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Abstract

The visual system of mammals is comprised of parallel, hierarchical specialized
pathways. Different pathways are specialized in so far as they use representations
that are more suitable for supporting specific downstream behaviours. In partic-
ular, the clearest example is the specialization of the ventral (“what”) and dorsal
(“where”) pathways of the visual cortex. These two pathways support behaviours
related to visual recognition and movement, respectively. To-date, deep neural
networks have mostly been used as models of the ventral, recognition pathway.
However, it is unknown whether both pathways can be modelled with a single
deep ANN. Here, we ask whether a single model with a single loss function can
capture the properties of both the ventral and the dorsal pathways. We explore
this question using data from mice, who like other mammals, have specialized
pathways that appear to support recognition and movement behaviours. We show
that when we train a deep neural network architecture with two parallel pathways
using a self-supervised predictive loss function, we can outperform other models
in fitting mouse visual cortex. Moreover, we can model both the dorsal and ventral
pathways. These results demonstrate that a self-supervised predictive learning
approach applied to parallel pathway architectures can account for some of the
functional specialization seen in mammalian visual systems.

1 Introduction

In the mammalian visual cortex information is processed in a hierarchical manner using two special-
ized pathways [[15L152]): the ventral, or “where” pathway, and the dorsal, or “what” pathway. These two
pathways are specialized for visual recognition and movement, respectively [42} 24} [19, (58} 159, [17].
For example, damage to the ventral pathway may impair object recognition, whereas damage to the
dorsal pathway may impair motion perception [64].

Deep artificial neural networks (ANNs) trained in a supervised manner on object categorization have
been successful at matching the representations of the ventral visual stream [62, 157, [32]]. They have
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been shown to develop representations that map onto the ventral hierarchy, and which can be used
to predict [62] and control [1,!49] neural activity in the ventral pathway. However, when we look at
the other principal visual pathway in the mammalian brain, i.e. the dorsal pathway, the situation is
different. Very few studies have examined the ability of deep ANNSs to develop representations that
match the dorsal hierarchy (though see the following fMRI study: [21]]). Moreover, to the best of our
knowledge, no studies have demonstrated both ventral-like and dorsal-like representations in a single
network.

This lack of deep ANN models that capture both ventral and dorsal pathways leads naturally to an
important question: under what training conditions would specialized ventral-like and dorsal-like
pathways emerge in a deep ANN? Would a second loss function be required to obtain matches to
dorsal pathways, or is there a single loss function that could induce both types of representations?

One promising set of candidates are predictive self-supervised loss functions [45] 22| 38]]. Recent
work has shown that self-supervised learning can produce similar results to supervised learning for
the ventral pathway [63} 134, 26]. Moreover, there is a large body of work showing that mammals
possess predictive processing mechanisms in their cortex [31} 8} 30, 18l [16]], including in the dorsal
pathway [2,[35]], which suggests that a predictive form of self-supervised learning could potentially
lead to the emergence of both ventral and dorsal-like representations.

Addressing this question requires recordings from different ventral and dorsal visual areas in the
brain. Here, we explore these issues using publicly available data from the Allen Brain Observatory
[9l], which provides recordings from a large number of areas in mouse visual cortex. We examine the
ability of a self-supervised predictive loss function (contrastive predictive coding [45}122])) to induce
representations that match mouse visual cortex. When we train a network with a single pathway,
we find that it possesses more ventral-like representations. However, when we train a network
with two parallel pathways we find that the predictive loss function induces distinct representations
that map onto the ventral/dorsal division. This allows the network to better support both object
categorization and motion recognition downstream tasks via the respective specialized pathways. In
contrast, supervised training with an action categorization task only leads to matches to the ventral
pathway, and not the dorsal pathway.

Altogether, this work demonstrates that the two specialized pathways of visual cortex can be modelled
with the same ANN if a self-supervised predictive loss function is applied to an architecture with
parallel pathways. This suggests that self-supervised predictive loss functions may hold great promise
for explaining the functional properties of mammalian visual cortex.

2 Background and related work

Self-supervised ANN models of the ventral visual stream Recently, [63] and [34] showed that
the representations learned by self-supervised models trained on static images produce good matches
to the ventral pathway. Our work builds on this by exploring the potential for self-supervised learning
to also explain the dorsal pathway.

ANN models of the mouse visual system Mice have become a common animal model in visual
neuroscience due to the sophisticated array of experimental tools [44}27]. As such, [53] compared
the responses of different areas in mouse visual cortex with the representations of a VGG16 trained
on ImageNet. In this paper, we show that self-supervised learning can produce better fits to both
ventral and dorsal areas than supervised learning.

ANN models of the dorsal pathway The MotionNet ANN model [51], is a feedforward ANN
trained to predict the motion direction of segments of natural images, which was inspired by the
role of the dorsal pathway in motion perception. In [6], they show that learning both ventral and
dorsal-like representations in a single ANN with two pathways is possible if one forces the two
pathways to process the phase and amplitude of a complex decomposition of the stimuli separately. In
[21], they show that training a deep ANN on supervised action recognition can induce some match to
dorsal pathway fMRI recordings. In this study, we show that with prediction as the learning objective
and an architecture that has two parallel pathways, both ventral-like and dorsal-like representations
can be learned.



3 Methods

3.1 Datasets

We use the Allen Brain Observatory open 2-photon calcium imaging dataset for the experiments in
this study. We select subsets of the dataset based on brain area, recording depth, and visual stimuli
used. Recordings from five areas of mouse visual cortex are used (VISp, VISIm, VISal, VISpm,
VISam; Figure Eh). We only exclude one area from our analyses (VIStl) because it is a multi-sensory
area, and visual stimuli alone do not drive it well [9]. We use recordings from cortical depths of
175-250um (which corresponds to cortical layers 2-3) as these are the recordings with the largest
number of neurons. When selecting visual stimuli, we use recordings elicited by the presentation of
natural movies, because unlike static images, movies can elicit clear responses in both ventral and
dorsal areas [9]]. Thus, we only use those parts of the dataset in which natural movies (30 seconds
long) were presented as visual stimuli. More details about the dataset can be found in [9]. For training
the deep ANNs, we use the UCF101 dataset [56] (see section[A.4]of supplementary materials).

3.2 Analysis techniques

Representational Similarity Analysis (RSA) To measure the representational similarities between
real brains and ANNs we use the RSA method. RSA has been commonly used in both the neuroscience
[L1L133]] and deep learning literature [41} 143]. The details of RSA can be found in those citations,
but we will summarize it briefly here. First, we create response matrices R € RY*M for every
brain area and every layer of our ANNs, where NNV is the number of neurons and M is the number
of video blocks, with each block comprising 15 frames of the video. Element ¢j of the response
matrix represents the response of the i*” neuron to the j" video sequence. We then use Pearson
correlation to calculate the similarity of every pair of columns (e.g. k" and [*" columns) in matrix
R, and form the M by M Representation Similarity Matrix (RSM € RM>M) in which every
element (k) quantifies the similarity of the responses to the k%" and I*" videos blocks. Thus, the
RS M:s describe the representation space in a network, be it a brain area or an ANN layer. Given two
RS Ms, we then use Kendall’s 7 between the vectorized RS M to quantify the similarity between
the two representations. It is important to note that measurement noise can potentially induce bias in
the RSM estimations, but since the variance of measurement noise is not expected to be different
across different video blocks, using Kendall’s 7 rank correlation should cancel the bias in our RSM
estimations (see [12] for more details). As an additional sanity check, we use RSA to compare the
representations between mice. If RSA is identifying salient representational geometries, then the
RS M s between different areas should be lower than the RSMs for the same areas. Indeed, as shown
in Figure[Ip, the representational similarity is highest for the same regions across animals (i.e. the
diagonal values are larger). These diagonal values also represent the noise ceiling for these areas (see
section[A.T)). Throughout the paper (with the exception of Figure[Ip), RSM similarities are reported
as the percentage of the noise ceiling.

Identification of brain regions in the hierarchy The hierarchical organization of mouse visual
areas can be inferred based on the anatomical and functional properties of each brain region. We
adopted an approximation of hierarchical indices as reported in [23]]. The relative hierarchical placing
of the visual areas included in this study are shown in Figure Tk.

Identification of brain regions into ventral and dorsal streams We group the brain regions
into two sets, i.e. ventral and dorsal areas. Although the ventral/dorsal specialization of visual
pathways in mice is not as clear and well understood as it is in primates, many anatomical and
physiological studies do suggest that mice also possess such specialized pathways [40, 158,39, 37].
According to previous anatomical and physiological studies [17, [58], VISIm and VISam can be
considered as the most ventral and dorsal areas of mouse visual cortex, respectively. We then use
the similarity of representations between other areas and VISIm and VISam to estimate a ventral
score (V-score = 771 /(1. + il )) and a dorsal score (D-score = 2t /(r4  + ril ) for each area.
rA s the representational similarity between area A and VISam, and Tl‘?n is the representational
similarity between area A and VISIm. The D-score and V-score values for the five visual areas are
plotted in Figure[Tld. Based on the D-score and V-score values, we grouped VISIm, VISp, and VISpm
as more ventral and VISal, and VISam as more dorsal in our analysis. This grouping is in keeping
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Figure 1: (a) The schematic of mouse visual cortex. (b) Representational similarity analysis between
the visual areas included in our analysis. (c) The anatomical hierarchy score of the visual areas
adopted from [23]]. (d) Ventral and dorsal scores of the visual areas. Areas are sorted from the most
ventral (VISIm - left) to the most dorsal (VISam - right) areas.

with a recent study that showed VISam and VISal are the first and second most responsive areas to
motion stimuli: an important characteristic of dorsal areas [54]].

3.3 Model

Self-supervised predictive learning We used Contrastive Predictive Coding (CPC) for self-
supervised learning, which was developed for modeling sequential data, including video datasets [45]].
The loss function relies on predicting the future latent representations of a video sequence, given
its present and past representations. See Figure [ST|for a schematic of the model, and [A-2|for more
details regarding the CPC loss function.

ANN Architecture All the ANN backbones used in our study are variants of the ResNet architec-
ture, similar to the ones used in [13]. Our ResNet architectures have either one or two pathways.
The one-pathway ResNet (ResNet-1p) is a regular 3D ResNet (Figure 2h). The two-pathway ResNet
(ResNet-2p) is composed of two parallel ResNet branches, which split after a single convolutional
layer, and merge after their final layers through concatenating their outputs along the channel di-
mension (Figure 3h). Both pathways of ResNet-2p receive a copy of the first convolutional layer
output, and each has 10 Res-blocks. To keep the total number of output channels the same in both
architectures, each pathway in ResNet-2p has half the number of channels of the single pathway
in ResNet-1p. For the ANNSs trained on object categorization, we use ResNet-18 pretrained on the
ImageNet database [25]. Our 3D ResNet architectures are summarized in Tab]e|S_Tl

Baseline models In terms of alignment with brain representations of video sequences, we compare
the CPC trained ANNs with four other models: (1) a simple model based on Gabor filters, (2) a
randomized deep ANN, (3) a ResNet-18 trained on ImageNet, and (4) 3D ResNets trained on action
recognition in a supervised manner. See section[A-3]of supplementary materials for more details.

Training We use the backpropagation algorithm and Adam optimizer. CPC is trained with a batch
size of 40 samples, a learning rate of 103, and 100 epochs. Supervised action recognition is trained
with a batch size of 256 samples, a learning rate of 5 x 10~%, and 300 epochs. All the models are
implemented with PyTorch 1.7 and trained on RTX8000 NVIDIA GPUs.

Downstream tasks In addition to comparisons with dorsal and ventral representations in mouse
brain, we examine the two pathways of our trained ResNet-2p on two downstream tasks: object
categorization and motion discrimination, which are supported in the real brain by the ventral and
dorsal pathways, respectively. See section[A.3]of supplementary materials for more details.



4 Results

4.1 CPC with a single pathway architecture produces better matches to mouse ventral
stream

We first compare the representations learned with CPC on a single pathway architecture (Fig. 2h) with
the three ventral areas of mouse visual cortex (VISIm, VISp, and VISpm; based on D-scores/V-scores
in Figure[Id). In Figure b (top), the similarity of RSMs between different layers of the ANN and
these three areas are shown. Comparing the maximum representational similarities between models
in Figure E}:, we can see that, for the three ventral areas, CPC shows a higher maximum similarity
compared to the other models. Compared to the baseline models (untrained ANN and Gabors), the
ANN trained with object categorization has higher representational similarity to VISIm and VISp, the
two most ventral areas (see Figure[Id), which is consistent with the suggested role of ventral areas in
form and shape representation [10} [17]. This is in contrast with a previous study [J5] that could not
find any significant difference between ANNS trained on object categorization and untrained ANNs
in modeling mouse visual cortex. There are several sources of variability that could explain this
contradiction (e.g. architecture, datasets, etc.), but an important possibility is that the two studies used
different visual stimuli, namely, natural videos in our study vs static natural images in [S]]. Natural
videos are better suited for eliciting sufficiently strong responses that can distinguish between the
representations of the object categorization-trained and randomly initialized ANNs [9].

As noted, and as can be seen in Figure 2p, the maximum similarity happens in different hierarchical
levels of the CPC-trained ANN for each area. We quantify the hierarchy index for every area by
dividing the layer number with the highest similarity by the maximum number of layers. Based on
this measure, the areas at the very top and bottom of the visual hierarchy have a hierarchy index of 1
and 0, respectively. The hierarchy index for the three areas are shown in Figure 2d. In accordance
with the anatomical and functional data (Figure[Ik), VISp has a lower hierarchical index (0.41 £0.15)
than VISIm (0.61 + 0.08) and VISpm (0.55 &£ 0.08). It should be noted, that despite the fact that
anatomical/functional hierarchy indices position VISpm higher in the hierarchy than VISIm, our
model-based measure of hierarchy places the two areas at around a similar level, with VISIm having
a marginally higher value than VISpm. We speculate that this may be a result of the fact that VISpm
has noisier representations, and therefore a lower noise ceiling (Fig. [Tb). This may be due to VISpm
actually being more multi-modal than purely visual.

4.2 CPC on a single pathway does not match mouse dorsal stream

We compare the similarity of RSMs between ResNet-1p trained with CPC (Fig. [2h) and the dorsal
areas (VISam and VISal; based on D-scores/V-scores in Figure Eh). As shown in Figure@]) (bottom),
the ANN trained with CPC just passes the pixel-level representations in its early layers (the first gray
circle in the plots), and then the similarity values continuously decrease for deeper layers. Notably,
for the most dorsal area (VISam), the maximum similarity of RSMs does not go above the untrained
model (Figure 2f). For VISal, even though CPC shows some improvement compared to an untrained
ANN, the performance is much lower than for the ventral areas, as shown in the previous section (Fig.
k). These findings show that the representations learned by CPC and the ResNet-1p architecture are
more ventral-like, and do not easily explain dorsal area representations (see supplementary section
[E). Similarly, an object categorization trained ANN has a very low similarity with the dorsal areas
(even lower than the untrained ANN for VISam) indicating that object categorization cannot be
considered as an appropriate loss function for the dorsal pathway, which is consistent with our current
understanding in neuroscience.

4.3 An architecture with parallel pathways trained with CPC can model both ventral and
dorsal areas

CPC'’s tendency to learn ventral-like representations, as seen in the previous section, could be due to
a limitation of the backbone architecture. Predicting the next frame of a video with a contrastive loss
requires learning invariances to every kind of transformation (or augmentation) that could happen
from one frame to the next. For example, representing objects’ shapes requires invariance to objects’
motion, and representing objects’ motion requires invariance to objects’ shape. As suggested in
[6]], these two types of invariances often underlie the distinction between the dorsal and ventral
representations in the brain. Therefore, one possibility is that ventral and dorsal-like representations
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Figure 2: Representational Similarity Analysis between all the visual areas and the ANN trained with
CPC. (a) The schematic of the ANN architecture with one pathway (ResNet-1p) used as the backbone
of CPC. (b) Representational similarity between all the layers of the ANN with one pathways (trained
with CPC) and the ventral (top: VISIm, VISp, VISpm) and the dorsal (bottom: VISal, VISam) areas.
(c) The maximum representational similarity values between the ANN and the ventral and dorsal
areas. (d) Hierarchy index of the ventral areas based on their fit to the ANN. Error bars represent
bootstrapped standard deviation.

compete for resources in the network, and ultimately, the ventral-like representations win out, possibly
because they provide a greater overall reduction in loss. If this hypothesis is true, then a network with
two separate pathways may be able to reduce the competition by assigning one pathway to be more
ventral-like, and one more dorsal-like.

To test this hypothesis, we use the simplest extension of ResNet-1p: ResNet-2p, a ResNet architecture
that is composed of two identical, parallel ResNets which split after the first layer and merge after
their final layers (Fig. [Bp; see also section[3.3)). Each pathway of ResNet-2p has half the number
of channels of ResNet-1p, keeping the total number of channels per layer equal between the two
architectures. We choose this ResNet-2p architecture as it shares all of the features of ResNet-1p,
but with two separate pathways that could potentially be assigned specialized functions. We then
check whether ResNet-2p can learn both ventral- and dorsal-like representations. We compare the
representations of all the layers of the two pathways in ResNet-2p (blue and red in the schematic
in Fig. [Bp) with all the visual areas. The results show that the representations along one of the
pathways (the blue pathway in Fig. [Ba-b, top) are more ventral-like, and the representations along
the other pathway (the red pathway in Fig. Bp-b, bottom) are more dorsal-like. Therefore, the two
pathways together can model both ventral and dorsal areas of mouse visual cortex. Compared to an
untrained ANN, both ResNet-1p and ResNet-2p achieve high RSM similarity values for ventral areas
(Figure [Bc), with ResNet-2p showing a slight decrease in VISIm and VISpm compared to ResNet-1p.
However, unlike ResNet-1p, which fails to model the dorsal areas, ResNet-2p outperforms ResNet-1p
and the untrained ANN for area VISam by a wide margin (Fig. k). For VISal, maximum RSM
similarity values for ResNet-1p and ResNet-2p are around the same level (Fig. 3f), though the
similarity values of the red pathway representations do not drop as much throughout the network as
the blue pathway representations do, indicating the general similarity of the red pathway to the dorsal
areas. Examination of the RSM similarity between the two pathways shows that the representational
geometries are quite different (Fig. [S2)). Moreover, when we compare the RSMs of the two pathways
with those from ResNet-1p, we can see that ResNet-1p has representations that are a better match
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Figure 3: Representational Similarity Analysis between all the visual areas and the ANN trained
with CPC. (a) The schematic of the ANN architecture with two pathways (ResNet-2p) used as
the backbone of CPC. (b) Representational similarity between all the layers of the ANN with two
pathways (trained with CPC) and the ventral (top: VISIm, VISp, VISpm) and the dorsal (bottom:
VISal, VISam) areas. (c) The maximum representational similarity values between the ANN and the
ventral and dorsal areas. CPC (1p) and CPC (2p) are ResNet-1p and ResNet-2p, respectively, both
trained with CPC loss function.(d) Hierarchy index of the ventral (left; in red) and dorsal (right; in
blue) areas based on their fit to the ANN. Error bars represent bootstrapped standard deviation.

to the ventral-like pathway from ResNet-2p (Fig. [S3). This supports the idea that, in the single
pathway model, there is a competition between the two forms of representation that favours ventral-
like functions, and which leads to specialized functions in the two-pathway architecture. Using
architectures with more than two parallel pathways also does not improve representational similarities
(Fig. [S3).

The hierarchy index values for the ventral and dorsal areas are shown in Figure [3d. The hierarchy
index for every area is calculated based on the model pathway that aligns best with that area in terms
of representation similarity (blue pathway for VISIm, VISp, VISpm, and red pathway for VISam,
VISal). The hierarchy indices are shown separately for the ventral and dorsal pathways. Similar to
the results with ResNet-1p for the ventral pathway, VISp has a lower hierarchy index (0.25 £ 0) than
VISIm (0.31 +0.05) and VISpm (0.29 4 0.07). For the dorsal pathway, VISam has a larger hierarchy
index than VISal (VISam: 0.82 + 0.16 vs. VISal: 0.19 4+ 0.15) which is also consistent with the
anatomical/functional hierarchy index (Fig. [Tk).

In terms of the predictive loss function, the performances of ResNet-1p and ResNet-2p are not
significantly different (top-3 accuracy for ResNet-1p: 94.64 (0.68) and ResNet-2p: 93.472 (0.83)).
However, it is worth noting that ResNet-2p has, in total, fewer parameters than ResNet-1p (ResNet-1p:
435k vs ResNet-2p: 285k). Therefore, considering the lower capacity of ResNet-2p and its similar
predictive performance to ResNet-1p, we can conclude that the inductive bias of parallel architecture
could help in predictive processing.

4.4 Supervised learning of action recognition with parallel-pathways is not sufficient for
dorsal match

The inductive bias of an architecture with parallel pathways combined with the spatiotemporal
dynamics of the video data could be enough to trigger the emergence of both ventral and dorsal-like
representations, as defined in the previous section, regardless of the loss function used. To understand
the role of the loss function, we trained the same ResNet-1p and ResNet-2p backbones with a
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Figure 4: Representational Similarity Analysis between all the visual areas and the ANN trained
with supervised action recognition loss function. (a) Representational similarity between all the
layers of the ANN with two pathways (trained with action recognition objective) and the ventral-like
(top: VISIm, VISp, VISpm) and the dorsal-like (bottom: VISal, VISam) areas. (b) The maximum
representational similarity values between the ANN and the ventral and dorsal areas. AR (1p) and
AR (2p) are ResNet-1p and ResNet-2p, respectively, both trained with action recognition loss function.
(c) Hierarchy index of the ventral (left; in red) and dorsal (right; in blue) areas based on their fit to the
ANN. Error bars represent bootstrapped standard deviation.

supervised action classification loss on the UCF101 dataset (Fig. fp). Based on the representation
similarity plots in Figure @p, both blue and red pathways seem to learn similar representations
that are more ventral-like (also see Fig. [S2). The maximum RSM similarity values in Figure @
show that both ResNet-1p and ResNet-2p reach similarity values higher than the untrained ANN for
ventral-like areas, but for the dorsal areas, and specifically VISam, neither architecture achieves good
representational similarity. The low performance of the action classification models here could not be
due to the low spatial resolution of the training videos as our comparisons with ANNs pretrianed
with higher spatial resolution videos also show similar results (see supplementary section [F).

The hierarchy indices calculated using the ANN trained with an action classification objective (Fig.
MAl), reproduce the CPC results (Fig. B and [2d) for ventral-like areas, and roughly match the
anatomical/functional hierarchy index. However, the action classification model fails to predict the
hierarchical organization of the dorsal areas, which is to be expected given the model’s poor alignment
with these areas. Overall, these findings demonstrate the importance of the CPC loss function for
learning both ventral and dorsal-like representations across the ResNet-2p architecture.

4.5 Functional specialization of the ventral and dorsal-like pathways in a CPC trained
model

The ventral pathway is responsible for object and scene-based tasks [28]], while the dorsal pathway
is responsible for motion-based tasks [3, 47, 48 |54]. Based on our knowledge of the functional
specialization of the two pathways in the real brain, we run a linear evaluation on the two pathways of
ResNet-2p trained with CPC on two downstream tasks: (1) object categorization (CIFAR10 dataset)
and (2) motion discrimination with random dot kinematograms (RDKs) (see Fig. [5h). In vision
neuroscience, RDKs have been commonly used to characterise motion representation in the dorsal
pathway [4]. We use this stimulus to evaluate the CPC-trained ResNet-2p (the red pathway in Fig.[3)
on motion direction discrimination (four directions: up, down, left, right). Figure|§b shows the results
for the two pathways, as well as for an untrained ResNet. As expected based on the comparisons with
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mouse visual areas, the ventral-like pathway is better in object categorization, while the dorsal-like
pathway outperforms the ventral-like pathway in motion discrimination. Therefore, in addition to
their better fits to neural data, the two pathways are indeed more ventral-like and dorsal-like according
to their ability to support downstream tasks.

As previously stated, decreasing the dots coherence (increasing spatial noise) makes the random-
dots task more difficult. In real brains, dorsal areas can average out noise and extract motion
signals by integrating motion over both time and space [46, 60]. It is thought that this is key to
the importance of dorsal areas for RDK tasks. We measured ResNet-2p ventral-like and dorsal-
like pathway performances for different coherence levels of random-dots (Fig. [5k). Ventral-like
performance was dramatically reduced when the coherence was lowered from 100% to 50%. In
contrast, the decrease in dorsal-like pathway performance was much smaller, demonstrating the
dorsal-like pathway’s ability to spatially integrate motion, which is consistent with our expectations
of dorsal areas. Indeed, the dorsal-like pathway can still achieve just under 40% accuracy even with
20% coherence. We also measured ventral-like and dorsal-like pathway performances for different
numbers of frames of the random-dots stimuli at 50% coherence (Fig. ). The dorsal-like pathway’s
performance improved significantly when the number of frames was increased, illustrating the ability
of the dorsal-like pathway to integrate motion information over time. On the other hand, increasing
the number of frames did not increase ventral-like pathway accuracy, but rather reduced it to around
chance level. This shows that unlike the dorsal-like pathway, the ventral-like pathway of ResNet-2p
does not integrate motion information over time.

5 Discussion

In this paper, we showed that self-supervised learning with CPC can produce representations that are
more analogous to mouse visual cortex than either simple models or ANNS trained in a supervised
manner. Furthermore, we showed that CPC applied to an architecture that has two parallel pathways
can model both the ventral and dorsal areas of mouse visual cortex. The downstream tasks of object
recognition and motion discrimination also support the ventral-like and dorsal-like representations of
the two pathways in the model. Our experiments with supervised training on action classification
indicated that the two-pathway architecture and video dataset are necessary but not sufficient for
learning both types of representations, showing an interaction between the self-supervised objective
function and the architecture. This finding shows that self-supervised predictive learning is a required
component of our model for obtaining both ventral- and dorsal-like representations. Our observation
that supervised action classification cannot generate dorsal representations is in contradiction with
a previous fMRI study [21]]. The different results of the two studies boil down to the different data
modalities used in the two studies: two-photon calcium imaging in our study and fMRI in [21].
Capturing the responses of the dorsal areas elicited by natural videos with high temporal dynamics
requires neuronal recordings with high temporal sampling rate. Therefore, we hypothesize that
some aspects of dorsal representations of movement would not be reflected in the fMRI data, which



could bias the fMRI-based analysis toward more static and lower temporal frequency features of the
stimulus and neuronal responses (e.g. very slow-varying features; [61]).

Even though our results demonstrated the importance of self-supervised predictive learning for
generating ventral- and dorsal-like representations, it is important to note that our conclusions are
limited to the supervised loss functions that we included in our comparisons (i.e. object categorization
and action recognition). We acknowledge that a different combination of more ecologically relevant
supervised loss functions might be sufficient for learning ventral and dorsal representations in ANNSs.

Learning representations of input data (images, videos, etc.) that are invariant to certain data augmen-
tations (e.g. rotation, cropping, etc.) is a common goal of modern self-supervised learning methods.
In models such as SimCLR [7]] and BYOL [20]], the augmentations are engineered for learning the
most appropriate representations for downstream tasks. In CPC, however, the augmentations are
inherent to the data being used. As noted above, predicting the next frame in a movie requires two
different invariances: (1) invariance to motion, but selective for shape, and (2) invariance to shape, but
selective for motion. Our results suggest that these two types of invariances are mutually exclusive,
which can explain both the need for two separate pathways to get good matches to both ventral and
dorsal areas and the inverse relationship between ventral-likeness and dorsal-likeness of the learned
representation (see section[D]and Fig.[S4]in supplementary materials). Thus, our results suggest that
the functional specialization observed in the mammalian brain may be a natural consequence of a
predictive objective applied to an architecture with two distinct pathways.

6 Limitations

One limitation of this work is the lack of comparisons with ANNSs that are trained with other predictive
loss functions, such as PredNet [38]. Other self-supervised video-based learning models (for example,
see [[14]) that do not optimize a predictive loss function could also be compared with CPC in terms
of matching the representations of mouse visual cortex. Another limitation concerns the backbone
architectures that we used in this study. Different parameters of the architectures (such as the number
of residual blocks, the number of layers before the split and after the merger of the two pathways in
in ResNet-2p, etc.) could be searched more thoroughly to determine the optimal setting for modeling
mouse visual cortex. Furthermore, training ResNet-2p with CPC on a synthetic video dataset in
which the motion and shape contents of the videos can be controlled could demonstrate more directly
that the two pathways of ResNet-2p learn motion-invariant shape selectivity and shape-invariant
motion selectivity, respectively.

Broader Impact

ANNS can serve as a framework for understanding brains [50], as demonstrated here. This under-
standing would be based on finding the loss functions, architecture, and learning rules that best
capture brain representations. Technologies that directly or indirectly interface with the brain, such as
brain machine interfaces, can benefit from an in silico model of the brain. ANNS, if being used as
such models, can facilitate designing and optimizing these technologies. However, the downside is
that the ANN models of the brain are prone to the same limitations encountered by other ANNs, such
as adversarial attack or implicit bias. These limitations can potentially leak into the applications in
which these models would be used with human subjects.
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