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Abstract

Distantly-supervised  relation  extraction
(DSRE) is an effective method to scale relation
extraction (RE) to large unlabeled corpora
with the utilization of knowledge bases (KBs),
but suffers from the scale of KBs and the
introduced noise.

To alleviate the above two problems, we
propose a novel framework called Self-
develOpment rUle exPansion (SOUP), which
starts from limited amount of labeled data
and continuously produces low-noise labels on
large-scaled unlabeled data by a growing learn-
able logical rules set.

Specifically, SOUP achieves a mutual enhance-
ment of RE model and logical rules set, first
a RE model is trained on the labeled data to
summarize the knowledge, then the knowledge
is utilized to explore candidate rules from unla-
beled data, finally high-quality candidates are
selected in a graph-based ranking manner to ex-
tend the logical rules set and new rule-labeled
data are provided for better RE model training.

Experiments on wiki20 dataset demonstrate
that, with limited seed knowledge from small-
scaled manually labeled data, SOUP achieves
significant improvement compared to baselines
by producing continuous growth of both logical
rules and the RE model, and that labeling noise
of SOUP is much less than DS. Furthermore,
RE model enhanced by SOUP with 1.6k logical
rules learned from prior knowledge could pro-
duce an equivalent performance to the model
trained on data labeled in DS manner by 72k
relational facts of KBs.

1 Introduction

Relation extraction (RE) is a fundamental task in
NLP, which aims at inferring the relation r of entity
pairs (e1, e2) from plain texts. Since sufficient man-
ually annotated training data is expensive, distant
supervision (DS) is commonly adopted to collect
abundant weakly-labeled data by applying the fol-
lowing labeling heuristic on knowledge bases: for

any relational fact (eq, es, ) in a knowledge base,
all the sentences mentioning both entities e; and es
may express relation r and thus are assigned with
the weak label r.

However, in real-world scenarios, the feasibility
and performance of DSRE may be limited: (1) the
large-scale and high-quality KBs might be incom-
plete or even unreachable, especially for emerging
industries where new relation types of interest are
being explored. (2) The labeling heuristic of DS
intrinsically introduces noise into the weak labels
by solely considering the entities’ co-occurrence.
As illustrated in the follow examples, the expressed
relation type of the same entity pair may vary based
on the different context information, such as trig-
ger words (sentences S7 and Ss) or dependency
information (sentence S3).

S1: Trump lives in United States with family. => live_in

Sa: Trump was born in United States. =>born_in

S3: In United States, teachers from rhode island met the
45" president, Trump. => president_of

With the awareness of the second deficiency of
DSRE, lots of prior work has been done to de-
noise the weakly-labeled dataset or to design ro-
bust RE systems against the noise (Lin et al., 2016;
Christopoulou et al., 2021). However, less explo-
ration has been investigated to seek the remedy of
the first problem for DS. (Qu et al., 2018).

To alleviate the above two problems simultane-
ously, we propose a novel self-development rules
expansion framework (SOUP). As shown in Fig-
ure 1, SOUP starts from seed knowledge in small-
scaled labeled data, and continuously explores new
low-noise weakly-labeled data by mutually enhanc-
ing the growable logical rules and RE model itera-
tively through following 3 procedures: (1) From
Data to Rules: given the pseudo-labeled data ex-
tracted from RE model’s high-confidence predic-
tions on unlabeled dataset, a Rule Generator is
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Figure 1: An illustration of how SOUP explores new
knowledge from unlabeled data.

applied to extract its contextual feature and transfer
it to a logical rule with learnable parameters, which
are taken as a candidate rule. (2) From Rules to
Rules: with the prior that rules of the same relation
type r are supposed to be semantically similar, we
further propose a Rule Filter to regularize rules’
representations and divide candidate rules into pos-
itive high-quality ones and negative noisy ones,
based on their semantic distance with seed rules.
Then the seed rules set is enriched by positive can-
didates. (3) From Rules to Data: Since the logical
rule considers various context information (includ-
ing entity information and so on), it can be easily
generalized to unlabeled data with unseen entity
pairs and provide low-noise labeled data to enrich
RE training set. SOUP is more desirable in real-
world scenarios especially in emerging domains, as
it can grow rapidly and brings better performance
with fewer initial seed resources.

We evaluate SOUP on a public RE dataset
wiki20 (Gao et al., 2021) to show its improvements
towards baselines. With the same RE model struc-
ture, DS requires data labeled by about 72k rela-
tional facts from KB to achieve the Macro F1 score
of 60.08, while SOUP could achieve the identical
performance with only 1.6k initial seed rules ex-
tracted from 30k facts, which demonstrates SOUP
is more resource-economical, relying on its great
knowledge summarizing and learning ability. We
further conduct experiments and ablation studies
with in-depth analysis to verify that SOUP brings
much less labeling noise and collaborates different
modules effectively.

Our contributions are threefold:

1. We propose a logical rule generation method
for RE, which has learnable parameters and
considers various contextual features to pro-
vide low-noise relation labels.

2. We design a novel self-development rule ex-
pansion framework SOUP, which starts from

a few manually labeled data and continuously
improves the logical rules and RE model
based on large-scale unlabeled data.

3. Experiments on the public dataset verify that
SOUP can grow up rapidly with low-noise
rule-labeled data and less requirement for ini-
tial seed knowledge.

2 Related Work

Distant Supervision Since RE models’ perfor-
mance is commonly limited by the scale of human-
annotated data, distant supervision (DS) is intro-
duced to collect the large-scale training data for
RE models in an economical way by aligning en-
tity pairs in sentences to relational facts in existing
knowledge bases. However, the context-agnostic
labeling heuristic of DS inevitably brings the label-
ing noise and thus hurts the model’s performance.
To reduce the training noise for RE models, many
DS-based methods (Hoffmann et al., 2011; Sur-
deanu et al., 2012) treat DSRE as a multi-instance
learning task by bagging sentences based on entity
pairs and predicting involved relation types at bag
level. To select the most informative instance inside
a bag for training, (Lin et al., 2016) proposes an
intra-bag attention mechanism distributing weights
to the sentences within the bag. However, KBs
are not always available and usually expensive to
construct, especially for emerging industries.
Weakly Supervision To reduce the labeling
dependency for KBs, some work has explored
constructing logical rules automatically from lim-
ited labeled seed data and large-scale unlabeled
data. (Batista et al., 2015) proposes to iteratively
generate rules from centroids of the seed data and
enlarge the seed data by labeling unlabeled data
with rules. Since new rules are directly gener-
ated from seeds labeled by old ones, the noise
introduced in the seeds by rules can be accumu-
lated. (Qu et al., 2018; Gao et al., 2020) try to
cooperate rules and RE model, which utilize rules
to seek new seed data from unlabeled data and learn
a RE model based on the updated seed dataset to
explore more reliable rules. However, the indepen-
dent rule learning manner for different relations
may make them weak in distinguishing seman-
tically similar relation types (for instances, sub-
sidiary and member of). To provide low-noise
rules, SOUP models semantic features for differ-
ent relation rules and selects high-quality ones by
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Figure 2: The framework of SOUP. The initial seed rule set is extracted from D,,, then a train dataset is initialized
by rule-labeled data and applied to learn a RE model. After that, SOUP iterates among three procedures: (1)
generate candidate rules from model’s prediction on D,,; (2) filter reliable rules from candidates to extend the seed
rule set; (3) add new rule-annotated data to enrich the train dataset and power the RE model.

ranking their relative distance in a graph manner.

3 Methodology

Overview In this section, we introduce SOUP in
detail, which starts from a small-scale manually
labeled dataset D,,, and achieves mutual enhance-
ment between logical rules and the RE model on
a large-scale unlabeled dataset D,. As is shown
in Figure 2, SOUP consists of three components:
(1) a Rule Generator to summarize contextual fea-
tures contained in high-confidence model-labeled
instances from D,,, and build candidate logical
rules with learnable parameters; (2) a Rule Filter
to enrich the seed rule set by filtering the candi-
date rules with a semantic graph of rules; (3) a
RE Model trained on the labeled dataset to explore
knowledge from D,, for new candidate rules. No-
tice that the seed rule set is initialized by applying
Rule Generator to build logical rules from D,,, and
a scoring function for further filtering (explained
in 3.2.1).

3.1 Rule Generator: From Data to Rules

Existing methods fail to take into account the con-
textual features of labeled data to build logical rules,
rendering the limited ability to generalize and in-
troducing much noise into the labeling process. In
this section, we formulate our rule representations
based on contextualized features, which allows for
a more robust knowledge summarization of labeled
data and better transfer to unlabeled samples.

Rule Definition Our logical rule isObeyr(-) is a
function with bool output, which contains a set
of concerned features Ry = {EF,TWF,DSF'}

(i.e., entity feature, trigger words feature and de-
pendency structure feature), corresponding im-
portance weight w; and similarity measurement
Simy(-,-) (i € {1, ..., |Ry|}), a threshold TH, and
a target labeling relation r.

[Ryl
ZSzml Ry, x)w; > TH (1)
=1

isObeyr(x

Ry, is the i*" concerned features of Ry (|Ry| =
3). For a unlabeled data x, it matches this rule and
can be labeled with r if isObeygr () is TRUE.
Rule Generator Process The Rule Generator trans-
fers a labeled instance to a logical rule automati-
cally by: (1) collecting the concerned features Ry
of the labeled data; (2) computing the learnable
parameters {w;} and T H. We elaborate the two
steps in following subsections.

3.1.1 Feature Collection

Considering that instances with similar contextual
features are more likely to express the same re-
lation, we distinguish different relations from the
following three context-aware features: (1) entity
features, (2) trigger word features and (3) depen-
dency structure features.

Entity Features (EF) Our entity features in-
clude two aspects: (1) the POS feature pos; for
each entity mention e; from Stanford CoreNLP
toolkit (Manning et al., 2014) (2) the entity’s con-
cept embedding e; by retrieving top 10 possible
concepts of e; with Microsoft Concept Graph (Wu
et al., 2012) and take the average of their embed-
dings (Shalaby et al., 2019).



Trigger Word Features (TWF) Given the trigger
word v whose involved entity pair is ep={ej,ea},
our trigger word features include: (1) semantic
roles srl of ep from PropBank (Bonial et al., 2014),
(2) thematic roles trl of ep and event information
& using VerbNet (Brown et al., 2019) (Our work
is the first to utilize this toolkit in relation extrac-
tion), and (3) the trigger embedding e” by extract-
ing the verb phrase with OpenlE toolbox (Chris-
tensen et al., 2011) and computing its embedding
by BERT (Devlin et al., 2019).

Dependency Structure Features (DSF) We col-
lect the shortest path P information (containing
both nodes and edges) between the entities in the
dependence structure.

Similarity Measurement Given a unlabeled in-
stance x and a logical rule, we compute their sim-
ilarity on each type of contextual feature Ry,, do-
nated as Sim;(Ry,, ), which is used in Eq. 1 to
help infer if = belongs to the target relation of the
rule. (Please refer to Appendix A.l for more details
on the corresponding similarity measurements).

3.1.2 Weight Distributor

To comprehend the relation expressed in a sentence,
human usually consider various contextual infor-
mation and focus on those crucial for relation judg-
ment. Based on this motivation, we assign weights
{w;} to our contextual features to distinguish their
contributions to rules. The weight assignment is
independent for different rules.

If a type of feature is crucial for judgement, it
must work better in filtering sentences expressed
the target relation than any other features. Thus,
for each rule with target relation r, to model its
contextual features’ relevance to r, we warp each
Ry, in a single-feature rule isObeyg, (-). Then
we estimate Ry,’s importance by collecting all the
instances matching isObeyg, (-) and computing
their semantic relevance to . isObeyg, (-) is defi-
nited as follows:

isObeyr, () = Simi(Ry,,x) > TH; (2

where T'H; is manually set by workers.

Rule’s embedding For further computation, we ob-
tain the rule’s embedding as the average embedding
of all the instances in D,,, that make the rule’s out-
put TRUE. The instance’s embedding is produced
by the BERT encoder (Han et al., 2019) trained on
D, in a supervised manner.

Ranking Model Motivated by the translation qual-
ity estimation work (Zhang and van Genabith,

2020), which ranks the translation by their seman-
tic distance towards the source sentence. Since it
is difficult to compute an exact value for feature’s
importance, we try to measure the relative impor-
tance among the three types of feature towards the
target relation r by ranking the three single-feature
rules based on their semantic relevance to 7.

To measure the relevance, a Ranking Model
RM(Q;, K; W) (parameterized by W) is trained
to compute the attention of rules {isObeyr, }
(1 € {1,2,3}) towards relation r based on their
semantic representation:

RM(Qi, K; W) = Attn(Qi, K; W) = QI WK

@); and K are the embedding of ¢sObeyr i and

relation r. The relation r’s embedding is obtained
from pre-trained BERT-Medium. Finally, we sort
{si = RM(Q;, K;W)} (i € {1,2,3}) decreas-
ingly to get isObeyr " ’s rank result p;.
Weight Mapping Based on a rank-to-weight list
r2w = {w;}?_; set by workers, weight wj is as-
signed to the Ry element who ranks in 4" position.
Objective We apply the metric-driven loss function
Lambdaloss (Wang et al., 2018) as the objective to
optimize RM , which takes both scores and ranks
into consideration and encourages the single-rule
more related to r to get a higher attention score:

1 i ui)|Gi— G
l(57y) = — Z logzzﬂ(m)@ tudig)l 4l

Yi>y;
3
where s; and y; are the predicted attention score
and gold rank of i*" single-feature rule. Other vari-
ables’ definition is same as (Wang et al., 2018).
Training data We transfer each labeled data in D,,,
to a logical rule isObeyr and generate three single-
feature rules {isObeyr, } (i € {1,2,3}) for it.
To get the gold rank y; for i’ single-feature rule,
we evaluate its performance on all the data in D,,.
Since the rule with higher labeling precision should
get higher evaluation score, scoring function is:

F
Sc = Nlogg(F) “4)

where F' is the number of instances correctly
labeled by the rule, N is the number of instances
with TRUE rule output. Thus, we regard {y;} as
the supervision signal by sorting {isObeyr, } (i €
{1, 2, 3}) decreasingly with respect to their Sc.



3.1.3 Threshold Selector

For some rule, each of its contextual features can
lead to a correct judgment for the target relation,
while for others it’s more reasonable to consider
several features together for reliable labeling, thus
different rules should have different thresholds.

We first set a candidate threshold set T'H S and
for each rule, a suitable threshold is selected from
THS. Similar as 3.1.2, we warp each TH,, €
T HS in a can-threshold rule defined as:

IRyl
isObeyr, (v) = Z Sim;(Ry,, x)w; > TH,

i=1
4)
Then, by applying the Ranking Model (trained
in Weight Distributor) on {isObeyr, }L:F:Ifs‘, The
candidate threshold with top rank can-threshold
rule is selected as T'H for isObeyr.

3.2 Rule Filter: From Rules to Rules

This module aims to filter out noisy candidate rules
and enrich seed rule set with high-quality ones
based on their semantic relevance. We propose to
formulate it as a semi-supervised nodes classifica-
tion task on the semantic graphs of the rules with
a Rule Classifier. We first introduce how to select
rules, then elaborate the Rule Classifier.

3.21

Seed Rules To initialize the seed rule set, we first
apply the Rule Generator to transfer every instance
in D,, to a rule, then rank the rules with respect to
their performance score on D, data (calculated as
Eq. 4). Finally for each relation, the top Ny rules
with the highest scores are chosen as initial posi-
tive seeds while the randomly sampled N; positive
seeds from all other relations are taken as initial
negative seeds. In each iteration, The Rule Clas-
sifier is applied to pick new positive seeds from
candidates and update negative seeds.

Candidate Rules In each iteration, we apply the
RE model to D,, and utilize Rule Generator to trans-
fer the top N¢ predictions with highest confidence
to rules, which are taken as candidates.

Metrics for Selecting Rules

3.2.2 Rules Classifier

For each relation, this module picks new seed rules
in four steps: (1) Construct a graph of both seeds
and candidates belonging to this relation; (2) Ini-
tialize nodes’ representation by rules’ embedding
(introduced in 3.1.2); (3) Update nodes’ represen-
tation by feature propagation; and (4) Pick Ng can-

didates as new positive seeds based on a marginal-
based ranking method.

Graph Construction Since semantically similar
rules are more likely to express the same relation,
we build a k-nearest neighbor graph G, = {V =
Ve U Vs, A} for relation r to model the semantic
relevance among rules, where V., V; are nodes for
candidate and seed rules, A is the adjacency matrix.
Rule Feature Propagation For relation 7 and its
corresponding graph G, we apply an independent
2-layer graph attention network (Velickovi¢ et al.,
2018) to propagate nodes’ semantic information.
Given node ¢’s representation h; and its neighbors
N;, in each layer the attention weight between node
1 and j can be computed as:

w = exp(f(AT[Whi, Wh;j))
7 Yhen, exp(f(AT[Wh, Whi]))
where W is parameter matrix and f is

LeakyReLu function. Then the node representa-
tion of the next layer is updated as:

(6)

hf = a;Wh; + ZjeNi aiiWh; — (7)
Objective Rule Classifier’s objective is defined as:
L= Lsup + Lnei (8)

where Lsyp=— > (yilogp; + (1 — y;)log(1 — p;))
(2 € V) is the supervised loss, y; is seed nodes 7’s
binary label, p; is the predicted possibility of node ¢
being POS, and Lnei = 3 jev >ken, 1y — hilly
is to encourage neighbor nodes to be close to each
other in semantic space.
Seed Rules Extension To filter the most semanti-
cally distinguishable candidates, with the trained
Rules Classifier for relation r, we (1) Compute the
centroids’ representation of positive and negative
seeds as the average of corresponding nodes’ rep-
resentation; (2) Compute the cosine similarity of
each candidate to the two centroids as S,,s and
Sheg» (3) Rank all candidates by Sy = Spos — Sheg
and pick the top Ng as new positive seeds.

3.3 RE Model: From Rules to Data

The BERT-AVG introduced in Gao et al. (2021) is
taken as our RE model, which consists of a BERT-
based sentence encoder and a classifier. By feeding
the average of bag-level sentence representation to
classifier for prediction, this network can alleviate
the noise influence in current knowledge and make
better candidate rules’ label prediction.



Training Data In each iteration, we randomly sam-
ple N, unlabeled instances from D, and filter high-
quality rule-label results as follows: we first la-
bel each unlabeled data by the matched seed rule
whose embedding has the highest cosine similarity
Scgim with its, then rank all the labeled data by
Scsim and choose the top [V; ones to enrich the
training set of RE model.

4 Experiments and Analysis

4.1 Dataset and Evaluation Metrics

We conduct our experiments on wiki20 dataset, pro-
posed in (Han et al., 2020) by aligning Wikipedia
corpus with Wikidata (Vrandeci¢ and Krotzsch,
2014) facts (triplets). We adopt the re-organized
wiki20 dataset (Gao et al., 2021), which contains
80 actual relation types and a type NA (the relation
is not in wiki20’s relation ontology). Since NA cov-
ers many unseen relations and it’s unreasonable to
distinguish candidate rules of NA into POS or NEG,
we only focus on the other 80 relation types.

By discarding the distantly supervised label, we
take wiki20 training set as D,,. 30k human-labeled
instances are evenly sampled from wiki80 dataset
(Han et al., 2019) and taken as D,,. We evaluate
the RE model performance on wiki20’s test set with
following metrics: Area Under Curve (AUC) val-
ues, Micro F1, Macro F1 and Precision@N (P@N).
Our dataset’s statistics is shown in Table 1. Notice
that we exclude all the test instances included in
D, to make sure that there is no overlaps between
our test set and D,,. (Please refer to Appendix A.2
for details on parameters setting.)

Dataset # Facts # Sentences # Instances
D, 103713 154339 295594
Dy 30077 29390 30080
RE model Validation 17484 15356 17484
RE model Test 28150 54118 56686

Table 1: The statistics of the dataset in our experiments.

4.2 Baselines

Our baselines contains weakly supervised frame-
works and distant supervised frameworks.
REPEL (Qu et al., 2018) learns a triplets evalu-
ation function on rule-labeled data and picks new
rules (shortest dependency path) generating high-
quality triplets iteratively.

Snowball (BERT) (Gao et al., 2020) first trains a
Relational Siamese Networks (RSN) and a Relation
Classifier on prior triplets. Then for a new relation,

Snowball extracts rules (entities co-occurrence)
from the given seed data for this relation, and filter
new seed data by rules and the above two modules,
which fine-tuned by the seed data.

DSRE BERT-AVG (Gao et al., 2021) The same
RE model structure as SOUP but trained on the
dataset built by triplet-labeled data based on the
prior knowledge in KB.

DSRE VAE (Christopoulou et al., 2021) is a
distant supervised framework. Beside the triplet-
labeled training data, this method also applies pre-
trained entity link prediction model TransE (Bordes
et al., 2013) to improve sentence expressivity by
sentence reconstruction.

For REPEL, to follow its original setting, we
arrange our D, to be its small-scaled seed dataset
and explore new rules from D,,. In Snowball’s
original setting, firstly two modules are trained
on a partial training set. For a new relation, the
initial seed data are sampled from test/val set and
new seeds are explored from unlabeled data. Since
Snowball aims at exploring new knowledge from
unlabeled data for a better relation prediction with
a little initial seed knowledge, which is similar to
SOUP, we compare SOUP with Snowball in our
setting. Firstly the two modules are trained on D,,.
Then initial seed data are randomly sampled from
our test set and new seeds are extracted from D,,.

For Distant Supervision, the training set is built
by D, labeled by triplets. To be specific, we train
several DSRE models on D, labeled by different
number of Wikidata triplets. Since the triplets are
randomly sampled, the results are reported as the
average of 5 runs. Notice that all relations are
assigned with the same number of triplets.

4.3 Overrall Performance

We evaluate the RE model performance under
SOUP mechanism on test set and demonstrate its
significant improvement compared with baselines.

The performance of SOUP and baselines are
summarized in Table 2. We can see:

(1) Compared with REPEL, SOUP needs much
less seed rules to achieve a better performance.
This is because REPEL simply takes the shortest
dependency paths as rules, which limits the cov-
erage, while SOUP considers various contextual
features with flexible weights. Since our rules are
more informative, it is reasonable to aggregate the
rules’ representation for a specific relation to filter
out the noisy ones in Rule Filter.



Seed Max

Max

Model Rules Num. AUC Micro F1 | Macro F1 Micro F1 | MacroF1 | P@100 | P@200
REPEL 23.7k 62.05 60.90 55.88 52.97 44.08 100.00 | 100.00
Snowball 1.6k 25.60 21.44 40.36 9.36 21.34 100.00 | 100.00

1.6k 49.04 49.28 39.95 22.19 14.07 99.00 97.00

BERT-AVG 3.2k 59.79 57.90 51.98 44.85 33.58 99.00 98.50

DSRE 32k 68.54 63.44 58.29 61.64 52.51 100.00 99.50
72k 71.85 66.33 61.05 66.24 60.08 100.00 | 100.00

VAE 1.6k 34.66 41.59 61.16 34.21 61.10 99.00 99.50

SOUP 1.6k 73.31 68.19 66.61 67.63 64.99 100.00 | 100.00

Table 2: Experiment results on our limited seed data settings. Here Seed Rules Num. refers to the size of initial seed
rules set. For Snowball, the seed rules is the patterns in initial seeds. For DSRE, the seed rules is Wikidata triplets.

(2) With the same number of initial seed rules,
SOUP has a great improvement compared with
Snowball, which shows SOUP could explore the
knowledge that more helpful for model learning. In
Snowball, the knowledge exploration for different
relations are independent, while SOUP filters new
rules considering the feature of both target relation
(POS seed rules) and other relations (NEG seed
rules). Thus, SOUP could explore knowledge more
distinguishable for the target relation.

(3) By training BERT-AVG with distant super-
vised labels provided by the different number of
triplets (1.6k - 72k), we can find that to get a simi-
lar performance as SOUP, DSRE needs nearly 72k
triplets and 151k triplet-labeled instances, while
SOUP only requires 1.6k initial seed rules and 22k
rule-labeled data. This shows that SOUP is good
at summarizing informative low-noise knowledge
instead of large-scaled high-noise knowledge.

(4) Compared with DSRE-VAE, SOUP achieves
a better performance in all metrics with the same
number of initial seed rules. This demonstrates
the knowledge provided in SOUP’s rules explored
from unlabeled data is more powerful than that
provided by the pre-trained link prediction model.

4.4 Qualitative Analysis of Labeling Noise

To further analyze the labeling noise, we train two
BERT-AVG models on the same instances but la-
beled by our rules (collected after 8 iterations) and
103k Wikidata triplets respectively. Then we evalu-
ate the RE models as agents to estimate the noise in
training data. We randomly sample 15k data from
D,, for labeling and take the average results of 5
runs. The significant performance gap (9.21% abso-
lute AUC) between DS (57.95% AUC) and SOUP
(67.16% AUC) shows that our method brings much
less labeling noise than DS.

4.5 Quantitative Analysis of Mutual
Enhancement

For DS, the labeling procedure is fixed, while the
performance of both logical rules and RE model in
SOUP could grow as the exploration on unlabeled
data proceeds. To illustrate this, in each step we
(1) evaluate the labeling precision of seed rules set
on test set and (2) evaluate RE model on test set.
The results are shown in Figure 3 and 4. In each
step, the new reliable rules explored by RE model
power the rules set. Meanwhile, the updated rules
could provide training data with lower noise and
distinguishable features to learn a better RE model.
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Figure 4: Performance of the RE model in each step.

As the step grows, the improvement of the rule
set and RE model becomes smaller. This is because
for a target relation, SOUP tends to pick the candi-
dates with semantic feature close to the explored



Step | 1

2 | 3

Overlook hospital is part of atlantic health system which also runs the morristown medical center.

Label | member_of |

subsidiary |

subsidiary

The ttc bus route that services most of the length of bayview avenue within toronto
is the 11 bayview, which begins at davisville station.

Label | occupant

| location_of_formation |

location_of formation

The spencer davis group was formed in 1963 in birmingham when welsh guitarist spencer davis
recruited vocalist and organist steve winwood, and his bass playing brother, muff winwood.

Label | instance_of |

member_of |

has part

Table 3: Labels predicted by rules in three steps. The head and tail entities are marked in red and blue respectively.

Bold indicates the predicted label is the real label.

knowledge as new seed rules, which stuck SOUP
to achieve a complete comprehension for a relation.
We plan to investigate this problem in the future.
Case Study We conduct case study to further show
our rules work better as the step grows. We collect
the rule-labeled results for the same instance pro-
vided by different seed rules sets of 1-3 steps, as
shown in Table 3. As the step grows, our seed rules
set can keep the correct labels in previous steps and
predict a relation closer to the real relation for the
instance given a wrong label in the past. Therefore,
the new seed rules collected in each step are helpful
for generating data with lower noise.

4.6 Ablation Study

We conduct ablation studies to investigate the effect
of our rule design and Rule Filter.

Specifically, to study the influence of the learned
weights and threshold, we conduct SOUP with a
variant Rule-M (Appendix A.3 for more details),
whose parameters are fixed as w; = 1,7 € {1,2,3}
and T'H = 4. As shown in Figure 5 (a), RE model
supervised by rules with learnable parameters con-
sistently outperforms that supervised by Rule-M,
demonstrating the effectiveness of the self-adapting
weights and thresholds.
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Figure 5: (a) The ablation study on self-adapting
weights and threshold. (b) The ablation study on three
types of contextual features.

Besides, to study the influence of contextual fea-

tures considered in rules, we further ablate one type
of feature from Rule-M each time (Appendix A.3
for more details). The results are shown in Figure 5
(b), where the lack of each type of feature for Rule-
M hurts the performance, indicating they can help
rules to distinguish relations.
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Figure 6: The ablation study on Rule Filter.

Furthermore, to verify the contribution of Rule
Filter, we conduct an experiment that in each itera-
tion, directly adds all candidate rules to seed rules
set without filtering out noisy rules. As shown in
Figure 6, the lack of Rule Filter leads to a much
lower RE model performance, which demonstrates
this module could denoise the rules to generate
more reliable labels for RE training.

5 Conclusion

In this paper, we propose a novel relation extrac-
tion framework called SOUP, which continuously
explores rules from a large-scale unlabeled dataset
to produce low-noise training data. SOUP encour-
ages the collaboration between the RE model and
the learnable logical rules. Experimental results
show SOUP can generate high-quality rules with
a lower requirement of prior knowledge. In the fu-
ture, we plan to enhance SOUP with the ability to
learn rules for unseen relation types automatically.
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A Appendix

A.1 Similarity Measurement in Rule
Definition

In our rule definition, to decide if an instance z
obeys the rule, we apply the methods mentioned
in section 3.1.1 to extract the context features and
compute the value of Sim;(Ry,, ) based on the
analysis result under ¥ type of feature.

For entities information (EF), let pos
{pos;}?_, be the part of speech and e¢ = {ef}2_,;
be the concept vectors.

For trigger words information, let srl
{srl;}2_, be semantic roles, trl = {trl;}?_; be
thematic roles, & = {s;, v;}7_; be the event infor-
mation expressed in the sentence (s; donates the
event state, v; donates the event words and T is the
length of events). Figure 7 shows an example. The
trigger words representation extracted by OpenlE
and BERT is e".

[They stole the painting from the museum. ]

I

Theme

Verbnet Parser

)

Theme Role[ Agent Verb Source

Has Possession (steal-10.5-1, Source, Theme)
!Has Possession (steal-10.5-1, Agent, Theme)
Transfer (steal-10.5-1, Agent, Theme, Source)
Has Possession (steal-10.5-1, Agent, Theme)
!Has Possession (steal-10.5-1, Source, Theme)

Event

Figure 7: Verbnet result for the sentence "They stole the
painting from the museum".

For dependency structure, Figure 8 shows an
example. The path between e; and ey is P =
{P,U,T}, where P = {p;}}_, is the POS tag
of nodes in the path, U = {u;}’~! and T =
{t; f:_f are the direction and type of edges. (u; €
{forward, back})

nmod
case

POS

nmod:poss |
advmod amod
RBS ] NNS

Figure 8: For sentence "Hamlet is one of Shakespare’s
most famous works", the red line marks short-
est dependency path between Hamlet and Shake-
speare, which is "NNP (Hamlet) <back, nsubj>
CD(one) <forward, nmod> NNS(works) <forward,
nmod:poss> NNP(Shakespeare)".

nsubj
o
is

:
m [ aw
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For the i'" type of feature, Sim;(Ry,, ) out-
puts a similar score between x and Ry on
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this feature. To be specific, Sim;(Ry,,x)

Z];izl sub_sc? (Ry,, ), where sub_sc!(-,-) is the
th

similarity score for the p* analysis result in i
type of feature Ry, (as shown in Table 4-6). k;
is the number of analysis methods for i*" type of
feature in Ry. (k1 = 3, ko =4 and k3 = 1)

Criterion value
pos(Rfl) = pos(®) sub_sct =1
By () 2 _

cosSim(e; se17) > 0.7 | sub_sci =1
cosSim(eS(Rﬁ), e;(x)) > 0.7 | sub_sc} =1

Table 4: Definition for sub_sci(Ry,,x). cosSim do-
nates cosine similarity.

Criterion value
sriFr) = gri@ sub_sc% =1
triBr2) = (@) sub_sc% =

Esame > |EFR)| /2 sub_sc3 = 2
cosSim(e"Fr2) () > 0.7 | sub_sci =1

Table 5: Definition for sub_sca(Ry,, x). |5(Rf2)| do-
nates the number of elements in £%#72). £,4me donates
the number of same elements between &(£72) and £(*)

Criterion value
psame — plhy) sub_sc = 2
|psame| > \77<Rf3)|/2 and |P2me| > |P*|/2 | sub_sci =1

Table 6: Definition for sub_scs(Ry,, x). P5*"€ is the
sub-path shared by both P(5s) and P, |Pg fs | is the

length of P(%853) and |P*| is the length of P(*).

A.2 Hyperparameters and Training Details

Most of the hyperparameters are listed in Table
7. For optimization, Adam (initial learning rate
= 0.001) is applied to train the ranking model in
Rule Generator and rules classifier in Rule Filter,
while SGD (initial learning rate = 0.1) is employed
to train our RE model. The epoch number of the
ranking model, rules classifier and RE model is
100, 200 and 5. The bag size of RE model is 4.
Each experiment contains 8§ iterations.

In each iteration, 30k data are sampled from Du
and the top 8k or 2k rule-labeled ones with the
highest Scg;m are added to the training set for RE
model.



Component Parameter Value
Threshold for single-feature rules TH={2, 3, 1}
Rank model’s hidden size 768
Rule Generator Relation embedding dimension 512
Rank-to-Weight list rnw={2, 1.5, 1}
Candidate threshold set THS={6, 7, 8}
Rule embedding dimension 768
GAT’s multi-head number 3
Rule Filter Output node representation dimension 64
Number of initial seed rules (per relation) N7=20
Number of candidate rules (per relation) Ne=50
Number of new positive seed rules (per relation) | Ng=5 (iteration 1-4); Ng=10 (iteration 5-8)
RE Model Training Number of sampled unlabeled data N,=30k
Number of data added to training set N;=8k (iteration=1); N;=2k (iteration=2-8)
Table 7: Hyper-parameters of the components in our experiments.
Rule Definition
Rule-M isObeyg(z) = Y0t Simy(Ry,,x) > 4, Ry = {EF, TWF, DSF}
Rule-M (w/o BF) | isObeyg(z) = 1% Sim, (R 1.7) >3, Ry = {TWF, DSF}
Rule-M (w/o TWF) | isObeyr(z) = Y14 Sim;(R;,,x) > 3, Ry = {EF, DSF}
Rule-M (w/o DSF) | isObeyr(z) = Y12 Sim;(R;,,z) > 3, Ry = {EF, TWF}

Table 8: Rules definition in ablation study.

A.3 Rule Definition in Ablation Study

Table 8 introduces the definition of the rules in

ablation studies.
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