From right to left, the objects are a cup, a
spoon, and a plate

Fine-grained hallucination annotation

FHD

Metric

Prediction v.s.
Ground truth

IoU
Match

Figure 3: An overview of token-level FHD and corresponding metrics.

and precision PrecM are then computed as:271

RecM =
1

m

m∑
j=1

PMR(j), (2)272

PrecM =
1

n

n∑
i=1

PMP (i). (3)273

Finally, F1M is calculated as the harmonic274

mean of recall and precision.275

▷ F1IoU : Although F1M can indicate the de-276

gree of overlap between predictions and ground277

truth, it fails to capture the inherent ambiguity278

in detection tasks. For example, when annotating279

hallucinations, there may be multiple valid ways280

to label the text. For instance, an image showing a281

black shirt and white pants could lead to MLLM282

hallucination responses like “black pants”. Both283

“black” and “pants” could be valid hallucinations,284

where simply measuring the proportion of matched285

tokens becomes less meaningful. Inspired by ob-286

ject detection metrics (Padilla et al., 2020; Zang287

et al., 2022), we propose F1IoU to mitigate this is-288

sue. First, we introduce the Intersection over Union289

(IoU) score, which measures the overlap between290

predicted and ground truth intervals. The IoU is291

defined as:292

IoU(i, j) =
|Bi

p ∩Bj
gt|

|Bi
p ∪Bj

gt|
. (4)293

A match is considered valid if IoU ≥ 0.5. Let294

1(·) be the indicator function, the F1IoU score is295

computed through optimal interval matching: 296

M̂ = max
M∈M

∑
(i,j)∈M

1(IoU(i, j) ≥ 0.5) (5) 297

F1IoU =
2M̂

|O|+ |G|
(6) 298

where M := {M ⊆ O × G | ∀(a, b), (c, d) ∈ 299

M, (a ̸= c) ∧ (b ̸= d)} is the set of all bipar- 300

tite matchings, and M̂ is the maximum matching 301

solved by the Hungarian algorithm (Kuhn, 1955). 302

In this way, we anticipate a more precise evaluation 303

of the detection of hallucinatory segments. 304

3 Fine-tuning an MLLM as a Detector 305

In our preliminary experiments, we observed that 306

leading MLLMs (OpenAI, 2024; Team et al., 2024) 307

are not particularly effective at detecting halluci- 308

natory segments (see Table 3). This shortfall is 309

probably due to the absence of such tasks in the 310

training data, which has prevented the full potential 311

of these models from being realized. To enhance 312

the ability of hallucination detection, we collect 313

and construct labeled data and train a specialized 314

detection model. Specifically, we use GLM-4V 315

(4B) (GLM et al., 2024) as our backbone model 316

and fine-tune it to get HALODET-4B. The training 317

set is constructed using a process similar to Sec- 318

tion 2.2. Additional details about training set con- 319

struction and fine-tuning parameters can be found 320

in Appendix B.1. 321
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MLLM
RLHF-V M-HalDetect Geo170K MathV360K MC Average

F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF

Open-Source Evaluation Models

MINICPM-V 2.6 25.09 20.96 99.20 8.53 3.01 97.00 10.73 3.90 41.83 24.48 19.15 88.74 34.97 32.42 83.33 18.36 13.13 82.14
INTERNVL2-LLAMA3-76B 31.62 26.81 99.59 15.00 6.30 99.53 28.90 19.44 58.46 32.49 25.53 94.38 50.53 44.57 98.47 28.54 21.17 88.09
LLAMA-3.2-90B-VISION-INSTRUCT 35.71 29.49 99.79 18.40 7.81 99.80 36.85 18.36 79.76 42.54 32.72 96.78 55.49 45.52 95.30 34.89 23.63 94.05

Closed-Source Evaluation Models

QWEN-VL-MAX 32.70 26.66 100.00 11.43 9.65 100.00 37.55 19.65 99.39 37.02 31.95 99.60 40.19 34.98 98.67 30.38 22.89 99.67
ABAB7-CHAT-PREVIEW 38.38 32.42 98.99 27.94 16.39 96.99 34.16 19.33 88.41 40.57 35.79 95.40 57.64 53.33 98.70 36.88 27.97 95.23
GLM-4V-PLUS 38.85 32.30 99.80 28.65 20.38 99.80 34.91 30.83 81.40 37.33 33.99 94.78 48.12 42.36 97.40 35.87 30.30 94.19
CLAUDE-3.5-SONNET 43.94 28.73 99.00 39.65 20.59 97.80 51.69 27.36 98.80 56.87 37.77 98.20 58.32 44.91 99.29 48.71 29.68 98.50
CLAUDE-3.5-SONNET* 43.98 28.12 99.80 44.46 25.24 98.60 52.02 26.76 98.40 56.08 35.60 99.00 59.02 47.16 97.87 49.79 30.13 98.88
GEMINI-1.5-PRO 41.54 29.71 99.60 35.83 19.64 99.80 52.96 30.17 99.60 62.01 50.79 100.00 63.90 55.50 99.35 49.22 34.22 99.72
GEMINI-1.5-PRO* 44.37 33.00 99.60 37.14 21.09 99.60 56.00 31.07 98.40 65.27 54.29 98.80 68.03 60.07 98.05 51.94 36.67 99.03
GPT-4O 43.92 30.63 100.00 45.97 32.85 100.00 63.03 45.22 98.80 62.63 45.12 99.80 64.90 56.07 99.29 54.63 39.62 99.63
GPT-4O* 46.55 35.74 99.80 47.27 30.30 100.00 57.77 34.08 98.80 72.61 58.27 99.00 70.97 58.69 96.52 56.83 40.59 99.24

HALODET-4B 49.11 39.70 99.00 56.49 47.06 99.80 70.64 61.43 96.20 73.39 64.54 95.00 70.77 61.31 98.70 63.01 53.76 97.59

Table 3: The overall performance of different MLLMs on MHALO (%). The best results are highlighted in bold,
while the suboptimal ones are marked with underline. Models using Analyze-then-Judge prompting are denoted
with *.

4 Experiments322

4.1 Experimental Setup323

Model Selection. We evaluate a total of 10324

MLLMs on MHALO, including GPT-4O (Ope-325

nAI, 2024), GEMINI-1.5-PRO-002 (Team et al.,326

2024), CLAUDE-3-5-SONNET (Anthropic, 2024),327

GLM-4V-PLUS (GLM et al., 2024), ABAB7-328

CHAT-PREVIEW1, QWEN-VL-MAX (Bai et al.,329

2023), LLAMA-3.2-90B-VISION (AI@Meta,330

2024), INTERNVL2-LLAMA3-76B (Chen et al.,331

2024c), MINICPM-V-2.6 (Yao et al., 2024), and332

our trained expert detector HALODET-4B.333

Evaluation Metrics. We utilize the metrics334

F1IoU and F1M defined in section 2.3. Given335

the challenges faced by MLLM in performing FHD,336

the testee models sometimes fail to follow the in-337

struction. We introduce the metric IF to represent338

the proportion of successful entries that complete339

the FHD task, samples on which the model fails to340

accomplish the task will receive a score of zero for341

these metrics.342

Evaluation Settings. We experiment various343

prompting strategies to evaluate the testee models:344

(1) The baseline method uses direct instructions to345

prompt the MLLM for FHD in a zero-shot setting.346

The MLLM then outputs the detection result using347

XML-style tags, as illustrated in Figure 3. We pro-348

vide the discussion of using different annotation349

formats in Appendix C.2. (2) To further explore350

the capability of MLLMs to perform FHD, we ex-351

periment with three additional prompting strategies352

(See Appendix C.1 for details). Our results indicate353

that the “Analyze-then-Judge” paradigm achieves354

superior performance across nearly all subsets. It355

1https://www.minimaxi.com/en/news/
abab7-preview-release.

builds on prior one-step chain-of-thought evalua- 356

tion (Chiang and yi Lee, 2023; Wei et al., 2023; 357

Chen et al., 2024a), and we implement it through 358

a two-phase reasoning process that first generates 359

a detailed hallucination analysis with factual cor- 360

rections and then annotating the response with hal- 361

lucination tags. Here, we evaluate all the mod- 362

els using the baseline method and also evaluate 363

the performance of SOTA MLLMs with “Analyze- 364

then-Judge”. The prompts used for evaluation are 365

provided in Table 11 and Table 14 in Appendix D. 366

4.2 Main Results 367

The results of ten selected MLLMs on MHALO 368

are presented in Table 3. Our comprehensive evalu- 369

ation yields the following key insights: 370

FHD remains a challenge for SOTA MLLMs. 371

Despite significant advancements in current 372

MLLMs, top-performance models still struggle 373

with FHD. The results show that GPT-4O leads 374

the benchmark, but achieves an average F1IoU 375

of only 40.59%, and GEMINI-1.5-PRO follows 376

behind. Notably, nearly half of the evaluated mod- 377

els exhibit particularly weak performance, with 378

F1IoU values below 30%, especially among open- 379

source models, which exhibit the worst results. 380

These findings highlight inherent limitations in 381

their capabilities for FHD. 382

Lightweight HALODET-4B achieves superior 383

performance. HALODET-4B outperforms the best 384

commercial model, GPT-4O, by an impressive mar- 385

gin, achieving nearly a 13% absolute gain in aver- 386

age F1IoU . Furthermore, it nearly achieves SOTA 387

performance across all the subsets. These results 388

underscore the critical need for specialized solu- 389

tions like HALODET-4B, while also highlighting 390

the substantial room for improvement in general- 391
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Figure 4: Metric Correlation with Human Evaluation.

purpose MLLMs for FHD. A detailed case study392

comparing the detection outputs of various models393

can be found in Appendix E.394

5 Analysis395

5.1 Metric Correlation with Human396

Evaluation397

To evaluate whether F1IoU and F1M can serve398

as reliable proxies for human judgment, we com-399

pute their Pearson correlation coefficients (Co-400

hen et al., 2009) with human annotations across401

MHALO. Three authors independently scored402

each predicted hallucination segment in GPT-4O403

detection results using an integer scale x (1 ≤404

x ≤ 4), which reflects the degree of correctness405

and precision in identifying hallucinated segments.406

The details criteria are provided in Table 4 in Ap-407

pendix B.2. The final score for each sample is408

obtained by averaging the scores of all predicted409

hallucination segments. We compare our metrics410

against token-level accuracy (ACC) from (Fu et al.,411

2024b), which formulates hallucination detection412

as a binary token classification task.413

The overall results are presented in Figure 4.414

F1IoU demonstrates the strongest alignment with415

human judgments, achieving Pearson correlation416

scores of 0.951 and 0.807 on the MC and Geo170K417

datasets, respectively. In contrast, F1M exhibits418

suboptimal alignment, while ACC shows signifi-419

cantly weaker correlations, with an overall corre-420

lation score of just 0.359. We attribute this dis-421

crepancy to the following factors: (1) F1IoU and422

F1M explicitly account for the spatial alignment423

of intervals, while ACC reduces detection to bi-424

nary token classification, which fails to capture425

the granularity of the annotations. (2) F1IoU uti-426
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Figure 5: Detection Performance of four representative
MLLMs across 12 hallucination types.

lizes thresholding for interval matching, effectively 427

addressing annotation boundary ambiguity and en- 428

hancing both flexibility and robustness across di- 429

verse datasets, thus achieving superior performance 430

compared to F1M . F1IoU proves to be the 431

most reliable proxy for human judgment, followed 432

by F1M , whereas traditional token-level metrics, 433

such as ACC, exhibit significant limitations in the 434

FHD task. 435

5.2 Performance in Identifying Different 436

Types of Hallucinations 437

Figure 5 presents the accuracies of cutting-edge 438

models on MHALO in identifying hallucina- 439

tions across different types. The models evalu- 440

ated include GPT-4O (OpenAI, 2024), CLAUDE- 441

3-5-SONNET (Anthropic, 2024), GEMINI-1.5- 442

PRO (Team et al., 2024), and HALODET-4B. We 443

provide the experiment details in Appendix B.3. 444

We can observe that MLLMs excel at identify- 445

ing hallucinations involving numerical attribute 446

and calculation error, achieving over 90% accu- 447

racy. However, they exhibit notable weaknesses 448

with logical error and spatial attribute, which 449

require advanced reasoning and spatial comprehen- 450

sion. While our HALODET-4B achieves a more 451

balanced performance overall, it still struggles with 452

spatial attribute and spatial relation. In summary, 453

MLLMs are doing well in hallucinations related to 454

arithmetic and object recognition, but face persis- 455

tent challenges in logical coherence, spatial reason- 456

ing, and complex attribute understanding. 457
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Figure 6: Results of four representative MLLMs on
samples without hallucination in MHALO.

5.3 FHD on Non-Hallucinated Samples458

Figure 6 shows the accuracy of various models in459

detecting hallucinations in non-hallucinated sam-460

ples from MHALO. It reveals that current SOTA461

MLLMs tend to produce a high rate of false posi-462

tives, incorrectly flagging truthful information as463

hallucinated, with average accuracy consistently464

below 25%. In contrast, our HALODET-4B out-465

performs other MLLMs across all subsets. The466

performance gap is especially pronounced in the467

M-HalDetect dataset, where our method reaches468

an impressive 82%. On average, HALODET-4B469

reaches 53% accuracy, more than twice the perfor-470

mance of the best-performing MLLM, highlighting471

its reliability.472

6 Related Work473

6.1 Hallucinations in MLLMs474

Recent advances in MLLMs have achieved remark-475

able breakthroughs in cross-modal perception and476

reasoning (Wang et al., 2024b; OpenAI, 2024; gpt,477

2023; Team et al., 2024; Liu et al., 2024b), enabling478

them to perform complex tasks requiring visual-479

language reasoning beyond basic recognition capa-480

bilities (GLM et al., 2024). Despite these advance-481

ments, hallucinations remain significant challenges,482

where MLLMs generate responses contradicting483

the visual input or linguistic context. This crit-484

ical limitation hinders practical deployment like485

autonomous driving (Cui et al., 2024), where ac-486

curate and trustworthy performance is essential.487

Addressing this fundamental challenge is crucial488

to unlocking the full potential of MLLMs in real-489

world applications.490

Previous studies have progressively expanded491

from initial investigations into object hallucina-492

tions (Rohrbach et al., 2019; Li et al., 2023) to493

the evaluation of a broader range of types involving494

category, attribute, and relation hallucinations (Bai495

et al., 2024a; Wang et al., 2024a; Jing et al., 2024). 496

However, current research remains limited to natu- 497

ral scenarios, overlooking the critical dimensions of 498

hallucinations induced during reasoning processes. 499

In this paper, we bridge this gap by establishing 500

a unified taxonomy that encompasses hallucina- 501

tion types across both the perception and reasoning 502

stages. 503

6.2 MLLM as a Judge for Fine-grained 504

Hallucination Detection 505

Recent advancements in hallucination evaluation 506

and detection have moved towards a more fine- 507

grained level, targeting evaluation at the sen- 508

tence (Yan et al., 2024; Xiao et al., 2024), 509

claim (Jing et al., 2024; Chen et al., 2024b), and 510

even token levels (Jing and Du, 2024b). While 511

the meta-evaluation paradigm, such as MLLM as 512

a judge (Gu et al., 2024; Chen et al., 2024a; Lee 513

et al., 2024), has yet to be systematically explored. 514

For instance, Wang et al. (2023a) first proposed 515

training MLLMs with synthetic data for hallucina- 516

tion detection, but their approach was limited to 517

response level. Chen et al. (2024b) introduced a 518

claim-level benchmark and suggested leveraging 519

external tools to assist in hallucination detection. 520

Nevertheless, this method is restricted to certain 521

types of hallucinations, such as those involving 522

factual knowledge or verifiable objects, leaving it 523

ineffective in scenarios that require complex rea- 524

soning, such as identifying spatial relations. Addi- 525

tionally, claim-level detection requires extracting 526

claims, which introduces further complexity. In 527

this paper, we focus on exploring the potential of 528

MLLMs to perform FHD at the token level. 529

7 Conclusion 530

In this paper, we introduce a novel meta-evaluation 531

benchmark, MHALO, designed to assess different 532

MLLMs ’ capability in performing FHD. By sys- 533

tematically evaluating 9 well-known MLLMs, we 534

highlight the significant performance gaps, none of 535

the models exceeded 50% F1IoU . To address this 536

limitation, we develop HALODET-4B, a special- 537

ized model that significantly outperforms existing 538

models. This benchmark, along with the trained de- 539

tector, provides valuable tools for improving hallu- 540

cination detection in MLLMs and can guide future 541

research in model alignment. 542
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8 Limitations543

Our study makes progress in fine-grained hallucina-544

tion detection for MLLMs through MHALO and545

HALODET-4B, but several limitations should be546

acknowledged to guide future research:547

Optimization Potential of the Detector. Although548

HALODET-4B achieves SOTA performance on549

MHALO, our training employs standard hyper-550

parameters without exhaustive optimization. The551

4B parameter architecture is lightweight and effi-552

cient, but may not fully exploit the training data’s553

potential. Systematic exploration of model scaling554

(e.g., 13B/70B variants), advanced optimization555

techniques, and architectural innovations could fur-556

ther boost detection accuracy.557

Generalization Across Modalities. While558

MHALO covers 12 hallucination types, its cur-559

rent instantiation focuses on image-text interac-560

tions. Emerging multimodal scenarios involving561

video, audio, and 3D data may introduce new hal-562

lucination patterns requiring framework adaptation.563

Extending our methodology to these domains re-564

mains an open challenge.565
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A Details on Benchmark Construction805

A.1 The NATURE Set806

The NATURE set focuses on tasks related to the807

perception and comprehension of natural images.808

The data used in this set are derived from RLHF-809

V (Yu et al., 2024) and M-HalDetect (Gunjal et al.,810

2024), two existing fine-grained annotated hallu-811

cination datasets labeled by human. RLHF-V is812

a fine-grained human preference dataset, contain-813

ing 5.7k QA and captioning samples, the image-814

instruction pairs are collected from diverse datasets,815

mostly from COCO, and two corresponding out-816

puts (Ow, Ol) in each instance, hallucinated out-817

puts Ol generated by diverse MLLM, such as In-818

structBLIP, Qwen, and LLaVA, the corresponding819

refined response Ow is written by people through820

fixing the hallucination span in Ol. We adopt the821

image-instruction pair and Ol as I , Q, O, and ac-822

quire A by comparing Ow and Ol. We then further823

manually check and filter to make sure O is cor-824

rectly annotated in each instance. We split part of825

the dataset to be used in the benchmark while re-826

maining to construct a training set. M-HalDetect fo-827

cuses exclusively on captioning tasks and includes828

12k training samples and 3k testing samples. Its im-829

ages are collected from COCO-val2014 (Lin et al.,830

2015), and corresponding caption output is sam-831

pled from MLLMs and the hallucination segment832

is labeled with the "Inaccurate" class. We sample833

instances from the testing set and further adjust834

their format to match our benchmark.835

A.2 The REASONING Set836

The REASONING set expands the benchmark’s837

scope beyond the natural scenario to include mathe-838

matical reasoning. We meticulously select two mul-839

timodal math reasoning datasets Geo170K (Gao840

et al., 2023) and MathV360K (Shi et al., 2024)841

as the data source. Unlike the NATURE set, they842

only contain ground truth solution in each instance843

and no hallucination responses exist. Inspired844

by Mishra et al. (2024a), We apply the perturbation845

method to get the hallucinated solution and corre-846

sponding annotation. Geo170K is a multimodal847

geometry dataset containing more than 170K geo-848

metric problem instances, and the answers to each849

problem have a detailed reasoning process. To in-850

troduce hallucination in the solution while balanc-851

ing the distribution of different types of hallucina-852

tion in our taxonomy, we prompt GPT-4o (OpenAI,853

2024), which takes the image-instruction pair and854

original solution as input and is instructed to gener- 855

ate hallucinated solution accompanying annotation 856

for 12 different types. MathV360K is a multimodal 857

mathematical reasoning dataset containing 360K 858

question-answer pairs from different domains thus 859

covering diverse tasks requiring reasoning. How- 860

ever, it only has a final answer and lacks the inter- 861

mediate reasoning step. So we first prompt GPT-4o 862

to generate the Chain-of-thought (CoT) (Wei et al., 863

2023) solutions. Then apply a similar process like 864

Geo170K to insert hallucination. The correspond- 865

ing prompt template is in Appendix D. We finally 866

filtered samples to ensure the balanced coverage of 867

different hallucination types. 868

A.3 The MC Set 869

We construct a carefully human-annotated dataset 870

comprising 155 samples, with 81 entries sourced 871

from MMHAL-BENCH (Sun et al., 2023),58 en- 872

tries from MathVista (Lu et al., 2024), and 16 en- 873

tries from HallusionBench (Guan et al., 2024) to en- 874

sure comprehensive coverage of perceptual and rea- 875

soning capabilities. Both source datasets provide 876

sample-level annotations indicating response cor- 877

rectness from various MLLMs. We specifically se- 878

lect responses flagged as erroneous for fine-grained 879

annotation, focusing on two key criteria: (1) Cor- 880

rectness. The annotated text segment should con- 881

tain hallucinatory content. (2) Granularity. The 882

proportion of hallucinatory content within the an- 883

notated segment. To ensure the quality of the data, 884

all the samples were manually annotated by the au- 885

thors of this paper and subsequently refined through 886

a comprehensive review process. We employed a 887

two-phase approach to maintain consistency in an- 888

notation. In the first phase, each sample was inde- 889

pendently annotated by three annotators, with the 890

criteria of identifying the smallest erroneous com- 891

ponents requiring revision. This method resulted 892

in a relatively high inter-annotation agreement rate 893

of 86%, where consistency was defined as an ex- 894

act match of each labeled hallucination segment 895

for each sample. Specifically, of the 155 newly 896

collected question-answer pairs, only 21 entries 897

showed discrepancies in the annotations. Then we 898

employed a majority voting system, where multiple 899

authors collaboratively decided whether to retain or 900

adjust contentious annotations. This was achieved 901

through team discussions, ensuring consensus was 902

reached on each sample. 903
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Score Description
1 Completely incorrect labeling of the hallucination interval. The marked interval either doesn’t correspond to

the actual hallucination or completely misses it, including falsely labeling non-hallucination as a hallucina-
tion.

2 Partially correct labeling. The marked interval covers part of the hallucination but misses other parts or
inaccurately identifies the boundaries. There are notable errors, but some correct areas are included.

3 Mostly accurate labeling. The marked interval is mostly correct with only minor errors, such as slight
inaccuracies in boundary detection or very small areas missed.

4 Completely accurate and fine-grained labeling. The hallucination interval is marked precisely with no
misjudgments or omissions, correctly identifying the smallest details that need modification.

Table 4: Scoring criteria for human labeling

MLLM Strategy
RLHF-V M-HalDetect Geo170K MathV360K MC Average

F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF

GPT-4O

Vanilla 43.97 30.63 100.00 45.97 32.85 100.00 63.03 45.22 98.80 62.63 45.12 99.80 64.90 56.07 99.29 54.63 39.62 99.63
2-shot 45.75 32.59 100.00 43.78 29.05 100.00 51.34 27.69 99.80 64.69 47.26 99.80 56.99 44.20 99.13 51.70 34.70 99.86
Criteria 44.11 32.49 100.00 45.88 31.71 100.00 56.98 36.43 99.20 66.39 50.97 99.80 62.59 53.52 98.33 53.87 38.78 99.67
Analyze-then-Judge 46.55 35.74 99.80 47.27 30.30 100.00 57.77 34.08 98.80 72.61 58.27 99.00 70.97 58.69 96.52 56.83 40.59 99.24

GEMINI-1.5-PRO

Vanilla 41.54 29.71 99.60 35.83 19.64 99.80 52.96 30.17 99.60 62.01 50.79 100.00 63.90 55.50 99.35 49.22 34.22 99.72
2-shot 43.73 31.05 99.60 34.22 17.97 99.80 48.43 22.91 99.40 63.70 52.02 99.60 62.82 53.86 99.35 48.61 32.62 99.58
Criteria 44.40 34.41 100.00 35.27 19.85 99.59 57.00 33.71 99.78 63.49 53.43 98.97 65.10 56.74 98.69 51.10 36.97 99.52
Analyze-then-Judge 44.37 33.00 99.60 37.14 21.09 99.60 56.00 31.07 98.40 65.27 54.29 98.80 68.03 60.07 98.05 51.94 36.67 99.03

Table 5: Results of GPT-4O and GEMINI-1.5-PRO with different prompting strategies. The best results are
highlighted in bold
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Figure 7: Response length distribution of different sub-
sets.

A.4 Details on Human Evaluation904

We selected three annotators with expertise in both905

English and the research field, who are also co-906

authors of this study. Each annotator was respon-907

sible for annotating all 200 samples. The task for908

each sample involved making a binary decision909

based on the following criteria:910

Do you think each annotated hallucination
segment is accurate and fine-grained
enough that identify the smallest erroneous
components requiring revision?

Your choice:

• Yes

• No
911

A.5 Details on Benchmark Analysis 912

We analyze the types of hallucinations through 913

GPT-4o annotations. Specifically, for the NATURE 914

and MC sets, we prompt GPT-4o with samples that 915

include fine-grained hallucination annotations to 916

identify the types of hallucinations based on the 917

definition in Table 1. We provide the correspond- 918

ing prompt in D. For the REASONING set, the type 919

labels are already provided during the synthetic 920

process. To assess the quality of hallucination type 921

classification, we conduct a human evaluation on 922

a set of 100 samples from the benchmark. Three 923

authors independently judge the correctness of the 924

hallucination types for each hallucinated segment. 925

GPT-4o achieves an accuracy of 0.92 across all seg- 926

ments, with final results determined through a ma- 927

jority vote, requiring agreement from at least two 928

annotators. This suggests that GPT-4o is highly re- 929

liable in classifying hallucination types when given 930

ground-truth annotations and the taxonomy. The 931

inter-annotator agreement, measured by Cohen’s 932

Kappa, is 0.76, reflecting substantial consistency 933

among the annotators. 934

B Detailed Experiment Settings 935

B.1 Training Settings 936

Training Set Synthetic Process. We select 7,387 937

instances from M-HalDetect, ensuring that the pro- 938

portion of non-hallucinated samples is 1/10, and 939
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MLLM Annotation Format
RLHF-V M-HalDetect Geo170K MathV360K MC Average

F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF F1M F1IoU IF

GPT-4O

Vanilla 43.97 30.63 100.00 45.97 32.85 100.00 63.03 45.22 98.80 62.63 45.12 99.80 64.90 56.07 99.29 54.63 39.62 99.63
XML w/ other elements 43.17 31.05 100.00 45.94 33.21 100.00 56.91 34.71 100.00 61.57 44.31 99.40 61.34 50.65 100.00 52.58 36.88 99.86
JSON w/ index 45.98 19.55 100.00 38.62 6.71 100.00 46.35 9.48 100.00 46.91 7.93 100.00 42.97 13.06 100.00 44.38 11.04 100.00

GEMINI-1.5-PRO

Vanilla 41.54 29.71 99.60 35.83 19.64 99.80 52.96 30.17 99.60 62.01 50.79 100.00 63.90 55.50 99.35 49.22 34.22 99.72
XML w/ other elements 42.72 30.54 100.00 36.56 19.05 99.80 55.07 32.03 99.80 61.36 49.64 99.80 62.17 52.59 100.00 49.87 34.23 99.86
JSON w/ index 42.20 15.35 100.00 41.15 11.79 100.00 43.31 7.72 100.00 51.26 5.02 100.00 46.74 14.69 100.00 44.64 10.31 100.00

Table 6: Results of GPT-4O and GEMINI-1.5-PRO with different annotation formats.The best results are highlighted
in bold

use the remaining instances from RLHF-V. To940

strengthen our model’s ability to perform FHD941

in math-related reasoning, we synthetic 5,000 en-942

tries using the process similar to the process in943

Appendix A. In total, we construct a training set944

consisting of 17,120 entries.945

Training Hyperparameters. We employ GLM-946

4V (4B) as the backbone MLLM for HALODET-947

4B. The learning rate is set to 1e-5, with a weight948

decay of 0.1 and a maximum sequence length of949

4096 tokens. We use the Adam optimizer and a950

cosine learning rate scheduler. The model is trained951

for 1 epoch with a batch size of 256. Training is952

performed on a server equipped with 8 NVIDIA953

A800 80GB GPUs.954

B.2 Metric Correlation with Human955

Evaluation956

We provide the score criteria for human labeling in957

Table 4.958

B.3 Performance in Identifying Different959

Types of Hallucinations960

We evaluate the performance of different MLLMs961

in detecting hallucinations with the help of GPT-962

4o. For each sample, we provide GPT-4o with the963

hallucination type label and the ground truth an-964

notation to compare with the MLLM’s detection965

result. GPT-4o then identifies the correctly detected966

hallucination type from the MLLM’s output. The967

accuracy for each hallucination type can be cal-968

culated by comparing the detected type with the969

ground truth label. We find that this approach is970

not only effective but also reliable, as confirmed971

through the quality assessment process described972

in Appendix A.5.973

C More Experimental Results974

C.1 Prompting Strategies for MLLM975

Detectors976

We evaluate three prompting strategies on GPT-4O977

and GEMINI-1.5-PRO, with the results shown in978

Category Examples

Letters A, B, C
a, b, c

Symbols @, #, &

Mixed Case aA, Bb, Cc

Table 7: Different XML elements

Table 5. We provide the corresponding prompt for 979

each strategy in Table 11-14 in Appendix D. 980

Vanilla. Our baseline approach employs direct in- 981

struction for MLLM to perform hallucination detec- 982

tion task through a zero-shot prompting paradigm. 983

Given the input image I , corresponding query 984

prompt Q and MLLM response O, The MLLM 985

is tasked to only output O with the hallucina- 986

tion annotation using XML-style tags (<hallucina- 987

tion></hallucination>), as illustrated in Figure 3. 988

2-shot. Extending the baseline with in-context 989

learning (Dong et al., 2022), we incorporate two 990

annotated examples to illustrate the expected input- 991

output mappings. However, the results indicate 992

a fluctuation in detection performance. We at- 993

tribute this to the inherent restriction of text-based 994

prompts, which fail to adequately capture multi- 995

modal hallucinations due to the absence of image 996

modality. Without visual grounding, the demonstra- 997

tion examples provide little meaningful guidance 998

and may inadvertently constrain the annotation pat- 999

terns of MLLMs. 1000

Criteria. By explicitly integrating our hallucina- 1001

tion taxonomy (Table 1) into the prompt, We ob- 1002

serve consistent performance improvement across 1003

all subsets in GEMINI-1.5-PRO. This suggests that 1004

clearly defined hallucination types may help fo- 1005

cus the model’s attention on hallucination-prone 1006

regions, enabling more precise detection. How- 1007

ever, this approach noticeably affects instruction 1008

following. 1009

Analyze-then-Judge. Building on prior one-step 1010

chain-of-thought evaluation (Chiang and yi Lee, 1011

2023; Wei et al., 2023; Chen et al., 2024a), we im- 1012
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plement a two-phase reasoning process that first1013

generates a detailed hallucination analysis with fac-1014

tual corrections and then annotating the response1015

with hallucination tags. This method achieves state-1016

of-the-art performance across all prompting strate-1017

gies while slightly impacting instruction following.1018

C.2 Ablation on Annotation Format1019

We investigate the effect of different output for-1020

mats on the model’s performance, focusing on how1021

variations in format influence hallucination detec-1022

tion. Experiment results on GPT-4O and GEMINI-1023

1.5-PRO are shown in Table 6. Our task requires1024

the output of token indices rather than simple text1025

segments to avoid potential misidentification of1026

text located at different positions. Common output1027

formats in real-world applications include XML1028

and JSON.1029

In our experiments, we first explored the impact1030

of XML-based outputs. We replaced the <halluci-1031

nation> element with various other elements, in-1032

cluding individual uppercase or lowercase letters,1033

punctuation marks, etc. We average the perfor-1034

mance of using different elements to get the final1035

result. We provide the detailed element used in1036

the experiment in Table 7. The results showed1037

that these changes had little impact on detection1038

performance, with only minor fluctuations when1039

using different elements in the XML format. Next,1040

we tested the JSON format, where token indices1041

are output sequentially. Despite having the VLM1042

output the indices for each token, we found that1043

the model was still unable to accurately identify1044

the hallucination segments’ corresponding indices.1045

This failure led to a significant decline in detec-1046

tion performance, demonstrating that the direct use1047

of indices in JSON format was not effective for1048

hallucination detection. In contrast, we adopted1049

the XML output format for hallucination detection,1050

which proved to be more robust and effective in1051

maintaining performance. We provide the corre-1052

sponding prompt templates in Table 15-16 in Ap-1053

pendix D.1054

D Prompt Templates1055

In this section, we provide the prompts used to1056

construct dataset and analyze (shown in Table 8-1057

10) and prompt templates used to perform FHD for1058

evaluation (shown in Table 11-16).1059

E Case Study 1060

We present the case study comparing the detection 1061

outputs of different models in Table 17-18. 1062
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Template prompts of dataset construction(Geo170K)

SYSTEM
You are an expert at injecting diverse types of visual hallucinations into math problem solutions.
INSTRUCTION
Your task is to analyze the input data (including the question, original solution, and corre-
sponding image) to determine which hallucination categories are applicable and then introduce
hallucinations accordingly.
Input:
A Question and its corresponding image. The Original Solution to the question.
Your Tasks:
Analysis: Identify relevant hallucination categories for the input.
Output with Hallucinations:
Inject hallucinations into the original solution based on your analysis. Use <halluci-
nated_solution> tags to wrap the entire solution. Use <hallucination> tags only around specific
hallucinated values, descriptions, or statements. Maintain the original solution’s structure,
terminology, and final answer format.
DEFINITION OF 12 HALLUCINATION TYPES
Hallucination Categories You Should Consider:
1. **Object**: Misidentify objects in the image
2. **OCR**: Misread text or numbers in the image
3. **Numerical Attribute**: Misread quantities, sizes, measurements
4. **Color Attribute**: Misidentify colors of objects
5. **Shape Attribute**: Misinterpret shapes of objects
6. **Spatial Attribute**: Misread positions, orientations, distances
7. **Numerical Relations**: Misinterpret quantitative comparisons
8. **Spatial Relations**: Misinterpret positions between objects
9. **Logical Errors**: Make mistakes in reasoning steps
10. **Calculation Errors**: Perform incorrect mathematical operations
11. **Knowledge Errors**: Apply incorrect formulas or concepts
12. **Query Misunderstanding**: Misunderstand the query intent and gives wrong or irrelevant
answers
EXAMPLE
Example Format: Input: Question: question Image: [Corresponding Image] Original Solution:
original_solution
Output: Analysis: Applicable hallucination categories and reasoning for selection
—OUTPUT—
<hallucinated_solution> Hallucinated solution with inserted hallucinations </halluci-
nated_solution>
Example:
Input: Question: In triangle ABC, where angle A = 90°, side AB = 6 cm, and side AC = 8 cm,
calculate the hypotenuse BC. Image: [A triangle diagram with labels] Original Solution: Using
the Pythagorean theorem: BC² = AB² + AC² = 6² + 8² = 36 + 64 = 100. BC =

√
100 = 10cm.

Output: ANALYSIS: **Shape Attribute**: Misidentifying angle B as 90◦. **Knowl-
edge Errors**: Misapplication of the Law of Cosines with an incorrect formula (a + b +
2abcos(θ)insteadofa+ b− 2abcos(θ)). OUTPUT:
<hallucinated_solution> Since angle <hallucination>B</hallucination> is 90◦: Using the Law
of Cosines: <hallucination>AC² = AB² + BC² + 2 × AB × BC × cos(90°)</hallucination>. Since
cos(90°) = 0, this simplifies to: <hallucination>AC² = AB² + BC²</hallucination>.
Rearranging to solve for BC²:
<hallucination>BC² = AC² - AB² = 8² - 6² = 28</hallucination>. <hallucination>BC =

√
28 =

5.29cm</hallucination>. </hallucinated_solution>
NOTICEMENTS
Requirements:
1. Only use <hallucination> tags for the specific hallucinated values or descriptions
2. Do not add explanatory text about the hallucinations,especially Please dont include anywords
like"misidentified","misinterpreting".’misinterpreted"
3. Choose hallucination types that naturally fit the context and maintain plausibility. Not every
type needs to be used.
4. hallucination types in analysis should be strictly chosen from the hallucination types list, and
written in correct format like "**Object**", "**OCR**", "**Numerical Attribute**", "**Color
Attribute**", "**Shape Attribute**", "**Spatial Attribute**", "**Numerical Relations**",
"**Spatial Relations**", "**Logical Errors**", "**Calculation Errors**", "**Knowledge
Errors**", "**Query Misunderstanding**".

Table 8: Template prompts of dataset construction(Geo170K)
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Template prompts of dataset construction(MathV360K)

SYSTEM
You are an expert at mathematical reasoning and visual hallucination injection.
INSTRUCTION
Your task has three parts:
Part 1 - Generate Original Solution:
1. Carefully analyze the image, question and answer
2. Create a detailed step-by-step solution with clear reasoning
3. Make sure the solution is accurate and matches the visual elements
4. Wrap this solution in <original_solution> tags
Part 2 - Analyze Hallucination Opportunities:
1. Analyze the original solution to identify what types of information are present and select appropriate types of hallucinations from the
hallucination types list:
DEFINITION OF 12 HALLUCINATION TYPES
1. **Object**: Incorrect identification of objects in visual content.
2. **OCR**: Failure in text recognition processes within images.
3. **Numerical Attribute**: Misinterpretation of numerical values in visual elements.
4. **Color Attribute**: Errors in identifying the color.
5. **Shape Attribute**: Misrecognition of object shapes.
6. **Spatial Attribute**: Errors in recognizing the position, orientation, or distance of the object.
7. **Numerical Relations**: Misinterpreting the numerical relationship between objects (e.g., misreading proportions or quantities).
8. **Spatial Relations**: Misunderstanding the spatial, orientation, or distance relationships between objects.
9. **Logical Errors**: Errors in reasoning, such as incorrect causal relationships or conflicts in inference steps.
10. **Calculation Errors**: Errors in mathematical operations (e.g., addition, subtraction, equation solving).
11. **Knowledge Errors**: Applies incorrect domain knowledge or makes unrealistic inferences (e.g., violating common sense or physical
laws).
12. **Query Misunderstanding**: Provides incorrect or irrelevant answers due to misunderstanding the query.
3. Write your analysis in <hallucination_analysis> tags, explaining what types of hallucinations would be natural to inject based on the content,
when writing the hallucination types, please strictly choose from the above 12 types of hallucinations, use the identical format like "**Object**",
"**OCR**", "**Numerical Attribute**", "**Color Attribute**", "**Shape Attribute**", "**Spatial Attribute**", "**Numerical Relations**",
"**Spatial Relations**", "**Logical Errors**", "**Calculation Errors**", "**Knowledge Errors**", "**Query Misunderstanding**".
Part 3 - Create Hallucinated Version:
1. Based on your analysis, create a version with plausible but incorrect visual details
2. Tag ALL hallucinated spans with <hallucination> tags, and the final answer should also be tagged when it is hallucinated
3. Wrap the hallucinated version in <hallucinated_solution> tags
4. Do not add explanatory text about the hallucinations,especially Please dont include anywords
like"misidentified","misinterpreting".’misinterpreted"
EXAMPLES
Example:
Q: In the geometric diagram, what is the area of the triangle?
A: 12
<original_solution> Let’s solve this step by step:
1. Looking at the image, I see:
- A right triangle drawn on a grid
- Base length is 4 units
- Height is 6 units
- Right angle marked with a square symbol
2. To find the area of a triangle:
Area = (base × height) ÷ 2
3. Plugging in our values:
Area = (4 × 6) ÷ 2 = 24 ÷ 2 = 12
Therefore, the area is 12 square units. </original_solution>
<hallucination_analysis>The original solution contains:
1. Shape information (right triangle)
2. Numerical measurements (base and height)
3. Visual markers (square symbol)
4. Mathematical calculations
5. area formula (knowledge)
Suitable hallucination types:
**Shape Attribute**: modify the triangle type
**Numerical Attribute**: alter the measurements
**Knowledge Errors**: apply incorrect formulas
These would maintain solution plausibility while introducing controlled errors.</hallucination_analysis>
<hallucinated_solution>Let’s solve this step by step:
1. Looking at the image, I see:
- A <hallucination>isosceles triangle</hallucination> drawn on a grid
- Base length is <hallucination>5 units</hallucination>
- Height is <hallucination>4.8 units</hallucination>
- Right angle marked with a square symbol
2. To find the area of a triangle:
<hallucination>Area = (base × height)</hallucination>
3. Plugging in our values:
<hallucination>Area = (5 × 4.8) = 24</hallucination>
Therefore, the area is <hallucination>24</hallucination> square units. </hallucinated_solution>
NOTICEMENTS
Requirements:
1. ALWAYS provide all three parts: original solution, hallucination analysis, and hallucinated solution
2. ALWAYS tag ALL hallucinated spans with <hallucination> tags
3. Keep solutions detailed and specific
4. Do not explain or point out the hallucinations in the hallucinated solution
5. Start solutions with "Let’s solve this step by step:" or "Let’s analyze the image step by step:"
Remember: Success depends on proper tagging of EVERY hallucinated span and maintaining the solution structure!

Table 9: Template prompts of dataset construction(MathV360K)
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Template prompts of hallucination type analysis

SYSTEM
You are an expert at analyzing hallucinations in visual language models. Your task is to analyze
the hallucinations in the given solution.
DEFINITION OF 12 HALLUCINATION TYPES
Available Hallucination Types:
1. **Object**: Incorrect identification of objects in visual content.
2. **OCR**: Failure in text recognition processes within images.
3. **Numerical Attribute**: Misinterpretation of numerical values in visual elements.
4. **Color Attribute**: Errors in identifying the color.
5. **Shape Attribute**: Misrecognition of object shapes.
6. **Spatial Attribute**: Errors in recognizing the position, orientation, or distance of the
object.
7. **Numerical Relations**: Misinterpreting the numerical relationship between objects (e.g.,
misreading proportions or quantities).
8. **Spatial Relations**: Misunderstanding the spatial, orientation, or distance relationships
between objects.
8. **Logical Errors**: Errors in reasoning, such as incorrect causal relationships or conflicts in
inference steps.
10. **Calculation Errors**: Errors in mathematical operations (e.g., addition, subtraction,
equation solving).
11. **Knowledge Errors**: Applies incorrect domain knowledge or makes unrealistic infer-
ences (e.g., violating common sense or physical laws).
12. **Query Misunderstanding**: Provides incorrect or irrelevant answers due to misunder-
standing the query.
INSTRUCTION
Please analyze the hallucinations in the following solution and provide:
1. A list of each hallucination and its type (using the exact format from above)
2. Make sure to use the exact hallucination type format (e.g. **Object**, **OCR**, etc.)
Original solution: original_solution
Hallucinated solution: hallucinated_solution
EXAMPLE
Please respond in the following format:
<type_analyze>
1. "hallucinated text" - **Hallucination Type**
2. "hallucinated text" - **Hallucination Type** ...
</type_analyze>

Table 10: Template prompts of hallucination type analysis.
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Template prompts of Vanilla

SYSTEM
You are a hallucination detector for multimodal large language models. Your task is to tag
hallucinations in the model’s response.
INSTRUCTION
IMPORTANT OUTPUT FORMAT REQUIREMENTS:
1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"
2. Then use <Tagged_Text> tags to wrap the tagged response
3. Inside <Tagged_Text> tags:
- Output the original response with ONLY <hallucination> tags added
- DO NOT modify or change any words in the original response
- ONLY add <hallucination> tags around hallucinated content
- If there are no hallucinations, output the original text exactly as is
4. End with </Tagged_Text>
5. DO NOT add any other text, analysis, or explanation
6. ANY OTHER FORMAT WILL BE REJECTED
EXAMPLE
Example Input:
prompt given to the model: describe the image model’s response: The bright red sports car is
parked near a lake.
Correct Output Format:
Here is the response with hallucinated content tagged: <Tagged_Text> The <hallucina-
tion>bright red</hallucination> sports car is <hallucination>parked near a lake</hallucination>.
</Tagged_Text>
NOTICEMENTS
INCORRECT Outputs (DO NOT DO THESE):
Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>
Any text after </Tagged_Text>
Any explanatory text or analysis
Any modification to the original text
Any additional formatting or tags besides <hallucination>

Table 11: Template prompts of Vanilla.
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Template prompts of 2-shot

SYSTEM
You are a hallucination detector for multimodal large language models. Your task is to tag
hallucinations in the model’s response.
INSTRUCTION
Here is the prompt given to the model:
{prompt}
Here is the model’s response:
{test_description}
Please analyze the image and add <hallucination> tags to any hallucinated content in the model’s
response. Remember to tag each hallucinated content separately!
IMPORTANT OUTPUT FORMAT REQUIREMENTS:
1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"
2. Then use <Tagged_Text> tags to wrap the tagged response
3. Inside <Tagged_Text> tags:
- Output the original response with ONLY <hallucination> tags added
- DO NOT modify or change any words in the original response
- ONLY add <hallucination> tags around hallucinated content
- If there are no hallucinations, output the original text exactly as is
4. End with </Tagged_Text>
5. DO NOT add any other text, analysis, or explanation
6. ANY OTHER FORMAT WILL BE REJECTED
EXAMPLES
Example Input 1:
prompt given to the model: describe the image
model’s response: The bright red sports car is parked near a lake.
Example Output 1:
Here is the response with hallucinated content tagged:
<Tagged_Text>
The <hallucination>bright red</hallucination> sports car is <hallucination>parked near a
lake</hallucination>.
</Tagged_Text>
Example Input 2:
prompt given to the model: what is the person wearing?
model’s response: The woman is wearing a blue dress with white flowers and holding a black
umbrella.
Example Output 2:
Here is the response with hallucinated content tagged:
<Tagged_Text>
The <hallucination>woman</hallucination> is wearing a <hallucination>blue dress with white
flowers</hallucination> and <hallucination>holding a black umbrella</hallucination>.
</Tagged_Text>
NOTICEMENTS
INCORRECT Outputs (DO NOT DO THESE):
Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>
Any text after </Tagged_Text>
Any explanatory text or analysis
Any modification to the original text
Any additional formatting or tags besides <hallucination> """

Table 12: Template prompts of 2-shot
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Template prompts of Criteria

SYSTEM
You are a hallucination detector for multimodal large language models. Your task is to tag
hallucinations in the model’s response.
INSTRUCTION
IMPORTANT OUTPUT FORMAT REQUIREMENTS:
1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"
2. Then use <Tagged_Text> tags to wrap the tagged response
3. Inside <Tagged_Text> tags:
- Output the original response with ONLY <hallucination> tags added
- DO NOT modify or change any words in the original response
- ONLY add <hallucination> tags around hallucinated content
- If there are no hallucinations, output the original text exactly as is
4. End with </Tagged_Text>
5. DO NOT add any other text, analysis, or explanation
6. ANY OTHER FORMAT WILL BE REJECTED
DEFINITION OF 12 HALLUCINATION TYPES
When identifying hallucinations, refer to these types:
1. **Object**: Incorrect identification of objects in visual content.
2. **OCR**: Failure in text recognition processes within images.
3. **Numerical Attribute**: Misinterpretation of numerical values in visual elements.
4. **Color Attribute**: Errors in identifying the color.
5. **Shape Attribute**: Misrecognition of object shapes.
6. **Spatial Attribute**: Errors in recognizing the position, orientation, or distance of the
object.
7. **Numerical Relations**: Misinterpreting the numerical relationship between objects (e.g.,
misreading proportions or quantities).
8. **Spatial Relations**: Misunderstanding the spatial, orientation, or distance relationships
between objects.
9. **Logical Errors**: Errors in reasoning, such as incorrect causal relationships or conflicts in
inference steps.
10. **Calculation Errors**: Errors in mathematical operations (e.g., addition, subtraction,
equation solving).
11. **Knowledge Errors**: Applies incorrect domain knowledge or makes unrealistic infer-
ences (e.g., violating common sense or physical laws).
12. **Query Misunderstanding**: Provides incorrect or irrelevant answers due to misunder-
standing the query.
EXAMPLE Example Input:
prompt given to the model: describe the image
model’s response: The bright red sports car is parked near a lake.
Correct Output Format:
Here is the response with hallucinated content tagged:
<Tagged_Text>
The <hallucination>bright red</hallucination> sports car is <hallucination>parked near a
lake</hallucination>.
</Tagged_Text>
NOTICEMENTS
INCORRECT Outputs (DO NOT DO THESE):
Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>
Any text after </Tagged_Text>
Any explanatory text or analysis
Any modification to the original text
Any additional formatting or tags besides <hallucination> """

Table 13: Template prompts of Criteria

21



Template prompts of Analyze-then-Judge

SYSTEM
You are a hallucination detector for multimodal large language models.
INSTRUCTION
Your task is to: 1. Analyze the image and the model’s response to an image-related query.
2. First provide your analysis in <Analysis>...</Analysis> tags: - Analyze what is actually
present in the image - Compare it with what the model claims - Explain any discrepancies you
find 3. Then in <Tagged_Text>...</Tagged_Text> tags: - Output the original model’s response
unchanged with <hallucination> tags - Tag hallucinated words/phrases with <hallucination> - If
no hallucinations, output the original text unchanged
EXAMPLE
Example Input: prompt given to the model: describe the image model’s response: The bright
red sports car...
Example Output Format: <Analysis> The image shows a car, but: 1. The car is actually blue,
not red 2. It’s a regular sedan, not a sports car Therefore, both the color description and car type
are hallucinations. </Analysis>
<Tagged_Text> The <hallucination>bright red</hallucination> sports car... </Tagged_Text>

Table 14: Template prompts of Analyze-then-Judge.

Template prompts of XML format

SYSTEM
You are a hallucination detector for multimodal large language models.
INSTRUCTION
Your task is to tag hallucinations in the model’s response.
IMPORTANT OUTPUT FORMAT REQUIREMENTS:
1. Start with EXACTLY this line: "Here is the response with hallucinated content tagged:"
2. Then use <Tagged_Text> tags to wrap the tagged response
3. Inside <Tagged_Text> tags: - Output the original response with ONLY <A> tags added -
DO NOT modify or change any words in the original response - ONLY add <A> tags around
hallucinated content - If there are no hallucinations, output the original text exactly as is
4. End with </Tagged_Text>
5. DO NOT add any other text, analysis, or explanation
6. ANY OTHER FORMAT WILL BE REJECTED
EXAMPLE
Example Input: prompt given to the model: describe the image model’s response: The bright
red sports car is parked near a lake.
Correct Output Format: Here is the response with hallucinated content tagged: <Tagged_Text>
The <A>bright red</A> sports car is <A>parked near a lake</A>. </Tagged_Text>
NOTICEMENTS
INCORRECT Outputs (DO NOT DO THESE):
Any text before "Here is the response with hallucinated content tagged:"
Any text between the header and <Tagged_Text>
Any text after </Tagged_Text>
Any explanatory text or analysis
Any modification to the original text
Any additional formatting or tags besides <A>"""

Table 15: Template prompts of XML format.
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Template prompts of JSON index format

SYSTEM
You are a hallucination detector for multimodal large language models.
INSTRUCTION
Your task is to identify hallucinations by providing their exact word indices in the text. Please
output your results in JSON format.
IMPORTANT OUTPUT FORMAT REQUIREMENTS:
1. Start with EXACTLY this line: "Here is the hallucination analysis:"
2. Then output the hallucinations as a JSON object with the following structure:
{
"hallucinations": [ {
"start": X,
"end": Y,
"text": "hallucinated text"
}, ... ] }
where: X is the starting word index (0-based) Y is the ending word index (exclusive)
hallucinated_text is the exact text from those indices
DO NOT add any other text, analysis, or explanation.
ANY OTHER FORMAT WILL BE REJECTED.
EXAMPLE
Example Input: prompt given to the model: describe the image
model’s response: The bright red sports car is parked near a lake.
Correct Output Format: Here is the hallucination analysis: {
"hallucinations": [
{
"start": 1,
"end": 3,
"text": "bright red"
},
{
"start": 6,
"end": 10,
"text": "parked near a lake"
} ]
}
NOTICEMENTS
INCORRECT Outputs (DO NOT DO THESE):
Any text before "Here is the hallucination analysis:"
Any text between the header and the JSON output
Any text after the JSON output Any explanatory text or analysis
Any modification to the original text
Any additional formatting or tags besides JSON

Table 16: Template prompts of JSON index format.
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An example of FHD on MHALO

Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B, C,
D, at the end.
Question: In the figure above, the ratio of the length of line AB to the length of line AC is 2 : 5.
If AC = 25, what is the length of line AB?
Choices:
(A) 8
(B) 10
(C) 15
(D) 18
(E) 20
Ground truth annotation: The correct answer is <hallucination>(C)</hallucination> <hal-
lucination>15</hallucination>. The ratio of AB to AC is 2:5, which means AB = <hal-
lucination>2/7</hallucination> * AC. Plugging in AC = 25, we get AB = <hallucina-
tion>2/7</hallucination> * 25 = <hallucination>15</hallucination>. So the answer is <halluci-
nation>(C)</hallucination>.
HALODET-4B response: The correct answer is <hallucination>(C) 15.</hallucination>The
ratio of AB to AC is 2:5, which means AB = <hallucination>2/7</hallucination> * AC.
Plugging in AC = 25, we get AB = <hallucination>2/7</hallucination> * 25 = <hallucina-
tion>15.</hallucination>So the answer is <hallucination>(C).</hallucination>
GPT-4O response: The correct answer is (C) 15. The ratio of AB to AC is 2:5, which means
<hallucination>AB = 2/7 * AC</hallucination>. Plugging in AC = 25, we get <hallucina-
tion>AB = 2/7 * 25 = 15</hallucination>. So the answer is (C).
GEMINI-1.5-PRO response: The correct answer is (C) 15. The ratio of AB to AC is 2:5, which
means <hallucination>AB = 2/7 * AC</hallucination>. <hallucination>Plugging in AC = 25,
we get AB = 2/7 * 25 = 15.</hallucination>So the answer is (C).
CLAUDE-3.5-SONNET response: The correct answer is (C) 15.<hallucination>The ratio of AB
to AC is 2:5, which means AB = 2/7 * AC.</hallucination><hallucination>Plugging in AC =
25, we get AB = 2/7 * 25 = 15.</hallucination>So the answer is (C).

Table 17: An example of FHD on MHALO.
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An example of FHD on MHALO

Question: What is being washed in the sink?
Ground truth annotation: <hallucination>A toothbrush</hallucination> is being washed in
the sink.
HALODET-4B response: <hallucination>A toothbrush</hallucination> is being washed in the
sink.
GPT-4O response: <hallucination>toothbrush</hallucination> is being <hallucina-
tion>washed</hallucination> in the sink.
GEMINI-1.5-PRO response: A <hallucination>toothbrush</hallucination> is being <hallucina-
tion>washed</hallucination> in the sink.
CLAUDE-3.5-SONNET response: <hallucination>A toothbrush is being
washed</hallucination> in the sink.

Table 18: An example of FHD on MHALO.
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