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Abstract

Offline reinforcement learning (offline RL) is an emerging field that has recently attracted
significant interest across a wide range of application domains, owing to its ability to learn
policies from previously collected datasets. The success of offline RL has paved the way for
tackling previously intractable real-world problems, but so far, only in single-agent scenarios.
Given its potential, our goal is to generalize this paradigm to the multiplayer-game setting.
To this end, we introduce a novel problem, called offline equilibrium finding (OEF), and
construct various types of datasets spanning a wide range of games using several established
methods. To solve the OEF problem, we design a model-based framework capable of directly
adapting any online equilibrium finding algorithm to the OEF setting while making minimal
changes. We adapt the three most prominent contemporary online equilibrium finding
algorithms to the context of OEF, resulting in three model-based variants: OEF-PSRO and
OEF-CFR, which generalize the widely-used algorithms PSRO and Deep CFR for computing
Nash equilibria, and OEF-JPSRO, which generalizes the JPSRO for calculating (coarse)
correlated equilibria. Additionally, we combine the behavior cloning policy with the model-
based policy to enhance performance and provide a theoretical guarantee regarding the
quality of the solution obtained. Extensive experimental results demonstrate the superiority
of our approach over traditional offline RL algorithms and highlight the importance of using
model-based methods for OEF problems. We hope that our work will contribute to the
advancement of research in large-scale equilibrium finding.

1 Introduction

Game theory provides a universal framework for modeling interactions among cooperative and competitive
players (Shoham & Leyton-Brown, 2008). The canonical solution concept is Nash equilibrium (NE), de-
scribing a situation when no player increases their utility by unilaterally deviating. However, computing NE
in two-player or multi-player general-sum games is PPAD-complete (Daskalakis et al., 2006; Chen & Deng,
2006), which makes solving games, whether exactly or approximately, exceedingly difficult. The complexity
persists even in two-player zero-sum games, regardless of whether the players can perceive the game state
perfectly (e.g., in Go (Silver et al., 2016)) or imperfectly (e.g., in poker (Brown & Sandholm, 2018) or Star-
Craft II (Vinyals et al., 2019)). In recent years, learning algorithms have demonstrated their superiority
over traditional optimization methods, such as linear or nonlinear programs in solving large-scale imperfect-
information extensive-form games. Particularly, the most successful learning algorithms belong either to
the line of research on counterfactual regret minimization (CFR) (Brown & Sandholm, 2018), or policy
space response oracles (PSRO) (Lanctot et al., 2017). CFR is an iterative algorithm that approximates NEs
through repeated self-play. Several sampling-based CFR variants (Lanctot et al., 2009; Gibson et al., 2012)
have been proposed to efficiently solve large games. To further scale up to even larger games, CFR can be
embedded with neural network function approximation (Brown et al., 2019; Steinberger, 2019; Li et al., 2019;
Agarwal et al., 2020). The other algorithm, PSRO, generalizes the double oracle method (McMahan et al.,
2003; Bošanský et al., 2014) by incorporating (deep) reinforcement learning (RL) methods as a best-response
oracle (Lanctot et al., 2017; Muller et al., 2019). Especially, neural fictitious self-play (NFSP) can be con-
sidered as a special case of PSRO (Heinrich et al., 2015). Both CFR and PSRO have achieved impressive
performance, particularly in the more challenging realm of large-scale imperfect-information extensive-form
games such as poker (Brown & Sandholm, 2018; McAleer et al., 2020).
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A critical component contributing to the success of these learning algorithms is the availability of efficient
and accurate simulators. Simulators can be constructed using rules, such as in various poker games (Lanctot
et al., 2019), or using a video-game suit like StarCraft II (Vinyals et al., 2017). These simulators serve
as environments, enabling agents to collect millions or even billions of trajectories to facilitate the training
process. We can consider this mode of learning, which relies on a simulator, as an online mode since it can
access data from the simulator at any time. In many real-world games, such as football (Kurach et al., 2020;
Tuyls et al., 2021) or table tennis (Ji et al., 2021), learning in online mode is not practical, as constructing
a sufficiently accurate simulator may be infeasible due to numerous complex factors affecting the game-play.
These factors include relevant laws of physics, environmental conditions (e.g., wind speed), or physiological
limits of (human) bodies rendering certain actions unattainable. Consequently, football teams or table tennis
players may resort to watching previous matches to improve their strategies, which semantically corresponds
to the offline learning mode, i.e., learning from previously collected data. In recent years, there have been
several (often domain-specific) attempts to formalize offline learning in the context of games. For instance,
StarCraft II Unplugged (Mathieu et al., 2021) provides a dataset of human game-plays in this two-player
zero-sum symmetric game. Concurrently, some works (Cui & Du, 2022; Zhong et al., 2022) explore the
necessary properties of offline datasets of two-player zero-sum Markov games to successfully infer their NEs.

However, these prior works mainly focus on solving Markov games, while our goal is to solve extensive-form
games in the offline setting. Detailly, Cui & Du (2022) focus on computing the Nash equilibrium strategy for
tabular two-player zero-sum Markov games, while our work not only focuses on computing the NE strategy
for two-player zero-sum extensive-form games but also focuses on computing the C(CE) for multi-player
extensive-form games. Furthermore, their theoretical results are focused on the two-player zero-sum Markov
game while our work extends their results to the extensive-form game setting. To our understanding,
there has been no comprehensive study focusing on multi-player games in an offline setting. Moreover,
there is a notable absence of systematic definitions and research efforts aimed at formalizing offline learning
within the context of games. To address this gap, we put forward a more general problem called offline
equilibrium finding (OEF), which aims to identify the equilibrium strategy of the underlying game based
on a fixed offline dataset collected by an unknown behavior strategy. The lack of an accurate simulator
in offline settings complicates the process of identifying equilibrium strategies, as it makes evaluating and
validating learned strategies more difficult. Consequently, the OEF problem poses a significant challenge,
as it necessitates forging a connection between an equilibrium strategy and an offline dataset. To tackle
this problem, we introduce an environment model that serves as an intermediary between the equilibrium
strategy and the offline dataset. Our contributions can be summarized as follows:

• We introduce a new paradigm, Offline Equilibrium Finding (OEF), highlighting the challenges asso-
ciated with learning equilibrium strategies only from offline datasets without an accurate simulator.

• We create OEF datasets from widely recognized game domains to better define the OEF problem.
To achieve this, we employ various methods to produce different behavior strategies for generating
offline data, enabling our OEF datasets to encompass a diverse range of potential gameplay scenarios.

• We propose a novel OEF algorithm, BCMB, that combines a simple model-free algorithm (behavior
cloning technique) with an innovative model-based framework. This model-based framework has the
capability to generalize any online equilibrium finding algorithm to the OEF setting by introducing
an environment model as an intermediary. Furthermore, we investigate the relationship between the
data coverage of the offline dataset and the performance of the offline algorithm, and we provide a
guarantee of the solution quality for our OEF algorithm.

• We conduct comprehensive experiments to evaluate the effectiveness of our proposed OEF algorithm.
The experimental results substantiate the superiority of our algorithm over model-based and model-
free offline RL algorithms and the efficiency of our algorithm for solving the OEF problem.

We hope our work can provide a broader understanding of offline learning in multi-player games and establish
a foundation for future research in this emerging area.
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2 Preliminaries

In this section, we first introduce the imperfect-information extensive-form game model focused on in this
paper, and then we introduce two types of widely-used equilibrium-finding algorithms, namely Counterfactual
Regret Minimization (CFR) and Policy Space Response Oracles (PSRO).

2.1 Imperfect-Information Extensive-form Games

An imperfect-information extensive-form game (Shoham & Leyton-Brown, 2008) can be represented as a
tuple (N, H, A, P, I, u), where N = {1, ..., n} is a set of players, H is a set of histories (i.e., the possible
action sequences) and A is a set of actions available to each player. The empty sequence ∅ corresponds to
a unique root node of a game tree, which is included in H. Additionally, every prefix of a sequence in H
is also in H. A special subset of the set of histories is Z ⊂ H which corresponds to the set of terminal
histories. A(h) = {a : (h, a) ∈ H} is the set of actions available at any non-terminal history h ∈ H \ Z. P
is the player function, which maps each non-terminal history to a player, i.e., P (h) 7→ N ∪ {c},∀h ∈ H \ Z,
where c denotes the “chance player”, which represents stochastic events outside of the players’ controls. In
other words, P (h) is the player who takes an action at the history h. If P (h) = c then chance determines
the action taken at history h. I denotes the set of the information set. The information set Ii forms a
partition over the set of histories where player i ∈ N takes action, such that player i ∈ N cannot distinguish
these histories within the same information set Ii. Therefore, every information set Ii ∈ Ii corresponds to
one decision point of player i which means that P (h1) = P (h2) and A(h1) = A(h2) for any h1, h2 ∈ Ii. For
convenience, we use A(Ii) to represent the action set A(h) and P (Ii) to represent the player P (h) for any
h ∈ Ii. For i ∈ N , a utility function ui : Z → R specifies the payoff of player i for every terminal history.

The behavior strategy of player i, σi, is a function mapping every information set of player i to a probability
distribution over A(Ii), and Σi is the set of strategies for player i. A strategy profile σ is a tuple of
strategies, one for each player, (σ1, σ2, ..., σn), with σ−i referring to all the strategies in σ except σi. Let
πσ(h) =

∏
i∈N∪{c} πσ

i (h) be the reaching probability of history h when all players choose actions according
to σ, where πσ

i (h) is the contribution of i to this probability. Given a strategy profile σ, the expected value
to player i is the sum of expected payoffs of these resulting terminal nodes, ui(σ) =

∑
z∈Z πσ(z)ui(z).

The canonical solution concept for imperfect information extensive form games is Nash equilibrium (NE),
where no player can increase their expected utility by unilaterally switching to a different strategy. For-
mally, the strategy profile σ∗ forms an NE if it satisfies ui(σ∗) = maxσ′

i
∈Σi

ui(σ′
i, σ∗

−i) ≥ ui(σi, σ∗
−i), ∀σi ∈

Σi, i ∈ N. To quantify the distance between a strategy profile σ and the NE strategy, we introduce the metric
NashConv(σ) =

∑
i∈N NashConvi(σ), where NashConvi(σ) = maxσ′

i
ui(σ′

i, σ−i)−ui(σ) for each player i.
Especially, for two-player zero-sum games, the metric simplifies to NashConv(σ) =

∑
i∈N maxσ′

i
ui(σ′

i, σ−i).
When NashConv(σ) = 0, it indicates that σ is the NE strategy. However, for n-player general-sum games,
apart from NE, (Coarse) Correlated Equilibrium ((C)CE) is more commonly employed as the solution con-
cept. Similar to the NE strategy, a Correlated Equilibrium (CE) strategy is a joint mixed strategy in which
no player has the incentive to deviate (Moulin & Vial, 1978). Formally, let Si represent the strategy space
for player i and S represent the joint strategy space. The strategy profile σ∗ forms a CCE if it satisfies
for ∀i ∈ N, si ∈ Si,ui(σ∗) ≥ ui(si, σ∗

−i) where σ∗
−i is the marginal distribution of σ∗ on strategy space S−i.

Analogous to NE, the (C)CE Gap Sum is adopted to measure the gap between a joint strategy and the
(C)CE (Marris et al., 2021).

2.2 Equilibrium Finding Algorithms

PSRO. The Policy Space Response Oracles (PSRO) algorithm (Lanctot et al., 2017) begins with an initial
set of randomly-generated policies, Σ̂i for each player i. During each iteration of PSRO, a meta-game M is
built using all existing policies of the players by simulation. A meta-solver then computes a meta-strategy,
which is a distribution over the policies of each player (e.g., Nash, α-rank, or uniform distributions). The
joint meta-strategy for all players is represented as α, where αi(σ) denotes the probability that player i
selects σ as their strategy. Subsequently, an oracle computes at least one best response policy for each
player, which is then added to Σ̂i. It is important to note when computing a new policy for a player, the
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policies of all other players and the meta-strategy remain fixed. This leads to a single-player optimization
problem that can be solved by DQN (Mnih et al., 2015) or policy gradient reinforcement learning algorithms.
Neural Fictious Self-Play (NFSP) can be considered as a special case of PSRO that employs the uniform
distribution as the meta-strategy (Heinrich et al., 2015). Joint Policy Space Response Oracles (JPSRO) is
an innovative extension of PSRO that incorporates fully mixed joint policies to facilitate coordination among
policies (Marris et al., 2021). JPSRO is proven to converge to a (C)CE over joint policies in extensive-form
games. The details for the process of PSRO can be found in Lanctot et al. (2017) and we also provide the
pseudocode for MB-PSRO in Appendix E which is similar to PSRO.

CFR. Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) is an iterative algorithm for
approximately solving large imperfect-information games. In each iteration, the entire game tree is traversed,
and the counterfactual regret for every action a in every information set I is computed. The computation of
the counterfactual regret value for a player’s information set is associated with the counterfactual value of
the information set, which is the expected value of the information set given that the player tries to reach it.
After traversing the game tree, players employ Regret Matching to select a distribution over actions in every
information set, proportional to the positive cumulative regret values of those actions. In the next iteration,
players use the new strategy to traverse the entire game tree and this process is repeated until convergence.
In two-player zero-sum games, if the average regret for both players is less than ϵ, their average strategies
over strategies in all iterations (σT

1 , σT
2 ) form a 2ϵ-equilibrium (Waugh et al., 2009). The details for the CFR

algorithm can be found in Zinkevich et al. (2007) and we also provide the detailed implementation for the
MB-CFR algorithm which is similar to CFR in Appendix E. More recent studies have adopted deep neural
networks to approximate counterfactual values, resulting in superior performance compared to their tabular
counterparts (Brown et al., 2019; Steinberger, 2019; Li et al., 2019; 2021).

3 Problem Statement

To emphasize the importance of introducing the Offline Equilibrium Finding (OEF) problem, we will first
present a motivating scenario that demonstrates the need for addressing the OEF problem. Following this,
we will explain the limitations of current algorithms in solving the OEF problem. Lastly, we will introduce
the OEF problem itself, along with the challenges it poses.

(a) The game of table tennis.
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(b) The illustration of OEF problem

Figure 1: The example and illustration of OEF problem

Motivating Scenario. Assume that a table tennis player A is preparing to compete against player B,
whom they never faced before (Figure 1(a)). In this situation, what could player A do to prepare for the
match? Although player A understands the rules of table tennis, they lack specific knowledge about playing
against player B, such as their preferred moves or actions and their subjective payoff function. Without this
detailed game information, player A cannot build an accurate simulator to simulate the game they will play,
rendering self-play or other online equilibrium-finding algorithms ineffective. Moreover, if player A simply
adopts the best response strategy against player B’s previous strategy, this approach may be exploited if
player B changes their strategy. Consequently, player A must watch the matches that player B played against
other players to learn their style and compute the equilibrium strategy, which minimizes exploitation, of the
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underlying game they will play. This process aligns with the proposed OEF methodology. Next, we will
present the definition of the OEF problem and discuss the challenges associated with it.

Offline Equilibrium Finding. Based on the motivating scenario, we observe that in games with complex
dynamics, such as table tennis games or football games (Kurach et al., 2020), it is difficult to build a realistic
simulator or learn the policy during playing the game. An alternative solution is to learn the policy from
the historical game data. To characterize this situation, we propose the offline equilibrium finding (OEF)
problem: Given a fixed dataset D collected by an unknown behavior strategy σ, find an equilibrium strategy
profile σ∗ of the underlying game.

In order to gain a deeper understanding of the OEF problem, we will illustrate the OEF problem using
Figure 1(b) and provide a formal definition of the offline equilibrium finding problem as follows,
Definition 3.1 (OEF). Given a game’s offline dataset D = (st, a, st+1, rt+1) where st and st+1 refer to the
game states, a refers to the action played at st and rt+1 refers to the reward after performing action a at
st. The strategy used to collect the dataset D is unknown. The OEF problem is to find an approximate
equilibrium strategy profile σ∗ that achieves a small gap between σ∗ and equilibrium, i.e., the NashConv
for NE and (C)CE Gap Sum for (C)CE, only based on D.

The OEF problem is similar to the Offline RL problem but poses several unique challenges: i) the canonical
solution concept in the OEF problem is the equilibrium strategy, which necessitates an iterative procedure of
computing best responses; ii) the game in the OEF problem involves at least two players competing against
each other, which amplifies sensitivity to distribution shifts and other uncertainties compared to the Offline
RL problem; and iii) the distribution shifts of opponents’ actions and the dynamic of the game are coupled,
complicating the process of distinguishing and addressing these issues. We list a comparison of OEF with
these related works in Table 1. Further discussion about these related works can be found in Appendix B.

Methods Work w/o env Converge to equilibrium

Offline RL (Lange et al., 2012; Levine et al., 2020) ! %

Opponent Modelling (He et al., 2016) % %

Empirical Game-Theoretic Analysis (Wellman, 2006) % !

OEF ! !

Table 1: Comparison of OEF with other related methods.

4 Collection of Offline Datasets

As delineated in the OEF problem, a crucial element is an offline dataset of the game. Typically, this
offline dataset is collected with unspecified strategies within real-world scenarios. Nevertheless, to effectively
evaluate and analyze the performance of the offline algorithm in solving the OEF problem, a solitary dataset
is insufficient. The reason is that the strategy employed to generate an offline dataset is unknown in the
OEF problem, and relying on a single dataset for evaluation introduces bias. Consequently, an appropriate
dataset benchmark for the OEF problem should consist of a diverse set of datasets that closely resemble real-
world situations. Nonetheless, generating such a collection of offline datasets with high diversity presents a
substantial challenge, as these offline datasets should be meaningful rather than merely comprising randomly
generated datasets, even though such datasets may indeed display significant diversity. To mitigate this issue,
we propose various methods for collecting a range of datasets that serve as the foundation for OEF research.
These methods are all inspired by different real-world cases, ensuring that the resulting datasets are diverse
and capable of mimicking real-world situations. We will now proceed to describe these collection methods.

4.1 Data Collection Methods

Random Method. When playing an unfamiliar game, the most common approach is initially exploring the
game by making random actions. Our random method is inspired by this natural tendency for exploration
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(d) Kuhn Poker-3 Player

Figure 2: Dataset visualization

and simulates the experience of a beginner learning and familiarizing themselves with the game for the first
time. The random method consists of three steps. In the first step, we assign a uniform strategy to each
player in the game. During the second step, players repeatedly participate in the game. Finally, we collect
the game data generated throughout the game-play. By following these steps, we obtain a dataset generated
through the random strategy, which we refer to the Random Dataset.

Learning Method. Once players become familiar with the game, they tend to develop a non-exploitable
strategy, such as the Nash equilibrium strategy, to improve their game-play. This observation inspires our
learning method, which simulates the process of a player acquiring a non-exploitable strategy. To simulate the
process of player learning, we employ the process of equilibrium finding algorithm. Therefore, our learning
method used to collect datasets requires running one existing equilibrium-finding algorithm, such as CFR
or PSRO. As the algorithm iterates through the equilibrium-finding process, we gather these intermediate
interaction game data during each iteration and store it as the Learning Dataset.

Expert Method. The inspiration for this method comes from the notion that, when learning a game, we
often benefit from observing more experienced players in action. We assume that the expert always employs
a Nash equilibrium strategy, which is a non-exploitable strategy. Subsequently, we can adopt a similar
methodology as in the random method. First, we assign the NE strategy, which can be computed using any
existing equilibrium finding algorithm, to each player in the game. As a second step, these Nashian players
repeatedly interact in the game. Finally, we gather the game data generated during game-play and store
it as the Expert Dataset. However, in multi-player or general-sum games, computing the NE strategy is
challenging. In this case, we can still employ the existing equilibrium finding algorithm to derive a suitable
strategy. For instance, the PSRO algorithm with α-rank as the meta-solver (Muller et al., 2019) can yield a
fairly effective strategy (with low exploitability) in general-sum, multi-player games.

Hybrid Method. To simulate more realistic scenarios and generate a diverse range of datasets, we propose
a hybrid method that combines the random dataset and the expert dataset in varying proportions. This
approach enables the creation of a more comprehensive and diverse collection of datasets that better represent
real-world situations. We refer to these combined datasets as hybrid datasets.

In this paper, we construct a dataset benchmark for the OEF problem by collecting data from player
interactions in the most frequently used benchmark imperfect-information extensive-form games, which are
prevalent in contemporary research on equilibrium finding. These games encompass poker games (two-player
and multi-player Kuhn poker, two-player and multi-player Leduc poker), Phantom Tic-Tac-Toe, and Liar’s
Dice. The diverse datasets of these game data serve as the foundation for our OEF problem.

4.2 Visualizations of Collected Datasets

In accordance with the aforementioned collection methods, the collected datasets closely resemble real-
world situations. To validate the diversity of these collected offline datasets and gain deeper insights into
them, we introduce a visualization method for comparing them. Firstly, we generate the game tree for the
corresponding game. Subsequently, we traverse the game tree using depth-first search (DFS) and assign an
index to each leaf node based on the DFS results. Lastly, we count the frequency of each leaf node within the
dataset. We focus solely on the frequency of leaf nodes because each leaf node represents a unique sampled
trajectory originating from the root node of the game tree. As a result, the frequency of leaf nodes can
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effectively capture the distribution of the dataset. To visualize and compare these offline datasets, a range
of statistical methods can be employed on the collected frequency data of the leaf nodes.

The simplest methods for visualization involve plotting the frequency and cumulative frequency of leaf nodes.
Figure 2 displays these datasets for two-player and three-player Kuhn games. From these figures, we can
observe that in the random dataset, the frequency of leaf nodes is nearly uniform, whereas, in the expert
dataset, the frequency distribution of leaf nodes is uneven. The distribution of the learning dataset and the
hybrid dataset falls between that of the expert dataset and the random dataset. These observations confirm
that the distributions of these datasets differ, thus validating the diversity of our proposed datasets. To
provide more insight into our OEF datasets, we also apply other statistical methods, such as the Fourier
transform. Additional visualization results can be found in Appendix C.

5 Algorithms for Offline Equilibrium Finding

Drawing inspiration from Offline RL (Chen et al., 2020; Yu et al., 2020), there are two possible approaches
for solving the OEF problem: model-free and model-based approaches.

The model-free approach aims to learn a policy directly from the offline dataset, necessitating the establish-
ment of a direct relationship between the equilibrium strategy and the offline dataset. The most straightfor-
ward method to achieve this is by applying the behavior cloning technique. However, the behavior cloning
technique performs well only in certain cases. Specifically, if the offline dataset is generated using an equi-
librium strategy, the behavior cloning technique can directly learn the equilibrium strategy from the offline
dataset. However, the behavior cloning technique fails to produce satisfactory results when the strategy
of the offline dataset is not an equilibrium strategy. Our experimental results also support this assertion.
Moreover, considering that we cannot use the data of any two action tuples to determine which action tuple
is closer to an equilibrium strategy, as equilibrium identification requires other action tuples to serve as
references, other model-free algorithms are insufficient for solving the OEF problem since the model-free
approach cannot measure the distance from the equilibrium strategy to guide the training process.

The model-based approach typically involves introducing a model to assist in learning an optimal strategy
when addressing offline RL problems. Likewise, we can propose a model-based approach for tackling the
OEF problem by incorporating an environment model as an intermediary between the equilibrium strategy
and the offline dataset. However, our proposed model-based algorithm also cannot perform well in all cases,
particularly when the offline dataset does not cover the majority of the game states. Our experimental
results support this claim. As neither a single model-free nor model-based approach can perform well in all
scenarios, we ultimately propose a novel algorithm – BCMB, which combines the model-free approach and
the model-based approach for effectively solving the OEF problem. In the subsequent sections, we initially
explain how the behavior cloning technique and the model-based algorithm work to solve the OEF problem.
Following that, we introduce our OEF algorithm, the combination method: BCMB.

5.1 Behavior Cloning Technique

Behavior cloning (BC) is a method that imitates the behavior policy present in the dataset and is frequently
used in solving offline RL (Fujimoto & Gu, 2021). In the OEF setting, we can also employ the BC technique
to learn a behavior cloning strategy for every player from the offline dataset. More specifically, we can
utilize the imitation learning algorithm to train a policy network σi, parameterized by θ, for each player i to
predict the strategy for any given information set Ii. Only the information sets and action data are required
when training the behavior cloning strategy. We use the cross-entropy loss as the training loss, defined as
Lbc = E(Ii,a)∼D[l(a, σi(Ii; θ))] = −E(Ii,a)∼D[a · log(σi(Ii; θ))], where a represents the one-hot encoding of
the action. Figure 3(a) illustrates the structure of the behavior cloning policy network. Since equilibrium
strategies in most information sets are non-trivial probability distributions, we apply a softmax layer after
the output layer to obtain the final mixed strategy.
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Figure 3: Structure of neural networks

5.2 Model-Based Framework

Many model-based algorithms exist for offline single-agent RL; however, they cannot be directly applied to
solve the OEF problem. The primary reason is their inherent reliance on the absence of strategic opponents
in the environment. This means that if we use these algorithms in the OEF setting, we would need to train
a model for each player to compute the best response strategy given any opponent strategy. This process
would be extremely time-consuming and highly computationally demanding. To address this issue, we train
a single environment model for all players instead of using the single-agent model-based algorithm for each
player. The trained environment model can capture the necessary game information for evaluating any
action tuple. In this manner, only one environment model needs to be trained, and all players can share this
environment model to compute the equilibrium strategy.

5.2.1 Environment Model

In this section, we describe the methodology for training an environment model based on an OEF dataset.
The trained environment model aims to provide all the information required for computing the equilibrium
strategy for all players. As a result, the environment model can work as the game’s environment, with the
primary task of learning the game’s dynamics. Considering that the dynamics of the game employed in
this paper are relatively stable, we can implement supervised learning techniques to train the environment
model. Figure 3(b) illustrates the structure of the environment model.

It should be noted that the offline dataset comprises data tuples (st, a, st+1, rt+1), thereby enabling seamless
training of the environment model using supervised learning methodologies based on the offline dataset.
The environment model E, parameterized by θe, takes the game state st and action a performed by the
player at state st as input, subsequently producing the next game state st+1 and rewards rt+1 for all
players. Depending on the specific scenario, additional game information can be predicted to facilitate
the computation of equilibrium strategies, such as the legal action set for the subsequent state A(st+1) or
the termination of the game. As delineated in Section 2.1, the chance player embodies stochastic events
beyond the control of the player. Consequently, the game’s dynamics are primarily driven by the chance
player (player c). To handle this dynamism, the environment model also outputs whether the next state
is played by the chance player. If so, an action is simply sampled according to the predicted legal action
set. For training the environment model, stochastic gradient descent (SGD) is employed as the optimizer
for parameter updates. Any loss function satisfying Bregman divergence conditions (Banerjee et al., 2005)
can be utilized. In this paper, the mean squared error loss is employed and defined as follows,

Lenv = E(st,a,st+1,rt+1)∼D[MSE((st+1, rt+1), E(st, a; θe))].

Lastly, the environment model is trained by performing mini-batch SGD iterations.

5.2.2 Model-Based Algorithms

Once the environment model is adequately trained, it can provide sufficient game information for equilibrium
computation. Utilizing the trained environment model, we propose a general model-based framework capable
of generalizing any online equilibrium finding algorithm to the context of the OEF setting by substituting the
actual environment with the trained environment model. To demonstrate the generalization of existing online
equilibrium finding algorithms to the OEF setting, we instantiate three model-based algorithms: Offline
Equilibrium Finding-Policy Space Response Oracles (OEF-PSRO), Offline Equilibrium Finding-Deep CFR

8
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(OEF-CFR), and Offline Equilibrium Finding-Joint Policy Space Response Oracles (OEF-JPSRO). OEF-
PSRO and OEF-CFR generalize PSRO and Deep CFR, respectively, to compute Nash Equilibria (NEs),
while OEF-JPSRO generalizes JPSRO to compute Coarse Correlated Equilibria (CCEs).

In PSRO or JPSRO, a meta-game is represented as an empirical game that begins with a single policy
(uniform random) and is iteratively expanded by adding new policies (oracles) approximating the best
responses to the meta-strategies of other players. It is evident that when computing the best response policy
oracle necessitates interaction with the environment to obtain game information. In the OEF setting, only
an offline dataset is provided, rendering the direct application of PSRO or JPSRO unfeasible. In OEF-
PSRO and OEF-JPSRO, the trained environment model substitutes the actual environment to supply the
game information. It is widely acknowledged that when computing the best response policy using DQN
or other RL algorithms, the next state and reward based on the current state and the action are required.
The trained environment model can provide such information and additional details for approximating the
missing entries in the meta-game matrix using the same approach. Deep CFR is a variant of CFR that
employs neural networks to approximate counterfactual regret values and average strategies. This algorithm
necessitates the partial traversal of the game tree to compute the counterfactual regret value, which in turn
requires an environment to provide the necessary game information. Analogous to OEF-PSRO, OEF-CFR
also utilizes the trained environment model to replace the actual environment. During the traversal, the
environment must identify the next game state and utility for the terminal game state, for which the trained
environment model is employed. These algorithms are elaborated in detail in Appendix E.

5.3 Combination Method: BCMB

Although the above two algorithms can be used to solve the OEF problem, they can only perform well in
certain cases, as shown in the experiment section. To this end, we combine the behavior cloning technique
and the model-based framework, creating a more robust approach for tackling the OEF problem.

Datasets

BC policy

Model

MB policy

Policy

BC

MB

Figure 4: The flow of OEF algorithms.

We move to introduce the combination method BCMB, i.e.,
how to combine the two trained policies. Let α be the weight
of the BC policy, making the weight of the MB policy 1 − α.
The simplest way to select the parameter α is to randomly
choose a number from 0 to 1. This method can be done in
an offline way since it does not need any interaction with the
actual environment. However, this method cannot guarantee
to get the best parameter. In real life, if we can first interact
with the actual environment, then we can use one online search
method to select a better parameter as follows. We first preset
11 weight assignment plans, i.e., α ∈ {0, 0.1, 0.2, ..., 0.9, 1}. Next, we use these 11 weight assignment plans
to combine these two policies, generating a set of final policies. Finally, we test these combination policies
in the actual game to determine the best final policy based on the measure used to assess the gap from the
equilibrium strategy. This method can get a good parameter while this method needs online interactions. To
reduce online interactions, another method that sandwichs the above two methods is to train a parameter
predictor model based on the difference between bc policy and mb policy. In this way, we first collect training
data (the policy difference and the good parameter value) using the above online method for one game, then
the parameter predictor can be trained based on these training data. Since the parameter predictor only
depends on the difference between the two policies, it can also be used in different games (More details and
experimental results can be found in Appendix E). Although this method can only provide an approximate
best parameter, it needs little online interaction and can be reused in different games.

We present the general procedure of our OEF algorithm, BCMB, in Algorithm 1. Given the offline dataset
D, we first train an environment model E according to the method introduced in Section 5.2.1. Then, based
on the trained environment model, we can obtain the MB policy using the model-based algorithm, which is
the generalized algorithm from an online equilibrium finding algorithm under the model-based framework.
To get the BC policy, we directly apply the behavior cloning technique on the offline dataset. Finally, we
combine these two policies, i.e., the BC policy and the MB policy, by assigning appropriate weights to these
two policies to derive the final policy. Figure 4 illustrates the whole structure of our OEF algorithm. These

9
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Algorithm 1 General Framework of Offline Equilibrium Finding algorithm
1: Input: an offline dataset D
2: Train an environment model E based on the offline dataset D;
3: Learn a policy πmb on environment model E using any model-based algorithm;
4: Learn a policy πbc based on the offline dataset D using behavior cloning technique;
5: Combine πbc and πmb to get the policy π by selecting the best α based on the test results in actual game;
6: Output: Policy π

dashed lines in the figure represent potential avenues for future research: i) whether we can learn an MB
policy with the regularization of the BC policy, as well as interact with the dataset, and ii) if we can use the
learned model to get the proper weights when combining these two policies.

5.4 Theoretical Analysis

To better understand our OEF problem and algorithm, we offer some theoretical analysis of these algorithms’
performance under different offline datasets. To facilitate the analysis, we initially provide two assumptions
regarding the data coverage of the random dataset and the expert dataset, respectively. These assumptions
are derived from the generation process of these datasets and align with intuitive understanding. Since the
random dataset is generated using the uniform strategy, the state-action pair would be covered as long as
we generate enough data. Because the expert dataset is generated using the Nash equilibrium strategy, the
strategy got from the expert dataset in a statistical way would be the Nash equilibrium strategy. Therefore,
we can easily get the following assumption for these two datasets.
Assumption 5.1. The random dataset satisfies the uniform dataset coverage assumption, i.e., for ∀st

and ∀a ∈ A(st), (st, a, st+1) is covered by the random dataset.
Assumption 5.2. The expert dataset only covers the state-action pair deduced by the Nash Equilibrium
(NE) strategy and the frequency of these state-action pairs is corresponding to the NE strategy.

Since the behavior cloning policy and the environment model are both neural network models, they are
trained in a supervised learning manner. Therefore, we provide a general generalization bound for training
such neural network models which can be found in Appendix D. Then, based on these sample analysis
results, we provide some analysis results regarding the relationship between the above algorithms and the
OEF datasets. Here, we only provide several key theoretical analysis results. Further results and proofs can
be found in Appendix D. The behavior cloning technique possesses the capability to mimic the behavior
policy of the dataset, with its performance primarily relying on the dataset’s quality. Consequently, we
present the following theorem to summarize the performance of BC under various datasets.
Theorem 5.1. Assuming that the behavior cloning policy is trained on the offline dataset with an extremely
small training error ϵ, then the behavior cloning technique (BC) can get the equilibrium strategy under the
expert dataset, and cannot get the equilibrium strategy under the random dataset.

Since the trained environment model substitutes the actual environment in these algorithms, the performance
primarily depends on the quality of the trained environment model. Consequently, we provide the following
theorem to generalize the performance of the MB approach under varying datasets.
Theorem 5.2. Assuming that the environment model is trained on the offline dataset with an extremely
small training error ϵ, then the model-based framework (MB) can converge to an equilibrium strategy under
the random dataset and cannot guarantee to converge under the expert dataset.

The BCMB algorithm combines the BC policy and the MB policy. As a result, drawing upon the insights
from the two theorems above, we can readily derive the following theorem regarding its performance.
Theorem 5.3. Under the assumptions in Theorems 5.1 and 5.2, BCMB can compute the equilibrium strategy
under either the random dataset or the expert dataset.

To better understand our OEF algorithm, we also provide a guarantee of the solution quality for our OEF
algorithm under a more general case, as represented by the following theorem.
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Figure 5: Comparison results with Offline RL
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Figure 6: Experimental results on multi-player games.

Theorem 5.4. Assuming that the environment model and the behavior cloning policy are trained with an
extremely small training error ϵ on the offline dataset Dσ generated using σ, BCMB can get an equal or
better strategy than σ.

6 Experiments

To assess the performance of our OEF algorithms, we conduct the following experiments: i) we conduct
two offline RL algorithms in the OEF setting to evaluate their performance; ii) we perform experiments
on various offline datasets to evaluate the effectiveness of our algorithm in computing NEs under the OEF
setting; and iii) we conduct experiments on two three-player games to assess the performance of our model-
based algorithm in computing CCEs under the OEF setting.

6.1 Experimental Setting

OpenSpiel1 is an extensive collection of environments and algorithms for research in games (Lanctot et al.,
2019). We use it as our experimental platform, as it is widely accepted and implements many different
games. In this paper, we select several poker games (Kuhn poker, Leduc poker), Liar’s Dice, and Phantom
Tic-Tac-Toe, which are all widely used in previous works (Lisý et al., 2015; Brown & Sandholm, 2019), as
experimental domains. Firstly, we generate the OEF datasets for every game using the methods introduced
in Section 4. Then we conduct our experiments on these OEF datasets. NashConv is used to measure how
close the strategy is to NEs, and (C)CE Gap Sum is employed as a measurement of closeness to (C)CEs. All
results are averaged over three seeds, and error bars are also reported. Only selected results are presented
here. The remaining experiment results, ablation study, and parameter setting can be found in Appendix F.

6.2 Comparison with Offline RL

In this section, we provide empirical evidence demonstrating that naive offline RL algorithms are insufficient
for solving the OEF problem. To support this claim, we choose one model-based offline RL algorithm –
Model-based Offline Policy Optimization (MOPO) (Yu et al., 2020) and one model-free offline RL algorithm
– Best-Action Imitation Learning (BAIL) (Chen et al., 2020) as the representative of offline RL algorithms.
Figure 5 shows the comparison results between offline RL algorithms and our OEF algorithm in two-player
Kuhn poker and two-player Leduc poker games. The x-axis represents the proportion of random data in the
hybrid dataset. When the ratio is zero, the dataset is equivalent to the expert dataset; conversely, when the
ratio is one, the hybrid dataset consists entirely of the random dataset. As shown in the figure, we observe
that our algorithm outperforms the two offline RL algorithms. Additionally, we notice that the performance
of the MOPO algorithm varies significantly across different datasets. Compared to the MOPO algorithm,
the performance of the BAIL algorithm appears to be more closely related to the quality of the dataset.
However, neither of these offline RL algorithms can produce a strategy profile close enough to the equilibrium
strategy, which might be attributed to the players’ policies being optimized independently.

1https://github.com/deepmind/open_spiel
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Figure 7: Experimental results on Kuhn poker.
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Figure 8: Experimental results on Leduc poker.

6.3 Computation of Nash Equilibrium

We move to evaluate the performance of our OEF algorithm in computing the NE strategy. We first assess
the individual performance of the behavior cloning technique and the model-based algorithm by applying
them separately to several games. This assessment helps us understand the strengths and weaknesses of each
algorithm. Figures 7(a) and 8(a) show the results of BC on two-player Kuhn poker and Leduc poker games.
As the proportion of the random dataset increases, we observe that the performance of BC policy decreases in
these two games. Additionally, we notice that as the size of offline data increases, the performance becomes
more stable, while the improvement is not significant. This observation suggests that the performance of
BC primarily depends on the quality of datasets, i.e., the quality of the behavior policy used to generate the
dataset. Figures 7(b) and 8(b) depict the results of the MB framework. As shown in Figure 7(b), we observe
that different model-based algorithms achieve nearly identical results. It indicates that the performance of
the MB framework primarily relies on the quality of the trained environment model and is independent of
the algorithm used to compute the equilibrium strategy. Another observation is that as the size of the offline
dataset increases, the performance improves. It indicates that if the dataset includes sufficient data, the
trained environment model is closer to the actual environment. Based on the above results, we can conclude
that the BC performs poorly in the random dataset but well in the expert dataset. On the other hand,
the MB framework exhibits slightly poorer performance in the expert dataset while performing well in the
random dataset. This finding aligns with our theoretical analysis results, i.e., Theorem 5.1 and Theorem 5.2.

Finally, we proceed to evaluate the performance of our OEF algorithm – BCMB. Figures 7(c)-7(d) and 8(c)-
8(d) present the results of our OEF algorithm on two-player Kuhn and Leduc poker games. For comparison,
we also include the results of the BC and MB methods in these figures. We observe that our OEF algorithm
outperforms both BC and MB methods in all cases, demonstrating the effectiveness of the combination. The
optimal weights of BC policy (α) for these combined policies, as illustrated in Figures 7(e) and 8(e), show
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that as the proportion of the random dataset decreases, the weight of the BC policy in the combined policy
increases. It also confirms that the BC policy performs better under the expert dataset and the MB policy
performs better under the random dataset. We also evaluate our OEF algorithm on various poker games
with different players using learning datasets, which can be considered as datasets generated by unknown
strategies. Figures 7(f) and 8(f) demonstrate that our OEF algorithm outperforms other methods in all
games. It indicates that given an OEF dataset generated by an unknown strategy, our OEF algorithm can
consistently obtain a satisfactory approximate NE strategy.

6.4 Computation of Coarse Correlated Equilibrium

To evaluate the performance of our model-based framework in computing the CCE strategy, we apply the
OEF-JPSRO algorithm to two three-player poker games using hybrid datasets. We do not perform the
behavior cloning technique here since the offline dataset is collected using an independent strategy for each
player, rather than a joint strategy. As described in Section 4, in multi-player games, although there is no
guarantee of convergence to NE, we can still use PSRO with α-rank as the meta-solver to get a fairly effective
strategy for generating the expert dataset. Figure 6 represents the results for three-player Kuhn and Leduc
poker games. We can observe that as the size of the offline data increases, the performance of OEF-JPSRO
improves. This further supports the notion that the performance of the model-based framework primarily
depends on the trained environment model and highlights its significance in solving the OEF problem.

7 Conclusion

We initiated an investigation into offline equilibrium finding (OEF), which focuses on finding equilibria in
offline datasets. We first constructed OEF datasets from widely-used games using several data-collecting
methods. To tackle the OEF problem, we proposed a model-based framework capable of generalizing any
online equilibrium finding algorithm with minor changes by introducing an environment model. Specifically,
we adapted several existing online equilibrium finding algorithms to the OEF setting to compute different
equilibrium solutions. To further improve the performance, we combined the behavior cloning technique with
the model-based framework. Experimental results demonstrated that our algorithm outperforms existing
offline RL algorithms, and the model-based method is essential for the OEF setting. We hope our efforts
will open new directions in equilibrium finding and accelerate the research in game theory.

Future works. There are several limitations of this work that we intend to tackle in the future. First,
the games we considered are rather smaller and large-scale games like Texas Hold’em poker (Brown &
Sandholm, 2018) were postponed till future work. Second, the types of generated offline datasets are limited.
For future work, we plan to collect datasets using large-scale games and connect our library to StarCraft II
Unplugged (Mathieu et al., 2021). We will also include more data-collecting strategies (e.g., bounded rational
agents) as well as additional human expert data2 to diversify the provided datasets.
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Marc Lanctot, Vinicius Zambaldi, Audrūnas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David
Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning. In
NeurIPS, pp. 4193–4206, 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien Péro-
lat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, et al. OpenSpiel: A framework
for reinforcement learning in games. arXiv preprint arXiv:1908.09453, 2019.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. Reinforcement learning:
State-of-the-art, pp. 45–73, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hui Li, Kailiang Hu, Shaohua Zhang, Yuan Qi, and Le Song. Double neural counterfactual regret minimiza-
tion. In ICLR, 2019.

Shuxin Li, Youzhi Zhang, Xinrun Wang, Wanqi Xue, and Bo An. CFR-MIX: Solving imperfect information
extensive-form games with combinatorial action space. In IJCAI, pp. 3663–3669, 2021.

Viliam Lisý, Marc Lanctot, and Michael Bowling. Online Monte Carlo counterfactual regret minimization
for search in imperfect information games. In AAMAS, pp. 27–36, 2015.

Siqi Liu, Kay Choong See, Kee Yuan Ngiam, Leo Anthony Celi, Xingzhi Sun, Mengling Feng, et al. Rein-
forcement learning for clinical decision support in critical care: comprehensive review. Journal of Medical
Internet Research, 22(7):e18477, 2020.

Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, and Thore Grapael. Multi-agent training beyond
zero-sum with correlated equilibrium meta-solvers. arXiv preprint arXiv:2106.09435, 2021.

Michael Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray Jiang, Tom
Le Paine, Konrad Zolna, Richard Powell, Julian Schrittwieser, et al. StarCraft II Unplugged: Large scale
offline reinforcement learning. In Deep RL Workshop NeurIPS 2021, 2021.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-efficient
reinforcement learning via model-based offline optimization. arXiv preprint arXiv:2006.03647, 2020.

Stephen McAleer, John Lanier, Roy Fox, and Pierre Baldi. Pipeline psro: a scalable approach for finding
approximate nash equilibria in large games. In NeurIPS, pp. 20238–20248, 2020.

15



Under review as submission to TMLR

Stephen McAleer, Kevin Wang, Marc Lanctot, John Lanier, Pierre Baldi, and Roy Fox. Anytime optimal
psro for two-player zero-sum games. arXiv preprint arXiv:2201.07700, 2022.

Stephen Marcus McAleer, John Banister Lanier, Kevin Wang, Pierre Baldi, and Roy Fox. Xdo: A double
oracle algorithm for extensive-form games. In Advances in Neural Information Processing Systems, 2021.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost functions
controlled by an adversary. In ICML, pp. 536–543, 2003.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Hervé Moulin and J-P Vial. Strategically zero-sum games: the class of games whose completely mixed
equilibria cannot be improved upon. International Journal of Game Theory, 7(3):201–221, 1978.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel Hennes, Luke
Marris, Marc Lanctot, Edward Hughes, et al. A generalized training approach for multiagent learning. In
ICLR, 2019.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline rein-
forcement learning: Taxonomy, review, and open problems. arXiv preprint arXiv:2203.01387, 2022.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline reinforcement
learning and imitation learning: A tale of pessimism. Advances in Neural Information Processing Systems,
34:11702–11716, 2021.

Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, and Michael Bowling. Variance
reduction in Monte Carlo counterfactual regret minimization (VR-MCCFR) for extensive form games
using baselines. In AAAI, pp. 2157–2164, 2019.

L Julian Schvartzman and Michael P Wellman. Exploring large strategy spaces in empirical game modeling.
Agent Mediated Electronic Commerce (AMEC 2009), pp. 139, 2009a.

L Julian Schvartzman and Michael P Wellman. Stronger cda strategies through empirical game-theoretic
analysis and reinforcement learning. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems, pp. 249–256, 2009b.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2008.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas
Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic applications: a
comprehensive survey. Artificial Intelligence Review, pp. 1–46, 2021.

Adish Singla, Anna N Rafferty, Goran Radanovic, and Neil T Heffernan. Reinforcement learning for educa-
tion: Opportunities and challenges. arXiv preprint arXiv:2107.08828, 2021.

Eric Steinberger. Single deep counterfactual regret minimization. arXiv preprint arXiv:1901.07621, 2019.

16



Under review as submission to TMLR

Karl Tuyls, Shayegan Omidshafiei, Paul Muller, Zhe Wang, Jerome Connor, Daniel Hennes, Ian Graham,
William Spearman, Tim Waskett, Dafydd Steel, et al. Game plan: What AI can do for football, and what
football can do for AI. Journal of Artificial Intelligence Research, 71:41–88, 2021.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo,
Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. StarCraft II: A new
challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Kevin Waugh, David Schnizlein, Michael H Bowling, and Duane Szafron. Abstraction pathologies in extensive
games. In AAMAS, pp. 781–788, 2009.

Michael P Wellman. Methods for empirical game-theoretic analysis. In AAAI, pp. 1552–1556, 2006.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent pessimism
for offline reinforcement learning. Advances in neural information processing systems, 34:6683–6694, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. Advances in Neural Information Processing Systems,
34, 2021a.

Xiaopeng Yu, Jiechuan Jiang, Haobin Jiang, and Zongqing Lu. Model-based opponent modeling. arXiv
preprint arXiv:2108.01843, 2021b.

Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A deep
bayesian policy reuse approach against non-stationary agents. Advances in neural information processing
systems, 31, 2018.

Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, and Zhuoran Yang. Pessimistic
minimax value iteration: Provably efficient equilibrium learning from offline datasets. In ICLR 2022
Workshop on Gamification and Multiagent Solutions, 2022.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization in games
with incomplete information. In NeurIPS, pp. 1729–1736, 2007.

17



Under review as submission to TMLR

A Frequently Asked Questions

Q1: What is the impact of this work?

Offline RL aims to bridge the gap between reinforcement learning and real-world applications. We anticipate
that our offline equilibrium finding setting could inspire new research directions in equilibrium finding and
pave a path to solving real-world problems using these game theory-based methods. Notably, offline RL
algorithms cannot be directly applied to the OEF setting. Offline RL seeks to compute the optimal strategy
from the single agent perspective, but this optimal strategy might be exploitable in a game setting. In
such situations, the Nash Equilibrium (NE) strategy may be a more suitable solution, as it comprises non-
exploitable strategies. Consequently, OEF plays a crucial role in obtaining more robust strategies for tackling
these competitive real-world problems.

Q2: How to connect the example scenario with offline equilibrium finding?

In the example scenario, Player A aims to obtain a larger reward by employing the best strategy (i.e., the
best response against Player B’s previous policy). However, this best strategy may be exploited by Player
B if he adapts his strategy accordingly. As a result, Player A must learn more about the game information
by observing replays (e.g., actions and preferences of Player B). To minimize the risk of being exploited, the
optimal solution for Player A is to choose the Nash equilibrium strategy of the underlying game.

Q3: Why OEF is important and is more difficult than offline cooperative multi-agent RL?

Utilizing OEF algorithms specifically designed for adversarial environments is crucial in strictly competitive
games, such as security games. This setting fundamentally differs from offline multi-agent RL, which generally
focuses on cooperation between agents rather than strict competition. For instance, consider the class of
pursuit-evasion games, where the pursuer (defender) chases the evader (attacker). In this scenario, we cannot
make any assumptions about the attacker’s strategy beforehand, as the attacker is strategic and capable of
learning. Employing a vanilla offline RL algorithm to learn the defender’s optimal strategy based solely on
historical data might lead to a significant utility loss, as the defender’s optimal strategy could be exploitable.
In other words, the attacker may switch to the best response against the computed strategy of the defender
instead of adhering to their past behavior estimated from the data. Therefore, achieving Nash Equilibrium
(NE) may be a more suitable solution, as NE strategies are non-exploitable.

To be more specific, traditional offline RL focuses on learning the optimal strategy, i.e., obtaining the highest
utility, for an agent acting in a dynamic environment modeled as a single MDP, which does not depend on
the actions of other agents. In contrast, in two-player games, the dynamics for one player depend not only
on the environment but also on the strategy of the opponent. In other words, the MDP a player acts in
games is determined by both the game and the fixed strategy of the opponent, and hence a change in the
opponent’s strategy instigates a corresponding change in the MDP. This makes computing the best strategy
for the defender against a strategic opponent using offline RL significantly more difficult. The framework of
OEF we introduced provides methods for computing a player’s NE strategy, which is their optimal strategy
against a strategic opponent (i.e., the worst case for the player).

Q4: What are the differences between OEF and EGTA?

1) As described in (Wellman, 2006), EGTA takes the game simulator as the fundamental input and per-
forms strategic reasoning through interleaved simulation and game-theoretic analysis. Therefore, the game
simulator is required in EGTA. In contrast, under the OEF setting, only the offline dataset is available
and the game simulator is not required.

2) The estimated game model (empirical game) in EGTA is built based on the simulation’s results, which
are obtained by performing known strategies on the simulator. In contrast, in the OEF setting, the offline
dataset is generated with an unknown strategy. In our work, although we use different behavior strategies
to generate several offline datasets, we do not utilize these behavior strategies when performing our OEF
algorithm.

Therefore, our proposed approach is different from EGTA. It is more challenging to find the equilibrium
strategy in our OEF setting.
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Q5: What are the novelties of the proposed OEF algorithm – BCMB?

We are the first ones to propose an empirical algorithm for solving the OEF problem. We introduce an
environment model to propose a model-based framework that can generalize any existing online equilibrium
finding algorithm to the context of the OEF setting. Due to the performance limitations of the model-based
framework on certain offline datasets, we combine a model-free algorithm – the behavior cloning technique,
with the model-based framework to improve performance. Unlike traditional offline RL algorithms, which
belong to either model-based or model-free categories, our algorithm combines the advantages of both model-
based and model-free approaches to efficiently solve the OEF problem.
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B Related Work Overview

Offline Reinforcement Learning (Offline RL). Offline RL is a data-driven paradigm that learns ex-
clusively from static datasets of previously collected interactions, making it feasible to extract policies from
large and diverse training datasets (Levine et al., 2020). This paradigm can be extremely valuable in set-
tings where online interaction is impractical, either because data collection is expensive or dangerous (e.g.,
in robotics (Singh et al., 2021), education (Singla et al., 2021), healthcare (Liu et al., 2020), and autonomous
driving (Kiran et al., 2022)). Therefore, efficient offline RL algorithms have a much broader range of appli-
cations than online RL and are particularly appealing for real-world applications (Prudencio et al., 2022).
Due to its attractive characteristics, there have been a lot of recent studies. Here, we can divide the research
of Offline RL into two categories: model-based and model-free algorithms.

Model-free algorithms mainly use the offline dataset directly to learn a good policy. When learning the
strategy from an offline dataset, we have two types of algorithms: actor-critic and imitation learning methods.
Those actor-critic algorithms focus on implementing policy regularization and value regularization based
on existing reinforcement learning algorithms. Haarnoja et al. (2018) propose soft actor-critic (SAC) by
adding an entropy regularization term to the policy gradient objective. This work mainly focuses on policy
regularization. For the research of value regularization, an offline RL method named Constrained Q-Learning
(CQL) (Kumar et al., 2020) learns a lower bound of the true Q-function by adding value regularization
terms to its objective. Another line of research on learning a policy is imitation learning which mimics
the behavior policy based on the offline dataset. Chen et al. (2020) propose a method named Best-Action
Imitation Learning (BAIL), which fits a value function, then uses it to select the best actions. Meanwhile,
Siegel et al. (2020) propose a method that learns an Advantage-weighted Behavior Model (ABM) and uses
it as a prior in performing Maximum a-posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018).
It consists of multiple iterations of policy evaluation and prior learning until they finally perform a policy
improvement step using their learned prior to extracting the best possible policy.

Model-based algorithms rely on the offline dataset to learn a dynamics model or a trajectory distribution
used for planning. The trajectory distribution induced by models is used to determine the best set of
actions to take at each given time step. Kidambi et al. (2020) propose a method named Model-based Offline
Reinforcement Learning (MOReL), which measures their model’s epistemic uncertainty through an ensemble
of dynamics models. Meanwhile, Yu et al. (2020) propose another method named Model-based Offline
Policy Optimization (MOPO), which uses the maximum prediction uncertainty from an ensemble of models.
Concurrently, Matsushima et al. (2020) propose the BehaviorREgularized Model-ENsemble (BREMEN)
method, which learns an ensemble of models of the behavior MDP, as opposed to a pessimistic MDP. In
addition, it implicitly constrains the policy to be close to the behavior policy through trust-region policy
updates. More recently, Yu et al. (2021a) proposed a method named Conservative Offline Model-Based
policy Optimization (COMBO), a model-based version of CQL. The main advantage of COMBO concerning
MOReL and MOPO is that it removes the need for uncertainty quantification in model-based offline RL
approaches, which is challenging and often unreliable. However, these above Offline RL algorithms can not
directly apply to the OEF problem, which we have described in Section 3 and experimental results empirically
verify this claim.

Empirical Game Theoretic Analysis (EGTA). Empirical Game Theoretic Analysis is an empirical
methodology that bridges the gap between game theory and simulation for practical strategic reasoning
(Wellman, 2006). In EGTA, game models are iteratively extended through a process of generating new
strategies based on learning from experience with prior strategies. The strategy exploration problem (Jordan
et al., 2010) that how to efficiently assemble an efficient portfolio of policies for EGTA is the most challenging
problem in EGTA.

Schvartzman & Wellman (2009b) deploy tabular RL as a best-response oracle in EGTA for strategy gener-
ation. They also build the general problem of strategy exploration in EGTA and investigate whether better
options exist beyond best-responding to an equilibrium (Schvartzman & Wellman, 2009a). Investigation of
strategy exploration was advanced significantly by the introduction of the Policy Space Response Oracle
(PSRO) framework (Lanctot et al., 2017) which is a flexible framework for iterative EGTA, where at each
iteration, new strategies are generated through reinforcement learning. Note that when employing NE as
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the meta-strategy solver, PSRO reduces to the double oracle (DO) algorithm (McMahan et al., 2003). In
the OEF setting, only an offline dataset is provided, and there is no accurate simulator. In EGTA, a space
of strategies is examined through simulation, which means that it needs a simulator, and the policies are
known in advance. Therefore, techniques in EGTA cannot directly apply to OEF.

Opponent Modeling (OM) in Multi-Agent Learning. Opponent modeling algorithm is necessary for
multi-agent settings where secondary agents with competing goals also adapt their strategies, yet it remains
challenging because policies interact with each other and change (He et al., 2016). One simple idea of
opponent modeling is to build a model each time a new opponent or group of opponents is encountered (Zheng
et al., 2018). However, it is infeasible to learn a model every time. A better approach is to represent an
opponent’s policy with an embedding vector. Grover et al. (2018) use a neural network as an encoder, taking
the trajectory of one agent as input. Imitation learning and contrastive learning are also used to train the
encoder. Then, the learned encoder can be combined with RL by feeding the generated representation into
the policy or/and value network. DRON (He et al., 2016) and DPIQN (Hong et al., 2017) are two algorithms
based on DQN, which use a secondary network that takes observations as input and predicts opponents’
actions. However, if the opponents can also learn, these methods become unstable. So it is necessary to take
the learning process of opponents into account.

Foerster et al. (2017) propose a method named Learning with Opponent-Learning Awareness (LOLA), in
which each agent shapes the anticipated learning of the other agents in the environment. Further, the op-
ponents may still be learning continuously during execution. Therefore, Al-Shedivat et al. (2017) propose
a method based on a meta-policy gradient named Mata-MPG. It uses trajectories from current opponents
to perform multiple meta-gradient steps and constructs a policy that favors updating the opponents. Meta-
MAPG (Kim et al., 2021) extends this method by including an additional term that accounts for the impact
of the agent’s current policy on the future policies of opponents, similar to LOLA. Yu et al. (2021b) propose
model-based opponent modeling (MBOM), which employs the environment model to adapt to various op-
ponents. In the OEF setting, our goal is to compute the equilibrium strategy based on the offline dataset.
Applying opponent modeling is not enough for calculating the equilibrium strategy in the OEF setting since
the opponent will always best respond to the agent.

Equilibrium Finding Algorithms. The contemporary state-of-the-art algorithms for solving imperfect-
information extensive-form games may be roughly divided into two groups: no-regret methods derived from
CFR, and incremental strategy-space generation methods of the PSRO framework.

For the first group, CFR is a family of iterative algorithms for approximately solving large imperfect-
information games. Let σt

i be the strategy used by player i in round t. We define ui(σ, h) as the expected
utility of player i given that the history h is reached, and then all players act according to strategy σ from
that point on. Let us define ui(σ, h · a) as the expected utility of player i given that the history h is reached
and then all players play according to strategy σ except player i who selects action a in history h. Formally,
ui(σ, h) =

∑
z∈Z πσ(h, z)ui(z) and ui(σ, h · a) =

∑
z∈Z πσ(h · a, z)ui(z). The counterfactual value vσ

i (I) is
the expected value of information set I given that player i attempts to reach it. This value is the weighted
average of the value of each history in an information set. The weight is proportional to the contribution
of all players other than i to reach each history. Thus, vσ

i (I) =
∑

h∈I πσ
−i(h)

∑
z∈Z πσ(h, z)ui(z). For any

action a ∈ A(I), the counterfactual value of action a is vσ
i (I, a) =

∑
h∈I πσ

−i(h)
∑

z∈Z πσ(h · a, z)ui(z). The
instantaneous regret for action a in information set I of iteration t is rt(I, a) = vσt

P (I)(I, a) − vσt

P (I)(I). The
counterfactual regret for action a in I of iteration T is RT (I, a) =

∑T
t=1 rt(I, a). In vanilla CFR, players

use Regret Matching to pick a distribution over actions in an information set proportional to the positive
cumulative regret of those actions. Formally, in iteration T + 1, player i selects action a ∈ A(I) according
to probabilities

σT +1(I, a) =


RT

+(I,a)∑
b∈A(I)

RT
+(I,b)

if
∑

b∈A(I)
RT

+(I, b) > 0,

1
|A(I)| otherwise,

where RT
+(I, a) = max{RT (I, a), 0} because we are concerned about the cumulative regret when it is positive

only. If a player acts according to regret matching in I on every iteration, then in iteration T , RT (I) ≤
∆i

√
|Ai|
√

T where ∆i = maxz ui(z) − minz ui(z) is the range of utilities of player i. Moreover, RT
i ≤

21



Under review as submission to TMLR

∑
I∈Ii

RT (I) ≤ |Ii|∆i

√
|Ai|
√

T . Therefore, limT →∞
RT

i

T = 0. In two-player zero-sum games, if both players’
average regret RT

i

T ≤ ϵ, their average strategies (σT
1 , σT

2 ) form a 2ϵ-equilibrium (Waugh et al., 2009). Some
variants are proposed to solve large-scale imperfect-information extensive-form games. Some sampling-based
CFR variants (Lanctot et al., 2009; Gibson et al., 2012; Schmid et al., 2019) are proposed to effectively
solve large-scale games by traversing a subset of the game tree instead of the whole game tree. With the
development of deep learning techniques, neural network function approximation is also applied to the CFR
algorithm. Deep CFR (Brown et al., 2019), Single Deep CFR (Steinberger, 2019), and Double Neural
CFR (Li et al., 2019) are algorithms using deep neural networks to replace the tabular representation in the
CFR algorithm.

For the second group, PSRO (Lanctot et al., 2017) is a general framework that scales Double Oracle
(DO) (McMahan et al., 2003) to large extensive-form games via using reinforcement learning to compute the
best response strategy approximately. To make PSRO more effective in solving large-scale games, Pipeline
PSRO (P2SRO) (McAleer et al., 2020) is proposed by parallelizing PSRO with convergence guarantees.
Extensive-Form Double Oracle (XDO) (McAleer et al., 2021) is a version of PSRO where the restricted
game allows mixing population strategies not only at the root of the game but every information set. It
can guarantee to converge to an approximate NE in a number of iterations that are linear in the number of
information sets, while PSRO may require a number of iterations exponential in the number of information
sets. Neural XDO (NXDO) as a neural version of XDO learns approximate best response strategies through
any deep reinforcement learning algorithm. Recently, Anytime Double Oracle (ADO) (McAleer et al., 2022),
a tabular double oracle algorithm for 2-player zero-sum games is proposed to converge to a Nash equilibrium
while decreasing exploitability from one iteration to the next. Anytime PSRO (APSRO) as a version of
ADO calculates best responses via reinforcement learning algorithms. Except for NEs, other equilibrium
solution concepts, for example, (Coarse) Correlated equilibrium ((C)CE) is considered. Joint Policy Space
Response Oracles (JPSRO) (Marris et al., 2021) is proposed for training agents in n-player, general-sum
extensive-form games, which provably converges to (C)CEs. The excellent performance of these equilibrium
finding algorithms depends on the existence of efficient and accurate simulators. However, constructing a
sufficiently accurate simulator may not be feasible or very expensive. In this case, we may resort to offline
equilibrium finding (OEF) where the equilibrium strategy is computed based on the previous game data.
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C Visualization of Datasets

The additional figures provided showcase more visualization results for different datasets across various
games. These results are consistent with those presented in the main paper. There are more high-frequency
data in the expert dataset and the distributions of these datasets are very different.

(a) Kuhn Poker-4 Player (b) Leduc Poker-2 Player (c) Leduc Poker-3 Player (d) Liars Dice-2 Player

Figure 9: Frequency of leaf node for different offline datasets
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(c) Leduc Poker-3 Player
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(d) Liars Dice-2 Player

Figure 10: Cumulative frequency of leaf node for different offline datasets
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Figure 11: Amplitude-Frequency curve for different offline datasets
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D Theoretical Analysis

The concurrent works Cui & Du (2022); Zhong et al. (2022) investigate the necessary properties of offline
datasets of two-player zero-sum Markov games to successfully infer their NEs. To do this, they proposed
several dataset coverage assumptions. Following their assumptions Cui & Du (2022), we also define some
hypotheses on the dataset coverage under our OEF setting and provide extensive analysis about how the
dataset coverage influences computing the equilibrium under the OEF setting. Our results are mainly for
computing Nash equilibrium in extensive-form games. Here, we did not provide a sample complexity analysis
since the influence of dataset coverage on the algorithm is more important for our problem. The analysis of
the dataset coverage can provide more intuitive insight into our algorithm.

D.1 Minimal Dataset Assumption for the OEF problem

We first introduce the difference between the OEF and the Offline RL from the standpoint of a theoretical
analysis of dataset coverage. As demonstrated in offline RL papers (Rashidinejad et al., 2021; Xie et al.,
2021), a coverage condition over the optimal policy is sufficient for the offline learning of MDPs. Therefore,
it is straightforward to extend this coverage condition to our OEF settings. The following assumption shows
this extended coverage condition.
Assumption D.1. (Single Strategy Coverage) The Nash equilibrium strategy σ∗ is covered by the dataset.

Subsequently, a question arises: is the single strategy coverage assumption over the offline dataset also
sufficient for computing NE strategy under the OEF setting? The answer is no, and we employ the following
theorem to elucidate the rationale behind this.
Theorem D.1. Single strategy coverage assumption over offline dataset is not sufficient for computing an
NE strategy.

Proof. We provide a counter-example to prove this theorem. Here, we consider two two-player extensive-form
games M1 and M2, which are represented in Figure 12.

We can easily find that the NE of the game M1 is strategy profile σ1 = (σ1
1 , σ1

2) = ({S1 : a1}, {S2 : b1}), i.e.,
player 1 plays a1 at information set S1 and player 2 plays b1 at information set S2. The NE of the game
M2 is strategy profile σ2 = (σ2

1 , σ2
2) = ({S1 : a2}, {S2 : b2}). Now we consider an offline dataset D which

is generated using a strategy profile σD and the σD is set to be the uniform distribution on the strategy
profiles σ1 and σ2.

The dataset D covers strategy profile σ1 and σ2. Therefore, the dataset D satisfies the single strategy
coverage assumption for these two games M1 and M2. However, it is impossible for any algorithm to
distinguish these two extensive-form games only based on the dataset D since these two games are both
consistent on the dataset D.

Therefore, the single strategy converges assumption over the offline dataset is not sufficient for computing
an NE strategy.

Figure 12: Example of two-player extensive-form game
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From the above proof, we know that the single strategy coverage assumption over the dataset is sufficient for
computing the optimal strategy under the offline RL setting while it is not sufficient for computing an NE
strategy under the OEF setting. The intuition behind this theorem is that in an offline RL setting, we can
easily use the data of two actions to decide which action is better, whereas, in an OEF setting, we cannot use
data from only two action pairs to know which action pair is closer to NE, because identifying NE requires
other action pairs as inferences. Based on this analysis, Cui & Du (2022) et al. provide a minimal coverage
assumption over the dataset which is sufficient for computing an NE strategy in the two-player zero-sum
Markov games, which is defined as follows,
Assumption D.2. (Unilateral Coverage) For all strategy σi, (σi, σ∗

−i) for all player i are covered by the
dataset, where σ∗ = (σ∗

1 , ..., σ∗
n) is the NE strategy.

Assumption D.3. (Deterministic Unilateral Coverage) For all deterministic strategy σi, (σi, σ∗
−i) for all

player i are covered by the dataset, where σ∗ = (σ∗
1 , ..., σ∗

n) is the NE strategy.

We can find that deterministic unilateral coverage assumption is equivalent to unilateral coverage assump-
tion. The intuition behind this is that any mixed strategy can be represented by a combination of several
deterministic strategies. Therefore, if all deterministic strategies are covered by the dataset, then all mixed
strategies are also covered. Based on this, in the following proof, we only consider all deterministic strategies.

Cui & Du (2022) have proved that unilateral coverage assumption is the minimal assumption that is sufficient
for computing an NE strategy in the two-player zero-sum Markov games. However, this conclusion is not
hold for our model-based framework in computing the equilibrium strategy under the OEF setting. In other
words, under the OEF setting, our model-based algorithm cannot guarantee coverage to the equilibrium
strategy of the underlying game based on the dataset satisfying the unilateral coverage assumption.
Theorem D.2. The unilateral coverage assumption over the offline dataset is not sufficient for our model-
based algorithm to converge to the equilibrium strategy of the underlying game in the OEF setting.

Proof. We prove it by providing a counter-example. Here, we consider an imperfect-information extensive-
form game M3, which is represented in Figure 13. We can easily find that the NE strategy of game M3 is
the strategy profile σ∗ = (σ1, σ2) = ({S1 : a1}, {S2 : b1}).

Figure 13: Example of two-player extensive-form game

To build an offline dataset satisfying the unilateral coverage assumption, the dataset needs to cover (σ∗
1 , σ2)

for all σ2 and (σ1, σ∗
2) for all σ1. We show the state-action pairs covered by these strategy profiles in Figure

13. These red lines show these covered state-action pairs. It means that the dataset satisfying the unilateral
coverage assumption would cover these state-action pairs. When applying our model-based framework, the
first step is to train an environment model based on the offline dataset. Assume that the environment model
can be trained well which means that the environment model can precisely represent all these state-action
pairs in the dataset. Therefore, the game represented by the trained environment model would be M∗

3 in
Figure 13. Note that there are missing data in the game. Although our trained environment model can give
approximate results for these missing data, it may result in a different equilibrium strategy. For example,
if the missing value in M∗

3 is (0, 0) or (−1, 1), then the strategy profile σ = (σ1, σ
′

2) = ({S1 : a1}, {S2 : b2})
would be the NE strategy of game M∗

3 . However, the strategy profile σ is not the NE strategy for the
original game M3. Therefore, the unilateral coverage assumption over the offline dataset is not sufficient for
our model-based framework to converge to the NE strategy of the underlying game.

25



Under review as submission to TMLR

Therefore, the unilateral coverage assumption is not sufficient for our model-based framework to converge to
the equilibrium strategy. To guarantee the convergence of our model-based framework, we provide a minimal
dataset coverage assumption for our model-based algorithm to converge to the equilibrium strategy of the
underlying game under the OEF setting.
Assumption D.4. (Uniform Coverage) For all state st and all actions at ∈ A(st), all state-action pairs
(st, at, st+1) are covered by the dataset.
Theorem D.3. The uniform coverage assumption over the offline dataset is the minimal dataset coverage
assumption which is sufficient for our model-based algorithm to converge to the equilibrium strategy in the
OEF setting.

Proof. From the example in the proof of Theorem D.2, we find that a slight violation of the uniform coverage
assumption will impede the computation of the NE strategy using our model-based algorithm. In other words,
any state-action pair that is not covered by the dataset would impede the restructure of the game using our
environment model.

Once the dataset satisfies the uniform coverage, then it covers all the state-action pairs in the game which
is enough for training the environment model. It means that the environment model would be the same as
the underlying game of the dataset. Then applying our model-based equilibrium finding algorithm on the
trained environment model definitely can converge to the equilibrium strategy of the underlying game in the
OEF setting.

Here, we proved that the uniform dataset coverage assumption is sufficient for our model-based framework
to converge to the equilibrium strategy. From the proof of Theorem D.2, we find that the game represented
by the dataset satisfying the unilateral coverage assumption may be a part of the original game (here, we
call the game in the dataset subgame). However, the non-uniqueness of the equilibrium in the subgame
would result in the failure to find the equilibrium strategy of the underlying game using our model-based
framework. The following theorem provides a more general analysis of the unilateral coverage assumption
in the OEF setting.
Theorem D.4. Under the assumption that the equilibrium strategy profile of the game represented by the
dataset is unique, the unilateral coverage assumption would be the minimal assumption over the offline dataset
which is sufficient for computing an NE strategy in the OEF setting.

Proof. Firstly, we prove that a slight violation of the unilateral coverage assumption will impede the com-
putation of the Nash equilibrium strategy. We can reuse the example game M1 in the proof of Theorem
D.1 and consider another dataset D which is generated using strategy profile σD and σD is set to be the
uniform distribution on these three deterministic strategy profiles σ1 = (σ1

1 , σ1
2) = ({S1 : a1}, {S2 : b1}),

σ2 = (σ2
1 , σ2

2) = ({S1 : a2}, {S2 : b1}) and σ3 = (σ1
1 , σ2

2) = ({S1 : a2}, {S2 : b2}). Since the NE strategy
of game M1 is strategy profile σ1 = (σ1

1 , σ1
2) = ({S1 : a1}, {S2 : b1}), we can find that only the deter-

ministic strategy profile σ4 = (σ2
1 , σ1

2) = ({S1 : a2}, {S2 : b1}) is not covered by the dataset D compared
with the dataset satisfying the unilateral coverage assumption. Then the game generated by the dataset
is represented in Figure 14. we can find that the game generated based on the dataset has the unique

Figure 14: Example game
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equilibrium strategy σ1 = (σ1
1 , σ1

2) = ({S1 : a1}, {S2 : b1}). Therefore, the dataset D satisfies the assump-
tion the game generated based on the dataset has a unique equilibrium and slightly violates the unilateral
coverage assumption. However, we find that the different missing data values in the game generated based
on the dataset would result in a different equilibrium strategy. For example, if the missing value in the
game generated based on the dataset is (0, 0), then the equilibrium strategy profile of the game would be
σ∗ = (σ1, σ2) = {S1 : {a1 : 0.75, a2 : 0.25}, S2 : {b1 : 0.75, b2 : 0.25}}, which is not the equilibrium strategy
of the original game. Therefore, a slight violation of the unilateral coverage assumption will impede the
computation of the equilibrium strategy.

Then we prove that the unilateral coverage assumption is sufficient for computing an NE strategy in the OEF
setting under the unique equilibrium assumption. Recall the definition of NE strategy, the strategy profile
σ∗ forms an NE strategy if ui(σ∗) ≥ ui(σ′

i, σ∗
−i),∀i ∈ N, ∀σ′

i ∈ Σi which means that σ∗
i is the best response

strategy against σ∗
−i for ∀i ∈ N . According to the unilateral coverage assumption, the dataset covers all

strategy profiles (σi, σ∗
−i) for all i and all σi. Then it is easy to verify which strategy for player i is the

best response strategy against σ∗
−i based on the dataset. In other words, we have enough information about

(σi, σ∗
−i),∀σi which is sufficient to verify that σ∗

i is the best response strategy of σ∗
−i. In this way, we can verify

the best response strategy for every player. Due to the uniqueness of the equilibrium strategy, the strategy
σ∗ would also be the equilibrium strategy of the original game. We can give an example to further explain it.
Consider another dataset D

′ for the game M1 which is generated using the strategy profile σ
′

D and σ
′

D is set
to be the uniform distribution on these three deterministic strategy profiles σ1 = (σ1

1 , σ1
2) = ({S1 : a1}, {S2 :

b1}), σ2 = (σ2
1 , σ2

2) = ({S1 : a2}, {S2 : b1}) and σ3 = (σ1
1 , σ2

2) = ({S1 : a1}, {S2 : b2}). We can easily verify
that the dataset satisfies the unilateral coverage assumption for the game M1 and the game generated based
on the dataset D

′ (Figure 14) has a unique equilibrium strategy, σ1 = (σ1
1 , σ1

2) = ({S1 : a1}, {S2 : b1}). Then
we can find that whatever the missing value in the game is the equilibrium of the game would not change and
is the same as the equilibrium strategy of the original game. Therefore, based on the above analysis, under
the strong assumption (equilibrium uniqueness), the unilateral coverage assumption would be the minimal
dataset coverage assumption.

The above theorem proves that under the strong assumption (equilibrium uniqueness), the dataset satisfying
the unilateral coverage assumption is sufficient for the computation of equilibrium strategy under the OEF
setting. However, in the general OEF setting, to guarantee convergence under the dataset satisfying unilateral
coverage assumption, it may need a more powerful algorithm that can solve the non-uniqueness of the
equilibrium problem. We left it as future work.

D.2 Generalization Bound for training Neural Network Model

In this paper, we need to train the behavior cloning policy model and environment model which are both
neural network models. Both models are trained in a supervised learning manner with different loss functions.
Here, we provide a general generalization bound for training such neural network models.

The supervised learning framework includes a data-generation distribution D a hypothesis class H of the
neural network approximator, a training dataset S, and evaluation metrics to evaluate the performance of
any approximator. Here, we use the loss function l to evaluate the performance of any approximation. The
learning framework aims to minimize the true risk function LD(h) which is the expected loss function of h
under the distribution D.

LD(h) = Ed∼D[l(h(d), d)]

Accordingly, the empirical risk function LS(h) on the training dataset S can be defined as:

LS(h) = 1
|S|

∑
d∼S

[l(h(d), d)] (1)

To get a generalization bound, we use an auxiliary lemma from Shalev-Shwartz & Ben-David (2014). There-
fore, we can measure the capacity of the composition function class l ◦ H using the empirical Rademacher
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complexity on the training set S with size m, which is defined as:

RS(l ◦ H) = 1
m
Ex∼{+1,−1}m [sup

σ∈Σ

m∑
i=1

xi · l(h(di), di)]

where x is distributed i.i.d. according to uniform distribution in {+1,−1}. Then we have the following
lemma from Shalev-Shwartz & Ben-David (2014).

Before providing the generalization bound, we first provide the distance between two different approximators
and one common theorem to facilitate the proof of the generalization bound.

Definition D.1. (r-cover). We say function class Hr r−cover H under ℓ∞,1-distance if for all function
h ∈ H, there exists hr in Hr such that ||h− hr||∞,1 = maxx∈D ||h(x)− hr(x)||1 ≤ r.

Definition D.2. (r-covering number). The r-covering number of H, denoted by N∞,1(H, r), is the cardi-
nality of the smallest function class Hr that r-covers H under ℓ∞,1-distance.

Theorem D.5. (Shalev-Shwartz & Ben-David (2014)) Let S be a training set of size m drawn i.i.d. from
distribution D. Then with probability of at least 1− δ over draw of S from D, for all σ ∈ Σ,

LD(h)− LS(h) ≤ 2RS(lbc ◦ Σ) + 4
√

2 ln (4/δ)
m

Here, we provide the generalization bound to measure the generalizability of the trained approximator under
a training dataset with size m.

Theorem D.6 (Generalization bound). Assume that the loss function l is T -Lipschitz continuous, then for
hypothesis class H of approximator and distribution D, with probability at least 1−δ over draw of the training
set S with size m from D, ∀h ∈ H we have

LD(h)− LS(h) ≤ 2 · inf
r>0

[
√

2 logN∞,1(H, r)
m

+ Tr] + 4
√

2 ln (4/δ)
m

.

Proof. According to Theorem D.5, we have

LD(h)− LS(h) ≤ 2RS(l ◦ H) + 4
√

2 ln (4/δ)
m

.

We assume the loss function l(x, y) is T -Lipschitz continuous under ℓk-distance. Therefore,

|l(x, y)− l(x′, y)| ≤ T ||x− x′||k,

where || · ||k is the k-norm. Let Hr be the function class that r-cover H for some r > 0 and |Hr| = N∞,1(H, r)
be the cardinality of the smallest function class Hr. ∀h ∈ H, denote hr ∈ Hr be the function approximator
that r-covers h. Based on above equation, we have

|l(h(x), y)− l(hr(x), y)| ≤ T ||h(x)− hr(x)||k ≤ Tr.

28



Under review as submission to TMLR

Then we have

RS(l ◦ H) (2)

= 1
m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · l(h(di), di)] (3)

= 1
m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · (l(hr(di), di) + l(h(di), di)− l(hr(di), di))] (4)

≤ 1
m
Ex∼{+1,−1}m [ sup

hr∈Hr

m∑
i=1

xi · l(hr(di), di)] + 1
m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1
|xi · Tr|] (5)

≤ sup
hr∈Hr

√√√√ m∑
i=1

(ℓ(hr, di))2 ·
√

2 logN∞,1(H, r)
m

+ Tr

m
Ex||x||1 (6)

≤
√

2 logN∞,1(H, r)
m

+ Tr (7)

The reduction from Eq. 19(a) to Eq. 19(j) is based on Massart’s lemma Shalev-Shwartz & Ben-David (2014).
From above, we can get

LD(h)− LS(h) ≤ 2RS(l ◦ H) + 4
√

2 ln (4/δ)
m

(8)

≤ 2 · inf
r>0

[
√

2 logN∞,1(H, r)
m

+ Tr] + 4
√

2 ln (4/δ)
m

(9)

From the above theorem, we can find that given a training dataset with size m, we can have a generalization
bound for the error depending on the characteristic of the loss function. In this paper, we follow the above
supervised-learning framework to train the behavior cloning policy and environment model. Therefore, we
can provide some assumptions for the trained policy and environment models based on the above theorem,
as follows:
Assumption D.5. If the error for training behavior cloning policy is less than an extremely small ϵ on the
dataset with enough data (the size of data can be computed according to the above theorem), then we can
consider that the trained behavior cloning policy model is the same as the underlying strategy of the dataset.

Assumption D.6. If the error for training the environment model is less than an extremely small ϵ on
the dataset with enough data, then we can consider that the trained environment model is the same as the
underlying game of the dataset.

D.3 Theoretical Guarantee for Our OEF Algorithm

We move to analyze our proposed datasets and their influences on our OEF algorithm. Here, we first provide
two assumptions on our proposed datasets based on the generation process of the dataset.

Since we only use the NE strategy to generate the expert dataset, we can have the following assumption.
Assumption D.7 (Assumption 5.2). The expert dataset only covers the state-action pair deduced by the
Nash Equilibrium (NE) strategy and the frequency of these state-action pairs is corresponding to the NE
strategy.

Note that according to the above assumption, we can find that although the expert dataset satisfies the
single strategy coverage assumption, it is more strict than the single strategy coverage assumption since the
expert dataset only covers the NE strategy. From the empirical results on the expert dataset, we found
that the model-based algorithm indeed cannot converge to the NE strategy. However, the behavior cloning
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algorithm can get a good strategy on the expert dataset since it can mimic the strategy used to generate
the expert dataset, i.e., the NE strategy.

The random dataset is sampled by the uniform strategy. Therefore, it would involve all the state transitions
and we can have the following assumption for the random dataset.
Assumption D.8 (Assumption 5.1). The random dataset satisfies the uniform dataset coverage assumption,
i.e., for ∀st and ∀a ∈ A(st), (st, a, st+1) is covered by the random dataset.

Since the random dataset satisfies the uniform dataset coverage assumption, according to Theorem D.3, the
random dataset is sufficient for our model-based algorithm to compute the NE strategy. From the empirical
results, we can find that the model-based algorithm performs best under the random dataset, which verifies
that the random dataset is sufficient for computing the NE strategy. Next, we will provide more analysis of
the relationship between the algorithm and the dataset.

From the empirical analysis, we find that the performance of the model-based algorithm mainly depends
on the gap between the trained environment model and the actual game environment. It means that if the
trained environment model can recover all the dynamics of the actual game, then the performance is good.
Otherwise, the performance is worse. Since our model-based framework can generalize existing equilibrium
finding algorithms to the context of the OEF setting and the performance of the existing equilibrium finding
algorithm would also determine the convergence of the equilibrium strategy, we assume that there always
exists an equilibrium finding algorithm for any game which can converge to the equilibrium strategy in the
following proof. Then we have the following theorem.
Theorem D.7 (Theorem 5.2). Assuming that the environment model is trained on the offline dataset with
an extremely small training error ϵ, then the model-based framework (MB) can converge to an equilibrium
strategy under the random dataset and cannot guarantee to converge under the expert dataset.

Proof. Since the training error of the environment model is less than ϵ, the trained environment model can
fully represent the information of the offline dataset according to Assumption D.6. If the random dataset
is the offline dataset, the game defined by the trained environment model is the same as the actual game.
The reason is that every state transition is covered by the random dataset according to Assumption D.8.
Then the strategy learned by our model-based equilibrium finding algorithm is the approximate equilibrium
strategy of the actual game due to the convergence property of the original equilibrium finding algorithm.
Therefore, the model-based framework can converge to an equilibrium strategy under the random dataset.

If the offline dataset is the expert dataset, then the dataset only covers these state transitions related to the
NE strategy according to Assumption D.7. Therefore, the state transition of the actual game may not be
covered by the expert dataset. The environment model trained based on the expert dataset would produce
different transition information on these states not shown in the dataset compared with the actual game. It
would cause a gap between the trained environment model and the actual game. Although the model-based
framework can learn an approximate equilibrium strategy of the game defined by the environment model,
there is no guarantee that the learned strategy is the equilibrium strategy of the actual game.

Theorem D.7 is consistent with our previous conclusion that single strategy coverage is insufficient for NE
identification and dataset coverage satisfying Assumption D.4 is sufficient for NE identification according to
Theorem D.3. And our empirical results also verify these conclusions. The model-based framework performs
best under the random dataset and worst under the expert dataset.

Although the expert dataset satisfies the single strategy coverage, the expert dataset assumption is more
strict than the single strategy coverage. We find that the behavior cloning algorithm can perform well on the
expert dataset. Therefore, to offset the drawback of the model-based algorithm under the expert dataset,
we propose to combine the behavior cloning (BC) technique. From the introduction of the BC technique, we
know that the BC can mimic the behavior policy in the dataset. Therefore, we have the following theorem
describing the power of the BC technique.
Theorem D.8 (Theorem 5.1). Assuming that the behavior cloning policy is trained on the offline dataset
with an extremely small training error ϵ, then the behavior cloning technique (BC) can get the equilibrium
strategy under the expert dataset, and cannot get the equilibrium strategy under the random dataset.
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Proof. The assumption that the behavior cloning policy is trained on the offline dataset with an extremely
small training error ϵ means that the behavior cloning policy can precisely mimic the behavior strategy used
to generate the offline dataset according to Assumption D.5. If the offline dataset is the expert dataset,
according to Assumption D.7, the behavior strategy used to generate the expert dataset is the NE strategy.
Therefore, applying the behavior cloning algorithm on the expert dataset can get an NE strategy.

If the offline dataset is the random dataset, according to the generation process of the random dataset and
Assumption D.8, the behavior strategy used to generate the random dataset is a uniform strategy. Therefore,
the behavior cloning algorithm can only get a uniform strategy instead of the equilibrium strategy under the
random dataset.

Our experimental results also show the same outcomes as Theorem D.8. The performance of the behavior
cloning technique mainly depends on the quality of the behavior strategy used to generate the offline dataset.
Therefore, the behavior cloning technique can perform well under the expert dataset. Based on the above
two theorems, we propose our OEF algorithm, BCMB, by combining the above two techniques with different
weights to improve the performance under these datasets with unknown behavior strategies.
Theorem D.9 (Theorem 5.3). Under the assumptions in Theorems D.7 and D.8, BCMB can compute the
equilibrium strategy under either the random dataset or the expert dataset.

Proof. In the BCMB algorithm, the weight of the BC policy is represented by α. The weight of the MB
policy is 1− α. The α ranges from 0 to 1. When under the random dataset, let α equal 0. Then the policy
of BCMB would equal to MB policy, i.e., the policy trained using the model-based algorithm. According
to Theorem D.7, the model-based framework can converge to an equilibrium strategy under the random
dataset. Therefore, BCMB can also converge to an equilibrium strategy under the random dataset.

When under the expert dataset, let α equal to 1. Then the policy of BCMB would be equal to BC policy,
i.e., the policy trained by the behavior cloning algorithm. Similarly, according to Theorem D.8, BCMB can
get an equilibrium strategy in the expert dataset.

Let’s move to a more general case in which the offline dataset is generated by a behavior strategy σ. Then
we have the following theorems under the general case.
Theorem D.10. Assuming that the offline dataset Dσ generated by the behavior strategy σ covers
(st, a, st+1),∀st, a ∈ A(st) and the environment model is trained on Dσ with an extremely small training
error ϵ, the model-based framework can converge to an equilibrium strategy that performs equal even better
than σ.

Proof. According to the proof of Theorem D.7, since every state transition of the actual game is covered
by Dσ, the trained environment model would be the same as the actual game under the assumption that
the environment model is trained on the offline dataset with an extremely small training error ϵ. Then
according to Theorem D.7, the model-based framework can converge to an equilibrium strategy. If σ used
to generate the dataset is not the equilibrium strategy, then the model-based framework can get a better
strategy (equilibrium strategy) than σ. And if σ is an equilibrium strategy, then the strategy trained using
a model-based framework would perform equal to σ.

Theorem D.11. Assuming that the behavior cloning policy is trained on the offline dataset Dσ generated by
the behavior strategy σ with an extremely small training error ϵ, the performance of behavior cloning policy
σbc would be as good as the performance of σ.

Proof. According to the Assumption D.8, behavior cloning can precisely mimic the behavior strategy in the
offline dataset. Therefore, σbc would be same as σ. Consequently, the performance of σbc would have the
same performance as σ.

Theorem D.12 (Theorem 5.4). Assuming that the environment model and the behavior cloning policy are
trained with an extremely small training error ϵ on the offline dataset Dσ generated using σ, BCMB can get
an equal or better strategy than σ.
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Proof. Following the proof of Theorem D.9, let α equal 1. Then BCMB would reduce to BC. Then according
to Theorem D.11, the performance of BC policy is at least as good as σ. Therefore, BCMB can get a strategy
that is at least as good as the behavior strategy σ.

In another extreme case in which Dσ covers (st, a, st+1),∀st, a ∈ A(st), let α equal to 0. Then BCMB
would reduce to MB. Then according to Theorem D.10, the MB policy performs equal to or better than σ.
Therefore, in this case, BCMB can get an equal or better strategy than σ.

In conclusion, under the above assumptions, BCMB can perform at least equal to the behavior strategy
used to generate the offline dataset. The improvement over the behavior strategy mainly depends on the
performance of the model-based algorithm under the offline dataset.
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E Implementation Details

Model-based Framework. Next, we introduce our instantiate offline model-based algorithms: OEF-PSRO
and OEF-CFR, which are adaptions from two widely-used online equilibrium finding algorithms PSRO and
Deep CFR, and OEF-JPSRO, which is an adaption from JPSRO. These three algorithms perform on the
trained accurately environment model E. We first introduce the OEF-PSRO algorithm, and the whole flow
is shown in Algorithm 2. Firstly, we need the trained accurately environment model E as input and initialize
policy sets Π for all players using random strategies. Then, we need to estimate a meta-game matrix by
computing expected utilities for each joint strategy profile π ∈ Π. In vanilla PSRO, to get the expected
utility for π, it needs to perform the strategy π in the actual game simulator. However, the simulator is
missing in the OEF setting. Therefore, we use the trained accurately environment model E to replace the
game simulator to provide the information needed in the algorithm. Then we initialize meta-strategies using
a uniform strategy. Next, we need to compute the best response policy oracle for every player and add the
best response policy oracle to their policy sets. When training the best response policy oracle using DQN
or other reinforcement learning algorithms, we sample the training data based on the environment model
E. After that, we compute missing entries in the meta-game matrix and calculate meta-strategies for the
meta-game. To calculate the meta-strategy σ of the meta-game matrix, we can use the Nash solver or α-
rank algorithm. Here, we use the α-rank algorithm as the meta solver because our algorithm needs to solve
multi-player games. Finally, we repeat the above process until satisfying the convergence conditions. Since
the process of JPSRO is similar to PSRO except for the best response computation and meta distribution
solver, OEF-JPSRO is also similar to OEF-PSRO. We do not cover OEF-JPSRO in detail here.

Algorithm 2 Offline Equilibrium Finding - Policy-Space Response Oracles
1: Input: Trained environment model E
2: Initial policy sets Π for all players
3: Compute expected utilities UΠ for each joint π ∈ Π based on the environment model E
4: Initialize mate-strategies σi = Uniform(Πi)
5: repeat
6: for player i ∈ [1, .., n] do
7: for best response episodes p ∈ [0, ..., t] do
8: Sample π−i ∼ σ−i

9: Train best response π′
i over ρ ∼ (π′

i, π−i), which samples on the environment model E
10: end for
11: Compute missing entries in UΠ from Π based on the environment model E
12: Compute a meta-strategy σ from UΠ using α-rank algorithm;
13: end for
14: until Meet convergence condition
15: Output:current solution strategy σi for player i

Algorithm 3 shows the process of OEF-CFR. It also needs the trained environment model E as input. We
first initialize regret and strategy networks for every player and then initialize regret and strategy memories
for every player. Then we need to update the regret network for every player. To do this, we can perform
the traverse function to collect corresponding training data. The traverse function can be any sampling-
based CFR algorithm. Here, we use the external sampling algorithm. Note that we need to perform the
traverse function on the game tree. In OEF-CFR, the trained environment model can replace the game tree.
Therefore, the trained environment model is the input of the traverse function. Algorithm 4 shows the process
of the traverse function. In this traverse function, we collect the regret training data of the traveler, and
the strategy training data of other players are also gathered. After performing the traverse function several
times, the regret network is updated using the regret memory. We need to repeat the above processes n
iterations. Then the average strategy network for every player is trained based on its corresponding strategy
memory. Finally, the trained average strategy networks are output as the approximate NE strategy.

Combination Method. As introduced in the main paper, we proposed three methods to select the pa-
rameter for combination. Here, we detailly introduce the method that uses a parameter predictor since the
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Algorithm 3 Offline Equilibrium Finding - Deep Counterfactual Regret Minimization
1: Input: Trained environment model E
2: Initialize regret network R(I, a|θr,p) for every player p;
3: Initialize average strategy network S(I, a|θπ,p) for every player p;
4: Initialize regret memory Mr,p and strategy memory Mπ,p for every player p;
5: for CFR Iteration t = 1 to T do
6: for player p ∈ [1, ..., n] do
7: for traverse episodes k ∈ [1, ..., K] do
8: TRVERSE(ϕ, p, θr,p, θπ,−p,Mr,p, Mπ,−p, E);
9: end for

10: Train θr,p from scratch based on regret memory Mr,p

11: end for
12: end for
13: Train θπ,p based on strategy memory Mπ,p for every player p;
14: Output:θπ,p for every player p

other two methods are straightforward. Firstly, we need to collect the training data by getting the best
parameters through online interaction for different offline datasets. We use CKA to measure the difference
between the bc policy and mb policy since these two policies are both neural networks. Therefore, the
differences between each layer of these two policies get from different offline datasets are taken as the input
and the best parameter for different offline datasets is taken as the output. Then we can easily use these
data to train a parameter predictor. Finally, when encountering a new OEF problem, we can directly get
the parameter from the parameter predictor based on the difference between the trained bc policy and the
trained mb policy. This parameter predictor can also be used for other games. Here, we conduct some
experiments to show the performance of the proposed combination method. Figures 15 and 16 show these
experimental results. We can find that BC+MB can provide a good parameter for the unseen game while the
performance depends on the difference between the unseen game and the game used to train the parameter
predictor.
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Figure 15: Experimental results for different combination methods (parameter predictor trained on two-
player kuhn poker)

34



Under review as submission to TMLR

Algorithm 4 TRVERSE(s, p, θr,p, θπ,−p,Mr,p, Mπ,−p, E)-External Sampling Algorithm
1: if s is terminal state then
2: Get the utility ui(s) from environment model E
3: Output: ui(s)
4: else
5: if s is a chance state then
6: Sample an action a based on the probability σc(s), which is obtained from model E
7: s′ = E(s, a)
8: Output: TRAVERSE(s′, p, θr,p, θπ,−p,Mr,p, Mπ,−p, E)
9: else

10: if P (s) = p then
11: I ← s[p]; # game state is formed by information sets of every player
12: σ(I)← strategy of I computed using regret values R(I, a|θr,p) based on regret matching
13: for a ∈ A(s) do
14: s′ = E(s, a)
15: u(a)← TRAVERSE(s′, p, θr,p, θπ,−p,Mr,p, Mπ,−p, E)
16: end for
17: uσ ←

∑
a∈A(s) σ(I, a)u(a)

18: for a ∈ A(s) do
19: r(I, a)← u(a)− uσ

20: end for
21: Insert the infoset and its action regret values (I, r(I)) into regret memory Mr,p

22: Output: uσ

23: else
24: I ← s[p]
25: σ(s)← strategy of I computed using regret value R(I, a|θr,−p) based on regret matching
26: Insert the infoset and its strategy (I, σ(s)) into strategy memory Mπ,−p

27: Sample an action a from the probability distribution σ(s)
28: s′ = E(s, a)
29: Output: TRAVERSE(s′, p, θr,p, θπ,−p,Mr,p, Mπ,−p, E)
30: end if
31: end if
32: end if
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Figure 16: Experimental results for different combination methods (parameter predictor trained on two-
player leduc poker)

35



Under review as submission to TMLR

F Additional Experimental Results

In this section, we provide experimental results on other games. First, we present the experimental results
of the behavior cloning method and model-based framework (OEF-CFR) using hybrid datasets, followed by
the results of our OEF algorithm (BC+MC). We also test our OEF algorithm on a two-player Phantom
Tic-Tac-Toe game using the learning dataset. Finally, we provide an ablation study and the setting of
hyper-parameters used in our experiments.

Figure 17 displays the results of the behavior cloning technique on several multi-player poker games and
a two-player Liar’s Dice game. The results show that as the proportion of random datasets increases,
performance decreases. This observation is consistent with the finding from our previous experiments.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

0.0

0.5

1.0

1.5

2.0

N
as

hC
on

v

BC - Data Size 1000
BC - Data Size 5000
BC - Data Size 10000

(a) Kuhn Poker(3-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
as

hC
on

v

BC - Data Size 5000
BC - Data Size 10000
BC - Data Size 20000

(b) Kuhn Poker(4-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

0

1

2

3

4

5

N
as

hC
on

v

BC - Data Size 5000
BC - Data Size 10000
BC - Data Size 20000

(c) Kuhn Poker(5-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

6

8

10

12

14

16

18

N
as

hC
on

v

BC - Data Size 10000
BC - Data Size 20000
BC - Data Size 50000

(d) Leduc Poker(3-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
as

hC
on

v

BC-Data Size 10000
BC-Data Size 20000
BC-Data Size 50000

(e) Liar’s Dice(2-P)

Figure 17: Experimental results for the BC method

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

0

1

2

3

4

N
as

hC
on

v

OEF-CFR - Data Size 1000
OEF-CFR - Data Size 5000
OEF-CFR - Data Size 10000

(a) Kuhn Poker(3-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

1

2

3

4

5

N
as

hC
on

v

OEF-CFR - Data Size 5000
OEF-CFR - Data Size 10000
OEF-CFR - Data Size 20000

(b) Kuhn Poker(4-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

4

6

8

10

12

14

16

N
as

hC
on

v

OEF-CFR - Data Size 5000
OEF-CFR - Data Size 10000
OEF-CFR - Data Size 20000

(c) Kuhn Poker(5-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

11

12

13

14

15
N

as
hC

on
v

OEF-CFR - Data Size 10000
OEF-CFR - Data Size 20000
OEF-CFR - Data Size 50000

(d) Leduc Poker(3-P)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Random Dataset

1.2

1.4

1.6

1.8

N
as

hC
on

v

OEF-PSRO - Data Size 10000
OEF-PSRO - Data Size 20000
OEF-PSRO - Data Size 50000

(e) Liar’s Dice(2-P)

Figure 18: Experimental results for the MB method

The experimental results of the model-based framework (OEF-CFR) on these games are shown in Figure 18.
Since the strategy learned by OEF-CFR is not a joint strategy, we only use NashConv to measure its closeness
to NEs in these multiple-player games. From these results, we find that the performance of the model-based
framework is not stable in these games but still shows a slightly decreasing tendency with the increase in
the proportion of the random dataset. Note that the CFR-based algorithm has no theoretical guarantee of
convergence in multiple-player games. Therefore, OEF-CFR also cannot guarantee convergence to the NE
strategy. The performance of the model-based framework also depends on the trained environment model.
As a result, poor performance may be caused by an inadequately trained environment model or the poor
performance of the CFR-based algorithm in multiple-player games. Hence, learning a good enough strategy
is a significant challenge in these multiple-player games under the OEF setting.

Figures 19(a)-19(j) show the experimental results of BCMB on various games. We also test our OEF
algorithm BCMB in the Phantom Tic-Tac-Toe game based on the learning dataset (Figure 19(k)). The
NashConv values in Phantom Tic-Tac-Toe are approximate results since the best response policy is trained
using DQN, and the utilities are obtained by simulation. The results show that the BCMB performs better
than BC and MB, which implies that our combination method can perform well in any game under any
unknown dataset. The appropriate weights in the BCMB algorithm under different datasets are shown in
Figure 20. This displays a similar tendency as in previous experiments.
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Figure 19: Experimental results for the benchmark algorithm BCMB
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Figure 20: Experimental Results for Proper Weight

37



Under review as submission to TMLR

Ablation Study. To investigate the influence of hyperparameters, we conduct several ablation experiments
on two-player Kuhn poker and Leduc poker games. We consider different model structures with various
numbers of hidden layers. Specifically, for the 2-Player Kuhn poker game, we use different environment
models with 8, 16, 32, and 64 hidden layers. For the 2-Player Leduc poker game, which is a more complicated
game, the numbers of hidden layers for different models are 32, 64, and 128. In addition, we train the
environment models for different epochs to evaluate the robustness of our approach. Figures 21-22 show
these ablation results. We find that the number of hidden layers and the number of training epochs have
little effect on the performance of the BC algorithm. These results further verify that the performance of
the BC algorithm primarily depends on the quality of the dataset. As we know, the performance of the
model-based framework mainly depends on the trained environment model. Since the number of the hidden
layer and the number of training epochs influence the training phase of the environment model, the number
of the hidden layer and the number of train epochs have a slight impact on the performance of the model-
based framework. As long as the size of the hidden layer and the number of training epochs can guarantee
that the environment model is trained accurately, the performance of the model-based framework will not
be affected.
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Figure 21: Ablation results for different hidden layer size
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Figure 22: Ablation results for different train epoch
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Parameter Setting. We list the parameters used to train the behavior cloning policy and environment
model for all games used in our experiments in Table 2 and Table 3.

Table 2: Parameters for Behavior Cloning algorithm

Games Data size Hidden layer Batch size Train epoch
2-player Kuhn poker 500 32 32 1000
2-player Kuhn poker 1000 32 32 2000
2-player Kuhn poker 5000 32 32 2000
3-player Kuhn poker 1000 32 32 5000
3-player Kuhn poker 5000 32 32 5000
3-player Kuhn poker 10000 64 128 5000
4-player Kuhn poker 5000 64 64 5000
4-player Kuhn poker 10000 64 128 5000
4-player Kuhn poker 20000 64 128 5000
5-player Kuhn poker 5000 64 64 5000
5-player Kuhn poker 10000 64 128 5000
5-player Kuhn poker 20000 64 128 5000
2-player Leduc poker 10000 128 128 10000
2-player Leduc poker 20000 128 128 10000
2-player Leduc poker 50000 128 128 10000
3-player Leduc poker 10000 128 128 10000
3-player Leduc poker 20000 128 128 10000
3-player Leduc poker 50000 128 128 10000

Liar’s Dice 10000 64 64 5000
Liar’s Dice 20000 64 128 5000
Liar’s Dice 50000 64 128 5000

Phantom Tic-Tac-Toe 5000 128 128 5000
Phantom Tic-Tac-Toe 10000 128 128 5000
Phantom Tic-Tac-Toe 20000 128 128 5000
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Table 3: Parameters for training Environment Model

Games Data size Hidden layer Batch size Train epoch
2-player Kuhn poker 500 32 32 1000
2-player Kuhn poker 1000 32 32 2000
2-player Kuhn poker 5000 32 32 2000
3-player Kuhn poker 1000 32 32 2000
3-player Kuhn poker 5000 32 32 5000
3-player Kuhn poker 10000 64 128 5000
4-player Kuhn poker 5000 64 64 5000
4-player Kuhn poker 10000 64 128 5000
4-player Kuhn poker 20000 64 128 5000
5-player Kuhn poker 5000 64 64 5000
5-player Kuhn poker 10000 64 128 5000
5-player Kuhn poker 20000 64 128 5000
2-player Leduc poker 5000 64 64 5000
2-player Leduc poker 10000 64 64 5000
2-player Leduc poker 20000 128 128 10000
3-player Leduc poker 10000 128 128 10000
3-player Leduc poker 20000 128 128 10000
3-player Leduc poker 50000 128 128 10000

Liar’s Dice 10000 64 64 5000
Liar’s Dice 20000 64 128 5000
Liar’s Dice 50000 64 128 5000

Phantom Tic-Tac-Toe 5000 128 128 5000
Phantom Tic-Tac-Toe 10000 128 128 5000
Phantom Tic-Tac-Toe 20000 128 128 5000
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