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Abstract
Distantly-supervised relation extraction001
(DSRE) is an effective method to scale relation002
extraction (RE) to large unlabeled corpora003
with the utilization of knowledge bases (KBs),004
but suffers from the scale of KBs and the005
introduced noise.006

To alleviate the above two problems, we007
propose a novel framework called Self-008
develOpment rUle exPansion (SOUP), which009
starts from limited amount of labeled data010
and continuously produces low-noise labels on011
large-scaled unlabeled data by a growing learn-012
able logical rules set.013

Specifically, SOUP achieves a mutual enhance-014
ment of RE model and logical rules set, first015
a RE model is trained on the labeled data to016
summarize the knowledge, then the knowledge017
is utilized to explore candidate rules from unla-018
beled data, finally high-quality candidates are019
selected in a graph-based ranking manner to ex-020
tend the logical rules set and new rule-labeled021
data are provided for better RE model training.022

Experiments on wiki20 dataset demonstrate023
that, with limited seed knowledge from small-024
scaled manually labeled data, SOUP achieves025
significant improvement compared to baselines026
by producing continuous growth of both logical027
rules and the RE model, and that labeling noise028
of SOUP is much less than DS. Furthermore,029
RE model enhanced by SOUP with 1.6k logical030
rules learned from prior knowledge could pro-031
duce an equivalent performance to the model032
trained on data labeled in DS manner by 72k033
relational facts of KBs.034

1 Introduction035

Relation extraction (RE) is a fundamental task in036

NLP, which aims at inferring the relation r of entity037

pairs (e1, e2) from plain texts. Since sufficient man-038

ually annotated training data is expensive, distant039

supervision (DS) is commonly adopted to collect040

abundant weakly-labeled data by applying the fol-041

lowing labeling heuristic on knowledge bases: for042

any relational fact (e1, e2, r) in a knowledge base, 043

all the sentences mentioning both entities e1 and e2 044

may express relation r and thus are assigned with 045

the weak label r. 046

However, in real-world scenarios, the feasibility 047

and performance of DSRE may be limited: (1) the 048

large-scale and high-quality KBs might be incom- 049

plete or even unreachable, especially for emerging 050

industries where new relation types of interest are 051

being explored. (2) The labeling heuristic of DS 052

intrinsically introduces noise into the weak labels 053

by solely considering the entities’ co-occurrence. 054

As illustrated in the follow examples, the expressed 055

relation type of the same entity pair may vary based 056

on the different context information, such as trig- 057

ger words (sentences S1 and S2) or dependency 058

information (sentence S3). 059

S1: Trump lives in United States with family. => live_in
———————————————————————
S2: Trump was born in United States. => born_in
———————————————————————
S3: In United States, teachers from rhode island met the
45th president, Trump. => president_of

060

With the awareness of the second deficiency of 061

DSRE, lots of prior work has been done to de- 062

noise the weakly-labeled dataset or to design ro- 063

bust RE systems against the noise (Lin et al., 2016; 064

Christopoulou et al., 2021). However, less explo- 065

ration has been investigated to seek the remedy of 066

the first problem for DS. (Qu et al., 2018). 067

To alleviate the above two problems simultane- 068

ously, we propose a novel self-development rules 069

expansion framework (SOUP). As shown in Fig- 070

ure 1, SOUP starts from seed knowledge in small- 071

scaled labeled data, and continuously explores new 072

low-noise weakly-labeled data by mutually enhanc- 073

ing the growable logical rules and RE model itera- 074

tively through following 3 procedures: (1) From 075

Data to Rules: given the pseudo-labeled data ex- 076

tracted from RE model’s high-confidence predic- 077

tions on unlabeled dataset, a Rule Generator is 078
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Figure 1: An illustration of how SOUP explores new
knowledge from unlabeled data.

applied to extract its contextual feature and transfer079

it to a logical rule with learnable parameters, which080

are taken as a candidate rule. (2) From Rules to081

Rules: with the prior that rules of the same relation082

type r are supposed to be semantically similar, we083

further propose a Rule Filter to regularize rules’084

representations and divide candidate rules into pos-085

itive high-quality ones and negative noisy ones,086

based on their semantic distance with seed rules.087

Then the seed rules set is enriched by positive can-088

didates. (3) From Rules to Data: Since the logical089

rule considers various context information (includ-090

ing entity information and so on), it can be easily091

generalized to unlabeled data with unseen entity092

pairs and provide low-noise labeled data to enrich093

RE training set. SOUP is more desirable in real-094

world scenarios especially in emerging domains, as095

it can grow rapidly and brings better performance096

with fewer initial seed resources.097

We evaluate SOUP on a public RE dataset098

wiki20 (Gao et al., 2021) to show its improvements099

towards baselines. With the same RE model struc-100

ture, DS requires data labeled by about 72k rela-101

tional facts from KB to achieve the Macro F1 score102

of 60.08, while SOUP could achieve the identical103

performance with only 1.6k initial seed rules ex-104

tracted from 30k facts, which demonstrates SOUP105

is more resource-economical, relying on its great106

knowledge summarizing and learning ability. We107

further conduct experiments and ablation studies108

with in-depth analysis to verify that SOUP brings109

much less labeling noise and collaborates different110

modules effectively.111

Our contributions are threefold:112

1. We propose a logical rule generation method113

for RE, which has learnable parameters and114

considers various contextual features to pro-115

vide low-noise relation labels.116

2. We design a novel self-development rule ex-117

pansion framework SOUP, which starts from118

a few manually labeled data and continuously 119

improves the logical rules and RE model 120

based on large-scale unlabeled data. 121

3. Experiments on the public dataset verify that 122

SOUP can grow up rapidly with low-noise 123

rule-labeled data and less requirement for ini- 124

tial seed knowledge. 125

2 Related Work 126

Distant Supervision Since RE models’ perfor- 127

mance is commonly limited by the scale of human- 128

annotated data, distant supervision (DS) is intro- 129

duced to collect the large-scale training data for 130

RE models in an economical way by aligning en- 131

tity pairs in sentences to relational facts in existing 132

knowledge bases. However, the context-agnostic 133

labeling heuristic of DS inevitably brings the label- 134

ing noise and thus hurts the model’s performance. 135

To reduce the training noise for RE models, many 136

DS-based methods (Hoffmann et al., 2011; Sur- 137

deanu et al., 2012) treat DSRE as a multi-instance 138

learning task by bagging sentences based on entity 139

pairs and predicting involved relation types at bag 140

level. To select the most informative instance inside 141

a bag for training, (Lin et al., 2016) proposes an 142

intra-bag attention mechanism distributing weights 143

to the sentences within the bag. However, KBs 144

are not always available and usually expensive to 145

construct, especially for emerging industries. 146

Weakly Supervision To reduce the labeling 147

dependency for KBs, some work has explored 148

constructing logical rules automatically from lim- 149

ited labeled seed data and large-scale unlabeled 150

data. (Batista et al., 2015) proposes to iteratively 151

generate rules from centroids of the seed data and 152

enlarge the seed data by labeling unlabeled data 153

with rules. Since new rules are directly gener- 154

ated from seeds labeled by old ones, the noise 155

introduced in the seeds by rules can be accumu- 156

lated. (Qu et al., 2018; Gao et al., 2020) try to 157

cooperate rules and RE model, which utilize rules 158

to seek new seed data from unlabeled data and learn 159

a RE model based on the updated seed dataset to 160

explore more reliable rules. However, the indepen- 161

dent rule learning manner for different relations 162

may make them weak in distinguishing seman- 163

tically similar relation types (for instances, sub- 164

sidiary and member of ). To provide low-noise 165

rules, SOUP models semantic features for differ- 166

ent relation rules and selects high-quality ones by 167
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Figure 2: The framework of SOUP. The initial seed rule set is extracted from Dm, then a train dataset is initialized
by rule-labeled data and applied to learn a RE model. After that, SOUP iterates among three procedures: (1)
generate candidate rules from model’s prediction on Du; (2) filter reliable rules from candidates to extend the seed
rule set; (3) add new rule-annotated data to enrich the train dataset and power the RE model.

ranking their relative distance in a graph manner.168

3 Methodology169

Overview In this section, we introduce SOUP in170

detail, which starts from a small-scale manually171

labeled dataset Dm and achieves mutual enhance-172

ment between logical rules and the RE model on173

a large-scale unlabeled dataset Du. As is shown174

in Figure 2, SOUP consists of three components:175

(1) a Rule Generator to summarize contextual fea-176

tures contained in high-confidence model-labeled177

instances from Du, and build candidate logical178

rules with learnable parameters; (2) a Rule Filter179

to enrich the seed rule set by filtering the candi-180

date rules with a semantic graph of rules; (3) a181

RE Model trained on the labeled dataset to explore182

knowledge from Du for new candidate rules. No-183

tice that the seed rule set is initialized by applying184

Rule Generator to build logical rules from Dm and185

a scoring function for further filtering (explained186

in 3.2.1).187

3.1 Rule Generator: From Data to Rules188

Existing methods fail to take into account the con-189

textual features of labeled data to build logical rules,190

rendering the limited ability to generalize and in-191

troducing much noise into the labeling process. In192

this section, we formulate our rule representations193

based on contextualized features, which allows for194

a more robust knowledge summarization of labeled195

data and better transfer to unlabeled samples.196

Rule Definition Our logical rule isObeyR(·) is a197

function with bool output, which contains a set198

of concerned features Rf = {EF, TWF,DSF}199

(i.e. , entity feature, trigger words feature and de- 200

pendency structure feature), corresponding im- 201

portance weight wi and similarity measurement 202

Simi(·, ·) (i ∈ {1, ..., |Rf |}), a threshold TH , and 203

a target labeling relation r. 204

isObeyR(x) =

|Rf |∑
i=1

Simi(Rfi , x)wi ≥ TH (1) 205

Rfi is the ith concerned features of Rf (|Rf | = 206

3). For a unlabeled data x, it matches this rule and 207

can be labeled with r if isObeyR(x) is TRUE. 208

Rule Generator Process The Rule Generator trans- 209

fers a labeled instance to a logical rule automati- 210

cally by: (1) collecting the concerned features Rf 211

of the labeled data; (2) computing the learnable 212

parameters {wi} and TH . We elaborate the two 213

steps in following subsections. 214

3.1.1 Feature Collection 215

Considering that instances with similar contextual 216

features are more likely to express the same re- 217

lation, we distinguish different relations from the 218

following three context-aware features: (1) entity 219

features, (2) trigger word features and (3) depen- 220

dency structure features. 221

Entity Features (EF) Our entity features in- 222

clude two aspects: (1) the POS feature posi for 223

each entity mention ei from Stanford CoreNLP 224

toolkit (Manning et al., 2014) (2) the entity’s con- 225

cept embedding eci by retrieving top 10 possible 226

concepts of ei with Microsoft Concept Graph (Wu 227

et al., 2012) and take the average of their embed- 228

dings (Shalaby et al., 2019). 229
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Trigger Word Features (TWF) Given the trigger230

word v whose involved entity pair is ep={e1,e2},231

our trigger word features include: (1) semantic232

roles srl of ep from PropBank (Bonial et al., 2014),233

(2) thematic roles trl of ep and event information234

E using VerbNet (Brown et al., 2019) (Our work235

is the first to utilize this toolkit in relation extrac-236

tion), and (3) the trigger embedding ev by extract-237

ing the verb phrase with OpenIE toolbox (Chris-238

tensen et al., 2011) and computing its embedding239

by BERT (Devlin et al., 2019).240

Dependency Structure Features (DSF) We col-241

lect the shortest path P information (containing242

both nodes and edges) between the entities in the243

dependence structure.244

Similarity Measurement Given a unlabeled in-245

stance x and a logical rule, we compute their sim-246

ilarity on each type of contextual feature Rfi , do-247

nated as Simi(Rfi , x), which is used in Eq. 1 to248

help infer if x belongs to the target relation of the249

rule. (Please refer to Appendix A.1 for more details250

on the corresponding similarity measurements).251

3.1.2 Weight Distributor252

To comprehend the relation expressed in a sentence,253

human usually consider various contextual infor-254

mation and focus on those crucial for relation judg-255

ment. Based on this motivation, we assign weights256

{wi} to our contextual features to distinguish their257

contributions to rules. The weight assignment is258

independent for different rules.259

If a type of feature is crucial for judgement, it260

must work better in filtering sentences expressed261

the target relation than any other features. Thus,262

for each rule with target relation r, to model its263

contextual features’ relevance to r, we warp each264

Rfi in a single-feature rule isObeyRfi
(·). Then265

we estimate Rfi’s importance by collecting all the266

instances matching isObeyRfi
(·) and computing267

their semantic relevance to r. isObeyRfi
(·) is defi-268

nited as follows:269

isObeyRfi
(x) = Simi(Rfi , x) ≥ THi (2)270

where THi is manually set by workers.271

Rule’s embedding For further computation, we ob-272

tain the rule’s embedding as the average embedding273

of all the instances in Dm that make the rule’s out-274

put TRUE. The instance’s embedding is produced275

by the BERT encoder (Han et al., 2019) trained on276

Dm in a supervised manner.277

Ranking Model Motivated by the translation qual-278

ity estimation work (Zhang and van Genabith,279

2020), which ranks the translation by their seman- 280

tic distance towards the source sentence. Since it 281

is difficult to compute an exact value for feature’s 282

importance, we try to measure the relative impor- 283

tance among the three types of feature towards the 284

target relation r by ranking the three single-feature 285

rules based on their semantic relevance to r. 286

To measure the relevance, a Ranking Model 287

RM(Qi,K;W ) (parameterized by W ) is trained 288

to compute the attention of rules {isObeyRfi
} 289

(i ∈ {1, 2, 3}) towards relation r based on their 290

semantic representation: 291

RM(Qi,K;W ) = Attn(Qi,K;W ) = QT
i WK

Qi and K are the embedding of isObeyRfi
and 292

relation r. The relation r’s embedding is obtained 293

from pre-trained BERT-Medium. Finally, we sort 294

{si = RM(Qi,K;W )} (i ∈ {1, 2, 3}) decreas- 295

ingly to get isObeyRfi
’s rank result pi. 296

Weight Mapping Based on a rank-to-weight list 297

r2w = {wj}3j=1 set by workers, weight wj is as- 298

signed to the Rf element who ranks in jth position. 299

Objective We apply the metric-driven loss function 300

LambdaLoss (Wang et al., 2018) as the objective to 301

optimize RM , which takes both scores and ranks 302

into consideration and encourages the single-rule 303

more related to r to get a higher attention score: 304

l(s, y) = −
∑
yi>yj

log2
∑

π
(

1

1 + e−σ(si−sj)
)(ρij+µδij)|Gi−Gj |

(3) 305

where si and yi are the predicted attention score 306

and gold rank of ith single-feature rule. Other vari- 307

ables’ definition is same as (Wang et al., 2018). 308

Training data We transfer each labeled data in Dm 309

to a logical rule isObeyR and generate three single- 310

feature rules {isObeyRfi
} (i ∈ {1, 2, 3}) for it. 311

To get the gold rank yi for ith single-feature rule, 312

we evaluate its performance on all the data in Dm. 313

Since the rule with higher labeling precision should 314

get higher evaluation score, scoring function is: 315

Sc =
F

N
log2(F ) (4) 316

where F is the number of instances correctly 317

labeled by the rule, N is the number of instances 318

with TRUE rule output. Thus, we regard {yi} as 319

the supervision signal by sorting {isObeyRfi
} (i ∈ 320

{1, 2, 3}) decreasingly with respect to their Sc. 321
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3.1.3 Threshold Selector322

For some rule, each of its contextual features can323

lead to a correct judgment for the target relation,324

while for others it’s more reasonable to consider325

several features together for reliable labeling, thus326

different rules should have different thresholds.327

We first set a candidate threshold set THS and328

for each rule, a suitable threshold is selected from329

THS. Similar as 3.1.2, we warp each THp ∈330

THS in a can-threshold rule defined as:331

isObeyRp(x) =

|Rf |∑
i=1

Simi(Rfi , x)wi ≥ THp

(5)332

Then, by applying the Ranking Model (trained333

in Weight Distributor) on {isObeyRp}
|THS|
p=1 , The334

candidate threshold with top rank can-threshold335

rule is selected as TH for isObeyR.336

3.2 Rule Filter: From Rules to Rules337

This module aims to filter out noisy candidate rules338

and enrich seed rule set with high-quality ones339

based on their semantic relevance. We propose to340

formulate it as a semi-supervised nodes classifica-341

tion task on the semantic graphs of the rules with342

a Rule Classifier. We first introduce how to select343

rules, then elaborate the Rule Classifier.344

3.2.1 Metrics for Selecting Rules345

Seed Rules To initialize the seed rule set, we first346

apply the Rule Generator to transfer every instance347

in Dm to a rule, then rank the rules with respect to348

their performance score on Dm data (calculated as349

Eq. 4). Finally for each relation, the top NI rules350

with the highest scores are chosen as initial posi-351

tive seeds while the randomly sampled NI positive352

seeds from all other relations are taken as initial353

negative seeds. In each iteration, The Rule Clas-354

sifier is applied to pick new positive seeds from355

candidates and update negative seeds.356

Candidate Rules In each iteration, we apply the357

RE model to Du and utilize Rule Generator to trans-358

fer the top NC predictions with highest confidence359

to rules, which are taken as candidates.360

3.2.2 Rules Classifier361

For each relation, this module picks new seed rules362

in four steps: (1) Construct a graph of both seeds363

and candidates belonging to this relation; (2) Ini-364

tialize nodes’ representation by rules’ embedding365

(introduced in 3.1.2); (3) Update nodes’ represen-366

tation by feature propagation; and (4) Pick NS can-367

didates as new positive seeds based on a marginal- 368

based ranking method. 369

Graph Construction Since semantically similar 370

rules are more likely to express the same relation, 371

we build a k-nearest neighbor graph Gr = {V = 372

Vc
⋃
Vs, A} for relation r to model the semantic 373

relevance among rules, where Vc, Vs are nodes for 374

candidate and seed rules, A is the adjacency matrix. 375

Rule Feature Propagation For relation r and its 376

corresponding graph Gr, we apply an independent 377

2-layer graph attention network (Veličković et al., 378

2018) to propagate nodes’ semantic information. 379

Given node i’s representation hi and its neighbors 380

Ni, in each layer the attention weight between node 381

i and j can be computed as: 382

aij =
exp(f(AT[Whi,Whj ]))∑

k∈Ni
exp(f(AT[Whi,Whk]))

(6) 383

where W is parameter matrix and f is 384

LeakyReLu function. Then the node representa- 385

tion of the next layer is updated as: 386

h∗i = aiiWhi +
∑

j∈Ni
aijWhj (7) 387

Objective Rule Classifier’s objective is defined as: 388

L = Lsup + Lnei (8) 389

where Lsup=−
∑

(yilogpi + (1− yi)log(1− pi)) 390

(i ∈ Vs) is the supervised loss, yi is seed nodes i’s 391

binary label, pi is the predicted possibility of node i 392

being POS, and Lnei =
∑

j∈V
∑

k∈Nj
∥hj − hk∥2 393

is to encourage neighbor nodes to be close to each 394

other in semantic space. 395

Seed Rules Extension To filter the most semanti- 396

cally distinguishable candidates, with the trained 397

Rules Classifier for relation r, we (1) Compute the 398

centroids’ representation of positive and negative 399

seeds as the average of corresponding nodes’ rep- 400

resentation; (2) Compute the cosine similarity of 401

each candidate to the two centroids as Spos and 402

Sneg, (3) Rank all candidates by Sd = Spos−Sneg 403

and pick the top NS as new positive seeds. 404

3.3 RE Model: From Rules to Data 405

The BERT-AVG introduced in Gao et al. (2021) is 406

taken as our RE model, which consists of a BERT- 407

based sentence encoder and a classifier. By feeding 408

the average of bag-level sentence representation to 409

classifier for prediction, this network can alleviate 410

the noise influence in current knowledge and make 411

better candidate rules’ label prediction. 412
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Training Data In each iteration, we randomly sam-413

ple Nu unlabeled instances from Du and filter high-414

quality rule-label results as follows: we first la-415

bel each unlabeled data by the matched seed rule416

whose embedding has the highest cosine similarity417

Scsim with its, then rank all the labeled data by418

Scsim and choose the top Nt ones to enrich the419

training set of RE model.420

4 Experiments and Analysis421

4.1 Dataset and Evaluation Metrics422

We conduct our experiments on wiki20 dataset, pro-423

posed in (Han et al., 2020) by aligning Wikipedia424

corpus with Wikidata (Vrandečić and Krötzsch,425

2014) facts (triplets). We adopt the re-organized426

wiki20 dataset (Gao et al., 2021), which contains427

80 actual relation types and a type NA (the relation428

is not in wiki20’s relation ontology). Since NA cov-429

ers many unseen relations and it’s unreasonable to430

distinguish candidate rules of NA into POS or NEG,431

we only focus on the other 80 relation types.432

By discarding the distantly supervised label, we433

take wiki20 training set as Du. 30k human-labeled434

instances are evenly sampled from wiki80 dataset435

(Han et al., 2019) and taken as Dm. We evaluate436

the RE model performance on wiki20’s test set with437

following metrics: Area Under Curve (AUC) val-438

ues, Micro F1, Macro F1 and Precision@N (P@N).439

Our dataset’s statistics is shown in Table 1. Notice440

that we exclude all the test instances included in441

Dm to make sure that there is no overlaps between442

our test set and Dm. (Please refer to Appendix A.2443

for details on parameters setting.)444

Dataset # Facts # Sentences # Instances
Du 103713 154339 295594
Dm 30077 29390 30080

RE model Validation 17484 15356 17484
RE model Test 28150 54118 56686

Table 1: The statistics of the dataset in our experiments.

4.2 Baselines445

Our baselines contains weakly supervised frame-446

works and distant supervised frameworks.447

REPEL (Qu et al., 2018) learns a triplets evalu-448

ation function on rule-labeled data and picks new449

rules (shortest dependency path) generating high-450

quality triplets iteratively.451

Snowball (BERT) (Gao et al., 2020) first trains a452

Relational Siamese Networks (RSN) and a Relation453

Classifier on prior triplets. Then for a new relation,454

Snowball extracts rules (entities co-occurrence) 455

from the given seed data for this relation, and filter 456

new seed data by rules and the above two modules, 457

which fine-tuned by the seed data. 458

DSRE BERT-AVG (Gao et al., 2021) The same 459

RE model structure as SOUP but trained on the 460

dataset built by triplet-labeled data based on the 461

prior knowledge in KB. 462

DSRE VAE (Christopoulou et al., 2021) is a 463

distant supervised framework. Beside the triplet- 464

labeled training data, this method also applies pre- 465

trained entity link prediction model TransE (Bordes 466

et al., 2013) to improve sentence expressivity by 467

sentence reconstruction. 468

For REPEL, to follow its original setting, we 469

arrange our Dm to be its small-scaled seed dataset 470

and explore new rules from Du. In Snowball’s 471

original setting, firstly two modules are trained 472

on a partial training set. For a new relation, the 473

initial seed data are sampled from test/val set and 474

new seeds are explored from unlabeled data. Since 475

Snowball aims at exploring new knowledge from 476

unlabeled data for a better relation prediction with 477

a little initial seed knowledge, which is similar to 478

SOUP, we compare SOUP with Snowball in our 479

setting. Firstly the two modules are trained on Dm. 480

Then initial seed data are randomly sampled from 481

our test set and new seeds are extracted from Du. 482

For Distant Supervision, the training set is built 483

by Du labeled by triplets. To be specific, we train 484

several DSRE models on Du labeled by different 485

number of Wikidata triplets. Since the triplets are 486

randomly sampled, the results are reported as the 487

average of 5 runs. Notice that all relations are 488

assigned with the same number of triplets. 489

4.3 Overrall Performance 490

We evaluate the RE model performance under 491

SOUP mechanism on test set and demonstrate its 492

significant improvement compared with baselines. 493

The performance of SOUP and baselines are 494

summarized in Table 2. We can see: 495

(1) Compared with REPEL, SOUP needs much 496

less seed rules to achieve a better performance. 497

This is because REPEL simply takes the shortest 498

dependency paths as rules, which limits the cov- 499

erage, while SOUP considers various contextual 500

features with flexible weights. Since our rules are 501

more informative, it is reasonable to aggregate the 502

rules’ representation for a specific relation to filter 503

out the noisy ones in Rule Filter. 504
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Model Seed
Rules Num. AUC Max

Micro F1
Max

Macro F1 Micro F1 Macro F1 P@100 P@200

REPEL 23.7k 62.05 60.90 55.88 52.97 44.08 100.00 100.00
Snowball 1.6k 25.60 21.44 40.36 9.36 21.34 100.00 100.00

BERT-AVG
1.6k 49.04 49.28 39.95 22.19 14.07 99.00 97.00
3.2k 59.79 57.90 51.98 44.85 33.58 99.00 98.50

DSRE 32k 68.54 63.44 58.29 61.64 52.51 100.00 99.50
72k 71.85 66.33 61.05 66.24 60.08 100.00 100.00

VAE 1.6k 34.66 41.59 61.16 34.21 61.10 99.00 99.50
SOUP 1.6k 73.31 68.19 66.61 67.63 64.99 100.00 100.00

Table 2: Experiment results on our limited seed data settings. Here Seed Rules Num. refers to the size of initial seed
rules set. For Snowball, the seed rules is the patterns in initial seeds. For DSRE, the seed rules is Wikidata triplets.

(2) With the same number of initial seed rules,505

SOUP has a great improvement compared with506

Snowball, which shows SOUP could explore the507

knowledge that more helpful for model learning. In508

Snowball, the knowledge exploration for different509

relations are independent, while SOUP filters new510

rules considering the feature of both target relation511

(POS seed rules) and other relations (NEG seed512

rules). Thus, SOUP could explore knowledge more513

distinguishable for the target relation.514

(3) By training BERT-AVG with distant super-515

vised labels provided by the different number of516

triplets (1.6k - 72k), we can find that to get a simi-517

lar performance as SOUP, DSRE needs nearly 72k518

triplets and 151k triplet-labeled instances, while519

SOUP only requires 1.6k initial seed rules and 22k520

rule-labeled data. This shows that SOUP is good521

at summarizing informative low-noise knowledge522

instead of large-scaled high-noise knowledge.523

(4) Compared with DSRE-VAE, SOUP achieves524

a better performance in all metrics with the same525

number of initial seed rules. This demonstrates526

the knowledge provided in SOUP’s rules explored527

from unlabeled data is more powerful than that528

provided by the pre-trained link prediction model.529

4.4 Qualitative Analysis of Labeling Noise530

To further analyze the labeling noise, we train two531

BERT-AVG models on the same instances but la-532

beled by our rules (collected after 8 iterations) and533

103k Wikidata triplets respectively. Then we evalu-534

ate the RE models as agents to estimate the noise in535

training data. We randomly sample 15k data from536

Du for labeling and take the average results of 5537

runs. The significant performance gap (9.21% abso-538

lute AUC) between DS (57.95% AUC) and SOUP539

(67.16% AUC) shows that our method brings much540

less labeling noise than DS.541

4.5 Quantitative Analysis of Mutual 542

Enhancement 543

For DS, the labeling procedure is fixed, while the 544

performance of both logical rules and RE model in 545

SOUP could grow as the exploration on unlabeled 546

data proceeds. To illustrate this, in each step we 547

(1) evaluate the labeling precision of seed rules set 548

on test set and (2) evaluate RE model on test set. 549

The results are shown in Figure 3 and 4. In each 550

step, the new reliable rules explored by RE model 551

power the rules set. Meanwhile, the updated rules 552

could provide training data with lower noise and 553

distinguishable features to learn a better RE model. 554
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Figure 3: Labeling precision for rules in each step.
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Figure 4: Performance of the RE model in each step.

As the step grows, the improvement of the rule 555

set and RE model becomes smaller. This is because 556

for a target relation, SOUP tends to pick the candi- 557

dates with semantic feature close to the explored 558
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Step 1 2 3
Overlook hospital is part of atlantic health system which also runs the morristown medical center.
Label member_of subsidiary subsidiary

The ttc bus route that services most of the length of bayview avenue within toronto
is the 11 bayview, which begins at davisville station.

Label occupant location_of_formation location_of_formation
The spencer davis group was formed in 1963 in birmingham when welsh guitarist spencer davis

recruited vocalist and organist steve winwood, and his bass playing brother, muff winwood.
Label instance_of member_of has part

Table 3: Labels predicted by rules in three steps. The head and tail entities are marked in red and blue respectively.
Bold indicates the predicted label is the real label.

knowledge as new seed rules, which stuck SOUP559

to achieve a complete comprehension for a relation.560

We plan to investigate this problem in the future.561

Case Study We conduct case study to further show562

our rules work better as the step grows. We collect563

the rule-labeled results for the same instance pro-564

vided by different seed rules sets of 1-3 steps, as565

shown in Table 3. As the step grows, our seed rules566

set can keep the correct labels in previous steps and567

predict a relation closer to the real relation for the568

instance given a wrong label in the past. Therefore,569

the new seed rules collected in each step are helpful570

for generating data with lower noise.571

4.6 Ablation Study572

We conduct ablation studies to investigate the effect573

of our rule design and Rule Filter.574

Specifically, to study the influence of the learned575

weights and threshold, we conduct SOUP with a576

variant Rule-M (Appendix A.3 for more details),577

whose parameters are fixed as wi = 1, i ∈ {1, 2, 3}578

and TH = 4. As shown in Figure 5 (a), RE model579

supervised by rules with learnable parameters con-580

sistently outperforms that supervised by Rule-M,581

demonstrating the effectiveness of the self-adapting582

weights and thresholds.583

0 1 2 3 4 5 6 7 8 9

30

35

40

45

50

55

60

65

M
ac

ro
 F

1 
(%

)

Step

 RE Model (Rule-M)
 RE Model

0 1 2 3 4 5 6 7 8 9

30

35

40

45

50

55

60

M
ac

ro
 F

1 
(%

)

Step

 RE Model (Rule-M)
 RE Model (Rule-M w/o EF)
 RE Model (Rule-M w/o TWF)
 RE Model (Rule-M w/o DSF)

Figure 5: (a) The ablation study on self-adapting
weights and threshold. (b) The ablation study on three
types of contextual features.

Besides, to study the influence of contextual fea-584

tures considered in rules, we further ablate one type 585

of feature from Rule-M each time (Appendix A.3 586

for more details). The results are shown in Figure 5 587

(b), where the lack of each type of feature for Rule- 588

M hurts the performance, indicating they can help 589

rules to distinguish relations. 590
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Figure 6: The ablation study on Rule Filter.

Furthermore, to verify the contribution of Rule 591

Filter, we conduct an experiment that in each itera- 592

tion, directly adds all candidate rules to seed rules 593

set without filtering out noisy rules. As shown in 594

Figure 6, the lack of Rule Filter leads to a much 595

lower RE model performance, which demonstrates 596

this module could denoise the rules to generate 597

more reliable labels for RE training. 598

5 Conclusion 599

In this paper, we propose a novel relation extrac- 600

tion framework called SOUP, which continuously 601

explores rules from a large-scale unlabeled dataset 602

to produce low-noise training data. SOUP encour- 603

ages the collaboration between the RE model and 604

the learnable logical rules. Experimental results 605

show SOUP can generate high-quality rules with 606

a lower requirement of prior knowledge. In the fu- 607

ture, we plan to enhance SOUP with the ability to 608

learn rules for unseen relation types automatically. 609
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki- 699
data: a free collaborative knowledgebase. Communi- 700
cations of the ACM, 57(10):78–85. 701

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael 702
Bendersky, and Marc Najork. 2018. The lambdaloss 703
framework for ranking metric optimization. In Pro- 704
ceedings of the 27th ACM international conference 705
on information and knowledge management, pages 706
1313–1322. 707

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q 708
Zhu. 2012. Probase: A probabilistic taxonomy for 709
text understanding. In Proceedings of the 2012 ACM 710
SIGMOD International Conference on Management 711
of Data, pages 481–492. 712

Jingyi Zhang and Josef van Genabith. 2020. Translation 713
quality estimation by jointly learning to score and 714
rank. In Proceedings of the 2020 Conference on 715
Empirical Methods in Natural Language Processing 716
(EMNLP), pages 2592–2598. 717

9



A Appendix718

A.1 Similarity Measurement in Rule719

Definition720

In our rule definition, to decide if an instance x721

obeys the rule, we apply the methods mentioned722

in section 3.1.1 to extract the context features and723

compute the value of Simi(Rfi , x) based on the724

analysis result under ith type of feature.725

For entities information (EF), let pos =726

{posi}2i=1 be the part of speech and ec = {eci}2i=1727

be the concept vectors.728

For trigger words information, let srl =729

{srli}2i=1 be semantic roles, trl = {trli}2i=1 be730

thematic roles, E = {st, vt}Tt=1 be the event infor-731

mation expressed in the sentence (st donates the732

event state, vt donates the event words and T is the733

length of events). Figure 7 shows an example. The734

trigger words representation extracted by OpenIE735

and BERT is ev.736

They stole the painting from the museum.

Agent Verb Theme Source

Verbnet Parser

Theme Role

Event

Has Possession (steal-10.5-1, Source, Theme)

!Has Possession (steal-10.5-1, Agent, Theme)

Transfer (steal-10.5-1, Agent, Theme, Source)

Has Possession (steal-10.5-1, Agent, Theme)

!Has Possession (steal-10.5-1, Source, Theme)

Figure 7: Verbnet result for the sentence "They stole the
painting from the museum".

For dependency structure, Figure 8 shows an737

example. The path between e1 and e2 is P =738

{P,U, T}, where P = {pi}ki=1 is the POS tag739

of nodes in the path, U = {ui}k−1
i=1 and T =740

{ti}k−1
i=1 are the direction and type of edges. (ui ∈741

{forward, back})742

Hamlet is one of Shakespeare most famous works

nsubj

cop

‘s

nmod

case advmod

case

nmod:poss

amod

!!" #$% &' (! !!" ")* +$* ,, !!*

Figure 8: For sentence "Hamlet is one of Shakespare’s
most famous works", the red line marks short-
est dependency path between Hamlet and Shake-
speare, which is "NNP (Hamlet) <back, nsubj>
CD(one) <forward, nmod> NNS(works) <forward,
nmod:poss> NNP(Shakespeare)".

For the ith type of feature, Simi(Rfi , x) out-743

puts a similar score between x and Rf on744

this feature. To be specific, Simi(Rfi , x) = 745∑ki
p=1 sub_sc

p
i (Rfi , x), where sub_scpi (·, ·) is the 746

similarity score for the pth analysis result in ith 747

type of feature Rfi (as shown in Table 4-6). ki 748

is the number of analysis methods for ith type of 749

feature in Rf . (k1 = 3, k2 = 4 and k3 = 1) 750

Criterion value

pos(Rf1
) = pos(x) sub_sc11 = 1

cosSim(e
c(Rf1

)
1 , e

c(x)
1 ) > 0.7 sub_sc21 = 1

cosSim(e
c(Rf1

)
2 , e

c(x)
2 ) > 0.7 sub_sc31 = 1

Table 4: Definition for sub_sc1(Rf1 , x). cosSim do-
nates cosine similarity.

Criterion value

srl(Rf2
) = srl(x) sub_sc12 = 1

trl(Rf2
) = trl(x) sub_sc22 = 1

Esame ≥
∣∣∣E(Rf2

)
∣∣∣ /2 sub_sc32 = 2

cosSim(ev(Rf2
), ev(x)) > 0.7 sub_sc42 = 1

Table 5: Definition for sub_sc2(Rf2 , x).
∣∣E(Rf2

)
∣∣ do-

nates the number of elements in E(Rf2
). Esame donates

the number of same elements between E(Rf2
) and E(x)

Criterion value

Psame = P(Rf3
) sub_sc13 = 2

|Psame| ≥ |P(Rf3
)|/2 and |Psame| ≥ |Px|/2 sub_sc13 = 1

Table 6: Definition for sub_sc3(Rf3 , x). Psame is the
sub-path shared by both P(Rf3

) and P(x). |PRf3
| is the

length of P(Rf3
) and |Px| is the length of P(x).

A.2 Hyperparameters and Training Details 751

Most of the hyperparameters are listed in Table 752

7. For optimization, Adam (initial learning rate 753

= 0.001) is applied to train the ranking model in 754

Rule Generator and rules classifier in Rule Filter, 755

while SGD (initial learning rate = 0.1) is employed 756

to train our RE model. The epoch number of the 757

ranking model, rules classifier and RE model is 758

100, 200 and 5. The bag size of RE model is 4. 759

Each experiment contains 8 iterations. 760

In each iteration, 30k data are sampled from Du 761

and the top 8k or 2k rule-labeled ones with the 762

highest Scsim are added to the training set for RE 763

model. 764
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Component Parameter Value

Rule Generator

Threshold for single-feature rules TH={2, 3, 1}

Rank model’s hidden size 768

Relation embedding dimension 512

Rank-to-Weight list r2w={2, 1.5, 1}

Candidate threshold set THS={6, 7, 8}

Rule Filter

Rule embedding dimension 768

GAT’s multi-head number 3

Output node representation dimension 64

Number of initial seed rules (per relation) NI=20

Number of candidate rules (per relation) NC=50

Number of new positive seed rules (per relation) NS=5 (iteration 1-4); NS=10 (iteration 5-8)

RE Model Training
Number of sampled unlabeled data Nu=30k

Number of data added to training set Nt=8k (iteration=1); Nt=2k (iteration=2-8)

Table 7: Hyper-parameters of the components in our experiments.

Rule Definition

Rule-M isObeyR(x) =
∑|Rf |

i=1 Simi(Rfi , x) ≥ 4, Rf = {EF, TWF,DSF}
Rule-M (w/o EF) isObeyR(x) =

∑|Rf |
i=1 Simi(Rfi , x) ≥ 3, Rf = {TWF,DSF}

Rule-M (w/o TWF) isObeyR(x) =
∑|Rf |

i=1 Simi(Rfi , x) ≥ 3, Rf = {EF,DSF}
Rule-M (w/o DSF) isObeyR(x) =

∑|Rf |
i=1 Simi(Rfi , x) ≥ 3, Rf = {EF, TWF}

Table 8: Rules definition in ablation study.

A.3 Rule Definition in Ablation Study765

Table 8 introduces the definition of the rules in766

ablation studies.767
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